1 /* Target-dependent code for the HP PA-RISC architecture.
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
5 Free Software Foundation, Inc.
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
10 This file is part of GDB.
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29 #include "completer.h"
31 #include "gdb_assert.h"
32 #include "arch-utils.h"
33 /* For argument passing to the inferior */
36 #include "trad-frame.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
44 #include "hppa-tdep.h"
46 static int hppa_debug
= 0;
48 /* Some local constants. */
49 static const int hppa32_num_regs
= 128;
50 static const int hppa64_num_regs
= 96;
52 /* hppa-specific object data -- unwind and solib info.
53 TODO/maybe: think about splitting this into two parts; the unwind data is
54 common to all hppa targets, but is only used in this file; we can register
55 that separately and make this static. The solib data is probably hpux-
56 specific, so we can create a separate extern objfile_data that is registered
57 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
58 const struct objfile_data
*hppa_objfile_priv_data
= NULL
;
60 /* Get at various relevent fields of an instruction word. */
63 #define MASK_14 0x3fff
64 #define MASK_21 0x1fffff
66 /* Sizes (in bytes) of the native unwind entries. */
67 #define UNWIND_ENTRY_SIZE 16
68 #define STUB_UNWIND_ENTRY_SIZE 8
70 /* Routines to extract various sized constants out of hppa
73 /* This assumes that no garbage lies outside of the lower bits of
77 hppa_sign_extend (unsigned val
, unsigned bits
)
79 return (int) (val
>> (bits
- 1) ? (-1 << bits
) | val
: val
);
82 /* For many immediate values the sign bit is the low bit! */
85 hppa_low_hppa_sign_extend (unsigned val
, unsigned bits
)
87 return (int) ((val
& 0x1 ? (-1 << (bits
- 1)) : 0) | val
>> 1);
90 /* Extract the bits at positions between FROM and TO, using HP's numbering
94 hppa_get_field (unsigned word
, int from
, int to
)
96 return ((word
) >> (31 - (to
)) & ((1 << ((to
) - (from
) + 1)) - 1));
99 /* extract the immediate field from a ld{bhw}s instruction */
102 hppa_extract_5_load (unsigned word
)
104 return hppa_low_hppa_sign_extend (word
>> 16 & MASK_5
, 5);
107 /* extract the immediate field from a break instruction */
110 hppa_extract_5r_store (unsigned word
)
112 return (word
& MASK_5
);
115 /* extract the immediate field from a {sr}sm instruction */
118 hppa_extract_5R_store (unsigned word
)
120 return (word
>> 16 & MASK_5
);
123 /* extract a 14 bit immediate field */
126 hppa_extract_14 (unsigned word
)
128 return hppa_low_hppa_sign_extend (word
& MASK_14
, 14);
131 /* extract a 21 bit constant */
134 hppa_extract_21 (unsigned word
)
140 val
= hppa_get_field (word
, 20, 20);
142 val
|= hppa_get_field (word
, 9, 19);
144 val
|= hppa_get_field (word
, 5, 6);
146 val
|= hppa_get_field (word
, 0, 4);
148 val
|= hppa_get_field (word
, 7, 8);
149 return hppa_sign_extend (val
, 21) << 11;
152 /* extract a 17 bit constant from branch instructions, returning the
153 19 bit signed value. */
156 hppa_extract_17 (unsigned word
)
158 return hppa_sign_extend (hppa_get_field (word
, 19, 28) |
159 hppa_get_field (word
, 29, 29) << 10 |
160 hppa_get_field (word
, 11, 15) << 11 |
161 (word
& 0x1) << 16, 17) << 2;
165 hppa_symbol_address(const char *sym
)
167 struct minimal_symbol
*minsym
;
169 minsym
= lookup_minimal_symbol (sym
, NULL
, NULL
);
171 return SYMBOL_VALUE_ADDRESS (minsym
);
173 return (CORE_ADDR
)-1;
176 struct hppa_objfile_private
*
177 hppa_init_objfile_priv_data (struct objfile
*objfile
)
179 struct hppa_objfile_private
*priv
;
181 priv
= (struct hppa_objfile_private
*)
182 obstack_alloc (&objfile
->objfile_obstack
,
183 sizeof (struct hppa_objfile_private
));
184 set_objfile_data (objfile
, hppa_objfile_priv_data
, priv
);
185 memset (priv
, 0, sizeof (*priv
));
191 /* Compare the start address for two unwind entries returning 1 if
192 the first address is larger than the second, -1 if the second is
193 larger than the first, and zero if they are equal. */
196 compare_unwind_entries (const void *arg1
, const void *arg2
)
198 const struct unwind_table_entry
*a
= arg1
;
199 const struct unwind_table_entry
*b
= arg2
;
201 if (a
->region_start
> b
->region_start
)
203 else if (a
->region_start
< b
->region_start
)
210 record_text_segment_lowaddr (bfd
*abfd
, asection
*section
, void *data
)
212 if ((section
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
))
213 == (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
))
215 bfd_vma value
= section
->vma
- section
->filepos
;
216 CORE_ADDR
*low_text_segment_address
= (CORE_ADDR
*)data
;
218 if (value
< *low_text_segment_address
)
219 *low_text_segment_address
= value
;
224 internalize_unwinds (struct objfile
*objfile
, struct unwind_table_entry
*table
,
225 asection
*section
, unsigned int entries
, unsigned int size
,
226 CORE_ADDR text_offset
)
228 /* We will read the unwind entries into temporary memory, then
229 fill in the actual unwind table. */
235 char *buf
= alloca (size
);
236 CORE_ADDR low_text_segment_address
;
238 /* For ELF targets, then unwinds are supposed to
239 be segment relative offsets instead of absolute addresses.
241 Note that when loading a shared library (text_offset != 0) the
242 unwinds are already relative to the text_offset that will be
244 if (gdbarch_tdep (current_gdbarch
)->is_elf
&& text_offset
== 0)
246 low_text_segment_address
= -1;
248 bfd_map_over_sections (objfile
->obfd
,
249 record_text_segment_lowaddr
,
250 &low_text_segment_address
);
252 text_offset
= low_text_segment_address
;
254 else if (gdbarch_tdep (current_gdbarch
)->solib_get_text_base
)
256 text_offset
= gdbarch_tdep (current_gdbarch
)->solib_get_text_base (objfile
);
259 bfd_get_section_contents (objfile
->obfd
, section
, buf
, 0, size
);
261 /* Now internalize the information being careful to handle host/target
263 for (i
= 0; i
< entries
; i
++)
265 table
[i
].region_start
= bfd_get_32 (objfile
->obfd
,
267 table
[i
].region_start
+= text_offset
;
269 table
[i
].region_end
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
270 table
[i
].region_end
+= text_offset
;
272 tmp
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
274 table
[i
].Cannot_unwind
= (tmp
>> 31) & 0x1;
275 table
[i
].Millicode
= (tmp
>> 30) & 0x1;
276 table
[i
].Millicode_save_sr0
= (tmp
>> 29) & 0x1;
277 table
[i
].Region_description
= (tmp
>> 27) & 0x3;
278 table
[i
].reserved
= (tmp
>> 26) & 0x1;
279 table
[i
].Entry_SR
= (tmp
>> 25) & 0x1;
280 table
[i
].Entry_FR
= (tmp
>> 21) & 0xf;
281 table
[i
].Entry_GR
= (tmp
>> 16) & 0x1f;
282 table
[i
].Args_stored
= (tmp
>> 15) & 0x1;
283 table
[i
].Variable_Frame
= (tmp
>> 14) & 0x1;
284 table
[i
].Separate_Package_Body
= (tmp
>> 13) & 0x1;
285 table
[i
].Frame_Extension_Millicode
= (tmp
>> 12) & 0x1;
286 table
[i
].Stack_Overflow_Check
= (tmp
>> 11) & 0x1;
287 table
[i
].Two_Instruction_SP_Increment
= (tmp
>> 10) & 0x1;
288 table
[i
].sr4export
= (tmp
>> 9) & 0x1;
289 table
[i
].cxx_info
= (tmp
>> 8) & 0x1;
290 table
[i
].cxx_try_catch
= (tmp
>> 7) & 0x1;
291 table
[i
].sched_entry_seq
= (tmp
>> 6) & 0x1;
292 table
[i
].reserved1
= (tmp
>> 5) & 0x1;
293 table
[i
].Save_SP
= (tmp
>> 4) & 0x1;
294 table
[i
].Save_RP
= (tmp
>> 3) & 0x1;
295 table
[i
].Save_MRP_in_frame
= (tmp
>> 2) & 0x1;
296 table
[i
].save_r19
= (tmp
>> 1) & 0x1;
297 table
[i
].Cleanup_defined
= tmp
& 0x1;
298 tmp
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
300 table
[i
].MPE_XL_interrupt_marker
= (tmp
>> 31) & 0x1;
301 table
[i
].HP_UX_interrupt_marker
= (tmp
>> 30) & 0x1;
302 table
[i
].Large_frame
= (tmp
>> 29) & 0x1;
303 table
[i
].alloca_frame
= (tmp
>> 28) & 0x1;
304 table
[i
].reserved2
= (tmp
>> 27) & 0x1;
305 table
[i
].Total_frame_size
= tmp
& 0x7ffffff;
307 /* Stub unwinds are handled elsewhere. */
308 table
[i
].stub_unwind
.stub_type
= 0;
309 table
[i
].stub_unwind
.padding
= 0;
314 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
315 the object file. This info is used mainly by find_unwind_entry() to find
316 out the stack frame size and frame pointer used by procedures. We put
317 everything on the psymbol obstack in the objfile so that it automatically
318 gets freed when the objfile is destroyed. */
321 read_unwind_info (struct objfile
*objfile
)
323 asection
*unwind_sec
, *stub_unwind_sec
;
324 unsigned unwind_size
, stub_unwind_size
, total_size
;
325 unsigned index
, unwind_entries
;
326 unsigned stub_entries
, total_entries
;
327 CORE_ADDR text_offset
;
328 struct hppa_unwind_info
*ui
;
329 struct hppa_objfile_private
*obj_private
;
331 text_offset
= ANOFFSET (objfile
->section_offsets
, 0);
332 ui
= (struct hppa_unwind_info
*) obstack_alloc (&objfile
->objfile_obstack
,
333 sizeof (struct hppa_unwind_info
));
339 /* For reasons unknown the HP PA64 tools generate multiple unwinder
340 sections in a single executable. So we just iterate over every
341 section in the BFD looking for unwinder sections intead of trying
342 to do a lookup with bfd_get_section_by_name.
344 First determine the total size of the unwind tables so that we
345 can allocate memory in a nice big hunk. */
347 for (unwind_sec
= objfile
->obfd
->sections
;
349 unwind_sec
= unwind_sec
->next
)
351 if (strcmp (unwind_sec
->name
, "$UNWIND_START$") == 0
352 || strcmp (unwind_sec
->name
, ".PARISC.unwind") == 0)
354 unwind_size
= bfd_section_size (objfile
->obfd
, unwind_sec
);
355 unwind_entries
= unwind_size
/ UNWIND_ENTRY_SIZE
;
357 total_entries
+= unwind_entries
;
361 /* Now compute the size of the stub unwinds. Note the ELF tools do not
362 use stub unwinds at the current time. */
363 stub_unwind_sec
= bfd_get_section_by_name (objfile
->obfd
, "$UNWIND_END$");
367 stub_unwind_size
= bfd_section_size (objfile
->obfd
, stub_unwind_sec
);
368 stub_entries
= stub_unwind_size
/ STUB_UNWIND_ENTRY_SIZE
;
372 stub_unwind_size
= 0;
376 /* Compute total number of unwind entries and their total size. */
377 total_entries
+= stub_entries
;
378 total_size
= total_entries
* sizeof (struct unwind_table_entry
);
380 /* Allocate memory for the unwind table. */
381 ui
->table
= (struct unwind_table_entry
*)
382 obstack_alloc (&objfile
->objfile_obstack
, total_size
);
383 ui
->last
= total_entries
- 1;
385 /* Now read in each unwind section and internalize the standard unwind
388 for (unwind_sec
= objfile
->obfd
->sections
;
390 unwind_sec
= unwind_sec
->next
)
392 if (strcmp (unwind_sec
->name
, "$UNWIND_START$") == 0
393 || strcmp (unwind_sec
->name
, ".PARISC.unwind") == 0)
395 unwind_size
= bfd_section_size (objfile
->obfd
, unwind_sec
);
396 unwind_entries
= unwind_size
/ UNWIND_ENTRY_SIZE
;
398 internalize_unwinds (objfile
, &ui
->table
[index
], unwind_sec
,
399 unwind_entries
, unwind_size
, text_offset
);
400 index
+= unwind_entries
;
404 /* Now read in and internalize the stub unwind entries. */
405 if (stub_unwind_size
> 0)
408 char *buf
= alloca (stub_unwind_size
);
410 /* Read in the stub unwind entries. */
411 bfd_get_section_contents (objfile
->obfd
, stub_unwind_sec
, buf
,
412 0, stub_unwind_size
);
414 /* Now convert them into regular unwind entries. */
415 for (i
= 0; i
< stub_entries
; i
++, index
++)
417 /* Clear out the next unwind entry. */
418 memset (&ui
->table
[index
], 0, sizeof (struct unwind_table_entry
));
420 /* Convert offset & size into region_start and region_end.
