65a49fd300f46c55861849fc247aaad3a5d022a5
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "bfd.h"
25 #include "inferior.h"
26 #include "regcache.h"
27 #include "completer.h"
28 #include "osabi.h"
29 #include "arch-utils.h"
30 /* For argument passing to the inferior. */
31 #include "symtab.h"
32 #include "dis-asm.h"
33 #include "trad-frame.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "gdbtypes.h"
40 #include "objfiles.h"
41 #include "hppa-tdep.h"
42 #include <algorithm>
43
44 static int hppa_debug = 0;
45
46 /* Some local constants. */
47 static const int hppa32_num_regs = 128;
48 static const int hppa64_num_regs = 96;
49
50 /* We use the objfile->obj_private pointer for two things:
51 * 1. An unwind table;
52 *
53 * 2. A pointer to any associated shared library object.
54 *
55 * #defines are used to help refer to these objects.
56 */
57
58 /* Info about the unwind table associated with an object file.
59 * This is hung off of the "objfile->obj_private" pointer, and
60 * is allocated in the objfile's psymbol obstack. This allows
61 * us to have unique unwind info for each executable and shared
62 * library that we are debugging.
63 */
64 struct hppa_unwind_info
65 {
66 struct unwind_table_entry *table; /* Pointer to unwind info */
67 struct unwind_table_entry *cache; /* Pointer to last entry we found */
68 int last; /* Index of last entry */
69 };
70
71 struct hppa_objfile_private
72 {
73 struct hppa_unwind_info *unwind_info; /* a pointer */
74 struct so_list *so_info; /* a pointer */
75 CORE_ADDR dp;
76
77 int dummy_call_sequence_reg;
78 CORE_ADDR dummy_call_sequence_addr;
79 };
80
81 /* hppa-specific object data -- unwind and solib info.
82 TODO/maybe: think about splitting this into two parts; the unwind data is
83 common to all hppa targets, but is only used in this file; we can register
84 that separately and make this static. The solib data is probably hpux-
85 specific, so we can create a separate extern objfile_data that is registered
86 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
87 static const struct objfile_data *hppa_objfile_priv_data = NULL;
88
89 /* Get at various relevent fields of an instruction word. */
90 #define MASK_5 0x1f
91 #define MASK_11 0x7ff
92 #define MASK_14 0x3fff
93 #define MASK_21 0x1fffff
94
95 /* Sizes (in bytes) of the native unwind entries. */
96 #define UNWIND_ENTRY_SIZE 16
97 #define STUB_UNWIND_ENTRY_SIZE 8
98
99 /* Routines to extract various sized constants out of hppa
100 instructions. */
101
102 /* This assumes that no garbage lies outside of the lower bits of
103 value. */
104
105 static int
106 hppa_sign_extend (unsigned val, unsigned bits)
107 {
108 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
109 }
110
111 /* For many immediate values the sign bit is the low bit! */
112
113 static int
114 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
115 {
116 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
117 }
118
119 /* Extract the bits at positions between FROM and TO, using HP's numbering
120 (MSB = 0). */
121
122 int
123 hppa_get_field (unsigned word, int from, int to)
124 {
125 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
126 }
127
128 /* Extract the immediate field from a ld{bhw}s instruction. */
129
130 int
131 hppa_extract_5_load (unsigned word)
132 {
133 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
134 }
135
136 /* Extract the immediate field from a break instruction. */
137
138 unsigned
