5751b45e1dd90e6cd2a34a082e749376c2c7bd41
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 87, 89, 90, 91, 92, 93, 94, 95, 96, 1999
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "bfd.h"
28 #include "inferior.h"
29 #include "value.h"
30
31 /* For argument passing to the inferior */
32 #include "symtab.h"
33
34 #ifdef USG
35 #include <sys/types.h>
36 #endif
37
38 #include <dl.h>
39 #include <sys/param.h>
40 #include <signal.h>
41
42 #include <sys/ptrace.h>
43 #include <machine/save_state.h>
44
45 #ifdef COFF_ENCAPSULATE
46 #include "a.out.encap.h"
47 #else
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include "gdb_stat.h"
53 #include "wait.h"
54
55 #include "gdbcore.h"
56 #include "gdbcmd.h"
57 #include "target.h"
58 #include "symfile.h"
59 #include "objfiles.h"
60
61 /* To support detection of the pseudo-initial frame
62 that threads have. */
63 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
64 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
65
66 static int extract_5_load PARAMS ((unsigned int));
67
68 static unsigned extract_5R_store PARAMS ((unsigned int));
69
70 static unsigned extract_5r_store PARAMS ((unsigned int));
71
72 static void find_dummy_frame_regs PARAMS ((struct frame_info *,
73 struct frame_saved_regs *));
74
75 static int find_proc_framesize PARAMS ((CORE_ADDR));
76
77 static int find_return_regnum PARAMS ((CORE_ADDR));
78
79 struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
80
81 static int extract_17 PARAMS ((unsigned int));
82
83 static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
84
85 static int extract_21 PARAMS ((unsigned));
86
87 static unsigned deposit_14 PARAMS ((int, unsigned int));
88
89 static int extract_14 PARAMS ((unsigned));
90
91 static void unwind_command PARAMS ((char *, int));
92
93 static int low_sign_extend PARAMS ((unsigned int, unsigned int));
94
95 static int sign_extend PARAMS ((unsigned int, unsigned int));
96
97 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
98
99 static int hppa_alignof PARAMS ((struct type *));
100
101 /* To support multi-threading and stepping. */
102 int hppa_prepare_to_proceed PARAMS (());
103
104 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
105
106 static int is_branch PARAMS ((unsigned long));
107
108 static int inst_saves_gr PARAMS ((unsigned long));
109
110 static int inst_saves_fr PARAMS ((unsigned long));
111
112 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
113
114 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
115
116 static int compare_unwind_entries PARAMS ((const void *, const void *));
117
118 static void read_unwind_info PARAMS ((struct objfile *));
119
120 static void internalize_unwinds PARAMS ((struct objfile *,
121 struct unwind_table_entry *,
122 asection *, unsigned int,
123 unsigned int, CORE_ADDR));
124 static void pa_print_registers PARAMS ((char *, int, int));
125 static void pa_strcat_registers PARAMS ((char *, int, int, GDB_FILE *));
126 static void pa_register_look_aside PARAMS ((char *, int, long *));
127 static void pa_print_fp_reg PARAMS ((int));
128 static void pa_strcat_fp_reg PARAMS ((int, GDB_FILE *, enum precision_type));
129 static void record_text_segment_lowaddr PARAMS ((bfd *, asection *, void *));
130
131 typedef struct
132 {
133 struct minimal_symbol *msym;
134 CORE_ADDR solib_handle;
135 CORE_ADDR return_val;
136 }
137 args_for_find_stub;
138
139 static int cover_find_stub_with_shl_get (PTR);
140
141 static int is_pa_2 = 0; /* False */
142
143 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
144 extern int hp_som_som_object_present;
145
146 /* In breakpoint.c */
147 extern int exception_catchpoints_are_fragile;
148
149 /* This is defined in valops.c. */
150 extern value_ptr
151 find_function_in_inferior PARAMS ((char *));
152
153 /* Should call_function allocate stack space for a struct return? */
154 int
155 hppa_use_struct_convention (gcc_p, type)
156 int gcc_p;
157 struct type *type;
158 {
159 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
160 }
161 \f
162
163 /* Routines to extract various sized constants out of hppa
164 instructions. */
165
166 /* This assumes that no garbage lies outside of the lower bits of
167 value. */
168
169 static int
170 sign_extend (val, bits)
171 unsigned val, bits;
172 {
173 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
174 }
175
176 /* For many immediate values the sign bit is the low bit! */
177
178 static int
179 low_sign_extend (val, bits)
180 unsigned val, bits;
181 {
182 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
183 }
184
185 /* extract the immediate field from a ld{bhw}s instruction */
186
187 static int
188 extract_5_load (word)
189 unsigned word;
190 {
191 return low_sign_extend (word >> 16 & MASK_5, 5);
192 }
193
194 /* extract the immediate field from a break instruction */
195
196 static unsigned
197 extract_5r_store (word)
198 unsigned word;
199 {
200 return (word & MASK_5);
201 }
202
203 /* extract the immediate field from a {sr}sm instruction */
204
205 static unsigned
206 extract_5R_store (word)
207 unsigned word;
208 {
209 return (word >> 16 & MASK_5);
210 }
211
212 /* extract a 14 bit immediate field */
213
214 static int
215 extract_14 (word)
216 unsigned word;
217 {
218 return low_sign_extend (word & MASK_14, 14);
219 }
220
221 /* deposit a 14 bit constant in a word */
222
223 static unsigned
224 deposit_14 (opnd, word)
225 int opnd;
226 unsigned word;
227 {
228 unsigned sign = (opnd < 0 ? 1 : 0);
229
230 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
231 }
232
233 /* extract a 21 bit constant */
234
235 static int
236 extract_21 (word)
237 unsigned word;
238 {
239 int val;
240
241 word &= MASK_21;
242 word <<= 11;
243 val = GET_FIELD (word, 20, 20);
244 val <<= 11;
245 val |= GET_FIELD (word, 9, 19);
246 val <<= 2;
247 val |= GET_FIELD (word, 5, 6);
248 val <<= 5;
249 val |= GET_FIELD (word, 0, 4);
250 val <<= 2;
251 val |= GET_FIELD (word, 7, 8);
252 return sign_extend (val, 21) << 11;
253 }
254
255 /* deposit a 21 bit constant in a word. Although 21 bit constants are
256 usually the top 21 bits of a 32 bit constant, we assume that only
257 the low 21 bits of opnd are relevant */
258
259 static unsigned
260 deposit_21 (opnd, word)
261 unsigned opnd, word;
262 {
263 unsigned val = 0;
264
265 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
266 val <<= 2;
267 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
268 val <<= 2;
269 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
270 val <<= 11;
271 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
272 val <<= 1;
273 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
274 return word | val;
275 }
276
277 /* extract a 17 bit constant from branch instructions, returning the
278 19 bit signed value. */
279
280 static int
281 extract_17 (word)
282 unsigned word;
283 {
284 return sign_extend (GET_FIELD (word, 19, 28) |
285 GET_FIELD (word, 29, 29) << 10 |
286 GET_FIELD (word, 11, 15) << 11 |
287 (word & 0x1) << 16, 17) << 2;
288 }
289 \f
290
291 /* Compare the start address for two unwind entries returning 1 if
292 the first address is larger than the second, -1 if the second is
293 larger than the first, and zero if they are equal. */
294
295 static int
296 compare_unwind_entries (arg1, arg2)
297 const void *arg1;
298 const void *arg2;
299 {
300 const struct unwind_table_entry *a = arg1;
301 const struct unwind_table_entry *b = arg2;
302
303 if (a->region_start > b->region_start)
304 return 1;
305 else if (a->region_start < b->region_start)
306 return -1;
307 else
308 return 0;
309 }
310
311 static CORE_ADDR low_text_segment_address;
312
313 static void
314 record_text_segment_lowaddr (abfd, section, ignored)
315 bfd *abfd ATTRIBUTE_UNUSED;
316 asection *section;
317 PTR ignored ATTRIBUTE_UNUSED;
318 {
319 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
320 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
321 && section->vma < low_text_segment_address)
322 low_text_segment_address = section->vma;
323 }
324
325 static void
326 internalize_unwinds (objfile, table, section, entries, size, text_offset)
327 struct objfile *objfile;
328 struct unwind_table_entry *table;
329 asection *section;
330 unsigned int entries, size;
331 CORE_ADDR text_offset;
332 {
333 /* We will read the unwind entries into temporary memory, then
334 fill in the actual unwind table. */
335 if (size > 0)
336 {
337 unsigned long tmp;
338 unsigned i;
339 char *buf = alloca (size);
340
341 low_text_segment_address = -1;
342
343 /* If addresses are 64 bits wide, then unwinds are supposed to
344 be segment relative offsets instead of absolute addresses. */
345 if (TARGET_PTR_BIT == 64)
346 {
347 bfd_map_over_sections (objfile->obfd,
348 record_text_segment_lowaddr, (PTR) NULL);
349
350 /* ?!? Mask off some low bits. Should this instead subtract
351 out the lowest section's filepos or something like that?
352 This looks very hokey to me. */
353 low_text_segment_address &= ~0xfff;
354 text_offset += low_text_segment_address;
355 }
356
357 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
358
359 /* Now internalize the information being careful to handle host/target
360 endian issues. */
361 for (i = 0; i < entries; i++)
362 {
363 table[i].region_start = bfd_get_32 (objfile->obfd,
364 (bfd_byte *) buf);
365 table[i].region_start += text_offset;
366 buf += 4;
367 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
368 table[i].region_end += text_offset;
369 buf += 4;
370 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
371 buf += 4;
372 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
373 table[i].Millicode = (tmp >> 30) & 0x1;
374 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
375 table[i].Region_description = (tmp >> 27) & 0x3;
376 table[i].reserved1 = (tmp >> 26) & 0x1;
377 table[i].Entry_SR = (tmp >> 25) & 0x1;
378 table[i].Entry_FR = (tmp >> 21) & 0xf;
379 table[i].Entry_GR = (tmp >> 16) & 0x1f;
380 table[i].Args_stored = (tmp >> 15) & 0x1;
381 table[i].Variable_Frame = (tmp >> 14) & 0x1;
382 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
383 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
384 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
385 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
386 table[i].Ada_Region = (tmp >> 9) & 0x1;
387 table[i].cxx_info = (tmp >> 8) & 0x1;
388 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
389 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
390 table[i].reserved2 = (tmp >> 5) & 0x1;
391 table[i].Save_SP = (tmp >> 4) & 0x1;
392 table[i].Save_RP = (tmp >> 3) & 0x1;
393 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
394 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
395 table[i].Cleanup_defined = tmp & 0x1;
396 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
397 buf += 4;
398 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
399 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
400 table[i].Large_frame = (tmp >> 29) & 0x1;
401 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
402 table[i].reserved4 = (tmp >> 27) & 0x1;
403 table[i].Total_frame_size = tmp & 0x7ffffff;
404
405 /* Stub unwinds are handled elsewhere. */
406 table[i].stub_unwind.stub_type = 0;
407 table[i].stub_unwind.padding = 0;
408 }
409 }
410 }
411
412 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
413 the object file. This info is used mainly by find_unwind_entry() to find
414 out the stack frame size and frame pointer used by procedures. We put
415 everything on the psymbol obstack in the objfile so that it automatically
416 gets freed when the objfile is destroyed. */
417
418 static void
419 read_unwind_info (objfile)
420 struct objfile *objfile;
421 {
422 asection *unwind_sec, *stub_unwind_sec;
423 unsigned unwind_size, stub_unwind_size, total_size;
424 unsigned index, unwind_entries;
425 unsigned stub_entries, total_entries;
426 CORE_ADDR text_offset;
427 struct obj_unwind_info *ui;
428 obj_private_data_t *obj_private;
429
430 text_offset = ANOFFSET (objfile->section_offsets, 0);
431 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
432 sizeof (struct obj_unwind_info));
433
434 ui->table = NULL;
435 ui->cache = NULL;
436 ui->last = -1;
437
438 /* For reasons unknown the HP PA64 tools generate multiple unwinder
439 sections in a single executable. So we just iterate over every
440 section in the BFD looking for unwinder sections intead of trying
441 to do a lookup with bfd_get_section_by_name.
442
443 First determine the total size of the unwind tables so that we
444 can allocate memory in a nice big hunk. */
445 total_entries = 0;
446 for (unwind_sec = objfile->obfd->sections;
447 unwind_sec;
448 unwind_sec = unwind_sec->next)
449 {
450 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
451 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
452 {
453 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
454 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
455
456 total_entries += unwind_entries;
457 }
458 }
459
460 /* Now compute the size of the stub unwinds. Note the ELF tools do not
461 use stub unwinds at the curren time. */
462 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
463
464 if (stub_unwind_sec)
465 {
466 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
467 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
468 }
469 else
470 {
471 stub_unwind_size = 0;
472 stub_entries = 0;
473 }
474
475 /* Compute total number of unwind entries and their total size. */
476 total_entries += stub_entries;
477 total_size = total_entries * sizeof (struct unwind_table_entry);
478
479 /* Allocate memory for the unwind table. */
480 ui->table = (struct unwind_table_entry *)
481 obstack_alloc (&objfile->psymbol_obstack, total_size);
482 ui->last = total_entries - 1;
483
484 /* Now read in each unwind section and internalize the standard unwind
485 entries. */
486 index = 0;
487 for (unwind_sec = objfile->obfd->sections;
488 unwind_sec;
489 unwind_sec = unwind_sec->next)
490 {
491 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
492 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
493 {
494 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
495 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
496
497 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
498 unwind_entries, unwind_size, text_offset);
499 index += unwind_entries;
500 }
501 }
502
503 /* Now read in and internalize the stub unwind entries. */
504 if (stub_unwind_size > 0)
505 {
506 unsigned int i;
507 char *buf = alloca (stub_unwind_size);
508
509 /* Read in the stub unwind entries. */
510 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
511 0, stub_unwind_size);
512
513 /* Now convert them into regular unwind entries. */
514 for (i = 0; i < stub_entries; i++, index++)
515 {
516 /* Clear out the next unwind entry. */
517 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
518
519 /* Convert offset & size into region_start and region_end.
520 Stuff away the stub type into "reserved" fields. */
521 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
522 (bfd_byte *) buf);
523 ui->table[index].region_start += text_offset;
524 buf += 4;
525 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
526 (bfd_byte *) buf);
527 buf += 2;
528 ui->table[index].region_end
529 = ui->table[index].region_start + 4 *
530 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
531 buf += 2;
532 }
533
534 }
535
536 /* Unwind table needs to be kept sorted. */
537 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
538 compare_unwind_entries);
539
540 /* Keep a pointer to the unwind information. */
541 if (objfile->obj_private == NULL)
542 {
543 obj_private = (obj_private_data_t *)
544 obstack_alloc (&objfile->psymbol_obstack,
545 sizeof (obj_private_data_t));
546 obj_private->unwind_info = NULL;
547 obj_private->so_info = NULL;
548 obj_private->dp = 0;
549
550 objfile->obj_private = (PTR) obj_private;
551 }
552 obj_private = (obj_private_data_t *) objfile->obj_private;
553 obj_private->unwind_info = ui;
554 }
555
556 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
557 of the objfiles seeking the unwind table entry for this PC. Each objfile
558 contains a sorted list of struct unwind_table_entry. Since we do a binary
559 search of the unwind tables, we depend upon them to be sorted. */
560
561 struct unwind_table_entry *
562 find_unwind_entry (pc)
563 CORE_ADDR pc;
564 {
565 int first, middle, last;
566 struct objfile *objfile;
567
568 /* A function at address 0? Not in HP-UX! */
569 if (pc == (CORE_ADDR) 0)
570 return NULL;
571
572 ALL_OBJFILES (objfile)
573 {
574 struct obj_unwind_info *ui;
575 ui = NULL;
576 if (objfile->obj_private)
577 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
578
579 if (!ui)
580 {
581 read_unwind_info (objfile);
582 if (objfile->obj_private == NULL)
583 error ("Internal error reading unwind information.");
584 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
585 }
586
587 /* First, check the cache */
588
589 if (ui->cache
590 && pc >= ui->cache->region_start
591 && pc <= ui->cache->region_end)
592 return ui->cache;
593
594 /* Not in the cache, do a binary search */
595
596 first = 0;
597 last = ui->last;
598
599 while (first <= last)
600 {
601 middle = (first + last) / 2;
602 if (pc >= ui->table[middle].region_start
603 && pc <= ui->table[middle].region_end)
604 {
605 ui->cache = &ui->table[middle];
606 return &ui->table[middle];
607 }
608
609 if (pc < ui->table[middle].region_start)
610 last = middle - 1;
611 else
612 first = middle + 1;
613 }
614 } /* ALL_OBJFILES() */
615 return NULL;
616 }
617
618 /* Return the adjustment necessary to make for addresses on the stack
619 as presented by hpread.c.
620
621 This is necessary because of the stack direction on the PA and the
622 bizarre way in which someone (?) decided they wanted to handle
623 frame pointerless code in GDB. */
624 int
625 hpread_adjust_stack_address (func_addr)
626 CORE_ADDR func_addr;
627 {
628 struct unwind_table_entry *u;
629
630 u = find_unwind_entry (func_addr);
631 if (!u)
632 return 0;
633 else
634 return u->Total_frame_size << 3;
635 }
636
637 /* Called to determine if PC is in an interrupt handler of some
638 kind. */
639
640 static int
641 pc_in_interrupt_handler (pc)
642 CORE_ADDR pc;
643 {
644 struct unwind_table_entry *u;
645 struct minimal_symbol *msym_us;
646
647 u = find_unwind_entry (pc);
648 if (!u)
649 return 0;
650
651 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
652 its frame isn't a pure interrupt frame. Deal with this. */
653 msym_us = lookup_minimal_symbol_by_pc (pc);
654
655 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
656 }
657
658 /* Called when no unwind descriptor was found for PC. Returns 1 if it
659 appears that PC is in a linker stub.
