bfd/
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "bfd.h"
27 #include "inferior.h"
28 #include "regcache.h"
29 #include "completer.h"
30 #include "osabi.h"
31 #include "gdb_assert.h"
32 #include "arch-utils.h"
33 /* For argument passing to the inferior */
34 #include "symtab.h"
35 #include "dis-asm.h"
36 #include "trad-frame.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39
40 #include "gdbcore.h"
41 #include "gdbcmd.h"
42 #include "gdbtypes.h"
43 #include "objfiles.h"
44 #include "hppa-tdep.h"
45
46 static int hppa_debug = 0;
47
48 /* Some local constants. */
49 static const int hppa32_num_regs = 128;
50 static const int hppa64_num_regs = 96;
51
52 /* hppa-specific object data -- unwind and solib info.
53 TODO/maybe: think about splitting this into two parts; the unwind data is
54 common to all hppa targets, but is only used in this file; we can register
55 that separately and make this static. The solib data is probably hpux-
56 specific, so we can create a separate extern objfile_data that is registered
57 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
58 const struct objfile_data *hppa_objfile_priv_data = NULL;
59
60 /* Get at various relevent fields of an instruction word. */
61 #define MASK_5 0x1f
62 #define MASK_11 0x7ff
63 #define MASK_14 0x3fff
64 #define MASK_21 0x1fffff
65
66 /* Sizes (in bytes) of the native unwind entries. */
67 #define UNWIND_ENTRY_SIZE 16
68 #define STUB_UNWIND_ENTRY_SIZE 8
69
70 /* Routines to extract various sized constants out of hppa
71 instructions. */
72
73 /* This assumes that no garbage lies outside of the lower bits of
74 value. */
75
76 int
77 hppa_sign_extend (unsigned val, unsigned bits)
78 {
79 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
80 }
81
82 /* For many immediate values the sign bit is the low bit! */
83
84 int
85 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
86 {
87 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
88 }
89
90 /* Extract the bits at positions between FROM and TO, using HP's numbering
91 (MSB = 0). */
92
93 int
94 hppa_get_field (unsigned word, int from, int to)
95 {
96 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
97 }
98
99 /* extract the immediate field from a ld{bhw}s instruction */
100
101 int
102 hppa_extract_5_load (unsigned word)
103 {
104 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
105 }
106
107 /* extract the immediate field from a break instruction */
108
109 unsigned
110 hppa_extract_5r_store (unsigned word)
111 {
112 return (word & MASK_5);
113 }
114
115 /* extract the immediate field from a {sr}sm instruction */
116
117 unsigned
118 hppa_extract_5R_store (unsigned word)
119 {
120 return (word >> 16 & MASK_5);
121 }
122
123 /* extract a 14 bit immediate field */
124
125 int
126 hppa_extract_14 (unsigned word)
127 {
128 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
129 }
130
131 /* extract a 21 bit constant */
132
133 int
134 hppa_extract_21 (unsigned word)
135 {
136 int val;
137
138 word &= MASK_21;
139 word <<= 11;
140 val = hppa_get_field (word, 20, 20);
141 val <<= 11;
142 val |= hppa_get_field (word, 9, 19);
143 val <<= 2;
144 val |= hppa_get_field (word, 5, 6);
145 val <<= 5;
146 val |= hppa_get_field (word, 0, 4);
147 val <<= 2;
148 val |= hppa_get_field (word, 7, 8);
149 return hppa_sign_extend (val, 21) << 11;
150 }
151
152 /* extract a 17 bit constant from branch instructions, returning the
153 19 bit signed value. */
154
155 int
156 hppa_extract_17 (unsigned word)
157 {
158 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
159 hppa_get_field (word, 29, 29) << 10 |
160 hppa_get_field (word, 11, 15) << 11 |
161 (word & 0x1) << 16, 17) << 2;
162 }
163
164 CORE_ADDR
165 hppa_symbol_address(const char *sym)
166 {
167 struct minimal_symbol *minsym;
168
169 minsym = lookup_minimal_symbol (sym, NULL, NULL);
170 if (minsym)
171 return SYMBOL_VALUE_ADDRESS (minsym);
172 else
173 return (CORE_ADDR)-1;
174 }
175
176 struct hppa_objfile_private *
177 hppa_init_objfile_priv_data (struct objfile *objfile)
178 {
179 struct hppa_objfile_private *priv;
180
181 priv = (struct hppa_objfile_private *)
182 obstack_alloc (&objfile->objfile_obstack,
183 sizeof (struct hppa_objfile_private));
184 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
185 memset (priv, 0, sizeof (*priv));
186
187 return priv;
188 }
189 \f
190
191 /* Compare the start address for two unwind entries returning 1 if
192 the first address is larger than the second, -1 if the second is
193 larger than the first, and zero if they are equal. */
194
195 static int
196 compare_unwind_entries (const void *arg1, const void *arg2)
197 {
198 const struct unwind_table_entry *a = arg1;
199 const struct unwind_table_entry *b = arg2;
200
201 if (a->region_start > b->region_start)
202 return 1;
203 else if (a->region_start < b->region_start)
204 return -1;
205 else
206 return 0;
207 }
208
209 static void
210 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
211 {
212 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
213 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
214 {
215 bfd_vma value = section->vma - section->filepos;
216 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
217
218 if (value < *low_text_segment_address)
219 *low_text_segment_address = value;
220 }
221 }
222
223 static void
224 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
225 asection *section, unsigned int entries, unsigned int size,
226 CORE_ADDR text_offset)
227 {
228 /* We will read the unwind entries into temporary memory, then
229 fill in the actual unwind table. */
230
231 if (size > 0)
232 {
233 unsigned long tmp;
234 unsigned i;
235 char *buf = alloca (size);
236 CORE_ADDR low_text_segment_address;
237
238 /* For ELF targets, then unwinds are supposed to
239 be segment relative offsets instead of absolute addresses.
240
241 Note that when loading a shared library (text_offset != 0) the
242 unwinds are already relative to the text_offset that will be
243 passed in. */
244 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
245 {
246 low_text_segment_address = -1;
247
248 bfd_map_over_sections (objfile->obfd,
249 record_text_segment_lowaddr,
250 &low_text_segment_address);
251
252 text_offset = low_text_segment_address;
253 }
254 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
255 {
256 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
257 }
258
259 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
260
261 /* Now internalize the information being careful to handle host/target
262 endian issues. */
263 for (i = 0; i < entries; i++)
264 {
265 table[i].region_start = bfd_get_32 (objfile->obfd,
266 (bfd_byte *) buf);
267 table[i].region_start += text_offset;
268 buf += 4;
269 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
270 table[i].region_end += text_offset;
271 buf += 4;
272 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
273 buf += 4;
274 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
275 table[i].Millicode = (tmp >> 30) & 0x1;
276 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
277 table[i].Region_description = (tmp >> 27) & 0x3;
278 table[i].reserved = (tmp >> 26) & 0x1;
279 table[i].Entry_SR = (tmp >> 25) & 0x1;
280 table[i].Entry_FR = (tmp >> 21) & 0xf;
281 table[i].Entry_GR = (tmp >> 16) & 0x1f;
282 table[i].Args_stored = (tmp >> 15) & 0x1;
283 table[i].Variable_Frame = (tmp >> 14) & 0x1;
284 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
285 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
286 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
287 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
288 table[i].sr4export = (tmp >> 9) & 0x1;
289 table[i].cxx_info = (tmp >> 8) & 0x1;
290 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
291 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
292 table[i].reserved1 = (tmp >> 5) & 0x1;
293 table[i].Save_SP = (tmp >> 4) & 0x1;
294 table[i].Save_RP = (tmp >> 3) & 0x1;
295 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
296 table[i].save_r19 = (tmp >> 1) & 0x1;
297 table[i].Cleanup_defined = tmp & 0x1;
298 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
299 buf += 4;
300 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
301 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
302 table[i].Large_frame = (tmp >> 29) & 0x1;
303 table[i].alloca_frame = (tmp >> 28) & 0x1;
304 table[i].reserved2 = (tmp >> 27) & 0x1;
305 table[i].Total_frame_size = tmp & 0x7ffffff;
306
307 /* Stub unwinds are handled elsewhere. */
308 table[i].stub_unwind.stub_type = 0;
309 table[i].stub_unwind.padding = 0;
310 }
311 }
312 }
313
314 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
315 the object file. This info is used mainly by find_unwind_entry() to find
316 out the stack frame size and frame pointer used by procedures. We put
317 everything on the psymbol obstack in the objfile so that it automatically
318 gets freed when the objfile is destroyed. */
319
320 static void
321 read_unwind_info (struct objfile *objfile)
322 {
323 asection *unwind_sec, *stub_unwind_sec;
324 unsigned unwind_size, stub_unwind_size, total_size;
325 unsigned index, unwind_entries;
326 unsigned stub_entries, total_entries;
327 CORE_ADDR text_offset;
328 struct hppa_unwind_info *ui;
329 struct hppa_objfile_private *obj_private;
330
331 text_offset = ANOFFSET (objfile->section_offsets, 0);
332 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
333 sizeof (struct hppa_unwind_info));
334
335 ui->table = NULL;
336 ui->cache = NULL;
337 ui->last = -1;
338
339 /* For reasons unknown the HP PA64 tools generate multiple unwinder
340 sections in a single executable. So we just iterate over every
341 section in the BFD looking for unwinder sections intead of trying
342 to do a lookup with bfd_get_section_by_name.
343
344 First determine the total size of the unwind tables so that we
345 can allocate memory in a nice big hunk. */
346 total_entries = 0;
347 for (unwind_sec = objfile->obfd->sections;
348 unwind_sec;
349 unwind_sec = unwind_sec->next)
350 {
351 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
352 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
353 {
354 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
355 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
356
357 total_entries += unwind_entries;
358 }
359 }
360
361 /* Now compute the size of the stub unwinds. Note the ELF tools do not
362 use stub unwinds at the current time. */
363 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
364
365 if (stub_unwind_sec)
366 {
367 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
368 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
369 }
370 else
371 {
372 stub_unwind_size = 0;
373 stub_entries = 0;
374 }
375
376 /* Compute total number of unwind entries and their total size. */
377 total_entries += stub_entries;
378 total_size = total_entries * sizeof (struct unwind_table_entry);
379
380 /* Allocate memory for the unwind table. */
381 ui->table = (struct unwind_table_entry *)
382 obstack_alloc (&objfile->objfile_obstack, total_size);
383 ui->last = total_entries - 1;
384
385 /* Now read in each unwind section and internalize the standard unwind
386 entries. */
387 index = 0;
388 for (unwind_sec = objfile->obfd->sections;
389 unwind_sec;
390 unwind_sec = unwind_sec->next)
391 {
392 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
393 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
394 {
395 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
396 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
397
398 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
399 unwind_entries, unwind_size, text_offset);
400 index += unwind_entries;
401 }
402 }
403
404 /* Now read in and internalize the stub unwind entries. */
405 if (stub_unwind_size > 0)
406 {
407 unsigned int i;
408 char *buf = alloca (stub_unwind_size);
409
410 /* Read in the stub unwind entries. */
411 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
412 0, stub_unwind_size);
413
414 /* Now convert them into regular unwind entries. */
415 for (i = 0; i < stub_entries; i++, index++)
416 {
417 /* Clear out the next unwind entry. */
418 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
419
420 /* Convert offset & size into region_start and region_end.