421 Stuff away the stub type into "reserved" fields. */
422 ui
->table
[index
].region_start
= bfd_get_32 (objfile
->obfd
,
424 ui
->table
[index
].region_start
+= text_offset
;
426 ui
->table
[index
].stub_unwind
.stub_type
= bfd_get_8 (objfile
->obfd
,
429 ui
->table
[index
].region_end
430 = ui
->table
[index
].region_start
+ 4 *
431 (bfd_get_16 (objfile
->obfd
, (bfd_byte
*) buf
) - 1);
437 /* Unwind table needs to be kept sorted. */
438 qsort (ui
->table
, total_entries
, sizeof (struct unwind_table_entry
),
439 compare_unwind_entries
);
441 /* Keep a pointer to the unwind information. */
442 obj_private
= (struct hppa_objfile_private
*)
443 objfile_data (objfile
, hppa_objfile_priv_data
);
444 if (obj_private
== NULL
)
445 obj_private
= hppa_init_objfile_priv_data (objfile
);
447 obj_private
->unwind_info
= ui
;
450 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
451 of the objfiles seeking the unwind table entry for this PC. Each objfile
452 contains a sorted list of struct unwind_table_entry. Since we do a binary
453 search of the unwind tables, we depend upon them to be sorted. */
455 struct unwind_table_entry
*
456 find_unwind_entry (CORE_ADDR pc
)
458 int first
, middle
, last
;
459 struct objfile
*objfile
;
460 struct hppa_objfile_private
*priv
;
463 fprintf_unfiltered (gdb_stdlog
, "{ find_unwind_entry 0x%s -> ",
466 /* A function at address 0? Not in HP-UX! */
467 if (pc
== (CORE_ADDR
) 0)
470 fprintf_unfiltered (gdb_stdlog
, "NULL }\n");
474 ALL_OBJFILES (objfile
)
476 struct hppa_unwind_info
*ui
;
478 priv
= objfile_data (objfile
, hppa_objfile_priv_data
);
480 ui
= ((struct hppa_objfile_private
*) priv
)->unwind_info
;
484 read_unwind_info (objfile
);
485 priv
= objfile_data (objfile
, hppa_objfile_priv_data
);
487 error (_("Internal error reading unwind information."));
488 ui
= ((struct hppa_objfile_private
*) priv
)->unwind_info
;
491 /* First, check the cache */
494 && pc
>= ui
->cache
->region_start
495 && pc
<= ui
->cache
->region_end
)
498 fprintf_unfiltered (gdb_stdlog
, "0x%s (cached) }\n",
499 paddr_nz ((uintptr_t) ui
->cache
));
503 /* Not in the cache, do a binary search */
508 while (first
<= last
)
510 middle
= (first
+ last
) / 2;
511 if (pc
>= ui
->table
[middle
].region_start
512 && pc
<= ui
->table
[middle
].region_end
)
514 ui
->cache
= &ui
->table
[middle
];
516 fprintf_unfiltered (gdb_stdlog
, "0x%s }\n",
517 paddr_nz ((uintptr_t) ui
->cache
));
518 return &ui
->table
[middle
];
521 if (pc
< ui
->table
[middle
].region_start
)
526 } /* ALL_OBJFILES() */
529 fprintf_unfiltered (gdb_stdlog
, "NULL (not found) }\n");
534 /* The epilogue is defined here as the area either on the `bv' instruction
535 itself or an instruction which destroys the function's stack frame.
537 We do not assume that the epilogue is at the end of a function as we can
538 also have return sequences in the middle of a function. */
540 hppa_in_function_epilogue_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
542 unsigned long status
;
547 status
= target_read_memory (pc
, buf
, 4);
551 inst
= extract_unsigned_integer (buf
, 4);
553 /* The most common way to perform a stack adjustment ldo X(sp),sp
554 We are destroying a stack frame if the offset is negative. */
555 if ((inst
& 0xffffc000) == 0x37de0000
556 && hppa_extract_14 (inst
) < 0)
559 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
560 if (((inst
& 0x0fc010e0) == 0x0fc010e0
561 || (inst
& 0x0fc010e0) == 0x0fc010e0)
562 && hppa_extract_14 (inst
) < 0)
565 /* bv %r0(%rp) or bv,n %r0(%rp) */
566 if (inst
== 0xe840c000 || inst
== 0xe840c002)
572 static const unsigned char *
573 hppa_breakpoint_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pc
, int *len
)
575 static const unsigned char breakpoint
[] = {0x00, 0x01, 0x00, 0x04};
576 (*len
) = sizeof (breakpoint
);
580 /* Return the name of a register. */
583 hppa32_register_name (struct gdbarch
*gdbarch
, int i
)
585 static char *names
[] = {
586 "flags", "r1", "rp", "r3",
587 "r4", "r5", "r6", "r7",
588 "r8", "r9", "r10", "r11",
589 "r12", "r13", "r14", "r15",
590 "r16", "r17", "r18", "r19",
591 "r20", "r21", "r22", "r23",
592 "r24", "r25", "r26", "dp",
593 "ret0", "ret1", "sp", "r31",
594 "sar", "pcoqh", "pcsqh", "pcoqt",
595 "pcsqt", "eiem", "iir", "isr",
596 "ior", "ipsw", "goto", "sr4",
597 "sr0", "sr1", "sr2", "sr3",
598 "sr5", "sr6", "sr7", "cr0",
599 "cr8", "cr9", "ccr", "cr12",
600 "cr13", "cr24", "cr25", "cr26",
601 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
602 "fpsr", "fpe1", "fpe2", "fpe3",
603 "fpe4", "fpe5", "fpe6", "fpe7",
604 "fr4", "fr4R", "fr5", "fr5R",
605 "fr6", "fr6R", "fr7", "fr7R",
606 "fr8", "fr8R", "fr9", "fr9R",
607 "fr10", "fr10R", "fr11", "fr11R",
608 "fr12", "fr12R", "fr13", "fr13R",
609 "fr14", "fr14R", "fr15", "fr15R",
610 "fr16", "fr16R", "fr17", "fr17R",
611 "fr18", "fr18R", "fr19", "fr19R",
612 "fr20", "fr20R", "fr21", "fr21R",
613 "fr22", "fr22R", "fr23", "fr23R",
614 "fr24", "fr24R", "fr25", "fr25R",
615 "fr26", "fr26R", "fr27", "fr27R",
616 "fr28", "fr28R", "fr29", "fr29R",
617 "fr30", "fr30R", "fr31", "fr31R"
619 if (i
< 0 || i
>= (sizeof (names
) / sizeof (*names
)))
626 hppa64_register_name (struct gdbarch
*gdbarch
, int i
)
628 static char *names
[] = {
629 "flags", "r1", "rp", "r3",
630 "r4", "r5", "r6", "r7",
631 "r8", "r9", "r10", "r11",
632 "r12", "r13", "r14", "r15",
633 "r16", "r17", "r18", "r19",
634 "r20", "r21", "r22", "r23",
635 "r24", "r25", "r26", "dp",
636 "ret0", "ret1", "sp", "r31",
637 "sar", "pcoqh", "pcsqh", "pcoqt",
638 "pcsqt", "eiem", "iir", "isr",
639 "ior", "ipsw", "goto", "sr4",
640 "sr0", "sr1", "sr2", "sr3",
641 "sr5", "sr6", "sr7", "cr0",
642 "cr8", "cr9", "ccr", "cr12",
643 "cr13", "cr24", "cr25", "cr26",
644 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
645 "fpsr", "fpe1", "fpe2", "fpe3",
646 "fr4", "fr5", "fr6", "fr7",
647 "fr8", "fr9", "fr10", "fr11",
648 "fr12", "fr13", "fr14", "fr15",
649 "fr16", "fr17", "fr18", "fr19",
650 "fr20", "fr21", "fr22", "fr23",
651 "fr24", "fr25", "fr26", "fr27",
652 "fr28", "fr29", "fr30", "fr31"
654 if (i
< 0 || i
>= (sizeof (names
) / sizeof (*names
)))
661 hppa64_dwarf_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
663 /* r0-r31 and sar map one-to-one. */
667 /* fr4-fr31 are mapped from 72 in steps of 2. */
668 if (reg
>= 72 || reg
< 72 + 28 * 2)
669 return HPPA64_FP4_REGNUM
+ (reg
- 72) / 2;
671 error ("Invalid DWARF register num %d.", reg
);
675 /* This function pushes a stack frame with arguments as part of the
676 inferior function calling mechanism.
678 This is the version of the function for the 32-bit PA machines, in
679 which later arguments appear at lower addresses. (The stack always
680 grows towards higher addresses.)
682 We simply allocate the appropriate amount of stack space and put
683 arguments into their proper slots. */
686 hppa32_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
687 struct regcache
*regcache
, CORE_ADDR bp_addr
,
688 int nargs
, struct value
**args
, CORE_ADDR sp
,
689 int struct_return
, CORE_ADDR struct_addr
)
691 /* Stack base address at which any pass-by-reference parameters are
693 CORE_ADDR struct_end
= 0;
694 /* Stack base address at which the first parameter is stored. */
695 CORE_ADDR param_end
= 0;
697 /* The inner most end of the stack after all the parameters have
699 CORE_ADDR new_sp
= 0;
701 /* Two passes. First pass computes the location of everything,
702 second pass writes the bytes out. */
705 /* Global pointer (r19) of the function we are trying to call. */
708 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
710 for (write_pass
= 0; write_pass
< 2; write_pass
++)
712 CORE_ADDR struct_ptr
= 0;
713 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
714 struct_ptr is adjusted for each argument below, so the first
715 argument will end up at sp-36. */
716 CORE_ADDR param_ptr
= 32;
718 int small_struct
= 0;
720 for (i
= 0; i
< nargs
; i
++)
722 struct value
*arg
= args
[i
];
723 struct type
*type
= check_typedef (value_type (arg
));
724 /* The corresponding parameter that is pushed onto the
725 stack, and [possibly] passed in a register. */
728 memset (param_val
, 0, sizeof param_val
);
729 if (TYPE_LENGTH (type
) > 8)
731 /* Large parameter, pass by reference. Store the value
732 in "struct" area and then pass its address. */
734 struct_ptr
+= align_up (TYPE_LENGTH (type
), 8);
736 write_memory (struct_end
- struct_ptr
, value_contents (arg
),
738 store_unsigned_integer (param_val
, 4, struct_end
- struct_ptr
);
740 else if (TYPE_CODE (type
) == TYPE_CODE_INT
741 || TYPE_CODE (type
) == TYPE_CODE_ENUM
)
743 /* Integer value store, right aligned. "unpack_long"
744 takes care of any sign-extension problems. */
745 param_len
= align_up (TYPE_LENGTH (type
), 4);
746 store_unsigned_integer (param_val
, param_len
,
748 value_contents (arg
)));
750 else if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
752 /* Floating point value store, right aligned. */
753 param_len
= align_up (TYPE_LENGTH (type
), 4);
754 memcpy (param_val
, value_contents (arg
), param_len
);
758 param_len
= align_up (TYPE_LENGTH (type
), 4);
760 /* Small struct value are stored right-aligned. */
761 memcpy (param_val
+ param_len
- TYPE_LENGTH (type
),
762 value_contents (arg
), TYPE_LENGTH (type
));
764 /* Structures of size 5, 6 and 7 bytes are special in that
765 the higher-ordered word is stored in the lower-ordered
766 argument, and even though it is a 8-byte quantity the
767 registers need not be 8-byte aligned. */
768 if (param_len
> 4 && param_len
< 8)
772 param_ptr
+= param_len
;
773 if (param_len
== 8 && !small_struct
)
774 param_ptr
= align_up (param_ptr
, 8);
776 /* First 4 non-FP arguments are passed in gr26-gr23.