139 hppa_extract_5r_store (unsigned word)
140 {
141 return (word & MASK_5);
142 }
143
144 /* Extract the immediate field from a {sr}sm instruction. */
145
146 unsigned
147 hppa_extract_5R_store (unsigned word)
148 {
149 return (word >> 16 & MASK_5);
150 }
151
152 /* Extract a 14 bit immediate field. */
153
154 int
155 hppa_extract_14 (unsigned word)
156 {
157 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
158 }
159
160 /* Extract a 21 bit constant. */
161
162 int
163 hppa_extract_21 (unsigned word)
164 {
165 int val;
166
167 word &= MASK_21;
168 word <<= 11;
169 val = hppa_get_field (word, 20, 20);
170 val <<= 11;
171 val |= hppa_get_field (word, 9, 19);
172 val <<= 2;
173 val |= hppa_get_field (word, 5, 6);
174 val <<= 5;
175 val |= hppa_get_field (word, 0, 4);
176 val <<= 2;
177 val |= hppa_get_field (word, 7, 8);
178 return hppa_sign_extend (val, 21) << 11;
179 }
180
181 /* extract a 17 bit constant from branch instructions, returning the
182 19 bit signed value. */
183
184 int
185 hppa_extract_17 (unsigned word)
186 {
187 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
188 hppa_get_field (word, 29, 29) << 10 |
189 hppa_get_field (word, 11, 15) << 11 |
190 (word & 0x1) << 16, 17) << 2;
191 }
192
193 CORE_ADDR
194 hppa_symbol_address(const char *sym)
195 {
196 struct bound_minimal_symbol minsym;
197
198 minsym = lookup_minimal_symbol (sym, NULL, NULL);
199 if (minsym.minsym)
200 return BMSYMBOL_VALUE_ADDRESS (minsym);
201 else
202 return (CORE_ADDR)-1;
203 }
204
205 static struct hppa_objfile_private *
206 hppa_init_objfile_priv_data (struct objfile *objfile)
207 {
208 struct hppa_objfile_private *priv;
209
210 priv = (struct hppa_objfile_private *)
211 obstack_alloc (&objfile->objfile_obstack,
212 sizeof (struct hppa_objfile_private));
213 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
214 memset (priv, 0, sizeof (*priv));
215
216 return priv;
217 }
218 \f
219
220 /* Compare the start address for two unwind entries returning 1 if
221 the first address is larger than the second, -1 if the second is
222 larger than the first, and zero if they are equal. */
223
224 static int
225 compare_unwind_entries (const void *arg1, const void *arg2)
226 {
227 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
228 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
229
230 if (a->region_start > b->region_start)
231 return 1;
232 else if (a->region_start < b->region_start)
233 return -1;
234 else
235 return 0;
236 }
237
238 static void
239 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
240 {
241 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
242 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
243 {
244 bfd_vma value = section->vma - section->filepos;
245 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
246
247 if (value < *low_text_segment_address)
248 *low_text_segment_address = value;
249 }
250 }
251
252 static void
253 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
254 asection *section, unsigned int entries,
255 size_t size, CORE_ADDR text_offset)
256 {
257 /* We will read the unwind entries into temporary memory, then
258 fill in the actual unwind table. */
259
260 if (size > 0)
261 {
262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
263 unsigned long tmp;
264 unsigned i;
265 char *buf = (char *) alloca (size);
266 CORE_ADDR low_text_segment_address;
267
268 /* For ELF targets, then unwinds are supposed to
269 be segment relative offsets instead of absolute addresses.