421 Stuff away the stub type into "reserved" fields. */
422 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
423 (bfd_byte *) buf);
424 ui->table[index].region_start += text_offset;
425 buf += 4;
426 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
427 (bfd_byte *) buf);
428 buf += 2;
429 ui->table[index].region_end
430 = ui->table[index].region_start + 4 *
431 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
432 buf += 2;
433 }
434
435 }
436
437 /* Unwind table needs to be kept sorted. */
438 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
439 compare_unwind_entries);
440
441 /* Keep a pointer to the unwind information. */
442 obj_private = (struct hppa_objfile_private *)
443 objfile_data (objfile, hppa_objfile_priv_data);
444 if (obj_private == NULL)
445 obj_private = hppa_init_objfile_priv_data (objfile);
446
447 obj_private->unwind_info = ui;
448 }
449
450 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
451 of the objfiles seeking the unwind table entry for this PC. Each objfile
452 contains a sorted list of struct unwind_table_entry. Since we do a binary
453 search of the unwind tables, we depend upon them to be sorted. */
454
455 struct unwind_table_entry *
456 find_unwind_entry (CORE_ADDR pc)
457 {
458 int first, middle, last;
459 struct objfile *objfile;
460 struct hppa_objfile_private *priv;
461
462 if (hppa_debug)
463 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
464 paddr_nz (pc));
465
466 /* A function at address 0? Not in HP-UX! */
467 if (pc == (CORE_ADDR) 0)
468 {
469 if (hppa_debug)
470 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
471 return NULL;
472 }
473
474 ALL_OBJFILES (objfile)
475 {
476 struct hppa_unwind_info *ui;
477 ui = NULL;
478 priv = objfile_data (objfile, hppa_objfile_priv_data);
479 if (priv)
480 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
481
482 if (!ui)
483 {
484 read_unwind_info (objfile);
485 priv = objfile_data (objfile, hppa_objfile_priv_data);
486 if (priv == NULL)
487 error (_("Internal error reading unwind information."));
488 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
489 }
490
491 /* First, check the cache */
492
493 if (ui->cache
494 && pc >= ui->cache->region_start
495 && pc <= ui->cache->region_end)
496 {
497 if (hppa_debug)
498 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
499 paddr_nz ((uintptr_t) ui->cache));
500 return ui->cache;
501 }
502
503 /* Not in the cache, do a binary search */
504
505 first = 0;
506 last = ui->last;
507
508 while (first <= last)
509 {
510 middle = (first + last) / 2;
511 if (pc >= ui->table[middle].region_start
512 && pc <= ui->table[middle].region_end)
513 {
514 ui->cache = &ui->table[middle];
515 if (hppa_debug)
516 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
517 paddr_nz ((uintptr_t) ui->cache));
518 return &ui->table[middle];
519 }
520
521 if (pc < ui->table[middle].region_start)
522 last = middle - 1;
523 else
524 first = middle + 1;
525 }
526 } /* ALL_OBJFILES() */
527
528 if (hppa_debug)
529 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
530
531 return NULL;
532 }
533
534 /* The epilogue is defined here as the area either on the `bv' instruction
535 itself or an instruction which destroys the function's stack frame.
536
537 We do not assume that the epilogue is at the end of a function as we can
538 also have return sequences in the middle of a function. */
539 static int
540 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
541 {
542 unsigned long status;
543 unsigned int inst;
544 char buf[4];
545 int off;
546
547 status = target_read_memory (pc, buf, 4);
548 if (status != 0)
549 return 0;
550
551 inst = extract_unsigned_integer (buf, 4);
552
553 /* The most common way to perform a stack adjustment ldo X(sp),sp
554 We are destroying a stack frame if the offset is negative. */
555 if ((inst & 0xffffc000) == 0x37de0000
556 && hppa_extract_14 (inst) < 0)
557 return 1;
558
559 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
560 if (((inst & 0x0fc010e0) == 0x0fc010e0
561 || (inst & 0x0fc010e0) == 0x0fc010e0)
562 && hppa_extract_14 (inst) < 0)
563 return 1;
564
565 /* bv %r0(%rp) or bv,n %r0(%rp) */
566 if (inst == 0xe840c000 || inst == 0xe840c002)
567 return 1;
568
569 return 0;
570 }
571
572 static const unsigned char *
573 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
574 {
575 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
576 (*len) = sizeof (breakpoint);
577 return breakpoint;
578 }
579
580 /* Return the name of a register. */
581
582 static const char *
583 hppa32_register_name (struct gdbarch *gdbarch, int i)
584 {
585 static char *names[] = {
586 "flags", "r1", "rp", "r3",
587 "r4", "r5", "r6", "r7",
588 "r8", "r9", "r10", "r11",
589 "r12", "r13", "r14", "r15",
590 "r16", "r17", "r18", "r19",
591 "r20", "r21", "r22", "r23",
592 "r24", "r25", "r26", "dp",
593 "ret0", "ret1", "sp", "r31",
594 "sar", "pcoqh", "pcsqh", "pcoqt",
595 "pcsqt", "eiem", "iir", "isr",
596 "ior", "ipsw", "goto", "sr4",
597 "sr0", "sr1", "sr2", "sr3",
598 "sr5", "sr6", "sr7", "cr0",
599 "cr8", "cr9", "ccr", "cr12",
600 "cr13", "cr24", "cr25", "cr26",
601 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
602 "fpsr", "fpe1", "fpe2", "fpe3",
603 "fpe4", "fpe5", "fpe6", "fpe7",
604 "fr4", "fr4R", "fr5", "fr5R",
605 "fr6", "fr6R", "fr7", "fr7R",
606 "fr8", "fr8R", "fr9", "fr9R",
607 "fr10", "fr10R", "fr11", "fr11R",
608 "fr12", "fr12R", "fr13", "fr13R",
609 "fr14", "fr14R", "fr15", "fr15R",
610 "fr16", "fr16R", "fr17", "fr17R",
611 "fr18", "fr18R", "fr19", "fr19R",
612 "fr20", "fr20R", "fr21", "fr21R",
613 "fr22", "fr22R", "fr23", "fr23R",
614 "fr24", "fr24R", "fr25", "fr25R",
615 "fr26", "fr26R", "fr27", "fr27R",
616 "fr28", "fr28R", "fr29", "fr29R",
617 "fr30", "fr30R", "fr31", "fr31R"
618 };
619 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
620 return NULL;
621 else
622 return names[i];
623 }
624
625 static const char *
626 hppa64_register_name (struct gdbarch *gdbarch, int i)
627 {
628 static char *names[] = {
629 "flags", "r1", "rp", "r3",
630 "r4", "r5", "r6", "r7",
631 "r8", "r9", "r10", "r11",
632 "r12", "r13", "r14", "r15",
633 "r16", "r17", "r18", "r19",
634 "r20", "r21", "r22", "r23",
635 "r24", "r25", "r26", "dp",
636 "ret0", "ret1", "sp", "r31",
637 "sar", "pcoqh", "pcsqh", "pcoqt",
638 "pcsqt", "eiem", "iir", "isr",
639 "ior", "ipsw", "goto", "sr4",
640 "sr0", "sr1", "sr2", "sr3",
641 "sr5", "sr6", "sr7", "cr0",
642 "cr8", "cr9", "ccr", "cr12",
643 "cr13", "cr24", "cr25", "cr26",
644 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
645 "fpsr", "fpe1", "fpe2", "fpe3",
646 "fr4", "fr5", "fr6", "fr7",
647 "fr8", "fr9", "fr10", "fr11",
648 "fr12", "fr13", "fr14", "fr15",
649 "fr16", "fr17", "fr18", "fr19",
650 "fr20", "fr21", "fr22", "fr23",
651 "fr24", "fr25", "fr26", "fr27",
652 "fr28", "fr29", "fr30", "fr31"
653 };
654 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
655 return NULL;
656 else
657 return names[i];
658 }
659
660 static int
661 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
662 {
663 /* r0-r31 and sar map one-to-one. */
664 if (reg <= 32)
665 return reg;
666
667 /* fr4-fr31 are mapped from 72 in steps of 2. */
668 if (reg >= 72 || reg < 72 + 28 * 2)
669 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
670
671 error ("Invalid DWARF register num %d.", reg);
672 return -1;
673 }
674
675 /* This function pushes a stack frame with arguments as part of the
676 inferior function calling mechanism.
677
678 This is the version of the function for the 32-bit PA machines, in
679 which later arguments appear at lower addresses. (The stack always
680 grows towards higher addresses.)
681
682 We simply allocate the appropriate amount of stack space and put
683 arguments into their proper slots. */
684
685 static CORE_ADDR
686 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
687 struct regcache *regcache, CORE_ADDR bp_addr,
688 int nargs, struct value **args, CORE_ADDR sp,
689 int struct_return, CORE_ADDR struct_addr)
690 {
691 /* Stack base address at which any pass-by-reference parameters are
692 stored. */
693 CORE_ADDR struct_end = 0;
694 /* Stack base address at which the first parameter is stored. */
695 CORE_ADDR param_end = 0;
696
697 /* The inner most end of the stack after all the parameters have
698 been pushed. */
699 CORE_ADDR new_sp = 0;
700
701 /* Two passes. First pass computes the location of everything,
702 second pass writes the bytes out. */
703 int write_pass;
704
705 /* Global pointer (r19) of the function we are trying to call. */
706 CORE_ADDR gp;
707
708 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
709
710 for (write_pass = 0; write_pass < 2; write_pass++)
711 {
712 CORE_ADDR struct_ptr = 0;
713 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
714 struct_ptr is adjusted for each argument below, so the first
715 argument will end up at sp-36. */
716 CORE_ADDR param_ptr = 32;
717 int i;
718 int small_struct = 0;
719
720 for (i = 0; i < nargs; i++)
721 {
722 struct value *arg = args[i];
723 struct type *type = check_typedef (value_type (arg));
724 /* The corresponding parameter that is pushed onto the
725 stack, and [possibly] passed in a register. */
726 char param_val[8];
727 int param_len;
728 memset (param_val, 0, sizeof param_val);
729 if (TYPE_LENGTH (type) > 8)
730 {
731 /* Large parameter, pass by reference. Store the value
732 in "struct" area and then pass its address. */
733 param_len = 4;
734 struct_ptr += align_up (TYPE_LENGTH (type), 8);
735 if (write_pass)
736 write_memory (struct_end - struct_ptr, value_contents (arg),
737 TYPE_LENGTH (type));
738 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
739 }
740 else if (TYPE_CODE (type) == TYPE_CODE_INT
741 || TYPE_CODE (type) == TYPE_CODE_ENUM)
742 {
743 /* Integer value store, right aligned. "unpack_long"
744 takes care of any sign-extension problems. */
745 param_len = align_up (TYPE_LENGTH (type), 4);
746 store_unsigned_integer (param_val, param_len,
747 unpack_long (type,
748 value_contents (arg)));
749 }
750 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
751 {
752 /* Floating point value store, right aligned. */
753 param_len = align_up (TYPE_LENGTH (type), 4);
754 memcpy (param_val, value_contents (arg), param_len);
755 }
756 else
757 {
758 param_len = align_up (TYPE_LENGTH (type), 4);
759
760 /* Small struct value are stored right-aligned. */
761 memcpy (param_val + param_len - TYPE_LENGTH (type),
762 value_contents (arg), TYPE_LENGTH (type));
763
764 /* Structures of size 5, 6 and 7 bytes are special in that
765 the higher-ordered word is stored in the lower-ordered
766 argument, and even though it is a 8-byte quantity the
767 registers need not be 8-byte aligned. */
768 if (param_len > 4 && param_len < 8)
769 small_struct = 1;
770 }
771
772 param_ptr += param_len;
773 if (param_len == 8 && !small_struct)
774 param_ptr = align_up (param_ptr, 8);
775
776 /* First 4 non-FP arguments are passed in gr26-gr23.