660
661 ?!? Need to handle stubs which appear in PA64 code. */
662
663 static int
664 pc_in_linker_stub (pc)
665 CORE_ADDR pc;
666 {
667 int found_magic_instruction = 0;
668 int i;
669 char buf[4];
670
671 /* If unable to read memory, assume pc is not in a linker stub. */
672 if (target_read_memory (pc, buf, 4) != 0)
673 return 0;
674
675 /* We are looking for something like
676
677 ; $$dyncall jams RP into this special spot in the frame (RP')
678 ; before calling the "call stub"
679 ldw -18(sp),rp
680
681 ldsid (rp),r1 ; Get space associated with RP into r1
682 mtsp r1,sp ; Move it into space register 0
683 be,n 0(sr0),rp) ; back to your regularly scheduled program */
684
685 /* Maximum known linker stub size is 4 instructions. Search forward
686 from the given PC, then backward. */
687 for (i = 0; i < 4; i++)
688 {
689 /* If we hit something with an unwind, stop searching this direction. */
690
691 if (find_unwind_entry (pc + i * 4) != 0)
692 break;
693
694 /* Check for ldsid (rp),r1 which is the magic instruction for a
695 return from a cross-space function call. */
696 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
697 {
698 found_magic_instruction = 1;
699 break;
700 }
701 /* Add code to handle long call/branch and argument relocation stubs
702 here. */
703 }
704
705 if (found_magic_instruction != 0)
706 return 1;
707
708 /* Now look backward. */
709 for (i = 0; i < 4; i++)
710 {
711 /* If we hit something with an unwind, stop searching this direction. */
712
713 if (find_unwind_entry (pc - i * 4) != 0)
714 break;
715
716 /* Check for ldsid (rp),r1 which is the magic instruction for a
717 return from a cross-space function call. */
718 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
719 {
720 found_magic_instruction = 1;
721 break;
722 }
723 /* Add code to handle long call/branch and argument relocation stubs
724 here. */
725 }
726 return found_magic_instruction;
727 }
728
729 static int
730 find_return_regnum (pc)
731 CORE_ADDR pc;
732 {
733 struct unwind_table_entry *u;
734
735 u = find_unwind_entry (pc);
736
737 if (!u)
738 return RP_REGNUM;
739
740 if (u->Millicode)
741 return 31;
742
743 return RP_REGNUM;
744 }
745
746 /* Return size of frame, or -1 if we should use a frame pointer. */
747 static int
748 find_proc_framesize (pc)
749 CORE_ADDR pc;
750 {
751 struct unwind_table_entry *u;
752 struct minimal_symbol *msym_us;
753
754 /* This may indicate a bug in our callers... */
755 if (pc == (CORE_ADDR) 0)
756 return -1;
757
758 u = find_unwind_entry (pc);
759
760 if (!u)
761 {
762 if (pc_in_linker_stub (pc))
763 /* Linker stubs have a zero size frame. */
764 return 0;
765 else
766 return -1;
767 }
768
769 msym_us = lookup_minimal_symbol_by_pc (pc);
770
771 /* If Save_SP is set, and we're not in an interrupt or signal caller,
772 then we have a frame pointer. Use it. */
773 if (u->Save_SP && !pc_in_interrupt_handler (pc)
774 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
775 return -1;
776
777 return u->Total_frame_size << 3;
778 }
779
780 /* Return offset from sp at which rp is saved, or 0 if not saved. */
781 static int rp_saved PARAMS ((CORE_ADDR));
782
783 static int
784 rp_saved (pc)
785 CORE_ADDR pc;
786 {
787 struct unwind_table_entry *u;
788
789 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
790 if (pc == (CORE_ADDR) 0)
791 return 0;
792
793 u = find_unwind_entry (pc);
794
795 if (!u)
796 {
797 if (pc_in_linker_stub (pc))
798 /* This is the so-called RP'. */
799 return -24;
800 else
801 return 0;
802 }
803
804 if (u->Save_RP)
805 return (TARGET_PTR_BIT == 64 ? -16 : -20);
806 else if (u->stub_unwind.stub_type != 0)
807 {
808 switch (u->stub_unwind.stub_type)
809 {
810 case EXPORT:
811 case IMPORT:
812 return -24;
813 case PARAMETER_RELOCATION:
814 return -8;
815 default:
816 return 0;
817 }
818 }
819 else
820 return 0;
821 }
822 \f
823 int
824 frameless_function_invocation (frame)
825 struct frame_info *frame;
826 {
827 struct unwind_table_entry *u;
828
829 u = find_unwind_entry (frame->pc);
830
831 if (u == 0)
832 return 0;
833
834 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
835 }
836
837 CORE_ADDR
838 saved_pc_after_call (frame)
839 struct frame_info *frame;
840 {
841 int ret_regnum;
842 CORE_ADDR pc;
843 struct unwind_table_entry *u;
844
845 ret_regnum = find_return_regnum (get_frame_pc (frame));
846 pc = read_register (ret_regnum) & ~0x3;
847
848 /* If PC is in a linker stub, then we need to dig the address
849 the stub will return to out of the stack. */
850 u = find_unwind_entry (pc);
851 if (u && u->stub_unwind.stub_type != 0)
852 return FRAME_SAVED_PC (frame);
853 else
854 return pc;
855 }
856 \f
857 CORE_ADDR
858 hppa_frame_saved_pc (frame)
859 struct frame_info *frame;
860 {
861 CORE_ADDR pc = get_frame_pc (frame);
862 struct unwind_table_entry *u;
863 CORE_ADDR old_pc;
864 int spun_around_loop = 0;
865 int rp_offset = 0;
866
867 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
868 at the base of the frame in an interrupt handler. Registers within
869 are saved in the exact same order as GDB numbers registers. How
870 convienent. */
871 if (pc_in_interrupt_handler (pc))
872 return read_memory_integer (frame->frame + PC_REGNUM * 4,
873 TARGET_PTR_BIT / 8) & ~0x3;
874
875 if ((frame->pc >= frame->frame
876 && frame->pc <= (frame->frame
877 /* A call dummy is sized in words, but it is
878 actually a series of instructions. Account
879 for that scaling factor. */
880 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
881 * CALL_DUMMY_LENGTH)
882 /* Similarly we have to account for 64bit
883 wide register saves. */
884 + (32 * REGISTER_SIZE)
885 /* We always consider FP regs 8 bytes long. */
886 + (NUM_REGS - FP0_REGNUM) * 8
887 /* Similarly we have to account for 64bit
888 wide register saves. */
889 + (6 * REGISTER_SIZE))))
890 {
891 return read_memory_integer ((frame->frame
892 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
893 TARGET_PTR_BIT / 8) & ~0x3;
894 }
895
896 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
897 /* Deal with signal handler caller frames too. */
898 if (frame->signal_handler_caller)
899 {
900 CORE_ADDR rp;
901 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
902 return rp & ~0x3;
903 }
904 #endif
905
906 if (frameless_function_invocation (frame))
907 {
908 int ret_regnum;
909
910 ret_regnum = find_return_regnum (pc);
911
912 /* If the next frame is an interrupt frame or a signal
913 handler caller, then we need to look in the saved
914 register area to get the return pointer (the values
915 in the registers may not correspond to anything useful). */
916 if (frame->next
917 && (frame->next->signal_handler_caller
918 || pc_in_interrupt_handler (frame->next->pc)))
919 {
920 struct frame_saved_regs saved_regs;
921
922 get_frame_saved_regs (frame->next, &saved_regs);
923 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
924 TARGET_PTR_BIT / 8) & 0x2)
925 {
926 pc = read_memory_integer (saved_regs.regs[31],
927 TARGET_PTR_BIT / 8) & ~0x3;
928
929 /* Syscalls are really two frames. The syscall stub itself
930 with a return pointer in %rp and the kernel call with
931 a return pointer in %r31. We return the %rp variant
932 if %r31 is the same as frame->pc. */
933 if (pc == frame->pc)
934 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
935 TARGET_PTR_BIT / 8) & ~0x3;
936 }
937 else
938 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
939 TARGET_PTR_BIT / 8) & ~0x3;
940 }
941 else
942 pc = read_register (ret_regnum) & ~0x3;
943 }
944 else
945 {
946 spun_around_loop = 0;
947 old_pc = pc;
948
949 restart:
950 rp_offset = rp_saved (pc);
951
952 /* Similar to code in frameless function case. If the next
953 frame is a signal or interrupt handler, then dig the right
954 information out of the saved register info. */
955 if (rp_offset == 0
956 && frame->next
957 && (frame->next->signal_handler_caller
958 || pc_in_interrupt_handler (frame->next->pc)))
959 {
960 struct frame_saved_regs saved_regs;
961
962 get_frame_saved_regs (frame->next, &saved_regs);
963 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
964 TARGET_PTR_BIT / 8) & 0x2)
965 {
966 pc = read_memory_integer (saved_regs.regs[31],
967 TARGET_PTR_BIT / 8) & ~0x3;
968
969 /* Syscalls are really two frames. The syscall stub itself
970 with a return pointer in %rp and the kernel call with
971 a return pointer in %r31. We return the %rp variant
972 if %r31 is the same as frame->pc. */
973 if (pc == frame->pc)
974 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
975 TARGET_PTR_BIT / 8) & ~0x3;
976 }
977 else
978 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
979 TARGET_PTR_BIT / 8) & ~0x3;
980 }
981 else if (rp_offset == 0)
982 {
983 old_pc = pc;
984 pc = read_register (RP_REGNUM) & ~0x3;
985 }
986 else
987 {
988 old_pc = pc;
989 pc = read_memory_integer (frame->frame + rp_offset,
990 TARGET_PTR_BIT / 8) & ~0x3;
991 }
992 }
993
994 /* If PC is inside a linker stub, then dig out the address the stub
995 will return to.
996
997 Don't do this for long branch stubs. Why? For some unknown reason
998 _start is marked as a long branch stub in hpux10. */
999 u = find_unwind_entry (pc);
1000 if (u && u->stub_unwind.stub_type != 0
1001 && u->stub_unwind.stub_type != LONG_BRANCH)
1002 {
1003 unsigned int insn;
1004
1005 /* If this is a dynamic executable, and we're in a signal handler,
1006 then the call chain will eventually point us into the stub for
1007 _sigreturn. Unlike most cases, we'll be pointed to the branch
1008 to the real sigreturn rather than the code after the real branch!.
1009
1010 Else, try to dig the address the stub will return to in the normal
1011 fashion. */
1012 insn = read_memory_integer (pc, 4);
1013 if ((insn & 0xfc00e000) == 0xe8000000)
1014 return (pc + extract_17 (insn) + 8) & ~0x3;
1015 else
1016 {
1017 if (old_pc == pc)
1018 spun_around_loop++;
1019
1020 if (spun_around_loop > 1)
1021 {
1022 /* We're just about to go around the loop again with
1023 no more hope of success. Die. */
1024 error ("Unable to find return pc for this frame");
1025 }
1026 else
1027 goto restart;
1028 }
1029 }
1030
1031 return pc;
1032 }
1033 \f
1034 /* We need to correct the PC and the FP for the outermost frame when we are
1035 in a system call. */
1036
1037 void
1038 init_extra_frame_info (fromleaf, frame)
1039 int fromleaf;
1040 struct frame_info *frame;
1041 {
1042 int flags;
1043 int framesize;
1044
1045 if (frame->next && !fromleaf)
1046 return;
1047
1048 /* If the next frame represents a frameless function invocation
1049 then we have to do some adjustments that are normally done by
1050 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1051 if (fromleaf)
1052 {
1053 /* Find the framesize of *this* frame without peeking at the PC
1054 in the current frame structure (it isn't set yet). */
1055 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1056
1057 /* Now adjust our base frame accordingly. If we have a frame pointer
1058 use it, else subtract the size of this frame from the current
1059 frame. (we always want frame->frame to point at the lowest address
1060 in the frame). */
1061 if (framesize == -1)
1062 frame->frame = TARGET_READ_FP ();
1063 else
1064 frame->frame -= framesize;
1065 return;
1066 }
1067
1068 flags = read_register (FLAGS_REGNUM);
1069 if (flags & 2) /* In system call? */
1070 frame->pc = read_register (31) & ~0x3;
1071
1072 /* The outermost frame is always derived from PC-framesize
1073
1074 One might think frameless innermost frames should have
1075 a frame->frame that is the same as the parent's frame->frame.
1076 That is wrong; frame->frame in that case should be the *high*
1077 address of the parent's frame. It's complicated as hell to
1078 explain, but the parent *always* creates some stack space for
1079 the child. So the child actually does have a frame of some
1080 sorts, and its base is the high address in its parent's frame. */
1081 framesize = find_proc_framesize (frame->pc);
1082 if (framesize == -1)
1083 frame->frame = TARGET_READ_FP ();
1084 else
1085 frame->frame = read_register (SP_REGNUM) - framesize;
1086 }
1087 \f
1088 /* Given a GDB frame, determine the address of the calling function's frame.
1089 This will be used to create a new GDB frame struct, and then
1090 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1091
1092 This may involve searching through prologues for several functions
1093 at boundaries where GCC calls HP C code, or where code which has
1094 a frame pointer calls code without a frame pointer. */
1095
1096 CORE_ADDR
1097 frame_chain (frame)
1098 struct frame_info *frame;
1099 {
1100 int my_framesize, caller_framesize;
1101 struct unwind_table_entry *u;
1102 CORE_ADDR frame_base;
1103 struct frame_info *tmp_frame;
1104
1105 CORE_ADDR caller_pc;
1106
1107 struct minimal_symbol *min_frame_symbol;
1108 struct symbol *frame_symbol;
1109 char *frame_symbol_name;
1110
1111 /* If this is a threaded application, and we see the
1112 routine "__pthread_exit", treat it as the stack root
1113 for this thread. */
1114 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1115 frame_symbol = find_pc_function (frame->pc);
1116
1117 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1118 {
1119 /* The test above for "no user function name" would defend
1120 against the slim likelihood that a user might define a
1121 routine named "__pthread_exit" and then try to debug it.
1122
1123 If it weren't commented out, and you tried to debug the
1124 pthread library itself, you'd get errors.
1125
1126 So for today, we don't make that check. */
1127 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1128 if (frame_symbol_name != 0)
1129 {
1130 if (0 == strncmp (frame_symbol_name,
1131 THREAD_INITIAL_FRAME_SYMBOL,
1132 THREAD_INITIAL_FRAME_SYM_LEN))
1133 {
1134 /* Pretend we've reached the bottom of the stack. */
1135 return (CORE_ADDR) 0;
1136 }
1137 }
1138 } /* End of hacky code for threads. */
1139
1140 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1141 are easy; at *sp we have a full save state strucutre which we can
1142 pull the old stack pointer from. Also see frame_saved_pc for
1143 code to dig a saved PC out of the save state structure. */
1144 if (pc_in_interrupt_handler (frame->pc))
1145 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1146 TARGET_PTR_BIT / 8);
1147 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1148 else if (frame->signal_handler_caller)
1149 {
1150 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1151 }
1152 #endif
1153 else
1154 frame_base = frame->frame;
1155
1156 /* Get frame sizes for the current frame and the frame of the
1157 caller. */
1158 my_framesize = find_proc_framesize (frame->pc);
1159 caller_pc = FRAME_SAVED_PC (frame);
1160
1161 /* If we can't determine the caller's PC, then it's not likely we can
1162 really determine anything meaningful about its frame. We'll consider
1163 this to be stack bottom. */
1164 if (caller_pc == (CORE_ADDR) 0)
1165 return (CORE_ADDR) 0;
1166
1167 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
1168
1169 /* If caller does not have a frame pointer, then its frame
1170 can be found at current_frame - caller_framesize. */
1171 if (caller_framesize != -1)
1172 {
1173 return frame_base - caller_framesize;
1174 }
1175 /* Both caller and callee have frame pointers and are GCC compiled
1176 (SAVE_SP bit in unwind descriptor is on for both functions.
1177 The previous frame pointer is found at the top of the current frame. */
1178 if (caller_framesize == -1 && my_framesize == -1)
1179 {
1180 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1181 }
1182 /* Caller has a frame pointer, but callee does not. This is a little
1183 more difficult as GCC and HP C lay out locals and callee register save
1184 areas very differently.
1185
1186 The previous frame pointer could be in a register, or in one of
1187 several areas on the stack.
1188
1189 Walk from the current frame to the innermost frame examining
1190 unwind descriptors to determine if %r3 ever gets saved into the
1191 stack. If so return whatever value got saved into the stack.
1192 If it was never saved in the stack, then the value in %r3 is still
1193 valid, so use it.
1194
1195 We use information from unwind descriptors to determine if %r3
1196 is saved into the stack (Entry_GR field has this information). */
1197
1198 tmp_frame = frame;
1199 while (tmp_frame)
1200 {
1201 u = find_unwind_entry (tmp_frame->pc);
1202
1203 if (!u)
1204 {
1205 /* We could find this information by examining prologues. I don't
1206 think anyone has actually written any tools (not even "strip")
1207 which leave them out of an executable, so maybe this is a moot
1208 point. */
1209 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1210 code that doesn't have unwind entries. For example, stepping into
1211 the dynamic linker will give you a PC that has none. Thus, I've
1212 disabled this warning. */
1213 #if 0
1214 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1215 #endif
1216 return (CORE_ADDR) 0;
1217 }
1218
1219 /* Entry_GR specifies the number of callee-saved general registers
1220 saved in the stack. It starts at %r3, so %r3 would be 1. */
1221 if (u->Entry_GR >= 1 || u->Save_SP
1222 || tmp_frame->signal_handler_caller
1223 || pc_in_interrupt_handler (tmp_frame->pc))
1224 break;
1225 else
1226 tmp_frame = tmp_frame->next;
1227 }
1228
1229 if (tmp_frame)
1230 {
1231 /* We may have walked down the chain into a function with a frame
1232 pointer. */
1233 if (u->Save_SP
1234 && !tmp_frame->signal_handler_caller
1235 && !pc_in_interrupt_handler (tmp_frame->pc))
1236 {
1237 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
1238 }
1239 /* %r3 was saved somewhere in the stack. Dig it out. */
1240 else
1241 {
1242 struct frame_saved_regs saved_regs;
1243
1244 /* Sick.