270
271 Note that when loading a shared library (text_offset != 0) the
272 unwinds are already relative to the text_offset that will be
273 passed in. */
274 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
275 {
276 low_text_segment_address = -1;
277
278 bfd_map_over_sections (objfile->obfd,
279 record_text_segment_lowaddr,
280 &low_text_segment_address);
281
282 text_offset = low_text_segment_address;
283 }
284 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
285 {
286 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
287 }
288
289 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
290
291 /* Now internalize the information being careful to handle host/target
292 endian issues. */
293 for (i = 0; i < entries; i++)
294 {
295 table[i].region_start = bfd_get_32 (objfile->obfd,
296 (bfd_byte *) buf);
297 table[i].region_start += text_offset;
298 buf += 4;
299 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
300 table[i].region_end += text_offset;
301 buf += 4;
302 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
303 buf += 4;
304 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
305 table[i].Millicode = (tmp >> 30) & 0x1;
306 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
307 table[i].Region_description = (tmp >> 27) & 0x3;
308 table[i].reserved = (tmp >> 26) & 0x1;
309 table[i].Entry_SR = (tmp >> 25) & 0x1;
310 table[i].Entry_FR = (tmp >> 21) & 0xf;
311 table[i].Entry_GR = (tmp >> 16) & 0x1f;
312 table[i].Args_stored = (tmp >> 15) & 0x1;
313 table[i].Variable_Frame = (tmp >> 14) & 0x1;
314 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
315 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
316 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
317 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
318 table[i].sr4export = (tmp >> 9) & 0x1;
319 table[i].cxx_info = (tmp >> 8) & 0x1;
320 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
321 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
322 table[i].reserved1 = (tmp >> 5) & 0x1;
323 table[i].Save_SP = (tmp >> 4) & 0x1;
324 table[i].Save_RP = (tmp >> 3) & 0x1;
325 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
326 table[i].save_r19 = (tmp >> 1) & 0x1;
327 table[i].Cleanup_defined = tmp & 0x1;
328 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
329 buf += 4;
330 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
331 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
332 table[i].Large_frame = (tmp >> 29) & 0x1;
333 table[i].alloca_frame = (tmp >> 28) & 0x1;
334 table[i].reserved2 = (tmp >> 27) & 0x1;
335 table[i].Total_frame_size = tmp & 0x7ffffff;
336
337 /* Stub unwinds are handled elsewhere. */
338 table[i].stub_unwind.stub_type = 0;
339 table[i].stub_unwind.padding = 0;
340 }
341 }
342 }
343
344 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
345 the object file. This info is used mainly by find_unwind_entry() to find
346 out the stack frame size and frame pointer used by procedures. We put
347 everything on the psymbol obstack in the objfile so that it automatically
348 gets freed when the objfile is destroyed. */
349
350 static void
351 read_unwind_info (struct objfile *objfile)
352 {
353 asection *unwind_sec, *stub_unwind_sec;
354 size_t unwind_size, stub_unwind_size, total_size;
355 unsigned index, unwind_entries;
356 unsigned stub_entries, total_entries;
357 CORE_ADDR text_offset;
358 struct hppa_unwind_info *ui;
359 struct hppa_objfile_private *obj_private;
360
361 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
362 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
363 sizeof (struct hppa_unwind_info));
364
365 ui->table = NULL;
366 ui->cache = NULL;
367 ui->last = -1;
368
369 /* For reasons unknown the HP PA64 tools generate multiple unwinder
370 sections in a single executable. So we just iterate over every
371 section in the BFD looking for unwinder sections intead of trying
372 to do a lookup with bfd_get_section_by_name.
373
374 First determine the total size of the unwind tables so that we
375 can allocate memory in a nice big hunk. */
376 total_entries = 0;
377 for (unwind_sec = objfile->obfd->sections;
378 unwind_sec;
379 unwind_sec = unwind_sec->next)
380 {
381 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
382 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
383 {
384 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
385 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
386
387 total_entries += unwind_entries;
388 }
389 }
390
391 /* Now compute the size of the stub unwinds. Note the ELF tools do not
392 use stub unwinds at the current time. */
393 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
394
395 if (stub_unwind_sec)
396 {
397 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
398 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
399 }
400 else
401 {
402 stub_unwind_size = 0;
403 stub_entries = 0;
404 }
405
406 /* Compute total number of unwind entries and their total size. */
407 total_entries += stub_entries;
408 total_size = total_entries * sizeof (struct unwind_table_entry);
409
410 /* Allocate memory for the unwind table. */
411 ui->table = (struct unwind_table_entry *)
412 obstack_alloc (&objfile->objfile_obstack, total_size);
413 ui->last = total_entries - 1;
414
415 /* Now read in each unwind section and internalize the standard unwind
416 entries. */
417 index = 0;
418 for (unwind_sec = objfile->obfd->sections;
419 unwind_sec;
420 unwind_sec = unwind_sec->next)
421 {
422 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
423 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
424 {
425 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
426 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
427
428 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
429 unwind_entries, unwind_size, text_offset);
430 index += unwind_entries;
431 }
432 }
433
434 /* Now read in and internalize the stub unwind entries. */
435 if (stub_unwind_size > 0)
436 {
437 unsigned int i;
438 char *buf = (char *) alloca (stub_unwind_size);
439
440 /* Read in the stub unwind entries. */
441 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
442 0, stub_unwind_size);
443
444 /* Now convert them into regular unwind entries. */
445 for (i = 0; i < stub_entries; i++, index++)
446 {
447 /* Clear out the next unwind entry. */
448 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
449
450 /* Convert offset & size into region_start and region_end.