777 First 4 32-bit FP arguments are passed in fr4L-fr7L.
778 First 2 64-bit FP arguments are passed in fr5 and fr7.
779
780 The rest go on the stack, starting at sp-36, towards lower
781 addresses. 8-byte arguments must be aligned to a 8-byte
782 stack boundary. */
783 if (write_pass)
784 {
785 write_memory (param_end - param_ptr, param_val, param_len);
786
787 /* There are some cases when we don't know the type
788 expected by the callee (e.g. for variadic functions), so
789 pass the parameters in both general and fp regs. */
790 if (param_ptr <= 48)
791 {
792 int grreg = 26 - (param_ptr - 36) / 4;
793 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
794 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
795
796 regcache_cooked_write (regcache, grreg, param_val);
797 regcache_cooked_write (regcache, fpLreg, param_val);
798
799 if (param_len > 4)
800 {
801 regcache_cooked_write (regcache, grreg + 1,
802 param_val + 4);
803
804 regcache_cooked_write (regcache, fpreg, param_val);
805 regcache_cooked_write (regcache, fpreg + 1,
806 param_val + 4);
807 }
808 }
809 }
810 }
811
812 /* Update the various stack pointers. */
813 if (!write_pass)
814 {
815 struct_end = sp + align_up (struct_ptr, 64);
816 /* PARAM_PTR already accounts for all the arguments passed
817 by the user. However, the ABI mandates minimum stack
818 space allocations for outgoing arguments. The ABI also
819 mandates minimum stack alignments which we must
820 preserve. */
821 param_end = struct_end + align_up (param_ptr, 64);
822 }
823 }
824
825 /* If a structure has to be returned, set up register 28 to hold its
826 address */
827 if (struct_return)
828 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
829
830 gp = tdep->find_global_pointer (gdbarch, function);
831
832 if (gp != 0)
833 regcache_cooked_write_unsigned (regcache, 19, gp);
834
835 /* Set the return address. */
836 if (!gdbarch_push_dummy_code_p (gdbarch))
837 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
838
839 /* Update the Stack Pointer. */
840 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
841
842 return param_end;
843 }
844
845 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
846 Runtime Architecture for PA-RISC 2.0", which is distributed as part
847 as of the HP-UX Software Transition Kit (STK). This implementation
848 is based on version 3.3, dated October 6, 1997. */
849
850 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
851
852 static int
853 hppa64_integral_or_pointer_p (const struct type *type)
854 {
855 switch (TYPE_CODE (type))
856 {
857 case TYPE_CODE_INT:
858 case TYPE_CODE_BOOL:
859 case TYPE_CODE_CHAR:
860 case TYPE_CODE_ENUM:
861 case TYPE_CODE_RANGE:
862 {
863 int len = TYPE_LENGTH (type);
864 return (len == 1 || len == 2 || len == 4 || len == 8);
865 }
866 case TYPE_CODE_PTR:
867 case TYPE_CODE_REF:
868 return (TYPE_LENGTH (type) == 8);
869 default:
870 break;
871 }
872
873 return 0;
874 }
875
876 /* Check whether TYPE is a "Floating Scalar Type". */
877
878 static int
879 hppa64_floating_p (const struct type *type)
880 {
881 switch (TYPE_CODE (type))
882 {
883 case TYPE_CODE_FLT:
884 {
885 int len = TYPE_LENGTH (type);
886 return (len == 4 || len == 8 || len == 16);
887 }
888 default:
889 break;
890 }
891
892 return 0;
893 }
894
895 /* If CODE points to a function entry address, try to look up the corresponding
896 function descriptor and return its address instead. If CODE is not a
897 function entry address, then just return it unchanged. */
898 static CORE_ADDR
899 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
900 {
901 struct obj_section *sec, *opd;
902
903 sec = find_pc_section (code);
904
905 if (!sec)
906 return code;
907
908 /* If CODE is in a data section, assume it's already a fptr. */
909 if (!(sec->the_bfd_section->flags & SEC_CODE))
910 return code;
911
912 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
913 {
914 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
915 break;
916 }
917
918 if (opd < sec->objfile->sections_end)
919 {
920 CORE_ADDR addr;
921
922 for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
923 {
924 ULONGEST opdaddr;
925 char tmp[8];
926
927 if (target_read_memory (addr, tmp, sizeof (tmp)))
928 break;
929 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
930
931 if (opdaddr == code)
932 return addr - 16;
933 }
934 }
935
936 return code;
937 }
938
939 static CORE_ADDR
940 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
941 struct regcache *regcache, CORE_ADDR bp_addr,
942 int nargs, struct value **args, CORE_ADDR sp,
943 int struct_return, CORE_ADDR struct_addr)
944 {
945 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
946 int i, offset = 0;
947 CORE_ADDR gp;
948
949 /* "The outgoing parameter area [...] must be aligned at a 16-byte
950 boundary." */
951 sp = align_up (sp, 16);
952
953 for (i = 0; i < nargs; i++)
954 {
955 struct value *arg = args[i];
956 struct type *type = value_type (arg);
957 int len = TYPE_LENGTH (type);
958 const bfd_byte *valbuf;
959 bfd_byte fptrbuf[8];
960 int regnum;
961
962 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
963 offset = align_up (offset, 8);
964
965 if (hppa64_integral_or_pointer_p (type))
966 {
967 /* "Integral scalar parameters smaller than 64 bits are
968 padded on the left (i.e., the value is in the
969 least-significant bits of the 64-bit storage unit, and
970 the high-order bits are undefined)." Therefore we can
971 safely sign-extend them. */
972 if (len < 8)
973 {
974 arg = value_cast (builtin_type_int64, arg);
975 len = 8;
976 }
977 }
978 else if (hppa64_floating_p (type))
979 {
980 if (len > 8)
981 {
982 /* "Quad-precision (128-bit) floating-point scalar
983 parameters are aligned on a 16-byte boundary." */
984 offset = align_up (offset, 16);
985
986 /* "Double-extended- and quad-precision floating-point
987 parameters within the first 64 bytes of the parameter
988 list are always passed in general registers." */
989 }
990 else
991 {
992 if (len == 4)
993 {
994 /* "Single-precision (32-bit) floating-point scalar
995 parameters are padded on the left with 32 bits of
996 garbage (i.e., the floating-point value is in the
997 least-significant 32 bits of a 64-bit storage
998 unit)." */
999 offset += 4;
1000 }
1001
1002 /* "Single- and double-precision floating-point
1003 parameters in this area are passed according to the
1004 available formal parameter information in a function
1005 prototype. [...] If no prototype is in scope,
1006 floating-point parameters must be passed both in the
1007 corresponding general registers and in the
1008 corresponding floating-point registers." */
1009 regnum = HPPA64_FP4_REGNUM + offset / 8;
1010
1011 if (regnum < HPPA64_FP4_REGNUM + 8)
1012 {
1013 /* "Single-precision floating-point parameters, when
1014 passed in floating-point registers, are passed in
1015 the right halves of the floating point registers;
1016 the left halves are unused." */
1017 regcache_cooked_write_part (regcache, regnum, offset % 8,
1018 len, value_contents (arg));
1019 }
1020 }
1021 }
1022 else
1023 {
1024 if (len > 8)
1025 {
1026 /* "Aggregates larger than 8 bytes are aligned on a
1027 16-byte boundary, possibly leaving an unused argument
1028 slot, which is filled with garbage. If necessary,
1029 they are padded on the right (with garbage), to a
1030 multiple of 8 bytes." */
1031 offset = align_up (offset, 16);
1032 }
1033 }
1034
1035 /* If we are passing a function pointer, make sure we pass a function
1036 descriptor instead of the function entry address. */
1037 if (TYPE_CODE (type) == TYPE_CODE_PTR
1038 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1039 {
1040 ULONGEST codeptr, fptr;
1041
1042 codeptr = unpack_long (type, value_contents (arg));
1043 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1044 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1045 valbuf = fptrbuf;
1046 }
1047 else
1048 {
1049 valbuf = value_contents (arg);
1050 }
1051
1052 /* Always store the argument in memory. */
1053 write_memory (sp + offset, valbuf, len);
1054
1055 regnum = HPPA_ARG0_REGNUM - offset / 8;
1056 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1057 {
1058 regcache_cooked_write_part (regcache, regnum,
1059 offset % 8, min (len, 8), valbuf);
1060 offset += min (len, 8);
1061 valbuf += min (len, 8);
1062 len -= min (len, 8);
1063 regnum--;
1064 }
1065
1066 offset += len;
1067 }
1068
1069 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1070 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1071
1072 /* Allocate the outgoing parameter area. Make sure the outgoing
1073 parameter area is multiple of 16 bytes in length. */
1074 sp += max (align_up (offset, 16), 64);
1075
1076 /* Allocate 32-bytes of scratch space. The documentation doesn't
1077 mention this, but it seems to be needed. */
1078 sp += 32;
1079
1080 /* Allocate the frame marker area. */
1081 sp += 16;
1082
1083 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1084 its address. */
1085 if (struct_return)
1086 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1087
1088 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1089 gp = tdep->find_global_pointer (gdbarch, function);
1090 if (gp != 0)
1091 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1092
1093 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1094 if (!gdbarch_push_dummy_code_p (gdbarch))
1095 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1096
1097 /* Set up GR30 to hold the stack pointer (sp). */
1098 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1099
1100 return sp;
1101 }
1102 \f
1103
1104 /* Handle 32/64-bit struct return conventions. */
1105
1106 static enum return_value_convention
1107 hppa32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1108 struct type *type, struct regcache *regcache,
1109 gdb_byte *readbuf, const gdb_byte *writebuf)
1110 {
1111 if (TYPE_LENGTH (type) <= 2 * 4)
1112 {
1113 /* The value always lives in the right hand end of the register
1114 (or register pair)? */
1115 int b;
1116 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1117 int part = TYPE_LENGTH (type) % 4;
1118 /* The left hand register contains only part of the value,
1119 transfer that first so that the rest can be xfered as entire
1120 4-byte registers. */
1121 if (part > 0)
1122 {
1123 if (readbuf != NULL)
1124 regcache_cooked_read_part (regcache, reg, 4 - part,
1125 part, readbuf);
1126 if (writebuf != NULL)
1127 regcache_cooked_write_part (regcache, reg, 4 - part,
1128 part, writebuf);
1129 reg++;
1130 }
1131 /* Now transfer the remaining register values. */
1132 for (b = part; b < TYPE_LENGTH (type); b += 4)
1133 {
1134 if (readbuf != NULL)
1135 regcache_cooked_read (regcache, reg, readbuf + b);
1136 if (writebuf != NULL)
1137 regcache_cooked_write (regcache, reg, writebuf + b);
1138 reg++;
1139 }
1140 return RETURN_VALUE_REGISTER_CONVENTION;
1141 }
1142 else
1143 return RETURN_VALUE_STRUCT_CONVENTION;
1144 }
1145
1146 static enum return_value_convention
1147 hppa64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1148 struct type *type, struct regcache *regcache,
1149 gdb_byte *readbuf, const gdb_byte *writebuf)
1150 {
1151 int len = TYPE_LENGTH (type);
1152 int regnum, offset;
1153
1154 if (len > 16)
1155 {
1156 /* All return values larget than 128 bits must be aggregate
1157 return values. */
1158 gdb_assert (!hppa64_integral_or_pointer_p (type));
1159 gdb_assert (!hppa64_floating_p (type));
1160
1161 /* "Aggregate return values larger than 128 bits are returned in
1162 a buffer allocated by the caller. The address of the buffer
1163 must be passed in GR 28." */
1164 return RETURN_VALUE_STRUCT_CONVENTION;
1165 }
1166
1167 if (hppa64_integral_or_pointer_p (type))
1168 {
1169 /* "Integral return values are returned in GR 28. Values
1170 smaller than 64 bits are padded on the left (with garbage)." */
1171 regnum = HPPA_RET0_REGNUM;
1172 offset = 8 - len;
1173 }
1174 else if (hppa64_floating_p (type))
1175 {
1176 if (len > 8)
1177 {
1178 /* "Double-extended- and quad-precision floating-point
1179 values are returned in GRs 28 and 29. The sign,
1180 exponent, and most-significant bits of the mantissa are
1181 returned in GR 28; the least-significant bits of the
1182 mantissa are passed in GR 29. For double-extended
1183 precision values, GR 29 is padded on the right with 48
1184 bits of garbage." */
1185 regnum = HPPA_RET0_REGNUM;
1186 offset = 0;
1187 }
1188 else
1189 {
1190 /* "Single-precision and double-precision floating-point
1191 return values are returned in FR 4R (single precision) or
1192 FR 4 (double-precision)." */
1193 regnum = HPPA64_FP4_REGNUM;
1194 offset = 8 - len;
1195 }
1196 }
1197 else
1198 {
1199 /* "Aggregate return values up to 64 bits in size are returned
1200 in GR 28. Aggregates smaller than 64 bits are left aligned
1201 in the register; the pad bits on the right are undefined."