1245
1246 For optimization purposes many kernels don't have the
1247 callee saved registers into the save_state structure upon
1248 entry into the kernel for a syscall; the optimization
1249 is usually turned off if the process is being traced so
1250 that the debugger can get full register state for the
1251 process.
1252
1253 This scheme works well except for two cases:
1254
1255 * Attaching to a process when the process is in the
1256 kernel performing a system call (debugger can't get
1257 full register state for the inferior process since
1258 the process wasn't being traced when it entered the
1259 system call).
1260
1261 * Register state is not complete if the system call
1262 causes the process to core dump.
1263
1264
1265 The following heinous code is an attempt to deal with
1266 the lack of register state in a core dump. It will
1267 fail miserably if the function which performs the
1268 system call has a variable sized stack frame. */
1269
1270 get_frame_saved_regs (tmp_frame, &saved_regs);
1271
1272 /* Abominable hack. */
1273 if (current_target.to_has_execution == 0
1274 && ((saved_regs.regs[FLAGS_REGNUM]
1275 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1276 TARGET_PTR_BIT / 8)
1277 & 0x2))
1278 || (saved_regs.regs[FLAGS_REGNUM] == 0
1279 && read_register (FLAGS_REGNUM) & 0x2)))
1280 {
1281 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1282 if (!u)
1283 {
1284 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1285 TARGET_PTR_BIT / 8);
1286 }
1287 else
1288 {
1289 return frame_base - (u->Total_frame_size << 3);
1290 }
1291 }
1292
1293 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1294 TARGET_PTR_BIT / 8);
1295 }
1296 }
1297 else
1298 {
1299 struct frame_saved_regs saved_regs;
1300
1301 /* Get the innermost frame. */
1302 tmp_frame = frame;
1303 while (tmp_frame->next != NULL)
1304 tmp_frame = tmp_frame->next;
1305
1306 get_frame_saved_regs (tmp_frame, &saved_regs);
1307 /* Abominable hack. See above. */
1308 if (current_target.to_has_execution == 0
1309 && ((saved_regs.regs[FLAGS_REGNUM]
1310 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1311 TARGET_PTR_BIT / 8)
1312 & 0x2))
1313 || (saved_regs.regs[FLAGS_REGNUM] == 0
1314 && read_register (FLAGS_REGNUM) & 0x2)))
1315 {
1316 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1317 if (!u)
1318 {
1319 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1320 TARGET_PTR_BIT / 8);
1321 }
1322 else
1323 {
1324 return frame_base - (u->Total_frame_size << 3);
1325 }
1326 }
1327
1328 /* The value in %r3 was never saved into the stack (thus %r3 still
1329 holds the value of the previous frame pointer). */
1330 return TARGET_READ_FP ();
1331 }
1332 }
1333 \f
1334
1335 /* To see if a frame chain is valid, see if the caller looks like it
1336 was compiled with gcc. */
1337
1338 int
1339 hppa_frame_chain_valid (chain, thisframe)
1340 CORE_ADDR chain;
1341 struct frame_info *thisframe;
1342 {
1343 struct minimal_symbol *msym_us;
1344 struct minimal_symbol *msym_start;
1345 struct unwind_table_entry *u, *next_u = NULL;
1346 struct frame_info *next;
1347
1348 if (!chain)
1349 return 0;
1350
1351 u = find_unwind_entry (thisframe->pc);
1352
1353 if (u == NULL)
1354 return 1;
1355
1356 /* We can't just check that the same of msym_us is "_start", because
1357 someone idiotically decided that they were going to make a Ltext_end
1358 symbol with the same address. This Ltext_end symbol is totally
1359 indistinguishable (as nearly as I can tell) from the symbol for a function
1360 which is (legitimately, since it is in the user's namespace)
1361 named Ltext_end, so we can't just ignore it. */
1362 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1363 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1364 if (msym_us
1365 && msym_start
1366 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1367 return 0;
1368
1369 /* Grrrr. Some new idiot decided that they don't want _start for the
1370 PRO configurations; $START$ calls main directly.... Deal with it. */
1371 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1372 if (msym_us
1373 && msym_start
1374 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1375 return 0;
1376
1377 next = get_next_frame (thisframe);
1378 if (next)
1379 next_u = find_unwind_entry (next->pc);
1380
1381 /* If this frame does not save SP, has no stack, isn't a stub,
1382 and doesn't "call" an interrupt routine or signal handler caller,
1383 then its not valid. */
1384 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1385 || (thisframe->next && thisframe->next->signal_handler_caller)
1386 || (next_u && next_u->HP_UX_interrupt_marker))
1387 return 1;
1388
1389 if (pc_in_linker_stub (thisframe->pc))
1390 return 1;
1391
1392 return 0;
1393 }
1394
1395 /*
1396 These functions deal with saving and restoring register state
1397 around a function call in the inferior. They keep the stack
1398 double-word aligned; eventually, on an hp700, the stack will have
1399 to be aligned to a 64-byte boundary. */
1400
1401 void
1402 push_dummy_frame (inf_status)
1403 struct inferior_status *inf_status;
1404 {
1405 CORE_ADDR sp, pc, pcspace;
1406 register int regnum;
1407 CORE_ADDR int_buffer;
1408 double freg_buffer;
1409
1410 /* Oh, what a hack. If we're trying to perform an inferior call
1411 while the inferior is asleep, we have to make sure to clear
1412 the "in system call" bit in the flag register (the call will
1413 start after the syscall returns, so we're no longer in the system
1414 call!) This state is kept in "inf_status", change it there.
1415
1416 We also need a number of horrid hacks to deal with lossage in the
1417 PC queue registers (apparently they're not valid when the in syscall
1418 bit is set). */
1419 pc = target_read_pc (inferior_pid);
1420 int_buffer = read_register (FLAGS_REGNUM);
1421 if (int_buffer & 0x2)
1422 {
1423 unsigned int sid;
1424 int_buffer &= ~0x2;
1425 write_inferior_status_register (inf_status, 0, int_buffer);
1426 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1427 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
1428 sid = (pc >> 30) & 0x3;
1429 if (sid == 0)
1430 pcspace = read_register (SR4_REGNUM);
1431 else
1432 pcspace = read_register (SR4_REGNUM + 4 + sid);
1433 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1434 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
1435 }
1436 else
1437 pcspace = read_register (PCSQ_HEAD_REGNUM);
1438
1439 /* Space for "arguments"; the RP goes in here. */
1440 sp = read_register (SP_REGNUM) + 48;
1441 int_buffer = read_register (RP_REGNUM) | 0x3;
1442
1443 /* The 32bit and 64bit ABIs save the return pointer into different
1444 stack slots. */
1445 if (REGISTER_SIZE == 8)
1446 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1447 else
1448 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
1449
1450 int_buffer = TARGET_READ_FP ();
1451 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
1452
1453 write_register (FP_REGNUM, sp);
1454
1455 sp += 2 * REGISTER_SIZE;
1456
1457 for (regnum = 1; regnum < 32; regnum++)
1458 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1459 sp = push_word (sp, read_register (regnum));
1460
1461 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1462 if (REGISTER_SIZE != 8)
1463 sp += 4;
1464
1465 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1466 {
1467 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1468 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1469 }
1470 sp = push_word (sp, read_register (IPSW_REGNUM));
1471 sp = push_word (sp, read_register (SAR_REGNUM));
1472 sp = push_word (sp, pc);
1473 sp = push_word (sp, pcspace);
1474 sp = push_word (sp, pc + 4);
1475 sp = push_word (sp, pcspace);
1476 write_register (SP_REGNUM, sp);
1477 }
1478
1479 static void
1480 find_dummy_frame_regs (frame, frame_saved_regs)
1481 struct frame_info *frame;
1482 struct frame_saved_regs *frame_saved_regs;
1483 {
1484 CORE_ADDR fp = frame->frame;
1485 int i;
1486
1487 /* The 32bit and 64bit ABIs save RP into different locations. */
1488 if (REGISTER_SIZE == 8)
1489 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1490 else
1491 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1492
1493 frame_saved_regs->regs[FP_REGNUM] = fp;
1494
1495 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1496
1497 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
1498 {
1499 if (i != FP_REGNUM)
1500 {
1501 frame_saved_regs->regs[i] = fp;
1502 fp += REGISTER_SIZE;
1503 }
1504 }
1505
1506 /* This is not necessary or desirable for the 64bit ABI. */
1507 if (REGISTER_SIZE != 8)
1508 fp += 4;
1509
1510 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1511 frame_saved_regs->regs[i] = fp;
1512
1513 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1514 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1515 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1516 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1517 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1518 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
1519 }
1520
1521 void
1522 hppa_pop_frame ()
1523 {
1524 register struct frame_info *frame = get_current_frame ();
1525 register CORE_ADDR fp, npc, target_pc;
1526 register int regnum;
1527 struct frame_saved_regs fsr;
1528 double freg_buffer;
1529
1530 fp = FRAME_FP (frame);
1531 get_frame_saved_regs (frame, &fsr);
1532
1533 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1534 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1535 restore_pc_queue (&fsr);
1536 #endif
1537
1538 for (regnum = 31; regnum > 0; regnum--)
1539 if (fsr.regs[regnum])
1540 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1541 REGISTER_SIZE));
1542
1543 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1544 if (fsr.regs[regnum])
1545 {
1546 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1547 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1548 }
1549
1550 if (fsr.regs[IPSW_REGNUM])
1551 write_register (IPSW_REGNUM,
1552 read_memory_integer (fsr.regs[IPSW_REGNUM],
1553 REGISTER_SIZE));
1554
1555 if (fsr.regs[SAR_REGNUM])
1556 write_register (SAR_REGNUM,
1557 read_memory_integer (fsr.regs[SAR_REGNUM],
1558 REGISTER_SIZE));
1559
1560 /* If the PC was explicitly saved, then just restore it. */
1561 if (fsr.regs[PCOQ_TAIL_REGNUM])
1562 {
1563 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1564 REGISTER_SIZE);
1565 write_register (PCOQ_TAIL_REGNUM, npc);
1566 }
1567 /* Else use the value in %rp to set the new PC. */
1568 else
1569 {
1570 npc = read_register (RP_REGNUM);
1571 write_pc (npc);
1572 }
1573
1574 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
1575
1576 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1577 write_register (SP_REGNUM, fp - 48);
1578 else
1579 write_register (SP_REGNUM, fp);
1580
1581 /* The PC we just restored may be inside a return trampoline. If so
1582 we want to restart the inferior and run it through the trampoline.
1583
1584 Do this by setting a momentary breakpoint at the location the
1585 trampoline returns to.
1586
1587 Don't skip through the trampoline if we're popping a dummy frame. */
1588 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1589 if (target_pc && !fsr.regs[IPSW_REGNUM])
1590 {
1591 struct symtab_and_line sal;
1592 struct breakpoint *breakpoint;
1593 struct cleanup *old_chain;
1594
1595 /* Set up our breakpoint. Set it to be silent as the MI code
1596 for "return_command" will print the frame we returned to. */
1597 sal = find_pc_line (target_pc, 0);
1598 sal.pc = target_pc;
1599 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1600 breakpoint->silent = 1;
1601
1602 /* So we can clean things up. */
1603 old_chain = make_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint);
1604
1605 /* Start up the inferior. */
1606 clear_proceed_status ();
1607 proceed_to_finish = 1;
1608 proceed ((CORE_ADDR) - 1, TARGET_SIGNAL_DEFAULT, 0);
1609
1610 /* Perform our cleanups. */
1611 do_cleanups (old_chain);
1612 }
1613 flush_cached_frames ();
1614 }
1615
1616 /* After returning to a dummy on the stack, restore the instruction
1617 queue space registers. */
1618
1619 static int
1620 restore_pc_queue (fsr)
1621 struct frame_saved_regs *fsr;
1622 {
1623 CORE_ADDR pc = read_pc ();
1624 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1625 TARGET_PTR_BIT / 8);
1626 struct target_waitstatus w;
1627 int insn_count;
1628
1629 /* Advance past break instruction in the call dummy. */
1630 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1631 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1632
1633 /* HPUX doesn't let us set the space registers or the space
1634 registers of the PC queue through ptrace. Boo, hiss.
1635 Conveniently, the call dummy has this sequence of instructions
1636 after the break:
1637 mtsp r21, sr0
1638 ble,n 0(sr0, r22)
1639
1640 So, load up the registers and single step until we are in the
1641 right place. */
1642
1643 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1644 REGISTER_SIZE));
1645 write_register (22, new_pc);
1646
1647 for (insn_count = 0; insn_count < 3; insn_count++)
1648 {
1649 /* FIXME: What if the inferior gets a signal right now? Want to
1650 merge this into wait_for_inferior (as a special kind of
1651 watchpoint? By setting a breakpoint at the end? Is there
1652 any other choice? Is there *any* way to do this stuff with
1653 ptrace() or some equivalent?). */
1654 resume (1, 0);
1655 target_wait (inferior_pid, &w);
1656
1657 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1658 {
1659 stop_signal = w.value.sig;
1660 terminal_ours_for_output ();
1661 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1662 target_signal_to_name (stop_signal),
1663 target_signal_to_string (stop_signal));
1664 gdb_flush (gdb_stdout);
1665 return 0;
1666 }
1667 }
1668 target_terminal_ours ();
1669 target_fetch_registers (-1);
1670 return 1;
1671 }
1672
1673 /* This function pushes a stack frame with arguments as part of the
1674 inferior function calling mechanism.
1675
1676 For PAs the stack always grows to higher addresses. However the arguments
1677 may grow to either higher or lower addresses depending on which ABI is
1678 currently in use.
1679
1680 We simply allocate the appropriate amount of stack space and put
1681 arguments into their proper slots. The call dummy code will copy
1682 arguments into registers as needed by the ABI.
1683
1684 Note for the PA64 ABI we load up the argument pointer since the caller
1685 must provide the argument pointer to the callee. */
1686
1687 CORE_ADDR
1688 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1689 int nargs;
1690 value_ptr *args;
1691 CORE_ADDR sp;
1692 int struct_return;
1693 CORE_ADDR struct_addr;
1694 {
1695 /* array of arguments' offsets */
1696 int *offset = (int *) alloca (nargs * sizeof (int));
1697
1698 /* array of arguments' lengths: real lengths in bytes, not aligned to
1699 word size */
1700 int *lengths = (int *) alloca (nargs * sizeof (int));
1701
1702 /* The value of SP as it was passed into this function after
1703 aligning. */
1704 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1705
1706 /* The number of stack bytes occupied by the current argument. */
1707 int bytes_reserved;
1708
1709 /* The total number of bytes reserved for the arguments. */
1710 int cum_bytes_reserved = 0;
1711
1712 /* Similarly, but aligned. */
1713 int cum_bytes_aligned = 0;
1714 int i;
1715
1716 /* Iterate over each argument provided by the user. */
1717 for (i = 0; i < nargs; i++)
1718 {
1719 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1720
1721 /* Align the size of the argument to the word size for this
1722 target. */
1723 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1724
1725 #ifdef ARGS_GROW_DOWNWARD
1726 offset[i] = cum_bytes_reserved + lengths[i];
1727 #else
1728 /* If the arguments grow towards lower addresses, then we want
1729 offset[i] to point to the start of the argument rather than
1730 the end of the argument. */
1731 offset[i] = cum_bytes_reserved;
1732
1733 offset[i] += (lengths[i] < REGISTER_SIZE
1734 ? REGISTER_SIZE - lengths[i] : 0);
1735 #endif
1736
1737 /* If the argument is a double word argument, then it needs to be
1738 double word aligned.
1739
1740 ?!? I do not think this code is correct when !ARGS_GROW_DOWNWAR. */
1741 if ((bytes_reserved == 2 * REGISTER_SIZE)
1742 && (offset[i] % 2 * REGISTER_SIZE))
1743 {
1744 int new_offset = 0;
1745 /* BYTES_RESERVED is already aligned to the word, so we put
1746 the argument at one word more down the stack.
1747
1748 This will leave one empty word on the stack, and one unused
1749 register as mandated by the ABI. */
1750 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1751 & -(2 * REGISTER_SIZE));
1752
1753 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
1754 {
1755 bytes_reserved += REGISTER_SIZE;
1756 offset[i] += REGISTER_SIZE;
1757 }
1758 }
1759
1760 cum_bytes_reserved += bytes_reserved;
1761
1762 }
1763
1764 /* CUM_BYTES_RESERVED already accounts for all the arguments
1765 passed by the user. However, the ABIs mandate minimum stack space
1766 allocations for outgoing arguments.
1767
1768 The ABIs also mandate minimum stack alignments which we must
1769 preserve. */
1770 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1771 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1772
1773 /* Now write each of the args at the proper offset down the stack.
1774
1775 The two ABIs write arguments in different directions using different
1776 starting points. What fun.
1777
1778 ?!? We need to promote values to a full register instead of skipping
1779 words in the stack. */
1780 #ifndef ARGS_GROW_DOWNWARD
1781 for (i = 0; i < nargs; i++)
1782 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1783 #else
1784 for (i = 0; i < nargs; i++)
1785 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1786 #endif
1787
1788 /* If a structure has to be returned, set up register 28 to hold its
1789 address */
1790 if (struct_return)
1791 write_register (28, struct_addr);
1792
1793 #ifndef ARGS_GROW_DOWNWARD
1794 /* For the PA64 we must pass a pointer to the outgoing argument list.