777 First 4 32-bit FP arguments are passed in fr4L-fr7L.
778 First 2 64-bit FP arguments are passed in fr5 and fr7.
780 The rest go on the stack, starting at sp-36, towards lower
781 addresses. 8-byte arguments must be aligned to a 8-byte
785 write_memory (param_end
- param_ptr
, param_val
, param_len
);
787 /* There are some cases when we don't know the type
788 expected by the callee (e.g. for variadic functions), so
789 pass the parameters in both general and fp regs. */
792 int grreg
= 26 - (param_ptr
- 36) / 4;
793 int fpLreg
= 72 + (param_ptr
- 36) / 4 * 2;
794 int fpreg
= 74 + (param_ptr
- 32) / 8 * 4;
796 regcache_cooked_write (regcache
, grreg
, param_val
);
797 regcache_cooked_write (regcache
, fpLreg
, param_val
);
801 regcache_cooked_write (regcache
, grreg
+ 1,
804 regcache_cooked_write (regcache
, fpreg
, param_val
);
805 regcache_cooked_write (regcache
, fpreg
+ 1,
812 /* Update the various stack pointers. */
815 struct_end
= sp
+ align_up (struct_ptr
, 64);
816 /* PARAM_PTR already accounts for all the arguments passed
817 by the user. However, the ABI mandates minimum stack
818 space allocations for outgoing arguments. The ABI also
819 mandates minimum stack alignments which we must
821 param_end
= struct_end
+ align_up (param_ptr
, 64);
825 /* If a structure has to be returned, set up register 28 to hold its
828 regcache_cooked_write_unsigned (regcache
, 28, struct_addr
);
830 gp
= tdep
->find_global_pointer (gdbarch
, function
);
833 regcache_cooked_write_unsigned (regcache
, 19, gp
);
835 /* Set the return address. */
836 if (!gdbarch_push_dummy_code_p (gdbarch
))
837 regcache_cooked_write_unsigned (regcache
, HPPA_RP_REGNUM
, bp_addr
);
839 /* Update the Stack Pointer. */
840 regcache_cooked_write_unsigned (regcache
, HPPA_SP_REGNUM
, param_end
);
845 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
846 Runtime Architecture for PA-RISC 2.0", which is distributed as part
847 as of the HP-UX Software Transition Kit (STK). This implementation
848 is based on version 3.3, dated October 6, 1997. */
850 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
853 hppa64_integral_or_pointer_p (const struct type
*type
)
855 switch (TYPE_CODE (type
))
861 case TYPE_CODE_RANGE
:
863 int len
= TYPE_LENGTH (type
);
864 return (len
== 1 || len
== 2 || len
== 4 || len
== 8);
868 return (TYPE_LENGTH (type
) == 8);
876 /* Check whether TYPE is a "Floating Scalar Type". */
879 hppa64_floating_p (const struct type
*type
)
881 switch (TYPE_CODE (type
))
885 int len
= TYPE_LENGTH (type
);
886 return (len
== 4 || len
== 8 || len
== 16);
895 /* If CODE points to a function entry address, try to look up the corresponding
896 function descriptor and return its address instead. If CODE is not a
897 function entry address, then just return it unchanged. */
899 hppa64_convert_code_addr_to_fptr (CORE_ADDR code
)
901 struct obj_section
*sec
, *opd
;
903 sec
= find_pc_section (code
);
908 /* If CODE is in a data section, assume it's already a fptr. */
909 if (!(sec
->the_bfd_section
->flags
& SEC_CODE
))
912 ALL_OBJFILE_OSECTIONS (sec
->objfile
, opd
)
914 if (strcmp (opd
->the_bfd_section
->name
, ".opd") == 0)
918 if (opd
< sec
->objfile
->sections_end
)
922 for (addr
= opd
->addr
; addr
< opd
->endaddr
; addr
+= 2 * 8)
927 if (target_read_memory (addr
, tmp
, sizeof (tmp
)))
929 opdaddr
= extract_unsigned_integer (tmp
, sizeof (tmp
));
940 hppa64_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
941 struct regcache
*regcache
, CORE_ADDR bp_addr
,
942 int nargs
, struct value
**args
, CORE_ADDR sp
,
943 int struct_return
, CORE_ADDR struct_addr
)
945 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
949 /* "The outgoing parameter area [...] must be aligned at a 16-byte
951 sp
= align_up (sp
, 16);
953 for (i
= 0; i
< nargs
; i
++)
955 struct value
*arg
= args
[i
];
956 struct type
*type
= value_type (arg
);
957 int len
= TYPE_LENGTH (type
);
958 const bfd_byte
*valbuf
;
962 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
963 offset
= align_up (offset
, 8);
965 if (hppa64_integral_or_pointer_p (type
))
967 /* "Integral scalar parameters smaller than 64 bits are
968 padded on the left (i.e., the value is in the
969 least-significant bits of the 64-bit storage unit, and
970 the high-order bits are undefined)." Therefore we can
971 safely sign-extend them. */
974 arg
= value_cast (builtin_type_int64
, arg
);
978 else if (hppa64_floating_p (type
))
982 /* "Quad-precision (128-bit) floating-point scalar
983 parameters are aligned on a 16-byte boundary." */
984 offset
= align_up (offset
, 16);
986 /* "Double-extended- and quad-precision floating-point
987 parameters within the first 64 bytes of the parameter
988 list are always passed in general registers." */
994 /* "Single-precision (32-bit) floating-point scalar
995 parameters are padded on the left with 32 bits of
996 garbage (i.e., the floating-point value is in the
997 least-significant 32 bits of a 64-bit storage
1002 /* "Single- and double-precision floating-point
1003 parameters in this area are passed according to the
1004 available formal parameter information in a function
1005 prototype. [...] If no prototype is in scope,
1006 floating-point parameters must be passed both in the
1007 corresponding general registers and in the
1008 corresponding floating-point registers." */
1009 regnum
= HPPA64_FP4_REGNUM
+ offset
/ 8;
1011 if (regnum
< HPPA64_FP4_REGNUM
+ 8)
1013 /* "Single-precision floating-point parameters, when
1014 passed in floating-point registers, are passed in
1015 the right halves of the floating point registers;
1016 the left halves are unused." */
1017 regcache_cooked_write_part (regcache
, regnum
, offset
% 8,
1018 len
, value_contents (arg
));
1026 /* "Aggregates larger than 8 bytes are aligned on a
1027 16-byte boundary, possibly leaving an unused argument
1028 slot, which is filled with garbage. If necessary,
1029 they are padded on the right (with garbage), to a
1030 multiple of 8 bytes." */
1031 offset
= align_up (offset
, 16);
1035 /* If we are passing a function pointer, make sure we pass a function
1036 descriptor instead of the function entry address. */
1037 if (TYPE_CODE (type
) == TYPE_CODE_PTR
1038 && TYPE_CODE (TYPE_TARGET_TYPE (type
)) == TYPE_CODE_FUNC
)
1040 ULONGEST codeptr
, fptr
;
1042 codeptr
= unpack_long (type
, value_contents (arg
));
1043 fptr
= hppa64_convert_code_addr_to_fptr (codeptr
);
1044 store_unsigned_integer (fptrbuf
, TYPE_LENGTH (type
), fptr
);
1049 valbuf
= value_contents (arg
);
1052 /* Always store the argument in memory. */
1053 write_memory (sp
+ offset
, valbuf
, len
);
1055 regnum
= HPPA_ARG0_REGNUM
- offset
/ 8;
1056 while (regnum
> HPPA_ARG0_REGNUM
- 8 && len
> 0)
1058 regcache_cooked_write_part (regcache
, regnum
,
1059 offset
% 8, min (len
, 8), valbuf
);
1060 offset
+= min (len
, 8);
1061 valbuf
+= min (len
, 8);
1062 len
-= min (len
, 8);
1069 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1070 regcache_cooked_write_unsigned (regcache
, HPPA_RET1_REGNUM
, sp
+ 64);
1072 /* Allocate the outgoing parameter area. Make sure the outgoing
1073 parameter area is multiple of 16 bytes in length. */
1074 sp
+= max (align_up (offset
, 16), 64);
1076 /* Allocate 32-bytes of scratch space. The documentation doesn't
1077 mention this, but it seems to be needed. */
1080 /* Allocate the frame marker area. */
1083 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1086 regcache_cooked_write_unsigned (regcache
, HPPA_RET0_REGNUM
, struct_addr
);
1088 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1089 gp
= tdep
->find_global_pointer (gdbarch
, function
);
1091 regcache_cooked_write_unsigned (regcache
, HPPA_DP_REGNUM
, gp
);
1093 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1094 if (!gdbarch_push_dummy_code_p (gdbarch
))
1095 regcache_cooked_write_unsigned (regcache
, HPPA_RP_REGNUM
, bp_addr
);
1097 /* Set up GR30 to hold the stack pointer (sp). */
1098 regcache_cooked_write_unsigned (regcache
, HPPA_SP_REGNUM
, sp
);
1104 /* Handle 32/64-bit struct return conventions. */
1106 static enum return_value_convention
1107 hppa32_return_value (struct gdbarch
*gdbarch
, struct type
*func_type
,
1108 struct type
*type
, struct regcache
*regcache
,
1109 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1111 if (TYPE_LENGTH (type
) <= 2 * 4)
1113 /* The value always lives in the right hand end of the register
1114 (or register pair)? */
1116 int reg
= TYPE_CODE (type
) == TYPE_CODE_FLT
? HPPA_FP4_REGNUM
: 28;
1117 int part
= TYPE_LENGTH (type
) % 4;
1118 /* The left hand register contains only part of the value,
1119 transfer that first so that the rest can be xfered as entire
1120 4-byte registers. */
1123 if (readbuf
!= NULL
)
1124 regcache_cooked_read_part (regcache
, reg
, 4 - part
,
1126 if (writebuf
!= NULL
)
1127 regcache_cooked_write_part (regcache
, reg
, 4 - part
,
1131 /* Now transfer the remaining register values. */
1132 for (b
= part
; b
< TYPE_LENGTH (type
); b
+= 4)
1134 if (readbuf
!= NULL
)
1135 regcache_cooked_read (regcache
, reg
, readbuf
+ b
);
1136 if (writebuf
!= NULL
)
1137 regcache_cooked_write (regcache
, reg
, writebuf
+ b
);
1140 return RETURN_VALUE_REGISTER_CONVENTION
;
1143 return RETURN_VALUE_STRUCT_CONVENTION
;
1146 static enum return_value_convention
1147 hppa64_return_value (struct gdbarch
*gdbarch
, struct type
*func_type
,
1148 struct type
*type
, struct regcache
*regcache
,
1149 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1151 int len
= TYPE_LENGTH (type
);
1156 /* All return values larget than 128 bits must be aggregate
1158 gdb_assert (!hppa64_integral_or_pointer_p (type
));
1159 gdb_assert (!hppa64_floating_p (type
));
1161 /* "Aggregate return values larger than 128 bits are returned in
1162 a buffer allocated by the caller. The address of the buffer
1163 must be passed in GR 28." */
1164 return RETURN_VALUE_STRUCT_CONVENTION
;
1167 if (hppa64_integral_or_pointer_p (type
))
1169 /* "Integral return values are returned in GR 28. Values
1170 smaller than 64 bits are padded on the left (with garbage)." */
1171 regnum
= HPPA_RET0_REGNUM
;
1174 else if (hppa64_floating_p (type
))
1178 /* "Double-extended- and quad-precision floating-point
1179 values are returned in GRs 28 and 29. The sign,
1180 exponent, and most-significant bits of the mantissa are
1181 returned in GR 28; the least-significant bits of the
1182 mantissa are passed in GR 29. For double-extended
1183 precision values, GR 29 is padded on the right with 48
1184 bits of garbage." */
1185 regnum
= HPPA_RET0_REGNUM
;
1190 /* "Single-precision and double-precision floating-point
1191 return values are returned in FR 4R (single precision) or
1192 FR 4 (double-precision)." */
1193 regnum
= HPPA64_FP4_REGNUM
;
1199 /* "Aggregate return values up to 64 bits in size are returned
1200 in GR 28. Aggregates smaller than 64 bits are left aligned
1201 in the register; the pad bits on the right are undefined."