1202
1203 "Aggregate return values between 65 and 128 bits are returned
1204 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1205 the remaining bits are placed, left aligned, in GR 29. The
1206 pad bits on the right of GR 29 (if any) are undefined." */
1207 regnum = HPPA_RET0_REGNUM;
1208 offset = 0;
1209 }
1210
1211 if (readbuf)
1212 {
1213 while (len > 0)
1214 {
1215 regcache_cooked_read_part (regcache, regnum, offset,
1216 min (len, 8), readbuf);
1217 readbuf += min (len, 8);
1218 len -= min (len, 8);
1219 regnum++;
1220 }
1221 }
1222
1223 if (writebuf)
1224 {
1225 while (len > 0)
1226 {
1227 regcache_cooked_write_part (regcache, regnum, offset,
1228 min (len, 8), writebuf);
1229 writebuf += min (len, 8);
1230 len -= min (len, 8);
1231 regnum++;
1232 }
1233 }
1234
1235 return RETURN_VALUE_REGISTER_CONVENTION;
1236 }
1237 \f
1238
1239 static CORE_ADDR
1240 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1241 struct target_ops *targ)
1242 {
1243 if (addr & 2)
1244 {
1245 CORE_ADDR plabel = addr & ~3;
1246 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
1247 }
1248
1249 return addr;
1250 }
1251
1252 static CORE_ADDR
1253 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1254 {
1255 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1256 and not _bit_)! */
1257 return align_up (addr, 64);
1258 }
1259
1260 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1261
1262 static CORE_ADDR
1263 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1264 {
1265 /* Just always 16-byte align. */
1266 return align_up (addr, 16);
1267 }
1268
1269 CORE_ADDR
1270 hppa_read_pc (struct regcache *regcache)
1271 {
1272 ULONGEST ipsw;
1273 ULONGEST pc;
1274
1275 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1276 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1277
1278 /* If the current instruction is nullified, then we are effectively
1279 still executing the previous instruction. Pretend we are still
1280 there. This is needed when single stepping; if the nullified
1281 instruction is on a different line, we don't want GDB to think
1282 we've stepped onto that line. */
1283 if (ipsw & 0x00200000)
1284 pc -= 4;
1285
1286 return pc & ~0x3;
1287 }
1288
1289 void
1290 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1291 {
1292 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1293 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1294 }
1295
1296 /* return the alignment of a type in bytes. Structures have the maximum
1297 alignment required by their fields. */
1298
1299 static int
1300 hppa_alignof (struct type *type)
1301 {
1302 int max_align, align, i;
1303 CHECK_TYPEDEF (type);
1304 switch (TYPE_CODE (type))
1305 {
1306 case TYPE_CODE_PTR:
1307 case TYPE_CODE_INT:
1308 case TYPE_CODE_FLT:
1309 return TYPE_LENGTH (type);
1310 case TYPE_CODE_ARRAY:
1311 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1312 case TYPE_CODE_STRUCT:
1313 case TYPE_CODE_UNION:
1314 max_align = 1;
1315 for (i = 0; i < TYPE_NFIELDS (type); i++)
1316 {
1317 /* Bit fields have no real alignment. */
1318 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1319 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1320 {
1321 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1322 max_align = max (max_align, align);
1323 }
1324 }
1325 return max_align;
1326 default:
1327 return 4;
1328 }
1329 }
1330
1331 /* For the given instruction (INST), return any adjustment it makes
1332 to the stack pointer or zero for no adjustment.
1333
1334 This only handles instructions commonly found in prologues. */
1335
1336 static int
1337 prologue_inst_adjust_sp (unsigned long inst)
1338 {
1339 /* This must persist across calls. */
1340 static int save_high21;
1341
1342 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1343 if ((inst & 0xffffc000) == 0x37de0000)
1344 return hppa_extract_14 (inst);
1345
1346 /* stwm X,D(sp) */
1347 if ((inst & 0xffe00000) == 0x6fc00000)
1348 return hppa_extract_14 (inst);
1349
1350 /* std,ma X,D(sp) */
1351 if ((inst & 0xffe00008) == 0x73c00008)
1352 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1353
1354 /* addil high21,%r30; ldo low11,(%r1),%r30)
1355 save high bits in save_high21 for later use. */
1356 if ((inst & 0xffe00000) == 0x2bc00000)
1357 {
1358 save_high21 = hppa_extract_21 (inst);
1359 return 0;
1360 }
1361
1362 if ((inst & 0xffff0000) == 0x343e0000)
1363 return save_high21 + hppa_extract_14 (inst);
1364
1365 /* fstws as used by the HP compilers. */
1366 if ((inst & 0xffffffe0) == 0x2fd01220)
1367 return hppa_extract_5_load (inst);
1368
1369 /* No adjustment. */
1370 return 0;
1371 }
1372
1373 /* Return nonzero if INST is a branch of some kind, else return zero. */
1374
1375 static int
1376 is_branch (unsigned long inst)
1377 {
1378 switch (inst >> 26)
1379 {
1380 case 0x20:
1381 case 0x21:
1382 case 0x22:
1383 case 0x23:
1384 case 0x27:
1385 case 0x28:
1386 case 0x29:
1387 case 0x2a:
1388 case 0x2b:
1389 case 0x2f:
1390 case 0x30:
1391 case 0x31:
1392 case 0x32:
1393 case 0x33:
1394 case 0x38:
1395 case 0x39:
1396 case 0x3a:
1397 case 0x3b:
1398 return 1;
1399
1400 default:
1401 return 0;
1402 }
1403 }
1404
1405 /* Return the register number for a GR which is saved by INST or
1406 zero it INST does not save a GR. */
1407
1408 static int
1409 inst_saves_gr (unsigned long inst)
1410 {
1411 /* Does it look like a stw? */
1412 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1413 || (inst >> 26) == 0x1f
1414 || ((inst >> 26) == 0x1f
1415 && ((inst >> 6) == 0xa)))
1416 return hppa_extract_5R_store (inst);
1417
1418 /* Does it look like a std? */
1419 if ((inst >> 26) == 0x1c
1420 || ((inst >> 26) == 0x03
1421 && ((inst >> 6) & 0xf) == 0xb))
1422 return hppa_extract_5R_store (inst);
1423
1424 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1425 if ((inst >> 26) == 0x1b)
1426 return hppa_extract_5R_store (inst);
1427
1428 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1429 too. */
1430 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1431 || ((inst >> 26) == 0x3
1432 && (((inst >> 6) & 0xf) == 0x8
1433 || (inst >> 6) & 0xf) == 0x9))
1434 return hppa_extract_5R_store (inst);
1435
1436 return 0;
1437 }
1438
1439 /* Return the register number for a FR which is saved by INST or
1440 zero it INST does not save a FR.
1441
1442 Note we only care about full 64bit register stores (that's the only
1443 kind of stores the prologue will use).
1444
1445 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1446
1447 static int
1448 inst_saves_fr (unsigned long inst)
1449 {
1450 /* is this an FSTD ? */
1451 if ((inst & 0xfc00dfc0) == 0x2c001200)
1452 return hppa_extract_5r_store (inst);
1453 if ((inst & 0xfc000002) == 0x70000002)
1454 return hppa_extract_5R_store (inst);
1455 /* is this an FSTW ? */
1456 if ((inst & 0xfc00df80) == 0x24001200)
1457 return hppa_extract_5r_store (inst);
1458 if ((inst & 0xfc000002) == 0x7c000000)
1459 return hppa_extract_5R_store (inst);
1460 return 0;
1461 }
1462
1463 /* Advance PC across any function entry prologue instructions
1464 to reach some "real" code.
1465
1466 Use information in the unwind table to determine what exactly should
1467 be in the prologue. */
1468
1469
1470 static CORE_ADDR
1471 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1472 int stop_before_branch)
1473 {
1474 char buf[4];
1475 CORE_ADDR orig_pc = pc;
1476 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1477 unsigned long args_stored, status, i, restart_gr, restart_fr;
1478 struct unwind_table_entry *u;
1479 int final_iteration;
1480
1481 restart_gr = 0;
1482 restart_fr = 0;
1483
1484 restart:
1485 u = find_unwind_entry (pc);
1486 if (!u)
1487 return pc;
1488
1489 /* If we are not at the beginning of a function, then return now. */
1490 if ((pc & ~0x3) != u->region_start)
1491 return pc;
1492
1493 /* This is how much of a frame adjustment we need to account for. */
1494 stack_remaining = u->Total_frame_size << 3;
1495
1496 /* Magic register saves we want to know about. */
1497 save_rp = u->Save_RP;
1498 save_sp = u->Save_SP;
1499
1500 /* An indication that args may be stored into the stack. Unfortunately
1501 the HPUX compilers tend to set this in cases where no args were
1502 stored too!. */
1503 args_stored = 1;
1504
1505 /* Turn the Entry_GR field into a bitmask. */
1506 save_gr = 0;
1507 for (i = 3; i < u->Entry_GR + 3; i++)
1508 {
1509 /* Frame pointer gets saved into a special location. */
1510 if (u->Save_SP && i == HPPA_FP_REGNUM)
1511 continue;
1512
1513 save_gr |= (1 << i);
1514 }
1515 save_gr &= ~restart_gr;
1516
1517 /* Turn the Entry_FR field into a bitmask too. */
1518 save_fr = 0;
1519 for (i = 12; i < u->Entry_FR + 12; i++)
1520 save_fr |= (1 << i);
1521 save_fr &= ~restart_fr;
1522
1523 final_iteration = 0;
1524
1525 /* Loop until we find everything of interest or hit a branch.
1526
1527 For unoptimized GCC code and for any HP CC code this will never ever
1528 examine any user instructions.
1529
1530 For optimzied GCC code we're faced with problems. GCC will schedule
1531 its prologue and make prologue instructions available for delay slot
1532 filling. The end result is user code gets mixed in with the prologue
1533 and a prologue instruction may be in the delay slot of the first branch
1534 or call.