451 Stuff away the stub type into "reserved" fields. */
452 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
453 (bfd_byte *) buf);
454 ui->table[index].region_start += text_offset;
455 buf += 4;
456 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
457 (bfd_byte *) buf);
458 buf += 2;
459 ui->table[index].region_end
460 = ui->table[index].region_start + 4 *
461 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
462 buf += 2;
463 }
464
465 }
466
467 /* Unwind table needs to be kept sorted. */
468 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
469 compare_unwind_entries);
470
471 /* Keep a pointer to the unwind information. */
472 obj_private = (struct hppa_objfile_private *)
473 objfile_data (objfile, hppa_objfile_priv_data);
474 if (obj_private == NULL)
475 obj_private = hppa_init_objfile_priv_data (objfile);
476
477 obj_private->unwind_info = ui;
478 }
479
480 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
481 of the objfiles seeking the unwind table entry for this PC. Each objfile
482 contains a sorted list of struct unwind_table_entry. Since we do a binary
483 search of the unwind tables, we depend upon them to be sorted. */
484
485 struct unwind_table_entry *
486 find_unwind_entry (CORE_ADDR pc)
487 {
488 int first, middle, last;
489 struct objfile *objfile;
490 struct hppa_objfile_private *priv;
491
492 if (hppa_debug)
493 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
494 hex_string (pc));
495
496 /* A function at address 0? Not in HP-UX! */
497 if (pc == (CORE_ADDR) 0)
498 {
499 if (hppa_debug)
500 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
501 return NULL;
502 }
503
504 ALL_OBJFILES (objfile)
505 {
506 struct hppa_unwind_info *ui;
507 ui = NULL;
508 priv = ((struct hppa_objfile_private *)
509 objfile_data (objfile, hppa_objfile_priv_data));
510 if (priv)
511 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
512
513 if (!ui)
514 {
515 read_unwind_info (objfile);
516 priv = ((struct hppa_objfile_private *)
517 objfile_data (objfile, hppa_objfile_priv_data));
518 if (priv == NULL)
519 error (_("Internal error reading unwind information."));
520 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
521 }
522
523 /* First, check the cache. */
524
525 if (ui->cache
526 && pc >= ui->cache->region_start
527 && pc <= ui->cache->region_end)
528 {
529 if (hppa_debug)
530 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
531 hex_string ((uintptr_t) ui->cache));
532 return ui->cache;
533 }
534
535 /* Not in the cache, do a binary search. */
536
537 first = 0;
538 last = ui->last;
539
540 while (first <= last)
541 {
542 middle = (first + last) / 2;
543 if (pc >= ui->table[middle].region_start
544 && pc <= ui->table[middle].region_end)
545 {
546 ui->cache = &ui->table[middle];
547 if (hppa_debug)
548 fprintf_unfiltered (gdb_stdlog, "%s }\n",
549 hex_string ((uintptr_t) ui->cache));
550 return &ui->table[middle];
551 }
552
553 if (pc < ui->table[middle].region_start)
554 last = middle - 1;
555 else
556 first = middle + 1;
557 }
558 } /* ALL_OBJFILES() */
559
560 if (hppa_debug)
561 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
562
563 return NULL;
564 }
565
566 /* Implement the stack_frame_destroyed_p gdbarch method.