1203 "Aggregate return values between 65 and 128 bits are returned
1204 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1205 the remaining bits are placed, left aligned, in GR 29. The
1206 pad bits on the right of GR 29 (if any) are undefined." */
1207 regnum
= HPPA_RET0_REGNUM
;
1215 regcache_cooked_read_part (regcache
, regnum
, offset
,
1216 min (len
, 8), readbuf
);
1217 readbuf
+= min (len
, 8);
1218 len
-= min (len
, 8);
1227 regcache_cooked_write_part (regcache
, regnum
, offset
,
1228 min (len
, 8), writebuf
);
1229 writebuf
+= min (len
, 8);
1230 len
-= min (len
, 8);
1235 return RETURN_VALUE_REGISTER_CONVENTION
;
1240 hppa32_convert_from_func_ptr_addr (struct gdbarch
*gdbarch
, CORE_ADDR addr
,
1241 struct target_ops
*targ
)
1245 CORE_ADDR plabel
= addr
& ~3;
1246 return read_memory_typed_address (plabel
, builtin_type_void_func_ptr
);
1253 hppa32_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
1255 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1257 return align_up (addr
, 64);
1260 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1263 hppa64_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
1265 /* Just always 16-byte align. */
1266 return align_up (addr
, 16);
1270 hppa_read_pc (struct regcache
*regcache
)
1275 regcache_cooked_read_unsigned (regcache
, HPPA_IPSW_REGNUM
, &ipsw
);
1276 regcache_cooked_read_unsigned (regcache
, HPPA_PCOQ_HEAD_REGNUM
, &pc
);
1278 /* If the current instruction is nullified, then we are effectively
1279 still executing the previous instruction. Pretend we are still
1280 there. This is needed when single stepping; if the nullified
1281 instruction is on a different line, we don't want GDB to think
1282 we've stepped onto that line. */
1283 if (ipsw
& 0x00200000)
1290 hppa_write_pc (struct regcache
*regcache
, CORE_ADDR pc
)
1292 regcache_cooked_write_unsigned (regcache
, HPPA_PCOQ_HEAD_REGNUM
, pc
);
1293 regcache_cooked_write_unsigned (regcache
, HPPA_PCOQ_TAIL_REGNUM
, pc
+ 4);
1296 /* return the alignment of a type in bytes. Structures have the maximum
1297 alignment required by their fields. */
1300 hppa_alignof (struct type
*type
)
1302 int max_align
, align
, i
;
1303 CHECK_TYPEDEF (type
);
1304 switch (TYPE_CODE (type
))
1309 return TYPE_LENGTH (type
);
1310 case TYPE_CODE_ARRAY
:
1311 return hppa_alignof (TYPE_FIELD_TYPE (type
, 0));
1312 case TYPE_CODE_STRUCT
:
1313 case TYPE_CODE_UNION
:
1315 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
1317 /* Bit fields have no real alignment. */
1318 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1319 if (!TYPE_FIELD_BITSIZE (type
, i
)) /* elz: this should be bitsize */
1321 align
= hppa_alignof (TYPE_FIELD_TYPE (type
, i
));
1322 max_align
= max (max_align
, align
);
1331 /* For the given instruction (INST), return any adjustment it makes
1332 to the stack pointer or zero for no adjustment.
1334 This only handles instructions commonly found in prologues. */
1337 prologue_inst_adjust_sp (unsigned long inst
)
1339 /* This must persist across calls. */
1340 static int save_high21
;
1342 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1343 if ((inst
& 0xffffc000) == 0x37de0000)
1344 return hppa_extract_14 (inst
);
1347 if ((inst
& 0xffe00000) == 0x6fc00000)
1348 return hppa_extract_14 (inst
);
1350 /* std,ma X,D(sp) */
1351 if ((inst
& 0xffe00008) == 0x73c00008)
1352 return (inst
& 0x1 ? -1 << 13 : 0) | (((inst
>> 4) & 0x3ff) << 3);
1354 /* addil high21,%r30; ldo low11,(%r1),%r30)
1355 save high bits in save_high21 for later use. */
1356 if ((inst
& 0xffe00000) == 0x2bc00000)
1358 save_high21
= hppa_extract_21 (inst
);
1362 if ((inst
& 0xffff0000) == 0x343e0000)
1363 return save_high21
+ hppa_extract_14 (inst
);
1365 /* fstws as used by the HP compilers. */
1366 if ((inst
& 0xffffffe0) == 0x2fd01220)
1367 return hppa_extract_5_load (inst
);
1369 /* No adjustment. */
1373 /* Return nonzero if INST is a branch of some kind, else return zero. */
1376 is_branch (unsigned long inst
)
1405 /* Return the register number for a GR which is saved by INST or
1406 zero it INST does not save a GR. */
1409 inst_saves_gr (unsigned long inst
)
1411 /* Does it look like a stw? */
1412 if ((inst
>> 26) == 0x1a || (inst
>> 26) == 0x1b
1413 || (inst
>> 26) == 0x1f
1414 || ((inst
>> 26) == 0x1f
1415 && ((inst
>> 6) == 0xa)))
1416 return hppa_extract_5R_store (inst
);
1418 /* Does it look like a std? */
1419 if ((inst
>> 26) == 0x1c
1420 || ((inst
>> 26) == 0x03
1421 && ((inst
>> 6) & 0xf) == 0xb))
1422 return hppa_extract_5R_store (inst
);
1424 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1425 if ((inst
>> 26) == 0x1b)
1426 return hppa_extract_5R_store (inst
);
1428 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1430 if ((inst
>> 26) == 0x19 || (inst
>> 26) == 0x18
1431 || ((inst
>> 26) == 0x3
1432 && (((inst
>> 6) & 0xf) == 0x8
1433 || (inst
>> 6) & 0xf) == 0x9))
1434 return hppa_extract_5R_store (inst
);
1439 /* Return the register number for a FR which is saved by INST or
1440 zero it INST does not save a FR.
1442 Note we only care about full 64bit register stores (that's the only
1443 kind of stores the prologue will use).
1445 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1448 inst_saves_fr (unsigned long inst
)
1450 /* is this an FSTD ? */
1451 if ((inst
& 0xfc00dfc0) == 0x2c001200)
1452 return hppa_extract_5r_store (inst
);
1453 if ((inst
& 0xfc000002) == 0x70000002)
1454 return hppa_extract_5R_store (inst
);
1455 /* is this an FSTW ? */
1456 if ((inst
& 0xfc00df80) == 0x24001200)
1457 return hppa_extract_5r_store (inst
);
1458 if ((inst
& 0xfc000002) == 0x7c000000)
1459 return hppa_extract_5R_store (inst
);
1463 /* Advance PC across any function entry prologue instructions
1464 to reach some "real" code.
1466 Use information in the unwind table to determine what exactly should
1467 be in the prologue. */
1471 skip_prologue_hard_way (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
1472 int stop_before_branch
)
1475 CORE_ADDR orig_pc
= pc
;
1476 unsigned long inst
, stack_remaining
, save_gr
, save_fr
, save_rp
, save_sp
;
1477 unsigned long args_stored
, status
, i
, restart_gr
, restart_fr
;
1478 struct unwind_table_entry
*u
;
1479 int final_iteration
;
1485 u
= find_unwind_entry (pc
);
1489 /* If we are not at the beginning of a function, then return now. */
1490 if ((pc
& ~0x3) != u
->region_start
)
1493 /* This is how much of a frame adjustment we need to account for. */
1494 stack_remaining
= u
->Total_frame_size
<< 3;
1496 /* Magic register saves we want to know about. */
1497 save_rp
= u
->Save_RP
;
1498 save_sp
= u
->Save_SP
;
1500 /* An indication that args may be stored into the stack. Unfortunately
1501 the HPUX compilers tend to set this in cases where no args were
1505 /* Turn the Entry_GR field into a bitmask. */
1507 for (i
= 3; i
< u
->Entry_GR
+ 3; i
++)
1509 /* Frame pointer gets saved into a special location. */
1510 if (u
->Save_SP
&& i
== HPPA_FP_REGNUM
)
1513 save_gr
|= (1 << i
);
1515 save_gr
&= ~restart_gr
;
1517 /* Turn the Entry_FR field into a bitmask too. */
1519 for (i
= 12; i
< u
->Entry_FR
+ 12; i
++)
1520 save_fr
|= (1 << i
);
1521 save_fr
&= ~restart_fr
;
1523 final_iteration
= 0;
1525 /* Loop until we find everything of interest or hit a branch.
1527 For unoptimized GCC code and for any HP CC code this will never ever
1528 examine any user instructions.
1530 For optimzied GCC code we're faced with problems. GCC will schedule
1531 its prologue and make prologue instructions available for delay slot
1532 filling. The end result is user code gets mixed in with the prologue
1533 and a prologue instruction may be in the delay slot of the first branch
1536 Some unexpected things are expected with debugging optimized code, so
1537 we allow this routine to walk past user instructions in optimized
1539 while (save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0
1542 unsigned int reg_num
;
1543 unsigned long old_stack_remaining
, old_save_gr
, old_save_fr
;
1544 unsigned long old_save_rp
, old_save_sp
, next_inst
;
1546 /* Save copies of all the triggers so we can compare them later
1548 old_save_gr
= save_gr
;
1549 old_save_fr
= save_fr
;
1550 old_save_rp
= save_rp
;
1551 old_save_sp
= save_sp
;
1552 old_stack_remaining
= stack_remaining
;
1554 status
= target_read_memory (pc
, buf
, 4);
1555 inst
= extract_unsigned_integer (buf
, 4);
1561 /* Note the interesting effects of this instruction. */
1562 stack_remaining
-= prologue_inst_adjust_sp (inst
);
1564 /* There are limited ways to store the return pointer into the
1566 if (inst
== 0x6bc23fd9 || inst
== 0x0fc212c1 || inst
== 0x73c23fe1)
1569 /* These are the only ways we save SP into the stack. At this time
1570 the HP compilers never bother to save SP into the stack. */
1571 if ((inst
& 0xffffc000) == 0x6fc10000
1572 || (inst
& 0xffffc00c) == 0x73c10008)
1575 /* Are we loading some register with an offset from the argument
1577 if ((inst
& 0xffe00000) == 0x37a00000
1578 || (inst
& 0xffffffe0) == 0x081d0240)
1584 /* Account for general and floating-point register saves. */
1585 reg_num
= inst_saves_gr (inst
);
1586 save_gr
&= ~(1 << reg_num
);
1588 /* Ugh. Also account for argument stores into the stack.
1589 Unfortunately args_stored only tells us that some arguments
1590 where stored into the stack. Not how many or what kind!
1592 This is a kludge as on the HP compiler sets this bit and it
1593 never does prologue scheduling. So once we see one, skip past
1594 all of them. We have similar code for the fp arg stores below.
1596 FIXME. Can still die if we have a mix of GR and FR argument
1598 if (reg_num
>= (gdbarch_ptr_bit (gdbarch
) == 64 ? 19 : 23)
1601 while (reg_num
>= (gdbarch_ptr_bit (gdbarch
) == 64 ? 19 : 23)
1605 status
= target_read_memory (pc
, buf
, 4);
1606 inst
= extract_unsigned_integer (buf
, 4);
1609 reg_num
= inst_saves_gr (inst
);
1615 reg_num
= inst_saves_fr (inst
);
1616 save_fr
&= ~(1 << reg_num
);
1618 status
= target_read_memory (pc
+ 4, buf
, 4);
1619 next_inst
= extract_unsigned_integer (buf
, 4);
1625 /* We've got to be read to handle the ldo before the fp register
1627 if ((inst
& 0xfc000000) == 0x34000000
1628 && inst_saves_fr (next_inst
) >= 4
1629 && inst_saves_fr (next_inst
)
1630 <= (gdbarch_ptr_bit (gdbarch
) == 64 ? 11 : 7))
1632 /* So we drop into the code below in a reasonable state. */
1633 reg_num
= inst_saves_fr (next_inst
);
1637 /* Ugh. Also account for argument stores into the stack.