1535
1536 Some unexpected things are expected with debugging optimized code, so
1537 we allow this routine to walk past user instructions in optimized
1538 GCC code. */
1539 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1540 || args_stored)
1541 {
1542 unsigned int reg_num;
1543 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1544 unsigned long old_save_rp, old_save_sp, next_inst;
1545
1546 /* Save copies of all the triggers so we can compare them later
1547 (only for HPC). */
1548 old_save_gr = save_gr;
1549 old_save_fr = save_fr;
1550 old_save_rp = save_rp;
1551 old_save_sp = save_sp;
1552 old_stack_remaining = stack_remaining;
1553
1554 status = target_read_memory (pc, buf, 4);
1555 inst = extract_unsigned_integer (buf, 4);
1556
1557 /* Yow! */
1558 if (status != 0)
1559 return pc;
1560
1561 /* Note the interesting effects of this instruction. */
1562 stack_remaining -= prologue_inst_adjust_sp (inst);
1563
1564 /* There are limited ways to store the return pointer into the
1565 stack. */
1566 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1567 save_rp = 0;
1568
1569 /* These are the only ways we save SP into the stack. At this time
1570 the HP compilers never bother to save SP into the stack. */
1571 if ((inst & 0xffffc000) == 0x6fc10000
1572 || (inst & 0xffffc00c) == 0x73c10008)
1573 save_sp = 0;
1574
1575 /* Are we loading some register with an offset from the argument
1576 pointer? */
1577 if ((inst & 0xffe00000) == 0x37a00000
1578 || (inst & 0xffffffe0) == 0x081d0240)
1579 {
1580 pc += 4;
1581 continue;
1582 }
1583
1584 /* Account for general and floating-point register saves. */
1585 reg_num = inst_saves_gr (inst);
1586 save_gr &= ~(1 << reg_num);
1587
1588 /* Ugh. Also account for argument stores into the stack.
1589 Unfortunately args_stored only tells us that some arguments
1590 where stored into the stack. Not how many or what kind!
1591
1592 This is a kludge as on the HP compiler sets this bit and it
1593 never does prologue scheduling. So once we see one, skip past
1594 all of them. We have similar code for the fp arg stores below.
1595
1596 FIXME. Can still die if we have a mix of GR and FR argument
1597 stores! */
1598 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1599 && reg_num <= 26)
1600 {
1601 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1602 && reg_num <= 26)
1603 {
1604 pc += 4;
1605 status = target_read_memory (pc, buf, 4);
1606 inst = extract_unsigned_integer (buf, 4);
1607 if (status != 0)
1608 return pc;
1609 reg_num = inst_saves_gr (inst);
1610 }
1611 args_stored = 0;
1612 continue;
1613 }
1614
1615 reg_num = inst_saves_fr (inst);
1616 save_fr &= ~(1 << reg_num);
1617
1618 status = target_read_memory (pc + 4, buf, 4);
1619 next_inst = extract_unsigned_integer (buf, 4);
1620
1621 /* Yow! */
1622 if (status != 0)
1623 return pc;
1624
1625 /* We've got to be read to handle the ldo before the fp register
1626 save. */
1627 if ((inst & 0xfc000000) == 0x34000000
1628 && inst_saves_fr (next_inst) >= 4
1629 && inst_saves_fr (next_inst)
1630 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1631 {
1632 /* So we drop into the code below in a reasonable state. */
1633 reg_num = inst_saves_fr (next_inst);
1634 pc -= 4;
1635 }
1636
1637 /* Ugh. Also account for argument stores into the stack.
1638 This is a kludge as on the HP compiler sets this bit and it
1639 never does prologue scheduling. So once we see one, skip past
1640 all of them. */
1641 if (reg_num >= 4
1642 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1643 {
1644 while (reg_num >= 4
1645 && reg_num
1646 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1647 {
1648 pc += 8;
1649 status = target_read_memory (pc, buf, 4);
1650 inst = extract_unsigned_integer (buf, 4);
1651 if (status != 0)
1652 return pc;
1653 if ((inst & 0xfc000000) != 0x34000000)
1654 break;
1655 status = target_read_memory (pc + 4, buf, 4);
1656 next_inst = extract_unsigned_integer (buf, 4);
1657 if (status != 0)
1658 return pc;
1659 reg_num = inst_saves_fr (next_inst);
1660 }
1661 args_stored = 0;
1662 continue;
1663 }
1664
1665 /* Quit if we hit any kind of branch. This can happen if a prologue
1666 instruction is in the delay slot of the first call/branch. */
1667 if (is_branch (inst) && stop_before_branch)
1668 break;
1669
1670 /* What a crock. The HP compilers set args_stored even if no
1671 arguments were stored into the stack (boo hiss). This could
1672 cause this code to then skip a bunch of user insns (up to the
1673 first branch).
1674
1675 To combat this we try to identify when args_stored was bogusly
1676 set and clear it. We only do this when args_stored is nonzero,
1677 all other resources are accounted for, and nothing changed on
1678 this pass. */
1679 if (args_stored
1680 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1681 && old_save_gr == save_gr && old_save_fr == save_fr
1682 && old_save_rp == save_rp && old_save_sp == save_sp
1683 && old_stack_remaining == stack_remaining)
1684 break;
1685
1686 /* Bump the PC. */
1687 pc += 4;
1688
1689 /* !stop_before_branch, so also look at the insn in the delay slot
1690 of the branch. */
1691 if (final_iteration)
1692 break;
1693 if (is_branch (inst))
1694 final_iteration = 1;
1695 }
1696
1697 /* We've got a tenative location for the end of the prologue. However
1698 because of limitations in the unwind descriptor mechanism we may
1699 have went too far into user code looking for the save of a register
1700 that does not exist. So, if there registers we expected to be saved
1701 but never were, mask them out and restart.
1702
1703 This should only happen in optimized code, and should be very rare. */
1704 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1705 {
1706 pc = orig_pc;
1707 restart_gr = save_gr;
1708 restart_fr = save_fr;
1709 goto restart;
1710 }
1711
1712 return pc;
1713 }
1714
1715
1716 /* Return the address of the PC after the last prologue instruction if
1717 we can determine it from the debug symbols. Else return zero. */
1718
1719 static CORE_ADDR
1720 after_prologue (CORE_ADDR pc)
1721 {
1722 struct symtab_and_line sal;
1723 CORE_ADDR func_addr, func_end;
1724 struct symbol *f;
1725
1726 /* If we can not find the symbol in the partial symbol table, then
1727 there is no hope we can determine the function's start address
1728 with this code. */
1729 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1730 return 0;
1731
1732 /* Get the line associated with FUNC_ADDR. */
1733 sal = find_pc_line (func_addr, 0);
1734
1735 /* There are only two cases to consider. First, the end of the source line
1736 is within the function bounds. In that case we return the end of the
1737 source line. Second is the end of the source line extends beyond the
1738 bounds of the current function. We need to use the slow code to
1739 examine instructions in that case.
1740
1741 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1742 the wrong thing to do. In fact, it should be entirely possible for this
1743 function to always return zero since the slow instruction scanning code
1744 is supposed to *always* work. If it does not, then it is a bug. */
1745 if (sal.end < func_end)
1746 return sal.end;
1747 else
1748 return 0;
1749 }
1750
1751 /* To skip prologues, I use this predicate. Returns either PC itself
1752 if the code at PC does not look like a function prologue; otherwise
1753 returns an address that (if we're lucky) follows the prologue.
1754
1755 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1756 It doesn't necessarily skips all the insns in the prologue. In fact
1757 we might not want to skip all the insns because a prologue insn may
1758 appear in the delay slot of the first branch, and we don't want to
1759 skip over the branch in that case. */
1760
1761 static CORE_ADDR
1762 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1763 {
1764 unsigned long inst;
1765 int offset;
1766 CORE_ADDR post_prologue_pc;
1767 char buf[4];
1768
1769 /* See if we can determine the end of the prologue via the symbol table.
1770 If so, then return either PC, or the PC after the prologue, whichever
1771 is greater. */
1772
1773 post_prologue_pc = after_prologue (pc);
1774
1775 /* If after_prologue returned a useful address, then use it. Else
1776 fall back on the instruction skipping code.
1777
1778 Some folks have claimed this causes problems because the breakpoint
1779 may be the first instruction of the prologue. If that happens, then
1780 the instruction skipping code has a bug that needs to be fixed. */
1781 if (post_prologue_pc != 0)
1782 return max (pc, post_prologue_pc);
1783 else
1784 return (skip_prologue_hard_way (gdbarch, pc, 1));
1785 }
1786
1787 /* Return an unwind entry that falls within the frame's code block. */
1788
1789 static struct unwind_table_entry *
1790 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1791 {
1792 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1793
1794 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1795 result of frame_unwind_address_in_block implies a problem.
1796 The bits should have been removed earlier, before the return
1797 value of frame_pc_unwind. That might be happening already;
1798 if it isn't, it should be fixed. Then this call can be
1799 removed. */
1800 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1801 return find_unwind_entry (pc);
1802 }
1803
1804 struct hppa_frame_cache
1805 {
1806 CORE_ADDR base;
1807 struct trad_frame_saved_reg *saved_regs;
1808 };
1809
1810 static struct hppa_frame_cache *
1811 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1812 {
1813 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1814 struct hppa_frame_cache *cache;
1815 long saved_gr_mask;
1816 long saved_fr_mask;
1817 CORE_ADDR this_sp;
1818 long frame_size;
1819 struct unwind_table_entry *u;
1820 CORE_ADDR prologue_end;
1821 int fp_in_r1 = 0;
1822 int i;
1823
1824 if (hppa_debug)
1825 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1826 frame_relative_level(this_frame));
1827
1828 if ((*this_cache) != NULL)
1829 {
1830 if (hppa_debug)
1831 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1832 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1833 return (*this_cache);
1834 }
1835 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1836 (*this_cache) = cache;
1837 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1838
1839 /* Yow! */
1840 u = hppa_find_unwind_entry_in_block (this_frame);
1841 if (!u)
1842 {
1843 if (hppa_debug)
1844 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1845 return (*this_cache);
1846 }
1847
1848 /* Turn the Entry_GR field into a bitmask. */
1849 saved_gr_mask = 0;
1850 for (i = 3; i < u->Entry_GR + 3; i++)
1851 {
1852 /* Frame pointer gets saved into a special location. */
1853 if (u->Save_SP && i == HPPA_FP_REGNUM)
1854 continue;
1855
1856 saved_gr_mask |= (1 << i);
1857 }
1858
1859 /* Turn the Entry_FR field into a bitmask too. */
1860 saved_fr_mask = 0;
1861 for (i = 12; i < u->Entry_FR + 12; i++)
1862 saved_fr_mask |= (1 << i);
1863
1864 /* Loop until we find everything of interest or hit a branch.
1865
1866 For unoptimized GCC code and for any HP CC code this will never ever
1867 examine any user instructions.
1868
1869 For optimized GCC code we're faced with problems. GCC will schedule
1870 its prologue and make prologue instructions available for delay slot
1871 filling. The end result is user code gets mixed in with the prologue
1872 and a prologue instruction may be in the delay slot of the first branch
1873 or call.
1874
1875 Some unexpected things are expected with debugging optimized code, so
1876 we allow this routine to walk past user instructions in optimized
1877 GCC code. */
1878 {
1879 int final_iteration = 0;
1880 CORE_ADDR pc, start_pc, end_pc;
1881 int looking_for_sp = u->Save_SP;
1882 int looking_for_rp = u->Save_RP;
1883 int fp_loc = -1;
1884
1885 /* We have to use skip_prologue_hard_way instead of just
1886 skip_prologue_using_sal, in case we stepped into a function without
1887 symbol information. hppa_skip_prologue also bounds the returned
1888 pc by the passed in pc, so it will not return a pc in the next
1889 function.
1890
1891 We used to call hppa_skip_prologue to find the end of the prologue,
1892 but if some non-prologue instructions get scheduled into the prologue,
1893 and the program is compiled with debug information, the "easy" way
1894 in hppa_skip_prologue will return a prologue end that is too early
1895 for us to notice any potential frame adjustments. */
1896
1897 /* We used to use frame_func_unwind () to locate the beginning of the
1898 function to pass to skip_prologue (). However, when objects are
1899 compiled without debug symbols, frame_func_unwind can return the wrong
1900 function (or 0). We can do better than that by using unwind records.