567
568 The epilogue is defined here as the area either on the `bv' instruction
569 itself or an instruction which destroys the function's stack frame.
570
571 We do not assume that the epilogue is at the end of a function as we can
572 also have return sequences in the middle of a function. */
573
574 static int
575 hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
576 {
577 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
578 unsigned long status;
579 unsigned int inst;
580 gdb_byte buf[4];
581
582 status = target_read_memory (pc, buf, 4);
583 if (status != 0)
584 return 0;
585
586 inst = extract_unsigned_integer (buf, 4, byte_order);
587
588 /* The most common way to perform a stack adjustment ldo X(sp),sp
589 We are destroying a stack frame if the offset is negative. */
590 if ((inst & 0xffffc000) == 0x37de0000
591 && hppa_extract_14 (inst) < 0)
592 return 1;
593
594 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
595 if (((inst & 0x0fc010e0) == 0x0fc010e0
596 || (inst & 0x0fc010e0) == 0x0fc010e0)
597 && hppa_extract_14 (inst) < 0)
598 return 1;
599
600 /* bv %r0(%rp) or bv,n %r0(%rp) */
601 if (inst == 0xe840c000 || inst == 0xe840c002)
602 return 1;
603
604 return 0;
605 }
606
607 constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};
608
609 typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;
610
611 /* Return the name of a register. */
612
613 static const char *
614 hppa32_register_name (struct gdbarch *gdbarch, int i)
615 {
616 static char *names[] = {
617 "flags", "r1", "rp", "r3",
618 "r4", "r5", "r6", "r7",
619 "r8", "r9", "r10", "r11",
620 "r12", "r13", "r14", "r15",
621 "r16", "r17", "r18", "r19",
622 "r20", "r21", "r22", "r23",
623 "r24", "r25", "r26", "dp",
624 "ret0", "ret1", "sp", "r31",
625 "sar", "pcoqh", "pcsqh", "pcoqt",
626 "pcsqt", "eiem", "iir", "isr",
627 "ior", "ipsw", "goto", "sr4",
628 "sr0", "sr1", "sr2", "sr3",
629 "sr5", "sr6", "sr7", "cr0",
630 "cr8", "cr9", "ccr", "cr12",
631 "cr13", "cr24", "cr25", "cr26",
632 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
633 "fpsr", "fpe1", "fpe2", "fpe3",
634 "fpe4", "fpe5", "fpe6", "fpe7",
635 "fr4", "fr4R", "fr5", "fr5R",
636 "fr6", "fr6R", "fr7", "fr7R",
637 "fr8", "fr8R", "fr9", "fr9R",
638 "fr10", "fr10R", "fr11", "fr11R",
639 "fr12", "fr12R", "fr13", "fr13R",
640 "fr14", "fr14R", "fr15", "fr15R",
641 "fr16", "fr16R", "fr17", "fr17R",
642 "fr18", "fr18R", "fr19", "fr19R",
643 "fr20", "fr20R", "fr21", "fr21R",
644 "fr22", "fr22R", "fr23", "fr23R",
645 "fr24", "fr24R", "fr25", "fr25R",
646 "fr26", "fr26R", "fr27", "fr27R",
647 "fr28", "fr28R", "fr29", "fr29R",
648 "fr30", "fr30R", "fr31", "fr31R"
649 };
650 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
651 return NULL;
652 else
653 return names[i];
654 }
655
656 static const char *
657 hppa64_register_name (struct gdbarch *gdbarch, int i)
658 {
659 static char *names[] = {
660 "flags", "r1", "rp", "r3",
661 "r4", "r5", "r6", "r7",
662 "r8", "r9", "r10", "r11",
663 "r12", "r13", "r14", "r15",
664 "r16", "r17", "r18", "r19",
665 "r20", "r21", "r22", "r23",
666 "r24", "r25", "r26", "dp",
667 "ret0", "ret1", "sp", "r31",
668 "sar", "pcoqh", "pcsqh", "pcoqt",
669 "pcsqt", "eiem", "iir", "isr",
670 "ior", "ipsw", "goto", "sr4",
671 "sr0", "sr1", "sr2", "sr3",
672 "sr5", "sr6", "sr7", "cr0",
673 "cr8", "cr9", "ccr", "cr12",
674 "cr13", "cr24", "cr25", "cr26",
675 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
676 "fpsr", "fpe1", "fpe2", "fpe3",
677 "fr4", "fr5", "fr6", "fr7",