1638 This is a kludge as on the HP compiler sets this bit and it
1639 never does prologue scheduling. So once we see one, skip past
1642 && reg_num
<= (gdbarch_ptr_bit (gdbarch
) == 64 ? 11 : 7))
1646 <= (gdbarch_ptr_bit (gdbarch
) == 64 ? 11 : 7))
1649 status
= target_read_memory (pc
, buf
, 4);
1650 inst
= extract_unsigned_integer (buf
, 4);
1653 if ((inst
& 0xfc000000) != 0x34000000)
1655 status
= target_read_memory (pc
+ 4, buf
, 4);
1656 next_inst
= extract_unsigned_integer (buf
, 4);
1659 reg_num
= inst_saves_fr (next_inst
);
1665 /* Quit if we hit any kind of branch. This can happen if a prologue
1666 instruction is in the delay slot of the first call/branch. */
1667 if (is_branch (inst
) && stop_before_branch
)
1670 /* What a crock. The HP compilers set args_stored even if no
1671 arguments were stored into the stack (boo hiss). This could
1672 cause this code to then skip a bunch of user insns (up to the
1675 To combat this we try to identify when args_stored was bogusly
1676 set and clear it. We only do this when args_stored is nonzero,
1677 all other resources are accounted for, and nothing changed on
1680 && !(save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0)
1681 && old_save_gr
== save_gr
&& old_save_fr
== save_fr
1682 && old_save_rp
== save_rp
&& old_save_sp
== save_sp
1683 && old_stack_remaining
== stack_remaining
)
1689 /* !stop_before_branch, so also look at the insn in the delay slot
1691 if (final_iteration
)
1693 if (is_branch (inst
))
1694 final_iteration
= 1;
1697 /* We've got a tenative location for the end of the prologue. However
1698 because of limitations in the unwind descriptor mechanism we may
1699 have went too far into user code looking for the save of a register
1700 that does not exist. So, if there registers we expected to be saved
1701 but never were, mask them out and restart.
1703 This should only happen in optimized code, and should be very rare. */
1704 if (save_gr
|| (save_fr
&& !(restart_fr
|| restart_gr
)))
1707 restart_gr
= save_gr
;
1708 restart_fr
= save_fr
;
1716 /* Return the address of the PC after the last prologue instruction if
1717 we can determine it from the debug symbols. Else return zero. */
1720 after_prologue (CORE_ADDR pc
)
1722 struct symtab_and_line sal
;
1723 CORE_ADDR func_addr
, func_end
;
1726 /* If we can not find the symbol in the partial symbol table, then
1727 there is no hope we can determine the function's start address
1729 if (!find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
1732 /* Get the line associated with FUNC_ADDR. */
1733 sal
= find_pc_line (func_addr
, 0);
1735 /* There are only two cases to consider. First, the end of the source line
1736 is within the function bounds. In that case we return the end of the
1737 source line. Second is the end of the source line extends beyond the
1738 bounds of the current function. We need to use the slow code to
1739 examine instructions in that case.
1741 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1742 the wrong thing to do. In fact, it should be entirely possible for this
1743 function to always return zero since the slow instruction scanning code
1744 is supposed to *always* work. If it does not, then it is a bug. */
1745 if (sal
.end
< func_end
)
1751 /* To skip prologues, I use this predicate. Returns either PC itself
1752 if the code at PC does not look like a function prologue; otherwise
1753 returns an address that (if we're lucky) follows the prologue.
1755 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1756 It doesn't necessarily skips all the insns in the prologue. In fact
1757 we might not want to skip all the insns because a prologue insn may
1758 appear in the delay slot of the first branch, and we don't want to
1759 skip over the branch in that case. */
1762 hppa_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1766 CORE_ADDR post_prologue_pc
;
1769 /* See if we can determine the end of the prologue via the symbol table.
1770 If so, then return either PC, or the PC after the prologue, whichever
1773 post_prologue_pc
= after_prologue (pc
);
1775 /* If after_prologue returned a useful address, then use it. Else
1776 fall back on the instruction skipping code.
1778 Some folks have claimed this causes problems because the breakpoint
1779 may be the first instruction of the prologue. If that happens, then
1780 the instruction skipping code has a bug that needs to be fixed. */
1781 if (post_prologue_pc
!= 0)
1782 return max (pc
, post_prologue_pc
);
1784 return (skip_prologue_hard_way (gdbarch
, pc
, 1));
1787 /* Return an unwind entry that falls within the frame's code block. */
1789 static struct unwind_table_entry
*
1790 hppa_find_unwind_entry_in_block (struct frame_info
*this_frame
)
1792 CORE_ADDR pc
= get_frame_address_in_block (this_frame
);
1794 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1795 result of frame_unwind_address_in_block implies a problem.
1796 The bits should have been removed earlier, before the return
1797 value of frame_pc_unwind. That might be happening already;
1798 if it isn't, it should be fixed. Then this call can be
1800 pc
= gdbarch_addr_bits_remove (get_frame_arch (this_frame
), pc
);
1801 return find_unwind_entry (pc
);
1804 struct hppa_frame_cache
1807 struct trad_frame_saved_reg
*saved_regs
;
1810 static struct hppa_frame_cache
*
1811 hppa_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
1813 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1814 struct hppa_frame_cache
*cache
;
1819 struct unwind_table_entry
*u
;
1820 CORE_ADDR prologue_end
;
1825 fprintf_unfiltered (gdb_stdlog
, "{ hppa_frame_cache (frame=%d) -> ",
1826 frame_relative_level(this_frame
));
1828 if ((*this_cache
) != NULL
)
1831 fprintf_unfiltered (gdb_stdlog
, "base=0x%s (cached) }",
1832 paddr_nz (((struct hppa_frame_cache
*)*this_cache
)->base
));
1833 return (*this_cache
);
1835 cache
= FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache
);
1836 (*this_cache
) = cache
;
1837 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
1840 u
= hppa_find_unwind_entry_in_block (this_frame
);
1844 fprintf_unfiltered (gdb_stdlog
, "base=NULL (no unwind entry) }");
1845 return (*this_cache
);
1848 /* Turn the Entry_GR field into a bitmask. */
1850 for (i
= 3; i
< u
->Entry_GR
+ 3; i
++)
1852 /* Frame pointer gets saved into a special location. */
1853 if (u
->Save_SP
&& i
== HPPA_FP_REGNUM
)
1856 saved_gr_mask
|= (1 << i
);
1859 /* Turn the Entry_FR field into a bitmask too. */
1861 for (i
= 12; i
< u
->Entry_FR
+ 12; i
++)
1862 saved_fr_mask
|= (1 << i
);
1864 /* Loop until we find everything of interest or hit a branch.
1866 For unoptimized GCC code and for any HP CC code this will never ever
1867 examine any user instructions.
1869 For optimized GCC code we're faced with problems. GCC will schedule
1870 its prologue and make prologue instructions available for delay slot
1871 filling. The end result is user code gets mixed in with the prologue
1872 and a prologue instruction may be in the delay slot of the first branch
1875 Some unexpected things are expected with debugging optimized code, so
1876 we allow this routine to walk past user instructions in optimized
1879 int final_iteration
= 0;
1880 CORE_ADDR pc
, start_pc
, end_pc
;
1881 int looking_for_sp
= u
->Save_SP
;
1882 int looking_for_rp
= u
->Save_RP
;
1885 /* We have to use skip_prologue_hard_way instead of just
1886 skip_prologue_using_sal, in case we stepped into a function without
1887 symbol information. hppa_skip_prologue also bounds the returned
1888 pc by the passed in pc, so it will not return a pc in the next
1891 We used to call hppa_skip_prologue to find the end of the prologue,
1892 but if some non-prologue instructions get scheduled into the prologue,
1893 and the program is compiled with debug information, the "easy" way
1894 in hppa_skip_prologue will return a prologue end that is too early
1895 for us to notice any potential frame adjustments. */
1897 /* We used to use frame_func_unwind () to locate the beginning of the
1898 function to pass to skip_prologue (). However, when objects are
1899 compiled without debug symbols, frame_func_unwind can return the wrong
1900 function (or 0). We can do better than that by using unwind records.
1901 This only works if the Region_description of the unwind record
1902 indicates that it includes the entry point of the function.
1903 HP compilers sometimes generate unwind records for regions that
1904 do not include the entry or exit point of a function. GNU tools
1907 if ((u
->Region_description
& 0x2) == 0)
1908 start_pc
= u
->region_start
;
1910 start_pc
= get_frame_func (this_frame
);
1912 prologue_end
= skip_prologue_hard_way (gdbarch
, start_pc
, 0);
1913 end_pc
= get_frame_pc (this_frame
);
1915 if (prologue_end
!= 0 && end_pc
> prologue_end
)
1916 end_pc
= prologue_end
;
1921 ((saved_gr_mask
|| saved_fr_mask
1922 || looking_for_sp
|| looking_for_rp
1923 || frame_size
< (u
->Total_frame_size
<< 3))
1931 if (!safe_frame_unwind_memory (this_frame
, pc
, buf4
, sizeof buf4
))
1933 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc
));
1934 return (*this_cache
);
1937 inst
= extract_unsigned_integer (buf4
, sizeof buf4
);
1939 /* Note the interesting effects of this instruction. */
1940 frame_size
+= prologue_inst_adjust_sp (inst
);
1942 /* There are limited ways to store the return pointer into the
1944 if (inst
== 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1947 cache
->saved_regs
[HPPA_RP_REGNUM
].addr
= -20;
1949 else if (inst
== 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1952 cache
->saved_regs
[HPPA_RP_REGNUM
].addr
= -24;
1954 else if (inst
== 0x0fc212c1
1955 || inst
== 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1958 cache
->saved_regs
[HPPA_RP_REGNUM
].addr
= -16;
1961 /* Check to see if we saved SP into the stack. This also
1962 happens to indicate the location of the saved frame
1964 if ((inst
& 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1965 || (inst
& 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1968 cache
->saved_regs
[HPPA_FP_REGNUM
].addr
= 0;
1970 else if (inst
== 0x08030241) /* copy %r3, %r1 */
1975 /* Account for general and floating-point register saves. */
1976 reg
= inst_saves_gr (inst
);
1977 if (reg
>= 3 && reg
<= 18
1978 && (!u
->Save_SP
|| reg
!= HPPA_FP_REGNUM
))
1980 saved_gr_mask
&= ~(1 << reg
);
1981 if ((inst
>> 26) == 0x1b && hppa_extract_14 (inst
) >= 0)
1982 /* stwm with a positive displacement is a _post_
1984 cache
->saved_regs
[reg
].addr
= 0;
1985 else if ((inst
& 0xfc00000c) == 0x70000008)
1986 /* A std has explicit post_modify forms. */
1987 cache
->saved_regs
[reg
].addr
= 0;
1992 if ((inst
>> 26) == 0x1c)
1993 offset
= (inst
& 0x1 ? -1 << 13 : 0) | (((inst
>> 4) & 0x3ff) << 3);
1994 else if ((inst
>> 26) == 0x03)
1995 offset
= hppa_low_hppa_sign_extend (inst
& 0x1f, 5);
1997 offset
= hppa_extract_14 (inst
);
1999 /* Handle code with and without frame pointers. */
2001 cache
->saved_regs
[reg
].addr
= offset
;
2003 cache
->saved_regs
[reg
].addr
= (u
->Total_frame_size
<< 3) + offset
;
2007 /* GCC handles callee saved FP regs a little differently.
2009 It emits an instruction to put the value of the start of
2010 the FP store area into %r1. It then uses fstds,ma with a
2011 basereg of %r1 for the stores.
2013 HP CC emits them at the current stack pointer modifying the
2014 stack pointer as it stores each register. */
2016 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2017 if ((inst
& 0xffffc000) == 0x34610000
2018 || (inst
& 0xffffc000) == 0x37c10000)
2019 fp_loc
= hppa_extract_14 (inst
);
2021 reg
= inst_saves_fr (inst
);
2022 if (reg
>= 12 && reg
<= 21)
2024 /* Note +4 braindamage below is necessary because the FP
2025 status registers are internally 8 registers rather than
2026 the expected 4 registers. */
2027 saved_fr_mask
&= ~(1 << reg
);
2030 /* 1st HP CC FP register store. After this
2031 instruction we've set enough state that the GCC and
2032 HPCC code are both handled in the same manner. */
2033 cache
->saved_regs
[reg
+ HPPA_FP4_REGNUM
+ 4].addr
= 0;
2038 cache
->saved_regs
[reg
+ HPPA_FP0_REGNUM
+ 4].addr
= fp_loc
;
2043 /* Quit if we hit any kind of branch the previous iteration. */
2044 if (final_iteration
)
2046 /* We want to look precisely one instruction beyond the branch
2047 if we have not found everything yet. */
2048 if (is_branch (inst
))
2049 final_iteration
= 1;
2054 /* The frame base always represents the value of %sp at entry to
2055 the current function (and is thus equivalent to the "saved"
2057 CORE_ADDR this_sp
= get_frame_register_unsigned (this_frame
,
2062 fprintf_unfiltered (gdb_stdlog
, " (this_sp=0x%s, pc=0x%s, "
2063 "prologue_end=0x%s) ",
2065 paddr_nz (get_frame_pc (this_frame
)),
2066 paddr_nz (prologue_end
));
2068 /* Check to see if a frame pointer is available, and use it for
2069 frame unwinding if it is.