1901 This only works if the Region_description of the unwind record
1902 indicates that it includes the entry point of the function.
1903 HP compilers sometimes generate unwind records for regions that
1904 do not include the entry or exit point of a function. GNU tools
1905 do not do this. */
1906
1907 if ((u->Region_description & 0x2) == 0)
1908 start_pc = u->region_start;
1909 else
1910 start_pc = get_frame_func (this_frame);
1911
1912 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1913 end_pc = get_frame_pc (this_frame);
1914
1915 if (prologue_end != 0 && end_pc > prologue_end)
1916 end_pc = prologue_end;
1917
1918 frame_size = 0;
1919
1920 for (pc = start_pc;
1921 ((saved_gr_mask || saved_fr_mask
1922 || looking_for_sp || looking_for_rp
1923 || frame_size < (u->Total_frame_size << 3))
1924 && pc < end_pc);
1925 pc += 4)
1926 {
1927 int reg;
1928 char buf4[4];
1929 long inst;
1930
1931 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1932 {
1933 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1934 return (*this_cache);
1935 }
1936
1937 inst = extract_unsigned_integer (buf4, sizeof buf4);
1938
1939 /* Note the interesting effects of this instruction. */
1940 frame_size += prologue_inst_adjust_sp (inst);
1941
1942 /* There are limited ways to store the return pointer into the
1943 stack. */
1944 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1945 {
1946 looking_for_rp = 0;
1947 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1948 }
1949 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1950 {
1951 looking_for_rp = 0;
1952 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1953 }
1954 else if (inst == 0x0fc212c1
1955 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1956 {
1957 looking_for_rp = 0;
1958 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1959 }
1960
1961 /* Check to see if we saved SP into the stack. This also
1962 happens to indicate the location of the saved frame
1963 pointer. */
1964 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1965 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1966 {
1967 looking_for_sp = 0;
1968 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1969 }
1970 else if (inst == 0x08030241) /* copy %r3, %r1 */
1971 {
1972 fp_in_r1 = 1;
1973 }
1974
1975 /* Account for general and floating-point register saves. */
1976 reg = inst_saves_gr (inst);
1977 if (reg >= 3 && reg <= 18
1978 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1979 {
1980 saved_gr_mask &= ~(1 << reg);
1981 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1982 /* stwm with a positive displacement is a _post_
1983 _modify_. */
1984 cache->saved_regs[reg].addr = 0;
1985 else if ((inst & 0xfc00000c) == 0x70000008)
1986 /* A std has explicit post_modify forms. */
1987 cache->saved_regs[reg].addr = 0;
1988 else
1989 {
1990 CORE_ADDR offset;
1991
1992 if ((inst >> 26) == 0x1c)
1993 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1994 else if ((inst >> 26) == 0x03)
1995 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1996 else
1997 offset = hppa_extract_14 (inst);
1998
1999 /* Handle code with and without frame pointers. */
2000 if (u->Save_SP)
2001 cache->saved_regs[reg].addr = offset;
2002 else
2003 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2004 }
2005 }
2006
2007 /* GCC handles callee saved FP regs a little differently.
2008
2009 It emits an instruction to put the value of the start of
2010 the FP store area into %r1. It then uses fstds,ma with a
2011 basereg of %r1 for the stores.
2012
2013 HP CC emits them at the current stack pointer modifying the
2014 stack pointer as it stores each register. */
2015
2016 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2017 if ((inst & 0xffffc000) == 0x34610000
2018 || (inst & 0xffffc000) == 0x37c10000)
2019 fp_loc = hppa_extract_14 (inst);
2020
2021 reg = inst_saves_fr (inst);
2022 if (reg >= 12 && reg <= 21)
2023 {
2024 /* Note +4 braindamage below is necessary because the FP
2025 status registers are internally 8 registers rather than
2026 the expected 4 registers. */
2027 saved_fr_mask &= ~(1 << reg);
2028 if (fp_loc == -1)
2029 {
2030 /* 1st HP CC FP register store. After this
2031 instruction we've set enough state that the GCC and
2032 HPCC code are both handled in the same manner. */
2033 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2034 fp_loc = 8;
2035 }
2036 else
2037 {
2038 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2039 fp_loc += 8;
2040 }
2041 }
2042
2043 /* Quit if we hit any kind of branch the previous iteration. */
2044 if (final_iteration)
2045 break;
2046 /* We want to look precisely one instruction beyond the branch
2047 if we have not found everything yet. */
2048 if (is_branch (inst))
2049 final_iteration = 1;
2050 }
2051 }
2052
2053 {
2054 /* The frame base always represents the value of %sp at entry to
2055 the current function (and is thus equivalent to the "saved"
2056 stack pointer. */
2057 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2058 HPPA_SP_REGNUM);
2059 CORE_ADDR fp;
2060
2061 if (hppa_debug)
2062 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2063 "prologue_end=0x%s) ",
2064 paddr_nz (this_sp),
2065 paddr_nz (get_frame_pc (this_frame)),
2066 paddr_nz (prologue_end));
2067
2068 /* Check to see if a frame pointer is available, and use it for
2069 frame unwinding if it is.
2070
2071 There are some situations where we need to rely on the frame
2072 pointer to do stack unwinding. For example, if a function calls
2073 alloca (), the stack pointer can get adjusted inside the body of
2074 the function. In this case, the ABI requires that the compiler
2075 maintain a frame pointer for the function.
2076
2077 The unwind record has a flag (alloca_frame) that indicates that
2078 a function has a variable frame; unfortunately, gcc/binutils
2079 does not set this flag. Instead, whenever a frame pointer is used
2080 and saved on the stack, the Save_SP flag is set. We use this to
2081 decide whether to use the frame pointer for unwinding.
2082
2083 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2084 instead of Save_SP. */
2085
2086 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2087
2088 if (u->alloca_frame)
2089 fp -= u->Total_frame_size << 3;
2090
2091 if (get_frame_pc (this_frame) >= prologue_end
2092 && (u->Save_SP || u->alloca_frame) && fp != 0)
2093 {
2094 cache->base = fp;
2095
2096 if (hppa_debug)
2097 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
2098 paddr_nz (cache->base));
2099 }
2100 else if (u->Save_SP
2101 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2102 {
2103 /* Both we're expecting the SP to be saved and the SP has been
2104 saved. The entry SP value is saved at this frame's SP
2105 address. */
2106 cache->base = read_memory_integer
2107 (this_sp, gdbarch_ptr_bit (gdbarch) / 8);
2108
2109 if (hppa_debug)
2110 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2111 paddr_nz (cache->base));
2112 }
2113 else
2114 {
2115 /* The prologue has been slowly allocating stack space. Adjust
2116 the SP back. */
2117 cache->base = this_sp - frame_size;
2118 if (hppa_debug)
2119 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2120 paddr_nz (cache->base));
2121
2122 }
2123 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2124 }
2125
2126 /* The PC is found in the "return register", "Millicode" uses "r31"
2127 as the return register while normal code uses "rp". */
2128 if (u->Millicode)
2129 {
2130 if (trad_frame_addr_p (cache->saved_regs, 31))
2131 {
2132 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2133 if (hppa_debug)
2134 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2135 }
2136 else
2137 {
2138 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2139 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2140 if (hppa_debug)
2141 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2142 }
2143 }
2144 else
2145 {
2146 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2147 {
2148 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2149 cache->saved_regs[HPPA_RP_REGNUM];
2150 if (hppa_debug)
2151 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2152 }
2153 else
2154 {
2155 ULONGEST rp = get_frame_register_unsigned (this_frame,
2156 HPPA_RP_REGNUM);
2157 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2158 if (hppa_debug)
2159 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2160 }
2161 }
2162
2163 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2164 frame. However, there is a one-insn window where we haven't saved it
2165 yet, but we've already clobbered it. Detect this case and fix it up.
2166
2167 The prologue sequence for frame-pointer functions is:
2168 0: stw %rp, -20(%sp)
2169 4: copy %r3, %r1
2170 8: copy %sp, %r3
2171 c: stw,ma %r1, XX(%sp)
2172
2173 So if we are at offset c, the r3 value that we want is not yet saved
2174 on the stack, but it's been overwritten. The prologue analyzer will
2175 set fp_in_r1 when it sees the copy insn so we know to get the value
2176 from r1 instead. */
2177 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2178 && fp_in_r1)
2179 {
2180 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2181 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2182 }
2183
2184 {
2185 /* Convert all the offsets into addresses. */
2186 int reg;
2187 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2188 {
2189 if (trad_frame_addr_p (cache->saved_regs, reg))
2190 cache->saved_regs[reg].addr += cache->base;
2191 }
2192 }
2193
2194 {
2195 struct gdbarch_tdep *tdep;
2196
2197 tdep = gdbarch_tdep (gdbarch);
2198
2199 if (tdep->unwind_adjust_stub)
2200 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2201 }
2202
2203 if (hppa_debug)
2204 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2205 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2206 return (*this_cache);
2207 }
2208
2209 static void
2210 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2211 struct frame_id *this_id)
2212 {
2213 struct hppa_frame_cache *info;
2214 CORE_ADDR pc = get_frame_pc (this_frame);
2215 struct unwind_table_entry *u;
2216
2217 info = hppa_frame_cache (this_frame, this_cache);
2218 u = hppa_find_unwind_entry_in_block (this_frame);
2219
2220 (*this_id) = frame_id_build (info->base, u->region_start);
2221 }
2222
2223 static struct value *
2224 hppa_frame_prev_register (struct frame_info *this_frame,
2225 void **this_cache, int regnum)
2226 {
2227 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2228
2229 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2230 }
2231
2232 static int
2233 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2234 struct frame_info *this_frame, void **this_cache)
2235 {
2236 if (hppa_find_unwind_entry_in_block (this_frame))
2237 return 1;
2238
2239 return 0;
2240 }
2241
2242 static const struct frame_unwind hppa_frame_unwind =
2243 {
2244 NORMAL_FRAME,
2245 hppa_frame_this_id,
2246 hppa_frame_prev_register,
2247 NULL,
2248 hppa_frame_unwind_sniffer
2249 };
2250
2251 /* This is a generic fallback frame unwinder that kicks in if we fail all
2252 the other ones. Normally we would expect the stub and regular unwinder
2253 to work, but in some cases we might hit a function that just doesn't
2254 have any unwind information available. In this case we try to do
2255 unwinding solely based on code reading. This is obviously going to be
2256 slow, so only use this as a last resort. Currently this will only
2257 identify the stack and pc for the frame. */
2258
2259 static struct hppa_frame_cache *
2260 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2261 {
2262 struct hppa_frame_cache *cache;
2263 unsigned int frame_size = 0;
2264 int found_rp = 0;
2265 CORE_ADDR start_pc;
2266
2267 if (hppa_debug)
2268 fprintf_unfiltered (gdb_stdlog,
2269 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2270 frame_relative_level (this_frame));
2271
2272 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2273 (*this_cache) = cache;
2274 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2275
2276 start_pc = get_frame_func (this_frame);
2277 if (start_pc)
2278 {
2279 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2280 CORE_ADDR pc;
2281
2282 for (pc = start_pc; pc < cur_pc; pc += 4)
2283 {
2284 unsigned int insn;
2285
2286 insn = read_memory_unsigned_integer (pc, 4);
2287 frame_size += prologue_inst_adjust_sp (insn);