1795 The ABI mandates that the pointer should point to the first byte of
1796 storage beyond the register flushback area.
1797
1798 However, the call dummy expects the outgoing argument pointer to
1799 be passed in register %r4. */
1800 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1801
1802 /* ?!? This needs further work. We need to set up the global data
1803 pointer for this procedure. This assumes the same global pointer
1804 for every procedure. The call dummy expects the dp value to
1805 be passed in register %r6. */
1806 write_register (6, read_register (27));
1807 #endif
1808
1809 /* The stack will have 32 bytes of additional space for a frame marker. */
1810 return sp + 32;
1811 }
1812
1813
1814 /* elz: this function returns a value which is built looking at the given address.
1815 It is called from call_function_by_hand, in case we need to return a
1816 value which is larger than 64 bits, and it is stored in the stack rather than
1817 in the registers r28 and r29 or fr4.
1818 This function does the same stuff as value_being_returned in values.c, but
1819 gets the value from the stack rather than from the buffer where all the
1820 registers were saved when the function called completed. */
1821 value_ptr
1822 hppa_value_returned_from_stack (valtype, addr)
1823 register struct type *valtype;
1824 CORE_ADDR addr;
1825 {
1826 register value_ptr val;
1827
1828 val = allocate_value (valtype);
1829 CHECK_TYPEDEF (valtype);
1830 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1831
1832 return val;
1833 }
1834
1835
1836
1837 /* elz: Used to lookup a symbol in the shared libraries.
1838 This function calls shl_findsym, indirectly through a
1839 call to __d_shl_get. __d_shl_get is in end.c, which is always
1840 linked in by the hp compilers/linkers.
1841 The call to shl_findsym cannot be made directly because it needs
1842 to be active in target address space.
1843 inputs: - minimal symbol pointer for the function we want to look up
1844 - address in target space of the descriptor for the library
1845 where we want to look the symbol up.
1846 This address is retrieved using the
1847 som_solib_get_solib_by_pc function (somsolib.c).
1848 output: - real address in the library of the function.
1849 note: the handle can be null, in which case shl_findsym will look for
1850 the symbol in all the loaded shared libraries.
1851 files to look at if you need reference on this stuff:
1852 dld.c, dld_shl_findsym.c
1853 end.c
1854 man entry for shl_findsym */
1855
1856 CORE_ADDR
1857 find_stub_with_shl_get (function, handle)
1858 struct minimal_symbol *function;
1859 CORE_ADDR handle;
1860 {
1861 struct symbol *get_sym, *symbol2;
1862 struct minimal_symbol *buff_minsym, *msymbol;
1863 struct type *ftype;
1864 value_ptr *args;
1865 value_ptr funcval, val;
1866
1867 int x, namelen, err_value, tmp = -1;
1868 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1869 CORE_ADDR stub_addr;
1870
1871
1872 args = (value_ptr *) alloca (sizeof (value_ptr) * 8); /* 6 for the arguments and one null one??? */
1873 funcval = find_function_in_inferior ("__d_shl_get");
1874 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1875 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1876 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1877 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1878 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1879 namelen = strlen (SYMBOL_NAME (function));
1880 value_return_addr = endo_buff_addr + namelen;
1881 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1882
1883 /* do alignment */
1884 if ((x = value_return_addr % 64) != 0)
1885 value_return_addr = value_return_addr + 64 - x;
1886
1887 errno_return_addr = value_return_addr + 64;
1888
1889
1890 /* set up stuff needed by __d_shl_get in buffer in end.o */
1891
1892 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1893
1894 target_write_memory (value_return_addr, (char *) &tmp, 4);
1895
1896 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1897
1898 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1899 (char *) &handle, 4);
1900
1901 /* now prepare the arguments for the call */
1902
1903 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
1904 args[1] = value_from_longest (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1905 args[2] = value_from_longest (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
1906 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
1907 args[4] = value_from_longest (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1908 args[5] = value_from_longest (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
1909
1910 /* now call the function */
1911
1912 val = call_function_by_hand (funcval, 6, args);
1913
1914 /* now get the results */
1915
1916 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1917
1918 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
1919 if (stub_addr <= 0)
1920 error ("call to __d_shl_get failed, error code is %d", err_value);
1921
1922 return (stub_addr);
1923 }
1924
1925 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
1926 static int
1927 cover_find_stub_with_shl_get (PTR args_untyped)
1928 {
1929 args_for_find_stub *args = args_untyped;
1930 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
1931 return 0;
1932 }
1933
1934 /* Insert the specified number of args and function address
1935 into a call sequence of the above form stored at DUMMYNAME.
1936
1937 On the hppa we need to call the stack dummy through $$dyncall.
1938 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1939 real_pc, which is the location where gdb should start up the
1940 inferior to do the function call.
1941
1942 This has to work across several versions of hpux, bsd, osf1. It has to
1943 work regardless of what compiler was used to build the inferior program.
1944 It should work regardless of whether or not end.o is available. It has
1945 to work even if gdb can not call into the dynamic loader in the inferior
1946 to query it for symbol names and addresses.
1947
1948 Yes, all those cases should work. Luckily code exists to handle most
1949 of them. The complexity is in selecting exactly what scheme should
1950 be used to perform the inferior call.
1951
1952 At the current time this routine is known not to handle cases where
1953 the program was linked with HP's compiler without including end.o.
1954
1955 Please contact Jeff Law (law@cygnus.com) before changing this code. */
1956
1957 CORE_ADDR
1958 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1959 char *dummy;
1960 CORE_ADDR pc;
1961 CORE_ADDR fun;
1962 int nargs;
1963 value_ptr *args;
1964 struct type *type;
1965 int gcc_p;
1966 {
1967 CORE_ADDR dyncall_addr;
1968 struct minimal_symbol *msymbol;
1969 struct minimal_symbol *trampoline;
1970 int flags = read_register (FLAGS_REGNUM);
1971 struct unwind_table_entry *u = NULL;
1972 CORE_ADDR new_stub = 0;
1973 CORE_ADDR solib_handle = 0;
1974
1975 /* Nonzero if we will use GCC's PLT call routine. This routine must be
1976 passed an import stub, not a PLABEL. It is also necessary to set %r19
1977 (the PIC register) before performing the call.
1978
1979 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
1980 are calling the target directly. When using __d_plt_call we want to
1981 use a PLABEL instead of an import stub. */
1982 int using_gcc_plt_call = 1;
1983
1984 #ifdef GDB_TARGET_IS_HPPA_20W
1985 /* We currently use completely different code for the PA2.0W inferior
1986 function call sequences. This needs to be cleaned up. */
1987 {
1988 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
1989 struct target_waitstatus w;
1990 int inst1, inst2;
1991 char buf[4];
1992 int status;
1993 struct objfile *objfile;
1994
1995 /* We can not modify the PC space queues directly, so we start
1996 up the inferior and execute a couple instructions to set the
1997 space queues so that they point to the call dummy in the stack. */
1998 pcsqh = read_register (PCSQ_HEAD_REGNUM);
1999 sr5 = read_register (SR5_REGNUM);
2000 if (1)
2001 {
2002 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2003 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2004 if (target_read_memory (pcoqh, buf, 4) != 0)
2005 error ("Couldn't modify space queue\n");
2006 inst1 = extract_unsigned_integer (buf, 4);
2007
2008 if (target_read_memory (pcoqt, buf, 4) != 0)
2009 error ("Couldn't modify space queue\n");
2010 inst2 = extract_unsigned_integer (buf, 4);
2011
2012 /* BVE (r1) */
2013 *((int *) buf) = 0xe820d000;
2014 if (target_write_memory (pcoqh, buf, 4) != 0)
2015 error ("Couldn't modify space queue\n");
2016
2017 /* NOP */
2018 *((int *) buf) = 0x08000240;
2019 if (target_write_memory (pcoqt, buf, 4) != 0)
2020 {
2021 *((int *) buf) = inst1;
2022 target_write_memory (pcoqh, buf, 4);
2023 error ("Couldn't modify space queue\n");
2024 }
2025
2026 write_register (1, pc);
2027
2028 /* Single step twice, the BVE instruction will set the space queue
2029 such that it points to the PC value written immediately above
2030 (ie the call dummy). */
2031 resume (1, 0);
2032 target_wait (inferior_pid, &w);
2033 resume (1, 0);
2034 target_wait (inferior_pid, &w);
2035
2036 /* Restore the two instructions at the old PC locations. */
2037 *((int *) buf) = inst1;
2038 target_write_memory (pcoqh, buf, 4);
2039 *((int *) buf) = inst2;
2040 target_write_memory (pcoqt, buf, 4);
2041 }
2042
2043 /* The call dummy wants the ultimate destination address initially
2044 in register %r5. */
2045 write_register (5, fun);
2046
2047 /* We need to see if this objfile has a different DP value than our
2048 own (it could be a shared library for example. */
2049 ALL_OBJFILES (objfile)
2050 {
2051 struct obj_section *s;
2052 obj_private_data_t *obj_private;
2053
2054 /* See if FUN is in any section within this shared library. */
2055 for (s = objfile->sections; s < objfile->sections_end; s++)
2056 if (s->addr <= fun && fun < s->endaddr)
2057 break;
2058
2059 if (s >= objfile->sections_end)
2060 continue;
2061
2062 obj_private = (obj_private_data_t *) objfile->obj_private;
2063
2064 /* The DP value may be different for each objfile. But within an
2065 objfile each function uses the same dp value. Thus we do not need
2066 to grope around the opd section looking for dp values.
2067
2068 ?!? This is not strictly correct since we may be in a shared library
2069 and want to call back into the main program. To make that case
2070 work correctly we need to set obj_private->dp for the main program's
2071 objfile, then remove this conditional. */
2072 if (obj_private->dp)
2073 write_register (27, obj_private->dp);
2074 break;
2075 }
2076 return pc;
2077 }
2078 #endif
2079
2080 #ifndef GDB_TARGET_IS_HPPA_20W
2081 /* Prefer __gcc_plt_call over the HP supplied routine because
2082 __gcc_plt_call works for any number of arguments. */
2083 trampoline = NULL;
2084 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2085 using_gcc_plt_call = 0;
2086
2087 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2088 if (msymbol == NULL)
2089 error ("Can't find an address for $$dyncall trampoline");
2090
2091 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2092
2093 /* FUN could be a procedure label, in which case we have to get
2094 its real address and the value of its GOT/DP if we plan to
2095 call the routine via gcc_plt_call. */
2096 if ((fun & 0x2) && using_gcc_plt_call)
2097 {
2098 /* Get the GOT/DP value for the target function. It's
2099 at *(fun+4). Note the call dummy is *NOT* allowed to
2100 trash %r19 before calling the target function. */
2101 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2102 REGISTER_SIZE));
2103
2104 /* Now get the real address for the function we are calling, it's
2105 at *fun. */
2106 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2107 TARGET_PTR_BIT / 8);
2108 }
2109 else
2110 {
2111
2112 #ifndef GDB_TARGET_IS_PA_ELF
2113 /* FUN could be an export stub, the real address of a function, or
2114 a PLABEL. When using gcc's PLT call routine we must call an import
2115 stub rather than the export stub or real function for lazy binding
2116 to work correctly
2117
2118 /* If we are using the gcc PLT call routine, then we need to
2119 get the import stub for the target function. */
2120 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2121 {
2122 struct objfile *objfile;
2123 struct minimal_symbol *funsymbol, *stub_symbol;
2124 CORE_ADDR newfun = 0;
2125
2126 funsymbol = lookup_minimal_symbol_by_pc (fun);
2127 if (!funsymbol)
2128 error ("Unable to find minimal symbol for target fucntion.\n");
2129
2130 /* Search all the object files for an import symbol with the
2131 right name. */
2132 ALL_OBJFILES (objfile)
2133 {
2134 stub_symbol
2135 = lookup_minimal_symbol_solib_trampoline
2136 (SYMBOL_NAME (funsymbol), NULL, objfile);
2137
2138 if (!stub_symbol)
2139 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2140 NULL, objfile);
2141
2142 /* Found a symbol with the right name. */
2143 if (stub_symbol)
2144 {
2145 struct unwind_table_entry *u;
2146 /* It must be a shared library trampoline. */
2147 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2148 continue;
2149
2150 /* It must also be an import stub. */
2151 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2152 if (!u
2153 || (u->stub_unwind.stub_type != IMPORT)
2154 && u->stub_unwind.stub_type != IMPORT_SHLIB)
2155 continue;
2156
2157 /* OK. Looks like the correct import stub. */
2158 newfun = SYMBOL_VALUE (stub_symbol);
2159 fun = newfun;
2160 }
2161 }
2162
2163 /* Ouch. We did not find an import stub. Make an attempt to
2164 do the right thing instead of just croaking. Most of the
2165 time this will actually work. */
2166 if (newfun == 0)
2167 write_register (19, som_solib_get_got_by_pc (fun));
2168
2169 u = find_unwind_entry (fun);
2170 if (u
2171 && (u->stub_unwind.stub_type == IMPORT
2172 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2173 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2174
2175 /* If we found the import stub in the shared library, then we have
2176 to set %r19 before we call the stub. */
2177 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2178 write_register (19, som_solib_get_got_by_pc (fun));
2179 }
2180 #endif
2181 }
2182
2183 /* If we are calling into another load module then have sr4export call the
2184 magic __d_plt_call routine which is linked in from end.o.
2185
2186 You can't use _sr4export to make the call as the value in sp-24 will get
2187 fried and you end up returning to the wrong location. You can't call the
2188 target as the code to bind the PLT entry to a function can't return to a
2189 stack address.
2190
2191 Also, query the dynamic linker in the inferior to provide a suitable
2192 PLABEL for the target function. */
2193 if (!using_gcc_plt_call)
2194 {
2195 CORE_ADDR new_fun;
2196
2197 /* Get a handle for the shared library containing FUN. Given the
2198 handle we can query the shared library for a PLABEL. */
2199 solib_handle = som_solib_get_solib_by_pc (fun);
2200
2201 if (solib_handle)
2202 {
2203 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2204
2205 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2206
2207 if (trampoline == NULL)
2208 {
2209 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2210 }
2211
2212 /* This is where sr4export will jump to. */
2213 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2214
2215 /* If the function is in a shared library, then call __d_shl_get to
2216 get a PLABEL for the target function. */
2217 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2218
2219 if (new_stub == 0)
2220 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
2221
2222 /* We have to store the address of the stub in __shlib_funcptr. */
2223 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2224 (struct objfile *) NULL);
2225
2226 if (msymbol == NULL)
2227 error ("Can't find an address for __shlib_funcptr");
2228 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2229 (char *) &new_stub, 4);
2230
2231 /* We want sr4export to call __d_plt_call, so we claim it is
2232 the final target. Clear trampoline. */
2233 fun = new_fun;
2234 trampoline = NULL;
2235 }
2236 }
2237
2238 /* Store upper 21 bits of function address into ldil. fun will either be
2239 the final target (most cases) or __d_plt_call when calling into a shared
2240 library and __gcc_plt_call is not available. */
2241 store_unsigned_integer
2242 (&dummy[FUNC_LDIL_OFFSET],
2243 INSTRUCTION_SIZE,
2244 deposit_21 (fun >> 11,
2245 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2246 INSTRUCTION_SIZE)));
2247
2248 /* Store lower 11 bits of function address into ldo */
2249 store_unsigned_integer
2250 (&dummy[FUNC_LDO_OFFSET],
2251 INSTRUCTION_SIZE,
2252 deposit_14 (fun & MASK_11,
2253 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2254 INSTRUCTION_SIZE)));
2255 #ifdef SR4EXPORT_LDIL_OFFSET
2256
2257 {
2258 CORE_ADDR trampoline_addr;
2259
2260 /* We may still need sr4export's address too. */
2261
2262 if (trampoline == NULL)
2263 {
2264 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2265 if (msymbol == NULL)
2266 error ("Can't find an address for _sr4export trampoline");
2267
2268 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2269 }
2270 else
2271 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2272
2273
2274 /* Store upper 21 bits of trampoline's address into ldil */
2275 store_unsigned_integer
2276 (&dummy[SR4EXPORT_LDIL_OFFSET],
2277 INSTRUCTION_SIZE,
2278 deposit_21 (trampoline_addr >> 11,
2279 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2280 INSTRUCTION_SIZE)));
2281
2282 /* Store lower 11 bits of trampoline's address into ldo */
2283 store_unsigned_integer
2284 (&dummy[SR4EXPORT_LDO_OFFSET],
2285 INSTRUCTION_SIZE,
2286 deposit_14 (trampoline_addr & MASK_11,
2287 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2288 INSTRUCTION_SIZE)));
2289 }
2290 #endif
2291
2292 write_register (22, pc);
2293
2294 /* If we are in a syscall, then we should call the stack dummy
2295 directly. $$dyncall is not needed as the kernel sets up the
2296 space id registers properly based on the value in %r31. In
2297 fact calling $$dyncall will not work because the value in %r22
2298 will be clobbered on the syscall exit path.
2299
2300 Similarly if the current PC is in a shared library. Note however,
2301 this scheme won't work if the shared library isn't mapped into
2302 the same space as the stack. */
2303 if (flags & 2)
2304 return pc;
2305 #ifndef GDB_TARGET_IS_PA_ELF
2306 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
2307 return pc;
2308 #endif
2309 else
2310 return dyncall_addr;
2311 #endif
2312 }
2313
2314
2315
2316
2317 /* If the pid is in a syscall, then the FP register is not readable.