2071 There are some situations where we need to rely on the frame
2072 pointer to do stack unwinding. For example, if a function calls
2073 alloca (), the stack pointer can get adjusted inside the body of
2074 the function. In this case, the ABI requires that the compiler
2075 maintain a frame pointer for the function.
2077 The unwind record has a flag (alloca_frame) that indicates that
2078 a function has a variable frame; unfortunately, gcc/binutils
2079 does not set this flag. Instead, whenever a frame pointer is used
2080 and saved on the stack, the Save_SP flag is set. We use this to
2081 decide whether to use the frame pointer for unwinding.
2083 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2084 instead of Save_SP. */
2086 fp
= get_frame_register_unsigned (this_frame
, HPPA_FP_REGNUM
);
2088 if (u
->alloca_frame
)
2089 fp
-= u
->Total_frame_size
<< 3;
2091 if (get_frame_pc (this_frame
) >= prologue_end
2092 && (u
->Save_SP
|| u
->alloca_frame
) && fp
!= 0)
2097 fprintf_unfiltered (gdb_stdlog
, " (base=0x%s) [frame pointer]",
2098 paddr_nz (cache
->base
));
2101 && trad_frame_addr_p (cache
->saved_regs
, HPPA_SP_REGNUM
))
2103 /* Both we're expecting the SP to be saved and the SP has been
2104 saved. The entry SP value is saved at this frame's SP
2106 cache
->base
= read_memory_integer
2107 (this_sp
, gdbarch_ptr_bit (gdbarch
) / 8);
2110 fprintf_unfiltered (gdb_stdlog
, " (base=0x%s) [saved]",
2111 paddr_nz (cache
->base
));
2115 /* The prologue has been slowly allocating stack space. Adjust
2117 cache
->base
= this_sp
- frame_size
;
2119 fprintf_unfiltered (gdb_stdlog
, " (base=0x%s) [unwind adjust]",
2120 paddr_nz (cache
->base
));
2123 trad_frame_set_value (cache
->saved_regs
, HPPA_SP_REGNUM
, cache
->base
);
2126 /* The PC is found in the "return register", "Millicode" uses "r31"
2127 as the return register while normal code uses "rp". */
2130 if (trad_frame_addr_p (cache
->saved_regs
, 31))
2132 cache
->saved_regs
[HPPA_PCOQ_HEAD_REGNUM
] = cache
->saved_regs
[31];
2134 fprintf_unfiltered (gdb_stdlog
, " (pc=r31) [stack] } ");
2138 ULONGEST r31
= get_frame_register_unsigned (this_frame
, 31);
2139 trad_frame_set_value (cache
->saved_regs
, HPPA_PCOQ_HEAD_REGNUM
, r31
);
2141 fprintf_unfiltered (gdb_stdlog
, " (pc=r31) [frame] } ");
2146 if (trad_frame_addr_p (cache
->saved_regs
, HPPA_RP_REGNUM
))
2148 cache
->saved_regs
[HPPA_PCOQ_HEAD_REGNUM
] =
2149 cache
->saved_regs
[HPPA_RP_REGNUM
];
2151 fprintf_unfiltered (gdb_stdlog
, " (pc=rp) [stack] } ");
2155 ULONGEST rp
= get_frame_register_unsigned (this_frame
,
2157 trad_frame_set_value (cache
->saved_regs
, HPPA_PCOQ_HEAD_REGNUM
, rp
);
2159 fprintf_unfiltered (gdb_stdlog
, " (pc=rp) [frame] } ");
2163 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2164 frame. However, there is a one-insn window where we haven't saved it
2165 yet, but we've already clobbered it. Detect this case and fix it up.
2167 The prologue sequence for frame-pointer functions is:
2168 0: stw %rp, -20(%sp)
2171 c: stw,ma %r1, XX(%sp)
2173 So if we are at offset c, the r3 value that we want is not yet saved
2174 on the stack, but it's been overwritten. The prologue analyzer will
2175 set fp_in_r1 when it sees the copy insn so we know to get the value
2177 if (u
->Save_SP
&& !trad_frame_addr_p (cache
->saved_regs
, HPPA_FP_REGNUM
)
2180 ULONGEST r1
= get_frame_register_unsigned (this_frame
, 1);
2181 trad_frame_set_value (cache
->saved_regs
, HPPA_FP_REGNUM
, r1
);
2185 /* Convert all the offsets into addresses. */
2187 for (reg
= 0; reg
< gdbarch_num_regs (gdbarch
); reg
++)
2189 if (trad_frame_addr_p (cache
->saved_regs
, reg
))
2190 cache
->saved_regs
[reg
].addr
+= cache
->base
;
2195 struct gdbarch_tdep
*tdep
;
2197 tdep
= gdbarch_tdep (gdbarch
);
2199 if (tdep
->unwind_adjust_stub
)
2200 tdep
->unwind_adjust_stub (this_frame
, cache
->base
, cache
->saved_regs
);
2204 fprintf_unfiltered (gdb_stdlog
, "base=0x%s }",
2205 paddr_nz (((struct hppa_frame_cache
*)*this_cache
)->base
));
2206 return (*this_cache
);
2210 hppa_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2211 struct frame_id
*this_id
)
2213 struct hppa_frame_cache
*info
;
2214 CORE_ADDR pc
= get_frame_pc (this_frame
);
2215 struct unwind_table_entry
*u
;
2217 info
= hppa_frame_cache (this_frame
, this_cache
);
2218 u
= hppa_find_unwind_entry_in_block (this_frame
);
2220 (*this_id
) = frame_id_build (info
->base
, u
->region_start
);
2223 static struct value
*
2224 hppa_frame_prev_register (struct frame_info
*this_frame
,
2225 void **this_cache
, int regnum
)
2227 struct hppa_frame_cache
*info
= hppa_frame_cache (this_frame
, this_cache
);
2229 return hppa_frame_prev_register_helper (this_frame
, info
->saved_regs
, regnum
);
2233 hppa_frame_unwind_sniffer (const struct frame_unwind
*self
,
2234 struct frame_info
*this_frame
, void **this_cache
)
2236 if (hppa_find_unwind_entry_in_block (this_frame
))
2242 static const struct frame_unwind hppa_frame_unwind
=
2246 hppa_frame_prev_register
,
2248 hppa_frame_unwind_sniffer
2251 /* This is a generic fallback frame unwinder that kicks in if we fail all
2252 the other ones. Normally we would expect the stub and regular unwinder
2253 to work, but in some cases we might hit a function that just doesn't
2254 have any unwind information available. In this case we try to do
2255 unwinding solely based on code reading. This is obviously going to be
2256 slow, so only use this as a last resort. Currently this will only
2257 identify the stack and pc for the frame. */
2259 static struct hppa_frame_cache
*
2260 hppa_fallback_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2262 struct hppa_frame_cache
*cache
;
2263 unsigned int frame_size
= 0;
2268 fprintf_unfiltered (gdb_stdlog
,
2269 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2270 frame_relative_level (this_frame
));
2272 cache
= FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache
);
2273 (*this_cache
) = cache
;
2274 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
2276 start_pc
= get_frame_func (this_frame
);
2279 CORE_ADDR cur_pc
= get_frame_pc (this_frame
);
2282 for (pc
= start_pc
; pc
< cur_pc
; pc
+= 4)
2286 insn
= read_memory_unsigned_integer (pc
, 4);
2287 frame_size
+= prologue_inst_adjust_sp (insn
);
2289 /* There are limited ways to store the return pointer into the
2291 if (insn
== 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2293 cache
->saved_regs
[HPPA_RP_REGNUM
].addr
= -20;
2296 else if (insn
== 0x0fc212c1
2297 || insn
== 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2299 cache
->saved_regs
[HPPA_RP_REGNUM
].addr
= -16;
2306 fprintf_unfiltered (gdb_stdlog
, " frame_size=%d, found_rp=%d }\n",
2307 frame_size
, found_rp
);
2309 cache
->base
= get_frame_register_unsigned (this_frame
, HPPA_SP_REGNUM
);
2310 cache
->base
-= frame_size
;
2311 trad_frame_set_value (cache
->saved_regs
, HPPA_SP_REGNUM
, cache
->base
);
2313 if (trad_frame_addr_p (cache
->saved_regs
, HPPA_RP_REGNUM
))
2315 cache
->saved_regs
[HPPA_RP_REGNUM
].addr
+= cache
->base
;
2316 cache
->saved_regs
[HPPA_PCOQ_HEAD_REGNUM
] =
2317 cache
->saved_regs
[HPPA_RP_REGNUM
];
2322 rp
= get_frame_register_unsigned (this_frame
, HPPA_RP_REGNUM
);
2323 trad_frame_set_value (cache
->saved_regs
, HPPA_PCOQ_HEAD_REGNUM
, rp
);
2330 hppa_fallback_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2331 struct frame_id
*this_id
)
2333 struct hppa_frame_cache
*info
=
2334 hppa_fallback_frame_cache (this_frame
, this_cache
);
2336 (*this_id
) = frame_id_build (info
->base
, get_frame_func (this_frame
));
2339 static struct value
*
2340 hppa_fallback_frame_prev_register (struct frame_info
*this_frame
,
2341 void **this_cache
, int regnum
)
2343 struct hppa_frame_cache
*info
=
2344 hppa_fallback_frame_cache (this_frame
, this_cache
);
2346 return hppa_frame_prev_register_helper (this_frame
, info
->saved_regs
, regnum
);
2349 static const struct frame_unwind hppa_fallback_frame_unwind
=
2352 hppa_fallback_frame_this_id
,
2353 hppa_fallback_frame_prev_register
,
2355 default_frame_sniffer
2358 /* Stub frames, used for all kinds of call stubs. */
2359 struct hppa_stub_unwind_cache
2362 struct trad_frame_saved_reg
*saved_regs
;
2365 static struct hppa_stub_unwind_cache
*
2366 hppa_stub_frame_unwind_cache (struct frame_info
*this_frame
,
2369 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2370 struct hppa_stub_unwind_cache
*info
;
2371 struct unwind_table_entry
*u
;
2376 info
= FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache
);
2378 info
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
2380 info
->base
= get_frame_register_unsigned (this_frame
, HPPA_SP_REGNUM
);
2382 if (gdbarch_osabi (gdbarch
) == GDB_OSABI_HPUX_SOM
)
2384 /* HPUX uses export stubs in function calls; the export stub clobbers
2385 the return value of the caller, and, later restores it from the
2387 u
= find_unwind_entry (get_frame_pc (this_frame
));
2389 if (u
&& u
->stub_unwind
.stub_type
== EXPORT
)
2391 info
->saved_regs
[HPPA_PCOQ_HEAD_REGNUM
].addr
= info
->base
- 24;
2397 /* By default we assume that stubs do not change the rp. */
2398 info
->saved_regs
[HPPA_PCOQ_HEAD_REGNUM
].realreg
= HPPA_RP_REGNUM
;
2404 hppa_stub_frame_this_id (struct frame_info
*this_frame
,
2405 void **this_prologue_cache
,
2406 struct frame_id
*this_id
)
2408 struct hppa_stub_unwind_cache
*info
2409 = hppa_stub_frame_unwind_cache (this_frame
, this_prologue_cache
);
2412 *this_id
= frame_id_build (info
->base
, get_frame_func (this_frame
));
2414 *this_id
= null_frame_id
;
2417 static struct value
*
2418 hppa_stub_frame_prev_register (struct frame_info
*this_frame
,
2419 void **this_prologue_cache
, int regnum
)
2421 struct hppa_stub_unwind_cache
*info
2422 = hppa_stub_frame_unwind_cache (this_frame
, this_prologue_cache
);
2425 error (_("Requesting registers from null frame."));
2427 return hppa_frame_prev_register_helper (this_frame
, info
->saved_regs
, regnum
);
2431 hppa_stub_unwind_sniffer (const struct frame_unwind
*self
,
2432 struct frame_info
*this_frame
,
2435 CORE_ADDR pc
= get_frame_address_in_block (this_frame
);
2436 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2437 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2440 || (tdep
->in_solib_call_trampoline
!= NULL
2441 && tdep
->in_solib_call_trampoline (pc
, NULL
))
2442 || gdbarch_in_solib_return_trampoline (gdbarch
, pc
, NULL
))
2447 static const struct frame_unwind hppa_stub_frame_unwind
= {
2449 hppa_stub_frame_this_id
,
2450 hppa_stub_frame_prev_register
,
2452 hppa_stub_unwind_sniffer
2455 static struct frame_id
2456 hppa_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
2458 return frame_id_build (get_frame_register_unsigned (this_frame
,
2460 get_frame_pc (this_frame
));
2464 hppa_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
2469 ipsw
= frame_unwind_register_unsigned (next_frame
, HPPA_IPSW_REGNUM
);
2470 pc
= frame_unwind_register_unsigned (next_frame
, HPPA_PCOQ_HEAD_REGNUM
);
2472 /* If the current instruction is nullified, then we are effectively
2473 still executing the previous instruction. Pretend we are still
2474 there. This is needed when single stepping; if the nullified
2475 instruction is on a different line, we don't want GDB to think
2476 we've stepped onto that line. */
2477 if (ipsw
& 0x00200000)
2483 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2484 Return NULL if no such symbol was found. */
2486 struct minimal_symbol
*
2487 hppa_lookup_stub_minimal_symbol (const char *name
,
2488 enum unwind_stub_types stub_type
)
2490 struct objfile
*objfile
;
2491 struct minimal_symbol
*msym
;
2493 ALL_MSYMBOLS (objfile
, msym
)
2495 if (strcmp (SYMBOL_LINKAGE_NAME (msym
), name
) == 0)
2497 struct unwind_table_entry
*u
;
2499 u
= find_unwind_entry (SYMBOL_VALUE (msym
));
2500 if (u
!= NULL
&& u
->stub_unwind
.stub_type
== stub_type
)
2509 unwind_command (char *exp
, int from_tty
)
2512 struct unwind_table_entry
*u
;
2514 /* If we have an expression, evaluate it and use it as the address. */
2516 if (exp
!= 0 && *exp
!= 0)
2517 address
= parse_and_eval_address (exp
);
2521 u
= find_unwind_entry (address
);
2525 printf_unfiltered ("Can't find unwind table entry for %s\n", exp
);
2529 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u
);
2531 printf_unfiltered ("\tregion_start = ");
2532 print_address (u
->region_start
, gdb_stdout
);
2533 gdb_flush (gdb_stdout
);
2535 printf_unfiltered ("\n\tregion_end = ");
2536 print_address (u
->region_end
, gdb_stdout
);
2537 gdb_flush (gdb_stdout
);
2539 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2541 printf_unfiltered ("\n\tflags =");
2542 pif (Cannot_unwind
);
2544 pif (Millicode_save_sr0
);
2547 pif (Variable_Frame
);
2548 pif (Separate_Package_Body
);
2549 pif (Frame_Extension_Millicode
);
2550 pif (Stack_Overflow_Check
);
2551 pif (Two_Instruction_SP_Increment
);
2554 pif (cxx_try_catch
);
2555 pif (sched_entry_seq
);
2558 pif (Save_MRP_in_frame
);
2560 pif (Cleanup_defined
);
2561 pif (MPE_XL_interrupt_marker
);
2562 pif (HP_UX_interrupt_marker
);
2566 putchar_unfiltered ('\n');
2568 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2570 pin (Region_description
);
2573 pin (Total_frame_size
);
2575 if (u
->stub_unwind
.stub_type
)
2577 printf_unfiltered ("\tstub type = ");
2578 switch (u
->stub_unwind
.stub_type
)
2581 printf_unfiltered ("long branch\n");
2583 case PARAMETER_RELOCATION
:
2584 printf_unfiltered ("parameter relocation\n");
2587 printf_unfiltered ("export\n");
2590 printf_unfiltered ("import\n");
2593 printf_unfiltered ("import shlib\n");
2596 printf_unfiltered ("unknown (%d)\n", u
->stub_unwind
.stub_type
);
2601 /* Return the GDB type object for the "standard" data type of data in
2604 static struct type
*
2605 hppa32_register_type (struct gdbarch
*gdbarch
, int regnum
)
2607 if (regnum
< HPPA_FP4_REGNUM
)
2608 return builtin_type_uint32
;
2610 return builtin_type_ieee_single
;
2613 static struct type
*
2614 hppa64_register_type (struct gdbarch
*gdbarch
, int regnum
)
2616 if (regnum
< HPPA64_FP4_REGNUM
)
2617 return builtin_type_uint64
;
2619 return builtin_type_ieee_double
;
2622 /* Return non-zero if REGNUM is not a register available to the user
2623 through ptrace/ttrace. */
2626 hppa32_cannot_store_register (struct gdbarch
*gdbarch
, int regnum
)
2629 || regnum
== HPPA_PCSQ_HEAD_REGNUM
2630 || (regnum
>= HPPA_PCSQ_TAIL_REGNUM
&& regnum
< HPPA_IPSW_REGNUM
)
2631 || (regnum
> HPPA_IPSW_REGNUM
&& regnum
< HPPA_FP4_REGNUM
));
2635 hppa32_cannot_fetch_register (struct gdbarch
*gdbarch
, int regnum
)
2637 /* cr26 and cr27 are readable (but not writable) from userspace. */
2638 if (regnum
== HPPA_CR26_REGNUM
|| regnum
== HPPA_CR27_REGNUM
)
2641 return hppa32_cannot_store_register (gdbarch
, regnum
);
2645 hppa64_cannot_store_register (struct gdbarch
*gdbarch
, int regnum
)
2648 || regnum
== HPPA_PCSQ_HEAD_REGNUM
2649 || (regnum
>= HPPA_PCSQ_TAIL_REGNUM
&& regnum
< HPPA_IPSW_REGNUM
)
2650 || (regnum
> HPPA_IPSW_REGNUM
&& regnum
< HPPA64_FP4_REGNUM
));
2654 hppa64_cannot_fetch_register (struct gdbarch
*gdbarch
, int regnum
)
2656 /* cr26 and cr27 are readable (but not writable) from userspace. */
2657 if (regnum
== HPPA_CR26_REGNUM
|| regnum
== HPPA_CR27_REGNUM
)
2660 return hppa64_cannot_store_register (gdbarch
, regnum
);
2664 hppa_smash_text_address (CORE_ADDR addr
)
2666 /* The low two bits of the PC on the PA contain the privilege level.
2667 Some genius implementing a (non-GCC) compiler apparently decided
2668 this means that "addresses" in a text section therefore include a
2669 privilege level, and thus symbol tables should contain these bits.
2670 This seems like a bonehead thing to do--anyway, it seems to work
2671 for our purposes to just ignore those bits. */
2673 return (addr
&= ~0x3);
2676 /* Get the ARGIth function argument for the current function. */
2679 hppa_fetch_pointer_argument (struct frame_info
*frame
, int argi
,
2682 return get_frame_register_unsigned (frame
, HPPA_R0_REGNUM
+ 26 - argi
);
2686 hppa_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
2687 int regnum
, gdb_byte
*buf
)
2691 regcache_raw_read_unsigned (regcache
, regnum
, &tmp
);
2692 if (regnum
== HPPA_PCOQ_HEAD_REGNUM
|| regnum
== HPPA_PCOQ_TAIL_REGNUM
)
2694 store_unsigned_integer (buf
, sizeof tmp
, tmp
);
2698 hppa_find_global_pointer (struct gdbarch
*gdbarch
, struct value
*function
)
2704 hppa_frame_prev_register_helper (struct frame_info
*this_frame
,
2705 struct trad_frame_saved_reg saved_regs
[],
2708 struct gdbarch
*arch
= get_frame_arch (this_frame
);
2710 if (regnum
== HPPA_PCOQ_TAIL_REGNUM
)
2712 int size
= register_size (arch
, HPPA_PCOQ_HEAD_REGNUM
);
2714 struct value
*pcoq_val
=
2715 trad_frame_get_prev_register (this_frame
, saved_regs
,
2716 HPPA_PCOQ_HEAD_REGNUM
);
2718 pc
= extract_unsigned_integer (value_contents_all (pcoq_val
), size
);
2719 return frame_unwind_got_constant (this_frame
, regnum
, pc
+ 4);
2722 /* Make sure the "flags" register is zero in all unwound frames.