2288
2289 /* There are limited ways to store the return pointer into the
2290 stack. */
2291 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2292 {
2293 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2294 found_rp = 1;
2295 }
2296 else if (insn == 0x0fc212c1
2297 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2298 {
2299 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2300 found_rp = 1;
2301 }
2302 }
2303 }
2304
2305 if (hppa_debug)
2306 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2307 frame_size, found_rp);
2308
2309 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2310 cache->base -= frame_size;
2311 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2312
2313 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2314 {
2315 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2316 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2317 cache->saved_regs[HPPA_RP_REGNUM];
2318 }
2319 else
2320 {
2321 ULONGEST rp;
2322 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2323 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2324 }
2325
2326 return cache;
2327 }
2328
2329 static void
2330 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2331 struct frame_id *this_id)
2332 {
2333 struct hppa_frame_cache *info =
2334 hppa_fallback_frame_cache (this_frame, this_cache);
2335
2336 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2337 }
2338
2339 static struct value *
2340 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2341 void **this_cache, int regnum)
2342 {
2343 struct hppa_frame_cache *info =
2344 hppa_fallback_frame_cache (this_frame, this_cache);
2345
2346 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2347 }
2348
2349 static const struct frame_unwind hppa_fallback_frame_unwind =
2350 {
2351 NORMAL_FRAME,
2352 hppa_fallback_frame_this_id,
2353 hppa_fallback_frame_prev_register,
2354 NULL,
2355 default_frame_sniffer
2356 };
2357
2358 /* Stub frames, used for all kinds of call stubs. */
2359 struct hppa_stub_unwind_cache
2360 {
2361 CORE_ADDR base;
2362 struct trad_frame_saved_reg *saved_regs;
2363 };
2364
2365 static struct hppa_stub_unwind_cache *
2366 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2367 void **this_cache)
2368 {
2369 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2370 struct hppa_stub_unwind_cache *info;
2371 struct unwind_table_entry *u;
2372
2373 if (*this_cache)
2374 return *this_cache;
2375
2376 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2377 *this_cache = info;
2378 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2379
2380 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2381
2382 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2383 {
2384 /* HPUX uses export stubs in function calls; the export stub clobbers
2385 the return value of the caller, and, later restores it from the
2386 stack. */
2387 u = find_unwind_entry (get_frame_pc (this_frame));
2388
2389 if (u && u->stub_unwind.stub_type == EXPORT)
2390 {
2391 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2392
2393 return info;
2394 }
2395 }
2396
2397 /* By default we assume that stubs do not change the rp. */
2398 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2399
2400 return info;
2401 }
2402
2403 static void
2404 hppa_stub_frame_this_id (struct frame_info *this_frame,
2405 void **this_prologue_cache,
2406 struct frame_id *this_id)
2407 {
2408 struct hppa_stub_unwind_cache *info
2409 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2410
2411 if (info)
2412 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2413 else
2414 *this_id = null_frame_id;
2415 }
2416
2417 static struct value *
2418 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2419 void **this_prologue_cache, int regnum)
2420 {
2421 struct hppa_stub_unwind_cache *info
2422 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2423
2424 if (info == NULL)
2425 error (_("Requesting registers from null frame."));
2426
2427 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2428 }
2429
2430 static int
2431 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2432 struct frame_info *this_frame,
2433 void **this_cache)
2434 {
2435 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2436 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2437 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2438
2439 if (pc == 0
2440 || (tdep->in_solib_call_trampoline != NULL
2441 && tdep->in_solib_call_trampoline (pc, NULL))
2442 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2443 return 1;
2444 return 0;
2445 }
2446
2447 static const struct frame_unwind hppa_stub_frame_unwind = {
2448 NORMAL_FRAME,
2449 hppa_stub_frame_this_id,
2450 hppa_stub_frame_prev_register,
2451 NULL,
2452 hppa_stub_unwind_sniffer
2453 };
2454
2455 static struct frame_id
2456 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2457 {
2458 return frame_id_build (get_frame_register_unsigned (this_frame,
2459 HPPA_SP_REGNUM),
2460 get_frame_pc (this_frame));
2461 }
2462
2463 CORE_ADDR
2464 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2465 {
2466 ULONGEST ipsw;
2467 CORE_ADDR pc;
2468
2469 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2470 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2471
2472 /* If the current instruction is nullified, then we are effectively
2473 still executing the previous instruction. Pretend we are still
2474 there. This is needed when single stepping; if the nullified
2475 instruction is on a different line, we don't want GDB to think
2476 we've stepped onto that line. */
2477 if (ipsw & 0x00200000)
2478 pc -= 4;
2479
2480 return pc & ~0x3;
2481 }
2482
2483 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2484 Return NULL if no such symbol was found. */
2485
2486 struct minimal_symbol *
2487 hppa_lookup_stub_minimal_symbol (const char *name,
2488 enum unwind_stub_types stub_type)
2489 {
2490 struct objfile *objfile;
2491 struct minimal_symbol *msym;
2492
2493 ALL_MSYMBOLS (objfile, msym)
2494 {
2495 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2496 {
2497 struct unwind_table_entry *u;
2498
2499 u = find_unwind_entry (SYMBOL_VALUE (msym));
2500 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2501 return msym;
2502 }
2503 }
2504
2505 return NULL;
2506 }
2507
2508 static void
2509 unwind_command (char *exp, int from_tty)
2510 {
2511 CORE_ADDR address;
2512 struct unwind_table_entry *u;
2513
2514 /* If we have an expression, evaluate it and use it as the address. */
2515
2516 if (exp != 0 && *exp != 0)
2517 address = parse_and_eval_address (exp);
2518 else
2519 return;
2520
2521 u = find_unwind_entry (address);
2522
2523 if (!u)
2524 {
2525 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2526 return;
2527 }
2528
2529 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2530
2531 printf_unfiltered ("\tregion_start = ");
2532 print_address (u->region_start, gdb_stdout);
2533 gdb_flush (gdb_stdout);
2534
2535 printf_unfiltered ("\n\tregion_end = ");
2536 print_address (u->region_end, gdb_stdout);
2537 gdb_flush (gdb_stdout);
2538
2539 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2540
2541 printf_unfiltered ("\n\tflags =");
2542 pif (Cannot_unwind);
2543 pif (Millicode);
2544 pif (Millicode_save_sr0);
2545 pif (Entry_SR);
2546 pif (Args_stored);
2547 pif (Variable_Frame);
2548 pif (Separate_Package_Body);
2549 pif (Frame_Extension_Millicode);
2550 pif (Stack_Overflow_Check);
2551 pif (Two_Instruction_SP_Increment);
2552 pif (sr4export);
2553 pif (cxx_info);
2554 pif (cxx_try_catch);
2555 pif (sched_entry_seq);
2556 pif (Save_SP);
2557 pif (Save_RP);
2558 pif (Save_MRP_in_frame);
2559 pif (save_r19);
2560 pif (Cleanup_defined);
2561 pif (MPE_XL_interrupt_marker);
2562 pif (HP_UX_interrupt_marker);
2563 pif (Large_frame);
2564 pif (alloca_frame);
2565
2566 putchar_unfiltered ('\n');
2567
2568 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2569
2570 pin (Region_description);
2571 pin (Entry_FR);
2572 pin (Entry_GR);
2573 pin (Total_frame_size);
2574
2575 if (u->stub_unwind.stub_type)
2576 {
2577 printf_unfiltered ("\tstub type = ");
2578 switch (u->stub_unwind.stub_type)
2579 {
2580 case LONG_BRANCH:
2581 printf_unfiltered ("long branch\n");
2582 break;
2583 case PARAMETER_RELOCATION:
2584 printf_unfiltered ("parameter relocation\n");
2585 break;
2586 case EXPORT:
2587 printf_unfiltered ("export\n");
2588 break;
2589 case IMPORT:
2590 printf_unfiltered ("import\n");
2591 break;
2592 case IMPORT_SHLIB:
2593 printf_unfiltered ("import shlib\n");
2594 break;
2595 default:
2596 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2597 }
2598 }
2599 }
2600
2601 /* Return the GDB type object for the "standard" data type of data in
2602 register REGNUM. */
2603
2604 static struct type *
2605 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2606 {
2607 if (regnum < HPPA_FP4_REGNUM)
2608 return builtin_type_uint32;
2609 else
2610 return builtin_type_ieee_single;
2611 }
2612
2613 static struct type *
2614 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2615 {
2616 if (regnum < HPPA64_FP4_REGNUM)
2617 return builtin_type_uint64;
2618 else
2619 return builtin_type_ieee_double;
2620 }
2621
2622 /* Return non-zero if REGNUM is not a register available to the user
2623 through ptrace/ttrace. */
2624
2625 static int
2626 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2627 {
2628 return (regnum == 0
2629 || regnum == HPPA_PCSQ_HEAD_REGNUM
2630 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2631 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2632 }
2633
2634 static int
2635 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2636 {
2637 /* cr26 and cr27 are readable (but not writable) from userspace. */
2638 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2639 return 0;
2640 else
2641 return hppa32_cannot_store_register (gdbarch, regnum);
2642 }
2643
2644 static int
2645 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2646 {
2647 return (regnum == 0
2648 || regnum == HPPA_PCSQ_HEAD_REGNUM
2649 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2650 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2651 }
2652
2653 static int
2654 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2655 {
2656 /* cr26 and cr27 are readable (but not writable) from userspace. */
2657 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2658 return 0;
2659 else
2660 return hppa64_cannot_store_register (gdbarch, regnum);
2661 }
2662
2663 static CORE_ADDR
2664 hppa_smash_text_address (CORE_ADDR addr)
2665 {
2666 /* The low two bits of the PC on the PA contain the privilege level.
2667 Some genius implementing a (non-GCC) compiler apparently decided
2668 this means that "addresses" in a text section therefore include a
2669 privilege level, and thus symbol tables should contain these bits.
2670 This seems like a bonehead thing to do--anyway, it seems to work
2671 for our purposes to just ignore those bits. */
2672
2673 return (addr &= ~0x3);
2674 }
2675
2676 /* Get the ARGIth function argument for the current function. */
2677
2678 static CORE_ADDR
2679 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2680 struct type *type)
2681 {
2682 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2683 }
2684
2685 static void
2686 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2687 int regnum, gdb_byte *buf)
2688 {
2689 ULONGEST tmp;
2690
2691 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2692 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2693 tmp &= ~0x3;
2694 store_unsigned_integer (buf, sizeof tmp, tmp);
2695 }
2696
2697 static CORE_ADDR
2698 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2699 {
2700 return 0;
2701 }
2702
2703 struct value *
2704 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2705 struct trad_frame_saved_reg saved_regs[],
2706 int regnum)
2707 {
2708 struct gdbarch *arch = get_frame_arch (this_frame);
2709
2710 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2711 {
2712 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2713 CORE_ADDR pc;
2714 struct value *pcoq_val =
2715 trad_frame_get_prev_register (this_frame, saved_regs,
2716 HPPA_PCOQ_HEAD_REGNUM);
2717
2718 pc = extract_unsigned_integer (value_contents_all (pcoq_val), size);
2719 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2720 }
2721
2722 /* Make sure the "flags" register is zero in all unwound frames.