2318 We'll return zero in that case, rather than attempting to read it
2319 and cause a warning. */
2320 CORE_ADDR
2321 target_read_fp (pid)
2322 int pid;
2323 {
2324 int flags = read_register (FLAGS_REGNUM);
2325
2326 if (flags & 2)
2327 {
2328 return (CORE_ADDR) 0;
2329 }
2330
2331 /* This is the only site that may directly read_register () the FP
2332 register. All others must use TARGET_READ_FP (). */
2333 return read_register (FP_REGNUM);
2334 }
2335
2336
2337 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2338 bits. */
2339
2340 CORE_ADDR
2341 target_read_pc (pid)
2342 int pid;
2343 {
2344 int flags = read_register_pid (FLAGS_REGNUM, pid);
2345
2346 /* The following test does not belong here. It is OS-specific, and belongs
2347 in native code. */
2348 /* Test SS_INSYSCALL */
2349 if (flags & 2)
2350 return read_register_pid (31, pid) & ~0x3;
2351
2352 return read_register_pid (PC_REGNUM, pid) & ~0x3;
2353 }
2354
2355 /* Write out the PC. If currently in a syscall, then also write the new
2356 PC value into %r31. */
2357
2358 void
2359 target_write_pc (v, pid)
2360 CORE_ADDR v;
2361 int pid;
2362 {
2363 int flags = read_register_pid (FLAGS_REGNUM, pid);
2364
2365 /* The following test does not belong here. It is OS-specific, and belongs
2366 in native code. */
2367 /* If in a syscall, then set %r31. Also make sure to get the
2368 privilege bits set correctly. */
2369 /* Test SS_INSYSCALL */
2370 if (flags & 2)
2371 write_register_pid (31, v | 0x3, pid);
2372
2373 write_register_pid (PC_REGNUM, v, pid);
2374 write_register_pid (NPC_REGNUM, v + 4, pid);
2375 }
2376
2377 /* return the alignment of a type in bytes. Structures have the maximum
2378 alignment required by their fields. */
2379
2380 static int
2381 hppa_alignof (type)
2382 struct type *type;
2383 {
2384 int max_align, align, i;
2385 CHECK_TYPEDEF (type);
2386 switch (TYPE_CODE (type))
2387 {
2388 case TYPE_CODE_PTR:
2389 case TYPE_CODE_INT:
2390 case TYPE_CODE_FLT:
2391 return TYPE_LENGTH (type);
2392 case TYPE_CODE_ARRAY:
2393 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2394 case TYPE_CODE_STRUCT:
2395 case TYPE_CODE_UNION:
2396 max_align = 1;
2397 for (i = 0; i < TYPE_NFIELDS (type); i++)
2398 {
2399 /* Bit fields have no real alignment. */
2400 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2401 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2402 {
2403 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2404 max_align = max (max_align, align);
2405 }
2406 }
2407 return max_align;
2408 default:
2409 return 4;
2410 }
2411 }
2412
2413 /* Print the register regnum, or all registers if regnum is -1 */
2414
2415 void
2416 pa_do_registers_info (regnum, fpregs)
2417 int regnum;
2418 int fpregs;
2419 {
2420 char raw_regs[REGISTER_BYTES];
2421 int i;
2422
2423 /* Make a copy of gdb's save area (may cause actual
2424 reads from the target). */
2425 for (i = 0; i < NUM_REGS; i++)
2426 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2427
2428 if (regnum == -1)
2429 pa_print_registers (raw_regs, regnum, fpregs);
2430 else if (regnum < FP4_REGNUM)
2431 {
2432 long reg_val[2];
2433
2434 /* Why is the value not passed through "extract_signed_integer"
2435 as in "pa_print_registers" below? */
2436 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2437
2438 if (!is_pa_2)
2439 {
2440 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2441 }
2442 else
2443 {
2444 /* Fancy % formats to prevent leading zeros. */
2445 if (reg_val[0] == 0)
2446 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2447 else
2448 printf_unfiltered ("%s %x%8.8x\n", REGISTER_NAME (regnum),
2449 reg_val[0], reg_val[1]);
2450 }
2451 }
2452 else
2453 /* Note that real floating point values only start at
2454 FP4_REGNUM. FP0 and up are just status and error
2455 registers, which have integral (bit) values. */
2456 pa_print_fp_reg (regnum);
2457 }
2458
2459 /********** new function ********************/
2460 void
2461 pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
2462 int regnum;
2463 int fpregs;
2464 GDB_FILE *stream;
2465 enum precision_type precision;
2466 {
2467 char raw_regs[REGISTER_BYTES];
2468 int i;
2469
2470 /* Make a copy of gdb's save area (may cause actual
2471 reads from the target). */
2472 for (i = 0; i < NUM_REGS; i++)
2473 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2474
2475 if (regnum == -1)
2476 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2477
2478 else if (regnum < FP4_REGNUM)
2479 {
2480 long reg_val[2];
2481
2482 /* Why is the value not passed through "extract_signed_integer"
2483 as in "pa_print_registers" below? */
2484 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2485
2486 if (!is_pa_2)
2487 {
2488 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum), reg_val[1]);
2489 }
2490 else
2491 {
2492 /* Fancy % formats to prevent leading zeros. */
2493 if (reg_val[0] == 0)
2494 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum),
2495 reg_val[1]);
2496 else
2497 fprintf_unfiltered (stream, "%s %x%8.8x", REGISTER_NAME (regnum),
2498 reg_val[0], reg_val[1]);
2499 }
2500 }
2501 else
2502 /* Note that real floating point values only start at
2503 FP4_REGNUM. FP0 and up are just status and error
2504 registers, which have integral (bit) values. */
2505 pa_strcat_fp_reg (regnum, stream, precision);
2506 }
2507
2508 /* If this is a PA2.0 machine, fetch the real 64-bit register
2509 value. Otherwise use the info from gdb's saved register area.
2510
2511 Note that reg_val is really expected to be an array of longs,
2512 with two elements. */
2513 static void
2514 pa_register_look_aside (raw_regs, regnum, raw_val)
2515 char *raw_regs;
2516 int regnum;
2517 long *raw_val;
2518 {
2519 static int know_which = 0; /* False */
2520
2521 int regaddr;
2522 unsigned int offset;
2523 register int i;
2524 int start;
2525
2526
2527 char buf[MAX_REGISTER_RAW_SIZE];
2528 long long reg_val;
2529
2530 if (!know_which)
2531 {
2532 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2533 {
2534 is_pa_2 = (1 == 1);
2535 }
2536
2537 know_which = 1; /* True */
2538 }
2539
2540 raw_val[0] = 0;
2541 raw_val[1] = 0;
2542
2543 if (!is_pa_2)
2544 {
2545 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2546 return;
2547 }
2548
2549 /* Code below copied from hppah-nat.c, with fixes for wide
2550 registers, using different area of save_state, etc. */
2551 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2552 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2553 {
2554 /* Use narrow regs area of save_state and default macro. */
2555 offset = U_REGS_OFFSET;
2556 regaddr = register_addr (regnum, offset);
2557 start = 1;
2558 }
2559 else
2560 {
2561 /* Use wide regs area, and calculate registers as 8 bytes wide.
2562
2563 We'd like to do this, but current version of "C" doesn't
2564 permit "offsetof":
2565
2566 offset = offsetof(save_state_t, ss_wide);
2567
2568 Note that to avoid "C" doing typed pointer arithmetic, we
2569 have to cast away the type in our offset calculation:
2570 otherwise we get an offset of 1! */
2571
2572 /* NB: save_state_t is not available before HPUX 9.
2573 The ss_wide field is not available previous to HPUX 10.20,
2574 so to avoid compile-time warnings, we only compile this for
2575 PA 2.0 processors. This control path should only be followed
2576 if we're debugging a PA 2.0 processor, so this should not cause
2577 problems. */
2578
2579 /* #if the following code out so that this file can still be
2580 compiled on older HPUX boxes (< 10.20) which don't have
2581 this structure/structure member. */
2582 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2583 save_state_t temp;
2584
2585 offset = ((int) &temp.ss_wide) - ((int) &temp);
2586 regaddr = offset + regnum * 8;
2587 start = 0;
2588 #endif
2589 }
2590
2591 for (i = start; i < 2; i++)
2592 {
2593 errno = 0;
2594 raw_val[i] = call_ptrace (PT_RUREGS, inferior_pid,
2595 (PTRACE_ARG3_TYPE) regaddr, 0);
2596 if (errno != 0)
2597 {
2598 /* Warning, not error, in case we are attached; sometimes the
2599 kernel doesn't let us at the registers. */
2600 char *err = safe_strerror (errno);
2601 char *msg = alloca (strlen (err) + 128);
2602 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2603 warning (msg);
2604 goto error_exit;
2605 }
2606
2607 regaddr += sizeof (long);
2608 }
2609
2610 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2611 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2612
2613 error_exit:
2614 ;
2615 }
2616
2617 /* "Info all-reg" command */
2618
2619 static void
2620 pa_print_registers (raw_regs, regnum, fpregs)
2621 char *raw_regs;
2622 int regnum;
2623 int fpregs;
2624 {
2625 int i, j;
2626 /* Alas, we are compiled so that "long long" is 32 bits */
2627 long raw_val[2];
2628 long long_val;
2629 int rows = 48, columns = 2;
2630
2631 for (i = 0; i < rows; i++)
2632 {
2633 for (j = 0; j < columns; j++)
2634 {
2635 /* We display registers in column-major order. */
2636 int regnum = i + j * rows;
2637
2638 /* Q: Why is the value passed through "extract_signed_integer",
2639 while above, in "pa_do_registers_info" it isn't?
2640 A: ? */
2641 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2642
2643 /* Even fancier % formats to prevent leading zeros
2644 and still maintain the output in columns. */
2645 if (!is_pa_2)
2646 {
2647 /* Being big-endian, on this machine the low bits
2648 (the ones we want to look at) are in the second longword. */
2649 long_val = extract_signed_integer (&raw_val[1], 4);
2650 printf_filtered ("%10.10s: %8x ",
2651 REGISTER_NAME (regnum), long_val);
2652 }
2653 else
2654 {
2655 /* raw_val = extract_signed_integer(&raw_val, 8); */
2656 if (raw_val[0] == 0)
2657 printf_filtered ("%10.10s: %8x ",
2658 REGISTER_NAME (regnum), raw_val[1]);
2659 else
2660 printf_filtered ("%10.10s: %8x%8.8x ",
2661 REGISTER_NAME (regnum),
2662 raw_val[0], raw_val[1]);
2663 }
2664 }
2665 printf_unfiltered ("\n");
2666 }
2667
2668 if (fpregs)
2669 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2670 pa_print_fp_reg (i);
2671 }
2672
2673 /************* new function ******************/
2674 static void
2675 pa_strcat_registers (raw_regs, regnum, fpregs, stream)
2676 char *raw_regs;
2677 int regnum;
2678 int fpregs;
2679 GDB_FILE *stream;
2680 {
2681 int i, j;
2682 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2683 long long_val;
2684 enum precision_type precision;
2685
2686 precision = unspecified_precision;
2687
2688 for (i = 0; i < 18; i++)
2689 {
2690 for (j = 0; j < 4; j++)
2691 {
2692 /* Q: Why is the value passed through "extract_signed_integer",
2693 while above, in "pa_do_registers_info" it isn't?
2694 A: ? */
2695 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2696
2697 /* Even fancier % formats to prevent leading zeros
2698 and still maintain the output in columns. */
2699 if (!is_pa_2)
2700 {
2701 /* Being big-endian, on this machine the low bits
2702 (the ones we want to look at) are in the second longword. */
2703 long_val = extract_signed_integer (&raw_val[1], 4);
2704 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)), long_val);
2705 }
2706 else
2707 {
2708 /* raw_val = extract_signed_integer(&raw_val, 8); */
2709 if (raw_val[0] == 0)
2710 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)),
2711 raw_val[1]);
2712 else
2713 fprintf_filtered (stream, "%8.8s: %8x%8.8x ", REGISTER_NAME (i + (j * 18)),
2714 raw_val[0], raw_val[1]);
2715 }
2716 }
2717 fprintf_unfiltered (stream, "\n");
2718 }
2719
2720 if (fpregs)
2721 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2722 pa_strcat_fp_reg (i, stream, precision);
2723 }
2724
2725 static void
2726 pa_print_fp_reg (i)
2727 int i;
2728 {
2729 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2730 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2731
2732 /* Get 32bits of data. */
2733 read_relative_register_raw_bytes (i, raw_buffer);
2734
2735 /* Put it in the buffer. No conversions are ever necessary. */
2736 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2737
2738 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2739 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2740 fputs_filtered ("(single precision) ", gdb_stdout);
2741
2742 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2743 1, 0, Val_pretty_default);
2744 printf_filtered ("\n");
2745
2746 /* If "i" is even, then this register can also be a double-precision
2747 FP register. Dump it out as such. */
2748 if ((i % 2) == 0)
2749 {
2750 /* Get the data in raw format for the 2nd half. */
2751 read_relative_register_raw_bytes (i + 1, raw_buffer);
2752
2753 /* Copy it into the appropriate part of the virtual buffer. */
2754 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2755 REGISTER_RAW_SIZE (i));
2756
2757 /* Dump it as a double. */
2758 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2759 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2760 fputs_filtered ("(double precision) ", gdb_stdout);
2761
2762 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2763 1, 0, Val_pretty_default);
2764 printf_filtered ("\n");
2765 }
2766 }
2767
2768 /*************** new function ***********************/
2769 static void
2770 pa_strcat_fp_reg (i, stream, precision)
2771 int i;
2772 GDB_FILE *stream;
2773 enum precision_type precision;
2774 {
2775 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2776 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2777
2778 fputs_filtered (REGISTER_NAME (i), stream);
2779 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2780
2781 /* Get 32bits of data. */
2782 read_relative_register_raw_bytes (i, raw_buffer);
2783
2784 /* Put it in the buffer. No conversions are ever necessary. */
2785 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2786
2787 if (precision == double_precision && (i % 2) == 0)
2788 {
2789
2790 char raw_buf[MAX_REGISTER_RAW_SIZE];
2791
2792 /* Get the data in raw format for the 2nd half. */
2793 read_relative_register_raw_bytes (i + 1, raw_buf);
2794
2795 /* Copy it into the appropriate part of the virtual buffer. */
2796 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2797
2798 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2799 1, 0, Val_pretty_default);
2800
2801 }
2802 else
2803 {
2804 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2805 1, 0, Val_pretty_default);
2806 }
2807
2808 }
2809
2810 /* Return one if PC is in the call path of a trampoline, else return zero.
2811
2812 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2813 just shared library trampolines (import, export). */
2814
2815 int
2816 in_solib_call_trampoline (pc, name)
2817 CORE_ADDR pc;
2818 char *name;
2819 {
2820 struct minimal_symbol *minsym;
2821 struct unwind_table_entry *u;
2822 static CORE_ADDR dyncall = 0;
2823 static CORE_ADDR sr4export = 0;
2824
2825 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2826 new exec file */
2827
2828 /* First see if PC is in one of the two C-library trampolines. */
2829 if (!dyncall)
2830 {
2831 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2832 if (minsym)
2833 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2834 else
2835 dyncall = -1;
2836 }
2837
2838 if (!sr4export)
2839 {
2840 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2841 if (minsym)
2842 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2843 else
2844 sr4export = -1;
2845 }
2846
2847 if (pc == dyncall || pc == sr4export)
2848 return 1;
2849
2850 minsym = lookup_minimal_symbol_by_pc (pc);
2851 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
2852 return 1;
2853
2854 /* Get the unwind descriptor corresponding to PC, return zero
2855 if no unwind was found. */
2856 u = find_unwind_entry (pc);
2857 if (!u)
2858 return 0;
2859
2860 /* If this isn't a linker stub, then return now. */
2861 if (u->stub_unwind.stub_type == 0)
2862 return 0;
2863
2864 /* By definition a long-branch stub is a call stub. */
2865 if (u->stub_unwind.stub_type == LONG_BRANCH)
2866 return 1;
2867
2868 /* The call and return path execute the same instructions within
2869 an IMPORT stub! So an IMPORT stub is both a call and return
2870 trampoline. */
2871 if (u->stub_unwind.stub_type == IMPORT)
2872 return 1;
2873
2874 /* Parameter relocation stubs always have a call path and may have a
2875 return path. */
2876 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2877 || u->stub_unwind.stub_type == EXPORT)
2878 {
2879 CORE_ADDR addr;
2880
2881 /* Search forward from the current PC until we hit a branch
2882 or the end of the stub. */
2883 for (addr = pc; addr <= u->region_end; addr += 4)
2884 {
2885 unsigned long insn;
2886
2887 insn = read_memory_integer (addr, 4);
2888
2889 /* Does it look like a bl? If so then it's the call path, if
2890 we find a bv or be first, then we're on the return path. */
2891 if ((insn & 0xfc00e000) == 0xe8000000)
2892 return 1;
2893 else if ((insn & 0xfc00e001) == 0xe800c000
2894 || (insn & 0xfc000000) == 0xe0000000)
2895 return 0;
2896 }
2897
2898 /* Should never happen. */
2899 warning ("Unable to find branch in parameter relocation stub.\n");
2900 return 0;
2901 }
2902
2903 /* Unknown stub type. For now, just return zero. */
2904 return 0;
2905 }
2906
2907 /* Return one if PC is in the return path of a trampoline, else return zero.