678 "fr8", "fr9", "fr10", "fr11",
679 "fr12", "fr13", "fr14", "fr15",
680 "fr16", "fr17", "fr18", "fr19",
681 "fr20", "fr21", "fr22", "fr23",
682 "fr24", "fr25", "fr26", "fr27",
683 "fr28", "fr29", "fr30", "fr31"
684 };
685 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
686 return NULL;
687 else
688 return names[i];
689 }
690
691 /* Map dwarf DBX register numbers to GDB register numbers. */
692 static int
693 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
694 {
695 /* The general registers and the sar are the same in both sets. */
696 if (reg >= 0 && reg <= 32)
697 return reg;
698
699 /* fr4-fr31 are mapped from 72 in steps of 2. */
700 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
701 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
702
703 return -1;
704 }
705
706 /* This function pushes a stack frame with arguments as part of the
707 inferior function calling mechanism.
708
709 This is the version of the function for the 32-bit PA machines, in
710 which later arguments appear at lower addresses. (The stack always
711 grows towards higher addresses.)
712
713 We simply allocate the appropriate amount of stack space and put
714 arguments into their proper slots. */
715
716 static CORE_ADDR
717 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
718 struct regcache *regcache, CORE_ADDR bp_addr,
719 int nargs, struct value **args, CORE_ADDR sp,
720 int struct_return, CORE_ADDR struct_addr)
721 {
722 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
723
724 /* Stack base address at which any pass-by-reference parameters are
725 stored. */
726 CORE_ADDR struct_end = 0;
727 /* Stack base address at which the first parameter is stored. */
728 CORE_ADDR param_end = 0;
729
730 /* Two passes. First pass computes the location of everything,
731 second pass writes the bytes out. */
732 int write_pass;
733
734 /* Global pointer (r19) of the function we are trying to call. */
735 CORE_ADDR gp;
736
737 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
738
739 for (write_pass = 0; write_pass < 2; write_pass++)
740 {
741 CORE_ADDR struct_ptr = 0;
742 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
743 struct_ptr is adjusted for each argument below, so the first
744 argument will end up at sp-36. */
745 CORE_ADDR param_ptr = 32;
746 int i;
747 int small_struct = 0;
748
749 for (i = 0; i < nargs; i++)
750 {
751 struct value *arg = args[i];
752 struct type *type = check_typedef (value_type (arg));
753 /* The corresponding parameter that is pushed onto the
754 stack, and [possibly] passed in a register. */
755 gdb_byte param_val[8];
756 int param_len;
757 memset (param_val, 0, sizeof param_val);
758 if (TYPE_LENGTH (type) > 8)
759 {
760 /* Large parameter, pass by reference. Store the value
761 in "struct" area and then pass its address. */
762 param_len = 4;
763 struct_ptr += align_up (TYPE_LENGTH (type), 8);
764 if (write_pass)
765 write_memory (struct_end - struct_ptr, value_contents (arg),
766 TYPE_LENGTH (type));
767 store_unsigned_integer (param_val, 4, byte_order,
768 struct_end - struct_ptr);
769 }
770 else if (TYPE_CODE (type) == TYPE_CODE_INT
771 || TYPE_CODE (type) == TYPE_CODE_ENUM)
772 {
773 /* Integer value store, right aligned. "unpack_long"
774 takes care of any sign-extension problems. */
775 param_len = align_up (TYPE_LENGTH (type), 4);
776 store_unsigned_integer (param_val, param_len, byte_order,
777 unpack_long (type,
778 value_contents (arg)));
779 }
780 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
781 {