2723 The "flags" registers is a HP-UX specific wart, and only the code
2724 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2725 with it here. This shouldn't affect other systems since those
2726 should provide zero for the "flags" register anyway. */
2727 if (regnum == HPPA_FLAGS_REGNUM)
2728 return frame_unwind_got_constant (this_frame, regnum, 0);
2729
2730 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2731 }
2732 \f
2733
2734 /* An instruction to match. */
2735 struct insn_pattern
2736 {
2737 unsigned int data; /* See if it matches this.... */
2738 unsigned int mask; /* ... with this mask. */
2739 };
2740
2741 /* See bfd/elf32-hppa.c */
2742 static struct insn_pattern hppa_long_branch_stub[] = {
2743 /* ldil LR'xxx,%r1 */
2744 { 0x20200000, 0xffe00000 },
2745 /* be,n RR'xxx(%sr4,%r1) */
2746 { 0xe0202002, 0xffe02002 },
2747 { 0, 0 }
2748 };
2749
2750 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2751 /* b,l .+8, %r1 */
2752 { 0xe8200000, 0xffe00000 },
2753 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2754 { 0x28200000, 0xffe00000 },
2755 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2756 { 0xe0202002, 0xffe02002 },
2757 { 0, 0 }
2758 };
2759
2760 static struct insn_pattern hppa_import_stub[] = {
2761 /* addil LR'xxx, %dp */
2762 { 0x2b600000, 0xffe00000 },
2763 /* ldw RR'xxx(%r1), %r21 */
2764 { 0x48350000, 0xffffb000 },
2765 /* bv %r0(%r21) */
2766 { 0xeaa0c000, 0xffffffff },
2767 /* ldw RR'xxx+4(%r1), %r19 */
2768 { 0x48330000, 0xffffb000 },
2769 { 0, 0 }
2770 };
2771
2772 static struct insn_pattern hppa_import_pic_stub[] = {
2773 /* addil LR'xxx,%r19 */
2774 { 0x2a600000, 0xffe00000 },
2775 /* ldw RR'xxx(%r1),%r21 */
2776 { 0x48350000, 0xffffb000 },
2777 /* bv %r0(%r21) */
2778 { 0xeaa0c000, 0xffffffff },
2779 /* ldw RR'xxx+4(%r1),%r19 */
2780 { 0x48330000, 0xffffb000 },
2781 { 0, 0 },
2782 };
2783
2784 static struct insn_pattern hppa_plt_stub[] = {
2785 /* b,l 1b, %r20 - 1b is 3 insns before here */
2786 { 0xea9f1fdd, 0xffffffff },
2787 /* depi 0,31,2,%r20 */
2788 { 0xd6801c1e, 0xffffffff },
2789 { 0, 0 }
2790 };
2791
2792 static struct insn_pattern hppa_sigtramp[] = {
2793 /* ldi 0, %r25 or ldi 1, %r25 */
2794 { 0x34190000, 0xfffffffd },
2795 /* ldi __NR_rt_sigreturn, %r20 */
2796 { 0x3414015a, 0xffffffff },
2797 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2798 { 0xe4008200, 0xffffffff },
2799 /* nop */
2800 { 0x08000240, 0xffffffff },
2801 { 0, 0 }
2802 };
2803
2804 /* Maximum number of instructions on the patterns above. */
2805 #define HPPA_MAX_INSN_PATTERN_LEN 4
2806
2807 /* Return non-zero if the instructions at PC match the series
2808 described in PATTERN, or zero otherwise. PATTERN is an array of
2809 'struct insn_pattern' objects, terminated by an entry whose mask is
2810 zero.
2811
2812 When the match is successful, fill INSN[i] with what PATTERN[i]
2813 matched. */
2814
2815 static int
2816 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2817 unsigned int *insn)
2818 {
2819 CORE_ADDR npc = pc;
2820 int i;
2821
2822 for (i = 0; pattern[i].mask; i++)
2823 {
2824 gdb_byte buf[HPPA_INSN_SIZE];
2825
2826 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2827 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2828 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2829 npc += 4;
2830 else
2831 return 0;
2832 }
2833
2834 return 1;
2835 }
2836
2837 /* This relaxed version of the insstruction matcher allows us to match
2838 from somewhere inside the pattern, by looking backwards in the
2839 instruction scheme. */
2840
2841 static int
2842 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2843 unsigned int *insn)
2844 {
2845 int offset, len = 0;
2846
2847 while (pattern[len].mask)
2848 len++;
2849
2850 for (offset = 0; offset < len; offset++)
2851 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2852 return 1;
2853
2854 return 0;
2855 }
2856
2857 static int
2858 hppa_in_dyncall (CORE_ADDR pc)
2859 {
2860 struct unwind_table_entry *u;
2861
2862 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2863 if (!u)
2864 return 0;
2865
2866 return (pc >= u->region_start && pc <= u->region_end);
2867 }
2868
2869 int
2870 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2871 {
2872 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2873 struct unwind_table_entry *u;
2874
2875 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2876 return 1;
2877
2878 /* The GNU toolchain produces linker stubs without unwind
2879 information. Since the pattern matching for linker stubs can be
2880 quite slow, so bail out if we do have an unwind entry. */
2881
2882 u = find_unwind_entry (pc);
2883 if (u != NULL)
2884 return 0;
2885
2886 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2887 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2888 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2889 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2890 }
2891
2892 /* This code skips several kind of "trampolines" used on PA-RISC
2893 systems: $$dyncall, import stubs and PLT stubs. */
2894
2895 CORE_ADDR
2896 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2897 {
2898 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2899 int dp_rel;
2900
2901 /* $$dyncall handles both PLABELs and direct addresses. */
2902 if (hppa_in_dyncall (pc))
2903 {
2904 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2905
2906 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2907 if (pc & 0x2)
2908 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2909
2910 return pc;
2911 }
2912
2913 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2914 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2915 {
2916 /* Extract the target address from the addil/ldw sequence. */
2917 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2918
2919 if (dp_rel)
2920 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2921 else
2922 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2923
2924 /* fallthrough */
2925 }
2926
2927 if (in_plt_section (pc, NULL))
2928 {
2929 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2930
2931 /* If the PLT slot has not yet been resolved, the target will be
2932 the PLT stub. */
2933 if (in_plt_section (pc, NULL))
2934 {
2935 /* Sanity check: are we pointing to the PLT stub? */
2936 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2937 {
2938 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2939 return 0;
2940 }
2941
2942 /* This should point to the fixup routine. */
2943 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2944 }
2945 }
2946
2947 return pc;
2948 }
2949 \f
2950
2951 /* Here is a table of C type sizes on hppa with various compiles
2952 and options. I measured this on PA 9000/800 with HP-UX 11.11
2953 and these compilers:
2954
2955 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2956 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2957 /opt/aCC/bin/aCC B3910B A.03.45
2958 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2959
2960 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2961 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2962 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2963 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2964 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2965 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2966 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2967 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2968
2969 Each line is:
2970
2971 compiler and options
2972 char, short, int, long, long long
2973 float, double, long double
2974 char *, void (*)()
2975
2976 So all these compilers use either ILP32 or LP64 model.
2977 TODO: gcc has more options so it needs more investigation.
2978
2979 For floating point types, see:
2980
2981 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2982 HP-UX floating-point guide, hpux 11.00
2983
2984 -- chastain 2003-12-18 */
2985
2986 static struct gdbarch *
2987 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2988 {
2989 struct gdbarch_tdep *tdep;
2990 struct gdbarch *gdbarch;
2991
2992 /* Try to determine the ABI of the object we are loading. */
2993 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2994 {
2995 /* If it's a SOM file, assume it's HP/UX SOM. */
2996 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2997 info.osabi = GDB_OSABI_HPUX_SOM;
2998 }
2999
3000 /* find a candidate among the list of pre-declared architectures. */
3001 arches = gdbarch_list_lookup_by_info (arches, &info);
3002 if (arches != NULL)
3003 return (arches->gdbarch);
3004
3005 /* If none found, then allocate and initialize one. */
3006 tdep = XZALLOC (struct gdbarch_tdep);
3007 gdbarch = gdbarch_alloc (&info, tdep);
3008
3009 /* Determine from the bfd_arch_info structure if we are dealing with
3010 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3011 then default to a 32bit machine. */
3012 if (info.bfd_arch_info != NULL)
3013 tdep->bytes_per_address =
3014 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3015 else
3016 tdep->bytes_per_address = 4;
3017
3018 tdep->find_global_pointer = hppa_find_global_pointer;
3019
3020 /* Some parts of the gdbarch vector depend on whether we are running
3021 on a 32 bits or 64 bits target. */
3022 switch (tdep->bytes_per_address)
3023 {
3024 case 4:
3025 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3026 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3027 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3028 set_gdbarch_cannot_store_register (gdbarch,
3029 hppa32_cannot_store_register);
3030 set_gdbarch_cannot_fetch_register (gdbarch,
3031 hppa32_cannot_fetch_register);
3032 break;
3033 case 8:
3034 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3035 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3036 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3037 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3038 set_gdbarch_cannot_store_register (gdbarch,
3039 hppa64_cannot_store_register);
3040 set_gdbarch_cannot_fetch_register (gdbarch,
3041 hppa64_cannot_fetch_register);
3042 break;
3043 default:
3044 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3045 tdep->bytes_per_address);
3046 }
3047
3048 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3049 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3050
3051 /* The following gdbarch vector elements are the same in both ILP32
3052 and LP64, but might show differences some day. */
3053 set_gdbarch_long_long_bit (gdbarch, 64);
3054 set_gdbarch_long_double_bit (gdbarch, 128);
3055 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3056
3057 /* The following gdbarch vector elements do not depend on the address
3058 size, or in any other gdbarch element previously set. */
3059 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3060 set_gdbarch_in_function_epilogue_p (gdbarch,
3061 hppa_in_function_epilogue_p);
3062 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3063 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3064 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3065 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3066 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3067 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3068 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3069 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3070
3071 /* Helper for function argument information. */
3072 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3073
3074 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3075
3076 /* When a hardware watchpoint triggers, we'll move the inferior past
3077 it by removing all eventpoints; stepping past the instruction
3078 that caused the trigger; reinserting eventpoints; and checking
3079 whether any watched location changed. */
3080 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3081
3082 /* Inferior function call methods. */
3083 switch (tdep->bytes_per_address)
3084 {
3085 case 4:
3086 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3087 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3088 set_gdbarch_convert_from_func_ptr_addr
3089 (gdbarch, hppa32_convert_from_func_ptr_addr);
3090 break;
3091 case 8:
3092 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3093 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3094 break;
3095 default:
3096 internal_error (__FILE__, __LINE__, _("bad switch"));
3097 }
3098
3099 /* Struct return methods. */
3100 switch (tdep->bytes_per_address)
3101 {
3102 case 4:
3103 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3104 break;
3105 case 8:
3106 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3107 break;
3108 default:
3109 internal_error (__FILE__, __LINE__, _("bad switch"));
3110 }
3111
3112 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3113 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3114
3115 /* Frame unwind methods. */
3116 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3117 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3118
3119 /* Hook in ABI-specific overrides, if they have been registered. */
3120 gdbarch_init_osabi (info, gdbarch);
3121
3122 /* Hook in the default unwinders. */
3123 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3124 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3125 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3126
3127 return gdbarch;
3128 }
3129
3130 static void
3131 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3132 {
3133 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3134
3135 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3136 tdep->bytes_per_address);
3137 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3138 }
3139
3140 void
3141 _initialize_hppa_tdep (void)
3142 {
3143 struct cmd_list_element *c;
3144
3145 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3146
3147 hppa_objfile_priv_data = register_objfile_data ();
3148
3149 add_cmd ("unwind", class_maintenance, unwind_command,
3150 _("Print unwind table entry at given address."),
3151 &maintenanceprintlist);
3152
3153 /* Debug this files internals. */
3154 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3155 Set whether hppa target specific debugging information should be displayed."),
3156 _("\
3157 Show whether hppa target specific debugging information is displayed."), _("\
3158 This flag controls whether hppa target specific debugging information is\n\
3159 displayed. This information is particularly useful for debugging frame\n\
3160 unwinding problems."),
3161 NULL,
3162 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3163 &setdebuglist, &showdebuglist);
3164 }
This page took 0.093578 seconds and 4 git commands to generate.