2908
2909 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2910 just shared library trampolines (import, export). */
2911
2912 int
2913 in_solib_return_trampoline (pc, name)
2914 CORE_ADDR pc;
2915 char *name;
2916 {
2917 struct unwind_table_entry *u;
2918
2919 /* Get the unwind descriptor corresponding to PC, return zero
2920 if no unwind was found. */
2921 u = find_unwind_entry (pc);
2922 if (!u)
2923 return 0;
2924
2925 /* If this isn't a linker stub or it's just a long branch stub, then
2926 return zero. */
2927 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
2928 return 0;
2929
2930 /* The call and return path execute the same instructions within
2931 an IMPORT stub! So an IMPORT stub is both a call and return
2932 trampoline. */
2933 if (u->stub_unwind.stub_type == IMPORT)
2934 return 1;
2935
2936 /* Parameter relocation stubs always have a call path and may have a
2937 return path. */
2938 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2939 || u->stub_unwind.stub_type == EXPORT)
2940 {
2941 CORE_ADDR addr;
2942
2943 /* Search forward from the current PC until we hit a branch
2944 or the end of the stub. */
2945 for (addr = pc; addr <= u->region_end; addr += 4)
2946 {
2947 unsigned long insn;
2948
2949 insn = read_memory_integer (addr, 4);
2950
2951 /* Does it look like a bl? If so then it's the call path, if
2952 we find a bv or be first, then we're on the return path. */
2953 if ((insn & 0xfc00e000) == 0xe8000000)
2954 return 0;
2955 else if ((insn & 0xfc00e001) == 0xe800c000
2956 || (insn & 0xfc000000) == 0xe0000000)
2957 return 1;
2958 }
2959
2960 /* Should never happen. */
2961 warning ("Unable to find branch in parameter relocation stub.\n");
2962 return 0;
2963 }
2964
2965 /* Unknown stub type. For now, just return zero. */
2966 return 0;
2967
2968 }
2969
2970 /* Figure out if PC is in a trampoline, and if so find out where
2971 the trampoline will jump to. If not in a trampoline, return zero.
2972
2973 Simple code examination probably is not a good idea since the code
2974 sequences in trampolines can also appear in user code.
2975
2976 We use unwinds and information from the minimal symbol table to
2977 determine when we're in a trampoline. This won't work for ELF
2978 (yet) since it doesn't create stub unwind entries. Whether or
2979 not ELF will create stub unwinds or normal unwinds for linker
2980 stubs is still being debated.
2981
2982 This should handle simple calls through dyncall or sr4export,
2983 long calls, argument relocation stubs, and dyncall/sr4export
2984 calling an argument relocation stub. It even handles some stubs
2985 used in dynamic executables. */
2986
2987 CORE_ADDR
2988 skip_trampoline_code (pc, name)
2989 CORE_ADDR pc;
2990 char *name;
2991 {
2992 long orig_pc = pc;
2993 long prev_inst, curr_inst, loc;
2994 static CORE_ADDR dyncall = 0;
2995 static CORE_ADDR dyncall_external = 0;
2996 static CORE_ADDR sr4export = 0;
2997 struct minimal_symbol *msym;
2998 struct unwind_table_entry *u;
2999
3000
3001 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3002 new exec file */
3003
3004 if (!dyncall)
3005 {
3006 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3007 if (msym)
3008 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3009 else
3010 dyncall = -1;
3011 }
3012
3013 if (!dyncall_external)
3014 {
3015 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3016 if (msym)
3017 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3018 else
3019 dyncall_external = -1;
3020 }
3021
3022 if (!sr4export)
3023 {
3024 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3025 if (msym)
3026 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3027 else
3028 sr4export = -1;
3029 }
3030
3031 /* Addresses passed to dyncall may *NOT* be the actual address
3032 of the function. So we may have to do something special. */
3033 if (pc == dyncall)
3034 {
3035 pc = (CORE_ADDR) read_register (22);
3036
3037 /* If bit 30 (counting from the left) is on, then pc is the address of
3038 the PLT entry for this function, not the address of the function
3039 itself. Bit 31 has meaning too, but only for MPE. */
3040 if (pc & 0x2)
3041 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3042 }
3043 if (pc == dyncall_external)
3044 {
3045 pc = (CORE_ADDR) read_register (22);
3046 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3047 }
3048 else if (pc == sr4export)
3049 pc = (CORE_ADDR) (read_register (22));
3050
3051 /* Get the unwind descriptor corresponding to PC, return zero
3052 if no unwind was found. */
3053 u = find_unwind_entry (pc);
3054 if (!u)
3055 return 0;
3056
3057 /* If this isn't a linker stub, then return now. */
3058 /* elz: attention here! (FIXME) because of a compiler/linker
3059 error, some stubs which should have a non zero stub_unwind.stub_type
3060 have unfortunately a value of zero. So this function would return here
3061 as if we were not in a trampoline. To fix this, we go look at the partial
3062 symbol information, which reports this guy as a stub.
3063 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3064 partial symbol information is also wrong sometimes. This is because
3065 when it is entered (somread.c::som_symtab_read()) it can happen that
3066 if the type of the symbol (from the som) is Entry, and the symbol is
3067 in a shared library, then it can also be a trampoline. This would
3068 be OK, except that I believe the way they decide if we are ina shared library
3069 does not work. SOOOO..., even if we have a regular function w/o trampolines
3070 its minimal symbol can be assigned type mst_solib_trampoline.
3071 Also, if we find that the symbol is a real stub, then we fix the unwind
3072 descriptor, and define the stub type to be EXPORT.
3073 Hopefully this is correct most of the times. */
3074 if (u->stub_unwind.stub_type == 0)
3075 {
3076
3077 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3078 we can delete all the code which appears between the lines */
3079 /*--------------------------------------------------------------------------*/
3080 msym = lookup_minimal_symbol_by_pc (pc);
3081
3082 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3083 return orig_pc == pc ? 0 : pc & ~0x3;
3084
3085 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3086 {
3087 struct objfile *objfile;
3088 struct minimal_symbol *msymbol;
3089 int function_found = 0;
3090
3091 /* go look if there is another minimal symbol with the same name as
3092 this one, but with type mst_text. This would happen if the msym
3093 is an actual trampoline, in which case there would be another
3094 symbol with the same name corresponding to the real function */
3095
3096 ALL_MSYMBOLS (objfile, msymbol)
3097 {
3098 if (MSYMBOL_TYPE (msymbol) == mst_text
3099 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3100 {
3101 function_found = 1;
3102 break;
3103 }
3104 }
3105
3106 if (function_found)
3107 /* the type of msym is correct (mst_solib_trampoline), but
3108 the unwind info is wrong, so set it to the correct value */
3109 u->stub_unwind.stub_type = EXPORT;
3110 else
3111 /* the stub type info in the unwind is correct (this is not a
3112 trampoline), but the msym type information is wrong, it
3113 should be mst_text. So we need to fix the msym, and also
3114 get out of this function */
3115 {
3116 MSYMBOL_TYPE (msym) = mst_text;
3117 return orig_pc == pc ? 0 : pc & ~0x3;
3118 }
3119 }
3120
3121 /*--------------------------------------------------------------------------*/
3122 }
3123
3124 /* It's a stub. Search for a branch and figure out where it goes.
3125 Note we have to handle multi insn branch sequences like ldil;ble.
3126 Most (all?) other branches can be determined by examining the contents
3127 of certain registers and the stack. */
3128
3129 loc = pc;
3130 curr_inst = 0;
3131 prev_inst = 0;
3132 while (1)
3133 {
3134 /* Make sure we haven't walked outside the range of this stub. */
3135 if (u != find_unwind_entry (loc))
3136 {
3137 warning ("Unable to find branch in linker stub");
3138 return orig_pc == pc ? 0 : pc & ~0x3;
3139 }
3140
3141 prev_inst = curr_inst;
3142 curr_inst = read_memory_integer (loc, 4);
3143
3144 /* Does it look like a branch external using %r1? Then it's the
3145 branch from the stub to the actual function. */
3146 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3147 {
3148 /* Yup. See if the previous instruction loaded
3149 a value into %r1. If so compute and return the jump address. */
3150 if ((prev_inst & 0xffe00000) == 0x20200000)
3151 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3152 else
3153 {
3154 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3155 return orig_pc == pc ? 0 : pc & ~0x3;
3156 }
3157 }
3158
3159 /* Does it look like a be 0(sr0,%r21)? OR
3160 Does it look like a be, n 0(sr0,%r21)? OR
3161 Does it look like a bve (r21)? (this is on PA2.0)
3162 Does it look like a bve, n(r21)? (this is also on PA2.0)
3163 That's the branch from an
3164 import stub to an export stub.
3165
3166 It is impossible to determine the target of the branch via
3167 simple examination of instructions and/or data (consider
3168 that the address in the plabel may be the address of the
3169 bind-on-reference routine in the dynamic loader).
3170
3171 So we have try an alternative approach.
3172
3173 Get the name of the symbol at our current location; it should
3174 be a stub symbol with the same name as the symbol in the
3175 shared library.
3176
3177 Then lookup a minimal symbol with the same name; we should
3178 get the minimal symbol for the target routine in the shared
3179 library as those take precedence of import/export stubs. */
3180 if ((curr_inst == 0xe2a00000) ||
3181 (curr_inst == 0xe2a00002) ||
3182 (curr_inst == 0xeaa0d000) ||
3183 (curr_inst == 0xeaa0d002))
3184 {
3185 struct minimal_symbol *stubsym, *libsym;
3186
3187 stubsym = lookup_minimal_symbol_by_pc (loc);
3188 if (stubsym == NULL)
3189 {
3190 warning ("Unable to find symbol for 0x%x", loc);
3191 return orig_pc == pc ? 0 : pc & ~0x3;
3192 }
3193
3194 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3195 if (libsym == NULL)
3196 {
3197 warning ("Unable to find library symbol for %s\n",
3198 SYMBOL_NAME (stubsym));
3199 return orig_pc == pc ? 0 : pc & ~0x3;
3200 }
3201
3202 return SYMBOL_VALUE (libsym);
3203 }
3204
3205 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3206 branch from the stub to the actual function. */
3207 /*elz */
3208 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3209 || (curr_inst & 0xffe0e000) == 0xe8000000
3210 || (curr_inst & 0xffe0e000) == 0xe800A000)
3211 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3212
3213 /* Does it look like bv (rp)? Note this depends on the
3214 current stack pointer being the same as the stack
3215 pointer in the stub itself! This is a branch on from the
3216 stub back to the original caller. */
3217 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3218 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3219 {
3220 /* Yup. See if the previous instruction loaded
3221 rp from sp - 8. */
3222 if (prev_inst == 0x4bc23ff1)
3223 return (read_memory_integer
3224 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3225 else
3226 {
3227 warning ("Unable to find restore of %%rp before bv (%%rp).");
3228 return orig_pc == pc ? 0 : pc & ~0x3;
3229 }
3230 }
3231
3232 /* elz: added this case to capture the new instruction
3233 at the end of the return part of an export stub used by
3234 the PA2.0: BVE, n (rp) */
3235 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3236 {
3237 return (read_memory_integer
3238 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3239 }
3240
3241 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3242 the original caller from the stub. Used in dynamic executables. */
3243 else if (curr_inst == 0xe0400002)
3244 {
3245 /* The value we jump to is sitting in sp - 24. But that's
3246 loaded several instructions before the be instruction.
3247 I guess we could check for the previous instruction being
3248 mtsp %r1,%sr0 if we want to do sanity checking. */
3249 return (read_memory_integer
3250 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3251 }
3252
3253 /* Haven't found the branch yet, but we're still in the stub.
3254 Keep looking. */
3255 loc += 4;
3256 }
3257 }
3258
3259
3260 /* For the given instruction (INST), return any adjustment it makes
3261 to the stack pointer or zero for no adjustment.
3262
3263 This only handles instructions commonly found in prologues. */
3264
3265 static int
3266 prologue_inst_adjust_sp (inst)
3267 unsigned long inst;
3268 {
3269 /* This must persist across calls. */
3270 static int save_high21;
3271
3272 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3273 if ((inst & 0xffffc000) == 0x37de0000)
3274 return extract_14 (inst);
3275
3276 /* stwm X,D(sp) */
3277 if ((inst & 0xffe00000) == 0x6fc00000)
3278 return extract_14 (inst);
3279
3280 /* std,ma X,D(sp) */
3281 if ((inst & 0xffe00008) == 0x73c00008)
3282 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3283
3284 /* addil high21,%r1; ldo low11,(%r1),%r30)
3285 save high bits in save_high21 for later use. */
3286 if ((inst & 0xffe00000) == 0x28200000)
3287 {
3288 save_high21 = extract_21 (inst);
3289 return 0;
3290 }
3291
3292 if ((inst & 0xffff0000) == 0x343e0000)
3293 return save_high21 + extract_14 (inst);
3294
3295 /* fstws as used by the HP compilers. */
3296 if ((inst & 0xffffffe0) == 0x2fd01220)
3297 return extract_5_load (inst);
3298
3299 /* No adjustment. */
3300 return 0;
3301 }
3302
3303 /* Return nonzero if INST is a branch of some kind, else return zero. */
3304
3305 static int
3306 is_branch (inst)
3307 unsigned long inst;
3308 {
3309 switch (inst >> 26)
3310 {
3311 case 0x20:
3312 case 0x21:
3313 case 0x22:
3314 case 0x23:
3315 case 0x27:
3316 case 0x28:
3317 case 0x29:
3318 case 0x2a:
3319 case 0x2b:
3320 case 0x2f:
3321 case 0x30:
3322 case 0x31:
3323 case 0x32:
3324 case 0x33:
3325 case 0x38:
3326 case 0x39:
3327 case 0x3a:
3328 case 0x3b:
3329 return 1;
3330
3331 default:
3332 return 0;
3333 }
3334 }
3335
3336 /* Return the register number for a GR which is saved by INST or
3337 zero it INST does not save a GR. */
3338
3339 static int
3340 inst_saves_gr (inst)
3341 unsigned long inst;
3342 {
3343 /* Does it look like a stw? */
3344 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3345 || (inst >> 26) == 0x1f
3346 || ((inst >> 26) == 0x1f
3347 && ((inst >> 6) == 0xa)))
3348 return extract_5R_store (inst);
3349
3350 /* Does it look like a std? */
3351 if ((inst >> 26) == 0x1c
3352 || ((inst >> 26) == 0x03
3353 && ((inst >> 6) & 0xf) == 0xb))
3354 return extract_5R_store (inst);
3355
3356 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3357 if ((inst >> 26) == 0x1b)
3358 return extract_5R_store (inst);
3359
3360 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3361 too. */
3362 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3363 || ((inst >> 26) == 0x3
3364 && (((inst >> 6) & 0xf) == 0x8
3365 || (inst >> 6) & 0xf) == 0x9))
3366 return extract_5R_store (inst);
3367
3368 return 0;
3369 }
3370
3371 /* Return the register number for a FR which is saved by INST or
3372 zero it INST does not save a FR.
3373
3374 Note we only care about full 64bit register stores (that's the only
3375 kind of stores the prologue will use).
3376
3377 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3378
3379 static int
3380 inst_saves_fr (inst)
3381 unsigned long inst;
3382 {
3383 /* is this an FSTD ? */
3384 if ((inst & 0xfc00dfc0) == 0x2c001200)
3385 return extract_5r_store (inst);
3386 if ((inst & 0xfc000002) == 0x70000002)
3387 return extract_5R_store (inst);
3388 /* is this an FSTW ? */
3389 if ((inst & 0xfc00df80) == 0x24001200)
3390 return extract_5r_store (inst);
3391 if ((inst & 0xfc000002) == 0x7c000000)
3392 return extract_5R_store (inst);
3393 return 0;
3394 }
3395
3396 /* Advance PC across any function entry prologue instructions
3397 to reach some "real" code.
3398
3399 Use information in the unwind table to determine what exactly should
3400 be in the prologue. */
3401
3402
3403 CORE_ADDR
3404 skip_prologue_hard_way (pc)
3405 CORE_ADDR pc;
3406 {
3407 char buf[4];
3408 CORE_ADDR orig_pc = pc;
3409 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3410 unsigned long args_stored, status, i, restart_gr, restart_fr;
3411 struct unwind_table_entry *u;
3412
3413 restart_gr = 0;
3414 restart_fr = 0;
3415
3416 restart:
3417 u = find_unwind_entry (pc);
3418 if (!u)
3419 return pc;
3420
3421 /* If we are not at the beginning of a function, then return now. */
3422 if ((pc & ~0x3) != u->region_start)
3423 return pc;
3424
3425 /* This is how much of a frame adjustment we need to account for. */
3426 stack_remaining = u->Total_frame_size << 3;
3427
3428 /* Magic register saves we want to know about. */
3429 save_rp = u->Save_RP;
3430 save_sp = u->Save_SP;
3431
3432 /* An indication that args may be stored into the stack. Unfortunately
3433 the HPUX compilers tend to set this in cases where no args were
3434 stored too!. */
3435 args_stored = 1;
3436
3437 /* Turn the Entry_GR field into a bitmask. */
3438 save_gr = 0;
3439 for (i = 3; i < u->Entry_GR + 3; i++)
3440 {
3441 /* Frame pointer gets saved into a special location. */
3442 if (u->Save_SP && i == FP_REGNUM)
3443 continue;
3444
3445 save_gr |= (1 << i);
3446 }
3447 save_gr &= ~restart_gr;
3448
3449 /* Turn the Entry_FR field into a bitmask too. */
3450 save_fr = 0;
3451 for (i = 12; i < u->Entry_FR + 12; i++)
3452 save_fr |= (1 << i);
3453 save_fr &= ~restart_fr;
3454
3455 /* Loop until we find everything of interest or hit a branch.
3456
3457 For unoptimized GCC code and for any HP CC code this will never ever
3458 examine any user instructions.
3459
3460 For optimzied GCC code we're faced with problems. GCC will schedule
3461 its prologue and make prologue instructions available for delay slot
3462 filling. The end result is user code gets mixed in with the prologue
3463 and a prologue instruction may be in the delay slot of the first branch
3464 or call.