2723 The "flags" registers is a HP-UX specific wart, and only the code
2724 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2725 with it here. This shouldn't affect other systems since those
2726 should provide zero for the "flags" register anyway. */
2727 if (regnum
== HPPA_FLAGS_REGNUM
)
2728 return frame_unwind_got_constant (this_frame
, regnum
, 0);
2730 return trad_frame_get_prev_register (this_frame
, saved_regs
, regnum
);
2734 /* An instruction to match. */
2737 unsigned int data
; /* See if it matches this.... */
2738 unsigned int mask
; /* ... with this mask. */
2741 /* See bfd/elf32-hppa.c */
2742 static struct insn_pattern hppa_long_branch_stub
[] = {
2743 /* ldil LR'xxx,%r1 */
2744 { 0x20200000, 0xffe00000 },
2745 /* be,n RR'xxx(%sr4,%r1) */
2746 { 0xe0202002, 0xffe02002 },
2750 static struct insn_pattern hppa_long_branch_pic_stub
[] = {
2752 { 0xe8200000, 0xffe00000 },
2753 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2754 { 0x28200000, 0xffe00000 },
2755 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2756 { 0xe0202002, 0xffe02002 },
2760 static struct insn_pattern hppa_import_stub
[] = {
2761 /* addil LR'xxx, %dp */
2762 { 0x2b600000, 0xffe00000 },
2763 /* ldw RR'xxx(%r1), %r21 */
2764 { 0x48350000, 0xffffb000 },
2766 { 0xeaa0c000, 0xffffffff },
2767 /* ldw RR'xxx+4(%r1), %r19 */
2768 { 0x48330000, 0xffffb000 },
2772 static struct insn_pattern hppa_import_pic_stub
[] = {
2773 /* addil LR'xxx,%r19 */
2774 { 0x2a600000, 0xffe00000 },
2775 /* ldw RR'xxx(%r1),%r21 */
2776 { 0x48350000, 0xffffb000 },
2778 { 0xeaa0c000, 0xffffffff },
2779 /* ldw RR'xxx+4(%r1),%r19 */
2780 { 0x48330000, 0xffffb000 },
2784 static struct insn_pattern hppa_plt_stub
[] = {
2785 /* b,l 1b, %r20 - 1b is 3 insns before here */
2786 { 0xea9f1fdd, 0xffffffff },
2787 /* depi 0,31,2,%r20 */
2788 { 0xd6801c1e, 0xffffffff },
2792 static struct insn_pattern hppa_sigtramp
[] = {
2793 /* ldi 0, %r25 or ldi 1, %r25 */
2794 { 0x34190000, 0xfffffffd },
2795 /* ldi __NR_rt_sigreturn, %r20 */
2796 { 0x3414015a, 0xffffffff },
2797 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2798 { 0xe4008200, 0xffffffff },
2800 { 0x08000240, 0xffffffff },
2804 /* Maximum number of instructions on the patterns above. */
2805 #define HPPA_MAX_INSN_PATTERN_LEN 4
2807 /* Return non-zero if the instructions at PC match the series
2808 described in PATTERN, or zero otherwise. PATTERN is an array of
2809 'struct insn_pattern' objects, terminated by an entry whose mask is
2812 When the match is successful, fill INSN[i] with what PATTERN[i]
2816 hppa_match_insns (CORE_ADDR pc
, struct insn_pattern
*pattern
,
2822 for (i
= 0; pattern
[i
].mask
; i
++)
2824 gdb_byte buf
[HPPA_INSN_SIZE
];
2826 target_read_memory (npc
, buf
, HPPA_INSN_SIZE
);
2827 insn
[i
] = extract_unsigned_integer (buf
, HPPA_INSN_SIZE
);
2828 if ((insn
[i
] & pattern
[i
].mask
) == pattern
[i
].data
)
2837 /* This relaxed version of the insstruction matcher allows us to match
2838 from somewhere inside the pattern, by looking backwards in the
2839 instruction scheme. */
2842 hppa_match_insns_relaxed (CORE_ADDR pc
, struct insn_pattern
*pattern
,
2845 int offset
, len
= 0;
2847 while (pattern
[len
].mask
)
2850 for (offset
= 0; offset
< len
; offset
++)
2851 if (hppa_match_insns (pc
- offset
* HPPA_INSN_SIZE
, pattern
, insn
))
2858 hppa_in_dyncall (CORE_ADDR pc
)
2860 struct unwind_table_entry
*u
;
2862 u
= find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2866 return (pc
>= u
->region_start
&& pc
<= u
->region_end
);
2870 hppa_in_solib_call_trampoline (CORE_ADDR pc
, char *name
)
2872 unsigned int insn
[HPPA_MAX_INSN_PATTERN_LEN
];
2873 struct unwind_table_entry
*u
;
2875 if (in_plt_section (pc
, name
) || hppa_in_dyncall (pc
))
2878 /* The GNU toolchain produces linker stubs without unwind
2879 information. Since the pattern matching for linker stubs can be
2880 quite slow, so bail out if we do have an unwind entry. */
2882 u
= find_unwind_entry (pc
);
2886 return (hppa_match_insns_relaxed (pc
, hppa_import_stub
, insn
)
2887 || hppa_match_insns_relaxed (pc
, hppa_import_pic_stub
, insn
)
2888 || hppa_match_insns_relaxed (pc
, hppa_long_branch_stub
, insn
)
2889 || hppa_match_insns_relaxed (pc
, hppa_long_branch_pic_stub
, insn
));
2892 /* This code skips several kind of "trampolines" used on PA-RISC
2893 systems: $$dyncall, import stubs and PLT stubs. */
2896 hppa_skip_trampoline_code (struct frame_info
*frame
, CORE_ADDR pc
)
2898 unsigned int insn
[HPPA_MAX_INSN_PATTERN_LEN
];
2901 /* $$dyncall handles both PLABELs and direct addresses. */
2902 if (hppa_in_dyncall (pc
))
2904 pc
= get_frame_register_unsigned (frame
, HPPA_R0_REGNUM
+ 22);
2906 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2908 pc
= read_memory_typed_address (pc
& ~0x3, builtin_type_void_func_ptr
);
2913 dp_rel
= hppa_match_insns (pc
, hppa_import_stub
, insn
);
2914 if (dp_rel
|| hppa_match_insns (pc
, hppa_import_pic_stub
, insn
))
2916 /* Extract the target address from the addil/ldw sequence. */
2917 pc
= hppa_extract_21 (insn
[0]) + hppa_extract_14 (insn
[1]);
2920 pc
+= get_frame_register_unsigned (frame
, HPPA_DP_REGNUM
);
2922 pc
+= get_frame_register_unsigned (frame
, HPPA_R0_REGNUM
+ 19);
2927 if (in_plt_section (pc
, NULL
))
2929 pc
= read_memory_typed_address (pc
, builtin_type_void_func_ptr
);
2931 /* If the PLT slot has not yet been resolved, the target will be
2933 if (in_plt_section (pc
, NULL
))
2935 /* Sanity check: are we pointing to the PLT stub? */
2936 if (!hppa_match_insns (pc
, hppa_plt_stub
, insn
))
2938 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc
));
2942 /* This should point to the fixup routine. */
2943 pc
= read_memory_typed_address (pc
+ 8, builtin_type_void_func_ptr
);
2951 /* Here is a table of C type sizes on hppa with various compiles
2952 and options. I measured this on PA 9000/800 with HP-UX 11.11
2953 and these compilers:
2955 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2956 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2957 /opt/aCC/bin/aCC B3910B A.03.45
2958 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2960 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2961 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2962 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2963 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2964 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2965 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2966 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2967 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2971 compiler and options
2972 char, short, int, long, long long
2973 float, double, long double
2976 So all these compilers use either ILP32 or LP64 model.
2977 TODO: gcc has more options so it needs more investigation.
2979 For floating point types, see:
2981 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2982 HP-UX floating-point guide, hpux 11.00
2984 -- chastain 2003-12-18 */
2986 static struct gdbarch
*
2987 hppa_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
2989 struct gdbarch_tdep
*tdep
;
2990 struct gdbarch
*gdbarch
;
2992 /* Try to determine the ABI of the object we are loading. */
2993 if (info
.abfd
!= NULL
&& info
.osabi
== GDB_OSABI_UNKNOWN
)
2995 /* If it's a SOM file, assume it's HP/UX SOM. */
2996 if (bfd_get_flavour (info
.abfd
) == bfd_target_som_flavour
)
2997 info
.osabi
= GDB_OSABI_HPUX_SOM
;
3000 /* find a candidate among the list of pre-declared architectures. */
3001 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
3003 return (arches
->gdbarch
);
3005 /* If none found, then allocate and initialize one. */
3006 tdep
= XZALLOC (struct gdbarch_tdep
);
3007 gdbarch
= gdbarch_alloc (&info
, tdep
);
3009 /* Determine from the bfd_arch_info structure if we are dealing with
3010 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3011 then default to a 32bit machine. */
3012 if (info
.bfd_arch_info
!= NULL
)
3013 tdep
->bytes_per_address
=
3014 info
.bfd_arch_info
->bits_per_address
/ info
.bfd_arch_info
->bits_per_byte
;
3016 tdep
->bytes_per_address
= 4;
3018 tdep
->find_global_pointer
= hppa_find_global_pointer
;
3020 /* Some parts of the gdbarch vector depend on whether we are running
3021 on a 32 bits or 64 bits target. */
3022 switch (tdep
->bytes_per_address
)
3025 set_gdbarch_num_regs (gdbarch
, hppa32_num_regs
);
3026 set_gdbarch_register_name (gdbarch
, hppa32_register_name
);
3027 set_gdbarch_register_type (gdbarch
, hppa32_register_type
);
3028 set_gdbarch_cannot_store_register (gdbarch
,
3029 hppa32_cannot_store_register
);
3030 set_gdbarch_cannot_fetch_register (gdbarch
,
3031 hppa32_cannot_fetch_register
);
3034 set_gdbarch_num_regs (gdbarch
, hppa64_num_regs
);
3035 set_gdbarch_register_name (gdbarch
, hppa64_register_name
);
3036 set_gdbarch_register_type (gdbarch
, hppa64_register_type
);
3037 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, hppa64_dwarf_reg_to_regnum
);
3038 set_gdbarch_cannot_store_register (gdbarch
,
3039 hppa64_cannot_store_register
);
3040 set_gdbarch_cannot_fetch_register (gdbarch
,
3041 hppa64_cannot_fetch_register
);
3044 internal_error (__FILE__
, __LINE__
, _("Unsupported address size: %d"),
3045 tdep
->bytes_per_address
);
3048 set_gdbarch_long_bit (gdbarch
, tdep
->bytes_per_address
* TARGET_CHAR_BIT
);
3049 set_gdbarch_ptr_bit (gdbarch
, tdep
->bytes_per_address
* TARGET_CHAR_BIT
);
3051 /* The following gdbarch vector elements are the same in both ILP32
3052 and LP64, but might show differences some day. */
3053 set_gdbarch_long_long_bit (gdbarch
, 64);
3054 set_gdbarch_long_double_bit (gdbarch
, 128);
3055 set_gdbarch_long_double_format (gdbarch
, floatformats_ia64_quad
);
3057 /* The following gdbarch vector elements do not depend on the address
3058 size, or in any other gdbarch element previously set. */
3059 set_gdbarch_skip_prologue (gdbarch
, hppa_skip_prologue
);
3060 set_gdbarch_in_function_epilogue_p (gdbarch
,
3061 hppa_in_function_epilogue_p
);
3062 set_gdbarch_inner_than (gdbarch
, core_addr_greaterthan
);
3063 set_gdbarch_sp_regnum (gdbarch
, HPPA_SP_REGNUM
);
3064 set_gdbarch_fp0_regnum (gdbarch
, HPPA_FP0_REGNUM
);
3065 set_gdbarch_addr_bits_remove (gdbarch
, hppa_smash_text_address
);
3066 set_gdbarch_smash_text_address (gdbarch
, hppa_smash_text_address
);
3067 set_gdbarch_believe_pcc_promotion (gdbarch
, 1);
3068 set_gdbarch_read_pc (gdbarch
, hppa_read_pc
);
3069 set_gdbarch_write_pc (gdbarch
, hppa_write_pc
);
3071 /* Helper for function argument information. */
3072 set_gdbarch_fetch_pointer_argument (gdbarch
, hppa_fetch_pointer_argument
);
3074 set_gdbarch_print_insn (gdbarch
, print_insn_hppa
);
3076 /* When a hardware watchpoint triggers, we'll move the inferior past
3077 it by removing all eventpoints; stepping past the instruction
3078 that caused the trigger; reinserting eventpoints; and checking
3079 whether any watched location changed. */
3080 set_gdbarch_have_nonsteppable_watchpoint (gdbarch
, 1);
3082 /* Inferior function call methods. */
3083 switch (tdep
->bytes_per_address
)
3086 set_gdbarch_push_dummy_call (gdbarch
, hppa32_push_dummy_call
);
3087 set_gdbarch_frame_align (gdbarch
, hppa32_frame_align
);
3088 set_gdbarch_convert_from_func_ptr_addr
3089 (gdbarch
, hppa32_convert_from_func_ptr_addr
);
3092 set_gdbarch_push_dummy_call (gdbarch
, hppa64_push_dummy_call
);
3093 set_gdbarch_frame_align (gdbarch
, hppa64_frame_align
);
3096 internal_error (__FILE__
, __LINE__
, _("bad switch"));
3099 /* Struct return methods. */
3100 switch (tdep
->bytes_per_address
)
3103 set_gdbarch_return_value (gdbarch
, hppa32_return_value
);
3106 set_gdbarch_return_value (gdbarch
, hppa64_return_value
);
3109 internal_error (__FILE__
, __LINE__
, _("bad switch"));
3112 set_gdbarch_breakpoint_from_pc (gdbarch
, hppa_breakpoint_from_pc
);
3113 set_gdbarch_pseudo_register_read (gdbarch
, hppa_pseudo_register_read
);
3115 /* Frame unwind methods. */
3116 set_gdbarch_dummy_id (gdbarch
, hppa_dummy_id
);
3117 set_gdbarch_unwind_pc (gdbarch
, hppa_unwind_pc
);
3119 /* Hook in ABI-specific overrides, if they have been registered. */
3120 gdbarch_init_osabi (info
, gdbarch
);
3122 /* Hook in the default unwinders. */
3123 frame_unwind_append_unwinder (gdbarch
, &hppa_stub_frame_unwind
);
3124 frame_unwind_append_unwinder (gdbarch
, &hppa_frame_unwind
);
3125 frame_unwind_append_unwinder (gdbarch
, &hppa_fallback_frame_unwind
);
3131 hppa_dump_tdep (struct gdbarch
*gdbarch
, struct ui_file
*file
)
3133 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3135 fprintf_unfiltered (file
, "bytes_per_address = %d\n",
3136 tdep
->bytes_per_address
);
3137 fprintf_unfiltered (file
, "elf = %s\n", tdep
->is_elf
? "yes" : "no");
3141 _initialize_hppa_tdep (void)
3143 struct cmd_list_element
*c
;
3145 gdbarch_register (bfd_arch_hppa
, hppa_gdbarch_init
, hppa_dump_tdep
);
3147 hppa_objfile_priv_data
= register_objfile_data ();
3149 add_cmd ("unwind", class_maintenance
, unwind_command
,
3150 _("Print unwind table entry at given address."),
3151 &maintenanceprintlist
);
3153 /* Debug this files internals. */
3154 add_setshow_boolean_cmd ("hppa", class_maintenance
, &hppa_debug
, _("\
3155 Set whether hppa target specific debugging information should be displayed."),
3157 Show whether hppa target specific debugging information is displayed."), _("\
3158 This flag controls whether hppa target specific debugging information is\n\
3159 displayed. This information is particularly useful for debugging frame\n\
3160 unwinding problems."),
3162 NULL
, /* FIXME: i18n: hppa debug flag is %s. */
3163 &setdebuglist
, &showdebuglist
);