3465
3466 Some unexpected things are expected with debugging optimized code, so
3467 we allow this routine to walk past user instructions in optimized
3468 GCC code. */
3469 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3470 || args_stored)
3471 {
3472 unsigned int reg_num;
3473 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3474 unsigned long old_save_rp, old_save_sp, next_inst;
3475
3476 /* Save copies of all the triggers so we can compare them later
3477 (only for HPC). */
3478 old_save_gr = save_gr;
3479 old_save_fr = save_fr;
3480 old_save_rp = save_rp;
3481 old_save_sp = save_sp;
3482 old_stack_remaining = stack_remaining;
3483
3484 status = target_read_memory (pc, buf, 4);
3485 inst = extract_unsigned_integer (buf, 4);
3486
3487 /* Yow! */
3488 if (status != 0)
3489 return pc;
3490
3491 /* Note the interesting effects of this instruction. */
3492 stack_remaining -= prologue_inst_adjust_sp (inst);
3493
3494 /* There are limited ways to store the return pointer into the
3495 stack. */
3496 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3497 save_rp = 0;
3498
3499 /* These are the only ways we save SP into the stack. At this time
3500 the HP compilers never bother to save SP into the stack. */
3501 if ((inst & 0xffffc000) == 0x6fc10000
3502 || (inst & 0xffffc00c) == 0x73c10008)
3503 save_sp = 0;
3504
3505 /* Account for general and floating-point register saves. */
3506 reg_num = inst_saves_gr (inst);
3507 save_gr &= ~(1 << reg_num);
3508
3509 /* Ugh. Also account for argument stores into the stack.
3510 Unfortunately args_stored only tells us that some arguments
3511 where stored into the stack. Not how many or what kind!
3512
3513 This is a kludge as on the HP compiler sets this bit and it
3514 never does prologue scheduling. So once we see one, skip past
3515 all of them. We have similar code for the fp arg stores below.
3516
3517 FIXME. Can still die if we have a mix of GR and FR argument
3518 stores! */
3519 if (reg_num >= 23 && reg_num <= 26)
3520 {
3521 while (reg_num >= 23 && reg_num <= 26)
3522 {
3523 pc += 4;
3524 status = target_read_memory (pc, buf, 4);
3525 inst = extract_unsigned_integer (buf, 4);
3526 if (status != 0)
3527 return pc;
3528 reg_num = inst_saves_gr (inst);
3529 }
3530 args_stored = 0;
3531 continue;
3532 }
3533
3534 reg_num = inst_saves_fr (inst);
3535 save_fr &= ~(1 << reg_num);
3536
3537 status = target_read_memory (pc + 4, buf, 4);
3538 next_inst = extract_unsigned_integer (buf, 4);
3539
3540 /* Yow! */
3541 if (status != 0)
3542 return pc;
3543
3544 /* We've got to be read to handle the ldo before the fp register
3545 save. */
3546 if ((inst & 0xfc000000) == 0x34000000
3547 && inst_saves_fr (next_inst) >= 4
3548 && inst_saves_fr (next_inst) <= 7)
3549 {
3550 /* So we drop into the code below in a reasonable state. */
3551 reg_num = inst_saves_fr (next_inst);
3552 pc -= 4;
3553 }
3554
3555 /* Ugh. Also account for argument stores into the stack.
3556 This is a kludge as on the HP compiler sets this bit and it
3557 never does prologue scheduling. So once we see one, skip past
3558 all of them. */
3559 if (reg_num >= 4 && reg_num <= 7)
3560 {
3561 while (reg_num >= 4 && reg_num <= 7)
3562 {
3563 pc += 8;
3564 status = target_read_memory (pc, buf, 4);
3565 inst = extract_unsigned_integer (buf, 4);
3566 if (status != 0)
3567 return pc;
3568 if ((inst & 0xfc000000) != 0x34000000)
3569 break;
3570 status = target_read_memory (pc + 4, buf, 4);
3571 next_inst = extract_unsigned_integer (buf, 4);
3572 if (status != 0)
3573 return pc;
3574 reg_num = inst_saves_fr (next_inst);
3575 }
3576 args_stored = 0;
3577 continue;
3578 }
3579
3580 /* Quit if we hit any kind of branch. This can happen if a prologue
3581 instruction is in the delay slot of the first call/branch. */
3582 if (is_branch (inst))
3583 break;
3584
3585 /* What a crock. The HP compilers set args_stored even if no
3586 arguments were stored into the stack (boo hiss). This could
3587 cause this code to then skip a bunch of user insns (up to the
3588 first branch).
3589
3590 To combat this we try to identify when args_stored was bogusly
3591 set and clear it. We only do this when args_stored is nonzero,
3592 all other resources are accounted for, and nothing changed on
3593 this pass. */
3594 if (args_stored
3595 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3596 && old_save_gr == save_gr && old_save_fr == save_fr
3597 && old_save_rp == save_rp && old_save_sp == save_sp
3598 && old_stack_remaining == stack_remaining)
3599 break;
3600
3601 /* Bump the PC. */
3602 pc += 4;
3603 }
3604
3605 /* We've got a tenative location for the end of the prologue. However
3606 because of limitations in the unwind descriptor mechanism we may
3607 have went too far into user code looking for the save of a register
3608 that does not exist. So, if there registers we expected to be saved
3609 but never were, mask them out and restart.
3610
3611 This should only happen in optimized code, and should be very rare. */
3612 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3613 {
3614 pc = orig_pc;
3615 restart_gr = save_gr;
3616 restart_fr = save_fr;
3617 goto restart;
3618 }
3619
3620 return pc;
3621 }
3622
3623
3624 /* Return the address of the PC after the last prologue instruction if
3625 we can determine it from the debug symbols. Else return zero. */
3626
3627 static CORE_ADDR
3628 after_prologue (pc)
3629 CORE_ADDR pc;
3630 {
3631 struct symtab_and_line sal;
3632 CORE_ADDR func_addr, func_end;
3633 struct symbol *f;
3634
3635 /* If we can not find the symbol in the partial symbol table, then
3636 there is no hope we can determine the function's start address
3637 with this code. */
3638 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3639 return 0;
3640
3641 /* Get the line associated with FUNC_ADDR. */
3642 sal = find_pc_line (func_addr, 0);
3643
3644 /* There are only two cases to consider. First, the end of the source line
3645 is within the function bounds. In that case we return the end of the
3646 source line. Second is the end of the source line extends beyond the
3647 bounds of the current function. We need to use the slow code to
3648 examine instructions in that case.
3649
3650 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3651 the wrong thing to do. In fact, it should be entirely possible for this
3652 function to always return zero since the slow instruction scanning code
3653 is supposed to *always* work. If it does not, then it is a bug. */
3654 if (sal.end < func_end)
3655 return sal.end;
3656 else
3657 return 0;
3658 }
3659
3660 /* To skip prologues, I use this predicate. Returns either PC itself
3661 if the code at PC does not look like a function prologue; otherwise
3662 returns an address that (if we're lucky) follows the prologue. If
3663 LENIENT, then we must skip everything which is involved in setting
3664 up the frame (it's OK to skip more, just so long as we don't skip
3665 anything which might clobber the registers which are being saved.
3666 Currently we must not skip more on the alpha, but we might the lenient
3667 stuff some day. */
3668
3669 CORE_ADDR
3670 hppa_skip_prologue (pc)
3671 CORE_ADDR pc;
3672 {
3673 unsigned long inst;
3674 int offset;
3675 CORE_ADDR post_prologue_pc;
3676 char buf[4];
3677
3678 /* See if we can determine the end of the prologue via the symbol table.
3679 If so, then return either PC, or the PC after the prologue, whichever
3680 is greater. */
3681
3682 post_prologue_pc = after_prologue (pc);
3683
3684 /* If after_prologue returned a useful address, then use it. Else
3685 fall back on the instruction skipping code.
3686
3687 Some folks have claimed this causes problems because the breakpoint
3688 may be the first instruction of the prologue. If that happens, then
3689 the instruction skipping code has a bug that needs to be fixed. */
3690 if (post_prologue_pc != 0)
3691 return max (pc, post_prologue_pc);
3692 else
3693 return (skip_prologue_hard_way (pc));
3694 }
3695
3696 /* Put here the code to store, into a struct frame_saved_regs,
3697 the addresses of the saved registers of frame described by FRAME_INFO.
3698 This includes special registers such as pc and fp saved in special
3699 ways in the stack frame. sp is even more special:
3700 the address we return for it IS the sp for the next frame. */
3701
3702 void
3703 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
3704 struct frame_info *frame_info;
3705 struct frame_saved_regs *frame_saved_regs;
3706 {
3707 CORE_ADDR pc;
3708 struct unwind_table_entry *u;
3709 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3710 int status, i, reg;
3711 char buf[4];
3712 int fp_loc = -1;
3713 int final_iteration;
3714
3715 /* Zero out everything. */
3716 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3717
3718 /* Call dummy frames always look the same, so there's no need to
3719 examine the dummy code to determine locations of saved registers;
3720 instead, let find_dummy_frame_regs fill in the correct offsets
3721 for the saved registers. */
3722 if ((frame_info->pc >= frame_info->frame
3723 && frame_info->pc <= (frame_info->frame
3724 /* A call dummy is sized in words, but it is
3725 actually a series of instructions. Account
3726 for that scaling factor. */
3727 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3728 * CALL_DUMMY_LENGTH)
3729 /* Similarly we have to account for 64bit
3730 wide register saves. */
3731 + (32 * REGISTER_SIZE)
3732 /* We always consider FP regs 8 bytes long. */
3733 + (NUM_REGS - FP0_REGNUM) * 8
3734 /* Similarly we have to account for 64bit
3735 wide register saves. */
3736 + (6 * REGISTER_SIZE))))
3737 find_dummy_frame_regs (frame_info, frame_saved_regs);
3738
3739 /* Interrupt handlers are special too. They lay out the register
3740 state in the exact same order as the register numbers in GDB. */
3741 if (pc_in_interrupt_handler (frame_info->pc))
3742 {
3743 for (i = 0; i < NUM_REGS; i++)
3744 {
3745 /* SP is a little special. */
3746 if (i == SP_REGNUM)
3747 frame_saved_regs->regs[SP_REGNUM]
3748 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3749 TARGET_PTR_BIT / 8);
3750 else
3751 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3752 }
3753 return;
3754 }
3755
3756 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3757 /* Handle signal handler callers. */
3758 if (frame_info->signal_handler_caller)
3759 {
3760 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3761 return;
3762 }
3763 #endif
3764
3765 /* Get the starting address of the function referred to by the PC
3766 saved in frame. */
3767 pc = get_pc_function_start (frame_info->pc);
3768
3769 /* Yow! */
3770 u = find_unwind_entry (pc);
3771 if (!u)
3772 return;
3773
3774 /* This is how much of a frame adjustment we need to account for. */
3775 stack_remaining = u->Total_frame_size << 3;
3776
3777 /* Magic register saves we want to know about. */
3778 save_rp = u->Save_RP;
3779 save_sp = u->Save_SP;
3780
3781 /* Turn the Entry_GR field into a bitmask. */
3782 save_gr = 0;
3783 for (i = 3; i < u->Entry_GR + 3; i++)
3784 {
3785 /* Frame pointer gets saved into a special location. */
3786 if (u->Save_SP && i == FP_REGNUM)
3787 continue;
3788
3789 save_gr |= (1 << i);
3790 }
3791
3792 /* Turn the Entry_FR field into a bitmask too. */
3793 save_fr = 0;
3794 for (i = 12; i < u->Entry_FR + 12; i++)
3795 save_fr |= (1 << i);
3796
3797 /* The frame always represents the value of %sp at entry to the
3798 current function (and is thus equivalent to the "saved" stack
3799 pointer. */
3800 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3801
3802 /* Loop until we find everything of interest or hit a branch.
3803
3804 For unoptimized GCC code and for any HP CC code this will never ever
3805 examine any user instructions.
3806
3807 For optimized GCC code we're faced with problems. GCC will schedule
3808 its prologue and make prologue instructions available for delay slot
3809 filling. The end result is user code gets mixed in with the prologue
3810 and a prologue instruction may be in the delay slot of the first branch
3811 or call.
3812
3813 Some unexpected things are expected with debugging optimized code, so
3814 we allow this routine to walk past user instructions in optimized
3815 GCC code. */
3816 final_iteration = 0;
3817 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3818 && pc <= frame_info->pc)
3819 {
3820 status = target_read_memory (pc, buf, 4);
3821 inst = extract_unsigned_integer (buf, 4);
3822
3823 /* Yow! */
3824 if (status != 0)
3825 return;
3826
3827 /* Note the interesting effects of this instruction. */
3828 stack_remaining -= prologue_inst_adjust_sp (inst);
3829
3830 /* There are limited ways to store the return pointer into the
3831 stack. */
3832 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3833 {
3834 save_rp = 0;
3835 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3836 }
3837
3838 /* Note if we saved SP into the stack. This also happens to indicate
3839 the location of the saved frame pointer. */
3840 if ((inst & 0xffffc000) == 0x6fc10000
3841 || (inst & 0xffffc00c) == 0x73c10008)
3842 {
3843 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
3844 save_sp = 0;
3845 }
3846
3847 /* Account for general and floating-point register saves. */
3848 reg = inst_saves_gr (inst);
3849 if (reg >= 3 && reg <= 18
3850 && (!u->Save_SP || reg != FP_REGNUM))
3851 {
3852 save_gr &= ~(1 << reg);
3853
3854 /* stwm with a positive displacement is a *post modify*. */
3855 if ((inst >> 26) == 0x1b
3856 && extract_14 (inst) >= 0)
3857 frame_saved_regs->regs[reg] = frame_info->frame;
3858 /* A std has explicit post_modify forms. */
3859 else if ((inst & 0xfc00000c0) == 0x70000008)
3860 frame_saved_regs->regs[reg] = frame_info->frame;
3861 else
3862 {
3863 CORE_ADDR offset;
3864
3865 if ((inst >> 26) == 0x1c)
3866 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3867 else if ((inst >> 26) == 0x03)
3868 offset = low_sign_extend (inst & 0x1f, 5);
3869 else
3870 offset = extract_14 (inst);
3871
3872 /* Handle code with and without frame pointers. */
3873 if (u->Save_SP)
3874 frame_saved_regs->regs[reg]
3875 = frame_info->frame + offset;
3876 else
3877 frame_saved_regs->regs[reg]
3878 = (frame_info->frame + (u->Total_frame_size << 3)
3879 + offset);
3880 }
3881 }
3882
3883
3884 /* GCC handles callee saved FP regs a little differently.
3885
3886 It emits an instruction to put the value of the start of
3887 the FP store area into %r1. It then uses fstds,ma with
3888 a basereg of %r1 for the stores.
3889
3890 HP CC emits them at the current stack pointer modifying
3891 the stack pointer as it stores each register. */
3892
3893 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
3894 if ((inst & 0xffffc000) == 0x34610000
3895 || (inst & 0xffffc000) == 0x37c10000)
3896 fp_loc = extract_14 (inst);
3897
3898 reg = inst_saves_fr (inst);
3899 if (reg >= 12 && reg <= 21)
3900 {
3901 /* Note +4 braindamage below is necessary because the FP status
3902 registers are internally 8 registers rather than the expected
3903 4 registers. */
3904 save_fr &= ~(1 << reg);
3905 if (fp_loc == -1)
3906 {
3907 /* 1st HP CC FP register store. After this instruction
3908 we've set enough state that the GCC and HPCC code are
3909 both handled in the same manner. */
3910 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
3911 fp_loc = 8;
3912 }
3913 else
3914 {
3915 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
3916 = frame_info->frame + fp_loc;
3917 fp_loc += 8;
3918 }
3919 }
3920
3921 /* Quit if we hit any kind of branch the previous iteration.
3922 if (final_iteration)
3923 break;
3924
3925 /* We want to look precisely one instruction beyond the branch
3926 if we have not found everything yet. */
3927 if (is_branch (inst))
3928 final_iteration = 1;
3929
3930 /* Bump the PC. */
3931 pc += 4;
3932 }
3933 }
3934
3935
3936 /* Exception handling support for the HP-UX ANSI C++ compiler.
3937 The compiler (aCC) provides a callback for exception events;
3938 GDB can set a breakpoint on this callback and find out what
3939 exception event has occurred. */
3940
3941 /* The name of the hook to be set to point to the callback function */
3942 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
3943 /* The name of the function to be used to set the hook value */
3944 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
3945 /* The name of the callback function in end.o */
3946 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
3947 /* Name of function in end.o on which a break is set (called by above) */
3948 static char HP_ACC_EH_break[] = "__d_eh_break";
3949 /* Name of flag (in end.o) that enables catching throws */
3950 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
3951 /* Name of flag (in end.o) that enables catching catching */
3952 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
3953 /* The enum used by aCC */
3954 typedef enum
3955 {
3956 __EH_NOTIFY_THROW,
3957 __EH_NOTIFY_CATCH
3958 }
3959 __eh_notification;
3960
3961 /* Is exception-handling support available with this executable? */
3962 static int hp_cxx_exception_support = 0;
3963 /* Has the initialize function been run? */
3964 int hp_cxx_exception_support_initialized = 0;
3965 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
3966 extern int exception_support_initialized;
3967 /* Address of __eh_notify_hook */
3968 static CORE_ADDR eh_notify_hook_addr = 0;
3969 /* Address of __d_eh_notify_callback */
3970 static CORE_ADDR eh_notify_callback_addr = 0;
3971 /* Address of __d_eh_break */
3972 static CORE_ADDR eh_break_addr = 0;
3973 /* Address of __d_eh_catch_catch */
3974 static CORE_ADDR eh_catch_catch_addr = 0;
3975 /* Address of __d_eh_catch_throw */
3976 static CORE_ADDR eh_catch_throw_addr = 0;
3977 /* Sal for __d_eh_break */
3978 static struct symtab_and_line *break_callback_sal = 0;
3979
3980 /* Code in end.c expects __d_pid to be set in the inferior,
3981 otherwise __d_eh_notify_callback doesn't bother to call
3982 __d_eh_break! So we poke the pid into this symbol
3983 ourselves.
3984 0 => success
3985 1 => failure */
3986 int
3987 setup_d_pid_in_inferior ()
3988 {
3989 CORE_ADDR anaddr;
3990 struct minimal_symbol *msymbol;
3991 char buf[4]; /* FIXME 32x64? */
3992
3993 /* Slam the pid of the process into __d_pid; failing is only a warning! */
3994 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
3995 if (msymbol == NULL)
3996 {
3997 warning ("Unable to find __d_pid symbol in object file.");
3998 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
3999 return 1;
4000 }
4001
4002 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4003 store_unsigned_integer (buf, 4, inferior_pid); /* FIXME 32x64? */
4004 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4005 {
4006 warning ("Unable to write __d_pid");
4007 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4008 return 1;
4009 }
4010 return 0;
4011 }
4012
4013 /* Initialize exception catchpoint support by looking for the
4014 necessary hooks/callbacks in end.o, etc., and set the hook value to
4015 point to the required debug function
4016
4017 Return 0 => failure
4018 1 => success */
4019
4020 static int
4021 initialize_hp_cxx_exception_support ()
4022 {
4023 struct symtabs_and_lines sals;
4024 struct cleanup *old_chain;
4025 struct cleanup *canonical_strings_chain = NULL;
4026 int i;
4027 char *addr_start;
4028 char *addr_end = NULL;
4029 char **canonical = (char **) NULL;
4030 int thread = -1;
4031 struct symbol *sym = NULL;
4032 struct minimal_symbol *msym = NULL;
4033 struct objfile *objfile;
4034 asection *shlib_info;
4035
4036 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4037 recursion is a possibility because finding the hook for exception
4038 callbacks involves making a call in the inferior, which means
4039 re-inserting breakpoints which can re-invoke this code */
4040
4041 static int recurse = 0;
4042 if (recurse > 0)
4043 {
4044 hp_cxx_exception_support_initialized = 0;
4045 exception_support_initialized = 0;
4046 return 0;
4047 }
4048
4049 hp_cxx_exception_support = 0;
4050
4051 /* First check if we have seen any HP compiled objects; if not,
4052 it is very unlikely that HP's idiosyncratic callback mechanism
4053 for exception handling debug support will be available!
4054 This will percolate back up to breakpoint.c, where our callers
4055 will decide to try the g++ exception-handling support instead. */
4056 if (!hp_som_som_object_present)
4057 return 0;
4058
4059 /* We have a SOM executable with SOM debug info; find the hooks */
4060
4061 /* First look for the notify hook provided by aCC runtime libs */
4062 /* If we find this symbol, we conclude that the executable must
4063 have HP aCC exception support built in. If this symbol is not
4064 found, even though we're a HP SOM-SOM file, we may have been
4065 built with some other compiler (not aCC). This results percolates
4066 back up to our callers in breakpoint.c which can decide to
4067 try the g++ style of exception support instead.
4068 If this symbol is found but the other symbols we require are
4069 not found, there is something weird going on, and g++ support
4070 should *not* be tried as an alternative.
4071
4072 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4073 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4074
4075 /* libCsup has this hook; it'll usually be non-debuggable */
4076 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4077 if (msym)
4078 {
4079 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4080 hp_cxx_exception_support = 1;
4081 }
4082 else
4083 {
4084 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4085 warning ("Executable may not have been compiled debuggable with HP aCC.");
4086 warning ("GDB will be unable to intercept exception events.");
4087 eh_notify_hook_addr = 0;
4088 hp_cxx_exception_support = 0;
4089 return 0;
4090 }
4091
4092 /* Next look for the notify callback routine in end.o */
4093 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4094 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4095 if (msym)
4096 {
4097 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4098 hp_cxx_exception_support = 1;
4099 }
4100 else
4101 {
4102 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4103 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4104 warning ("GDB will be unable to intercept exception events.");
4105 eh_notify_callback_addr = 0;
4106 return 0;
4107 }
4108
4109 #ifndef GDB_TARGET_IS_HPPA_20W
4110 /* Check whether the executable is dynamically linked or archive bound */
4111 /* With an archive-bound executable we can use the raw addresses we find
4112 for the callback function, etc. without modification. For an executable
4113 with shared libraries, we have to do more work to find the plabel, which
4114 can be the target of a call through $$dyncall from the aCC runtime support
4115 library (libCsup) which is linked shared by default by aCC. */
4116 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4117 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4118 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4119 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4120 {
4121 /* The minsym we have has the local code address, but that's not the
4122 plabel that can be used by an inter-load-module call. */
4123 /* Find solib handle for main image (which has end.o), and use that
4124 and the min sym as arguments to __d_shl_get() (which does the equivalent
4125 of shl_findsym()) to find the plabel. */
4126
4127 args_for_find_stub args;
4128 static char message[] = "Error while finding exception callback hook:\n";
4129
4130 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4131 args.msym = msym;
4132 args.return_val = 0;
4133
4134 recurse++;
4135 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4136 RETURN_MASK_ALL);
4137 eh_notify_callback_addr = args.return_val;
4138 recurse--;
4139
4140 exception_catchpoints_are_fragile = 1;
4141
4142 if (!eh_notify_callback_addr)
4143 {
4144 /* We can get here either if there is no plabel in the export list
4145 for the main image, or if something strange happened (??) */
4146 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4147 warning ("GDB will not be able to intercept exception events.");
4148 return 0;
4149 }
4150 }
4151 else
4152 exception_catchpoints_are_fragile = 0;
4153 #endif
4154
4155 /* Now, look for the breakpointable routine in end.o */
4156 /* This should also be available in the SOM symbol dict. if end.o linked in */
4157 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4158 if (msym)
4159 {
4160 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4161 hp_cxx_exception_support = 1;
4162 }
4163 else
4164 {
4165 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4166 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4167 warning ("GDB will be unable to intercept exception events.");
4168 eh_break_addr = 0;
4169 return 0;
4170 }
4171
4172 /* Next look for the catch enable flag provided in end.o */
4173 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4174 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4175 if (sym) /* sometimes present in debug info */
4176 {
4177 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4178 hp_cxx_exception_support = 1;
4179 }
4180 else
4181 /* otherwise look in SOM symbol dict. */
4182 {
4183 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4184 if (msym)
4185 {
4186 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4187 hp_cxx_exception_support = 1;
4188 }
4189 else
4190 {
4191 warning ("Unable to enable interception of exception catches.");
4192 warning ("Executable may not have been compiled debuggable with HP aCC.");
4193 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4194 return 0;
4195 }
4196 }
4197
4198 /* Next look for the catch enable flag provided end.o */
4199 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4200 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4201 if (sym) /* sometimes present in debug info */
4202 {
4203 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4204 hp_cxx_exception_support = 1;
4205 }
4206 else
4207 /* otherwise look in SOM symbol dict. */
4208 {
4209 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4210 if (msym)
4211 {
4212 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4213 hp_cxx_exception_support = 1;
4214 }
4215 else
4216 {
4217 warning ("Unable to enable interception of exception throws.");
4218 warning ("Executable may not have been compiled debuggable with HP aCC.");
4219 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4220 return 0;
4221 }
4222 }
4223
4224 /* Set the flags */
4225 hp_cxx_exception_support = 2; /* everything worked so far */
4226 hp_cxx_exception_support_initialized = 1;
4227 exception_support_initialized = 1;
4228
4229 return 1;
4230 }
4231
4232 /* Target operation for enabling or disabling interception of
4233 exception events.
4234 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4235 ENABLE is either 0 (disable) or 1 (enable).
4236 Return value is NULL if no support found;
4237 -1 if something went wrong,
4238 or a pointer to a symtab/line struct if the breakpointable
4239 address was found. */
4240
4241 struct symtab_and_line *
4242 child_enable_exception_callback (kind, enable)
4243 enum exception_event_kind kind;
4244 int enable;
4245 {
4246 char buf[4];
4247
4248 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4249 if (!initialize_hp_cxx_exception_support ())
4250 return NULL;
4251
4252 switch (hp_cxx_exception_support)
4253 {
4254 case 0:
4255 /* Assuming no HP support at all */
4256 return NULL;
4257 case 1:
4258 /* HP support should be present, but something went wrong */
4259 return (struct symtab_and_line *) -1; /* yuck! */
4260 /* there may be other cases in the future */
4261 }
4262
4263 /* Set the EH hook to point to the callback routine */
4264 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4265 /* pai: (temp) FIXME should there be a pack operation first? */
4266 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4267 {
4268 warning ("Could not write to target memory for exception event callback.");
4269 warning ("Interception of exception events may not work.");
4270 return (struct symtab_and_line *) -1;
4271 }
4272 if (enable)
4273 {
4274 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4275 if (inferior_pid > 0)
4276 {
4277 if (setup_d_pid_in_inferior ())
4278 return (struct symtab_and_line *) -1;
4279 }
4280 else
4281 {
4282 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4283 return (struct symtab_and_line *) -1;
4284 }
4285 }
4286
4287 switch (kind)
4288 {
4289 case EX_EVENT_THROW:
4290 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4291 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4292 {
4293 warning ("Couldn't enable exception throw interception.");
4294 return (struct symtab_and_line *) -1;
4295 }
4296 break;
4297 case EX_EVENT_CATCH:
4298 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4299 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4300 {
4301 warning ("Couldn't enable exception catch interception.");
4302 return (struct symtab_and_line *) -1;
4303 }
4304 break;
4305 default:
4306 error ("Request to enable unknown or unsupported exception event.");
4307 }
4308
4309 /* Copy break address into new sal struct, malloc'ing if needed. */
4310 if (!break_callback_sal)
4311 {
4312 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4313 }
4314 INIT_SAL (break_callback_sal);
4315 break_callback_sal->symtab = NULL;
4316 break_callback_sal->pc = eh_break_addr;
4317 break_callback_sal->line = 0;
4318 break_callback_sal->end = eh_break_addr;
4319
4320 return break_callback_sal;
4321 }
4322
4323 /* Record some information about the current exception event */
4324 static struct exception_event_record current_ex_event;
4325 /* Convenience struct */
4326 static struct symtab_and_line null_symtab_and_line =
4327 {NULL, 0, 0, 0};
4328
4329 /* Report current exception event. Returns a pointer to a record
4330 that describes the kind of the event, where it was thrown from,
4331 and where it will be caught. More information may be reported
4332 in the future */
4333 struct exception_event_record *
4334 child_get_current_exception_event ()
4335 {
4336 CORE_ADDR event_kind;
4337 CORE_ADDR throw_addr;
4338 CORE_ADDR catch_addr;
4339 struct frame_info *fi, *curr_frame;
4340 int level = 1;
4341
4342 curr_frame = get_current_frame ();
4343 if (!curr_frame)
4344 return (struct exception_event_record *) NULL;
4345
4346 /* Go up one frame to __d_eh_notify_callback, because at the
4347 point when this code is executed, there's garbage in the
4348 arguments of __d_eh_break. */
4349 fi = find_relative_frame (curr_frame, &level);
4350 if (level != 0)
4351 return (struct exception_event_record *) NULL;
4352
4353 select_frame (fi, -1);
4354
4355 /* Read in the arguments */
4356 /* __d_eh_notify_callback() is called with 3 arguments:
4357 1. event kind catch or throw
4358 2. the target address if known
4359 3. a flag -- not sure what this is. pai/1997-07-17 */
4360 event_kind = read_register (ARG0_REGNUM);
4361 catch_addr = read_register (ARG1_REGNUM);
4362
4363 /* Now go down to a user frame */
4364 /* For a throw, __d_eh_break is called by
4365 __d_eh_notify_callback which is called by
4366 __notify_throw which is called
4367 from user code.
4368 For a catch, __d_eh_break is called by
4369 __d_eh_notify_callback which is called by
4370 <stackwalking stuff> which is called by
4371 __throw__<stuff> or __rethrow_<stuff> which is called
4372 from user code. */
4373 /* FIXME: Don't use such magic numbers; search for the frames */
4374 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4375 fi = find_relative_frame (curr_frame, &level);
4376 if (level != 0)
4377 return (struct exception_event_record *) NULL;
4378
4379 select_frame (fi, -1);
4380 throw_addr = fi->pc;
4381
4382 /* Go back to original (top) frame */
4383 select_frame (curr_frame, -1);
4384
4385 current_ex_event.kind = (enum exception_event_kind) event_kind;
4386 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4387 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4388
4389 return &current_ex_event;
4390 }
4391
4392 static void
4393 unwind_command (exp, from_tty)
4394 char *exp;
4395 int from_tty;
4396 {
4397 CORE_ADDR address;
4398 struct unwind_table_entry *u;
4399
4400 /* If we have an expression, evaluate it and use it as the address. */
4401
4402 if (exp != 0 && *exp != 0)
4403 address = parse_and_eval_address (exp);
4404 else
4405 return;
4406
4407 u = find_unwind_entry (address);
4408
4409 if (!u)
4410 {
4411 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4412 return;
4413 }
4414
4415 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
4416
4417 printf_unfiltered ("\tregion_start = ");
4418 print_address (u->region_start, gdb_stdout);
4419
4420 printf_unfiltered ("\n\tregion_end = ");
4421 print_address (u->region_end, gdb_stdout);
4422
4423 #ifdef __STDC__
4424 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4425 #else
4426 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
4427 #endif
4428
4429 printf_unfiltered ("\n\tflags =");
4430 pif (Cannot_unwind);
4431 pif (Millicode);
4432 pif (Millicode_save_sr0);
4433 pif (Entry_SR);
4434 pif (Args_stored);
4435 pif (Variable_Frame);
4436 pif (Separate_Package_Body);
4437 pif (Frame_Extension_Millicode);
4438 pif (Stack_Overflow_Check);
4439 pif (Two_Instruction_SP_Increment);
4440 pif (Ada_Region);
4441 pif (Save_SP);
4442 pif (Save_RP);
4443 pif (Save_MRP_in_frame);
4444 pif (extn_ptr_defined);
4445 pif (Cleanup_defined);
4446 pif (MPE_XL_interrupt_marker);
4447 pif (HP_UX_interrupt_marker);
4448 pif (Large_frame);
4449
4450 putchar_unfiltered ('\n');
4451
4452 #ifdef __STDC__
4453 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4454 #else
4455 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
4456 #endif
4457
4458 pin (Region_description);
4459 pin (Entry_FR);
4460 pin (Entry_GR);
4461 pin (Total_frame_size);
4462 }
4463
4464 #ifdef PREPARE_TO_PROCEED
4465
4466 /* If the user has switched threads, and there is a breakpoint
4467 at the old thread's pc location, then switch to that thread
4468 and return TRUE, else return FALSE and don't do a thread
4469 switch (or rather, don't seem to have done a thread switch).
4470
4471 Ptrace-based gdb will always return FALSE to the thread-switch
4472 query, and thus also to PREPARE_TO_PROCEED.
4473
4474 The important thing is whether there is a BPT instruction,
4475 not how many user breakpoints there are. So we have to worry
4476 about things like these:
4477
4478 o Non-bp stop -- NO
4479
4480 o User hits bp, no switch -- NO
4481
4482 o User hits bp, switches threads -- YES
4483
4484 o User hits bp, deletes bp, switches threads -- NO
4485
4486 o User hits bp, deletes one of two or more bps
4487 at that PC, user switches threads -- YES
4488
4489 o Plus, since we're buffering events, the user may have hit a
4490 breakpoint, deleted the breakpoint and then gotten another
4491 hit on that same breakpoint on another thread which
4492 actually hit before the delete. (FIXME in breakpoint.c
4493 so that "dead" breakpoints are ignored?) -- NO
4494
4495 For these reasons, we have to violate information hiding and
4496 call "breakpoint_here_p". If core gdb thinks there is a bpt
4497 here, that's what counts, as core gdb is the one which is
4498 putting the BPT instruction in and taking it out. */
4499 int
4500 hppa_prepare_to_proceed ()
4501 {
4502 pid_t old_thread;
4503 pid_t current_thread;
4504
4505 old_thread = hppa_switched_threads (inferior_pid);
4506 if (old_thread != 0)
4507 {
4508 /* Switched over from "old_thread". Try to do
4509 as little work as possible, 'cause mostly
4510 we're going to switch back. */
4511 CORE_ADDR new_pc;
4512 CORE_ADDR old_pc = read_pc ();
4513
4514 /* Yuk, shouldn't use global to specify current
4515 thread. But that's how gdb does it. */
4516 current_thread = inferior_pid;
4517 inferior_pid = old_thread;
4518
4519 new_pc = read_pc ();
4520 if (new_pc != old_pc /* If at same pc, no need */
4521 && breakpoint_here_p (new_pc))
4522 {
4523 /* User hasn't deleted the BP.
4524 Return TRUE, finishing switch to "old_thread". */
4525 flush_cached_frames ();
4526 registers_changed ();
4527 #if 0
4528 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4529 current_thread, inferior_pid);
4530 #endif
4531
4532 return 1;
4533 }
4534
4535 /* Otherwise switch back to the user-chosen thread. */
4536 inferior_pid = current_thread;
4537 new_pc = read_pc (); /* Re-prime register cache */
4538 }
4539
4540 return 0;
4541 }
4542 #endif /* PREPARE_TO_PROCEED */
4543
4544 void
4545 _initialize_hppa_tdep ()
4546 {
4547 tm_print_insn = print_insn_hppa;
4548
4549 add_cmd ("unwind", class_maintenance, unwind_command,
4550 "Print unwind table entry at given address.",
4551 &maintenanceprintlist);
4552 }
This page took 0.136474 seconds and 4 git commands to generate.