782 /* Floating point value store, right aligned. */
783 param_len = align_up (TYPE_LENGTH (type), 4);
784 memcpy (param_val, value_contents (arg), param_len);
785 }
786 else
787 {
788 param_len = align_up (TYPE_LENGTH (type), 4);
789
790 /* Small struct value are stored right-aligned. */
791 memcpy (param_val + param_len - TYPE_LENGTH (type),
792 value_contents (arg), TYPE_LENGTH (type));
793
794 /* Structures of size 5, 6 and 7 bytes are special in that
795 the higher-ordered word is stored in the lower-ordered
796 argument, and even though it is a 8-byte quantity the
797 registers need not be 8-byte aligned. */
798 if (param_len > 4 && param_len < 8)
799 small_struct = 1;
800 }
801
802 param_ptr += param_len;
803 if (param_len == 8 && !small_struct)
804 param_ptr = align_up (param_ptr, 8);
805
806 /* First 4 non-FP arguments are passed in gr26-gr23.
807 First 4 32-bit FP arguments are passed in fr4L-fr7L.
808 First 2 64-bit FP arguments are passed in fr5 and fr7.
809
810 The rest go on the stack, starting at sp-36, towards lower
811 addresses. 8-byte arguments must be aligned to a 8-byte
812 stack boundary. */
813 if (write_pass)
814 {
815 write_memory (param_end - param_ptr, param_val, param_len);
816
817 /* There are some cases when we don't know the type
818 expected by the callee (e.g. for variadic functions), so
819 pass the parameters in both general and fp regs. */
820 if (param_ptr <= 48)
821 {
822 int grreg = 26 - (param_ptr - 36) / 4;
823 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
824 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
825
826 regcache_cooked_write (regcache, grreg, param_val);
827 regcache_cooked_write (regcache, fpLreg, param_val);
828
829 if (param_len > 4)
830 {
831 regcache_cooked_write (regcache, grreg + 1,
832 param_val + 4);
833
834 regcache_cooked_write (regcache, fpreg, param_val);
835 regcache_cooked_write (regcache, fpreg + 1,
836 param_val + 4);
837 }
838 }
839 }
840 }
841
842 /* Update the various stack pointers. */
843 if (!write_pass)
844 {
845 struct_end = sp + align_up (struct_ptr, 64);
846 /* PARAM_PTR already accounts for all the arguments passed
847 by the user. However, the ABI mandates minimum stack
848 space allocations for outgoing arguments. The ABI also
849 mandates minimum stack alignments which we must
850 preserve. */
851 param_end = struct_end + align_up (param_ptr, 64);
852 }
853 }
854
855 /* If a structure has to be returned, set up register 28 to hold its
856 address. */
857 if (struct_return)
858 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
859
860 gp = tdep->find_global_pointer (gdbarch, function);
861
862 if (gp != 0)
863 regcache_cooked_write_unsigned (regcache, 19, gp);
864
865 /* Set the return address. */
866 if (!gdbarch_push_dummy_code_p (gdbarch))
867 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
868
869 /* Update the Stack Pointer. */
870 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
871
872 return param_end;
873 }
874
875 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
876 Runtime Architecture for PA-RISC 2.0", which is distributed as part
877 as of the HP-UX Software Transition Kit (STK). This implementation
878 is based on version 3.3, dated October 6, 1997. */
879
880 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
881
882 static int
883 hppa64_integral_or_pointer_p (const struct type *type)
884 {
885 switch (TYPE_CODE (type))
886 {
887 case TYPE_CODE_INT:
888 case TYPE_CODE_BOOL:
889 case TYPE_CODE_CHAR:
890 case TYPE_CODE_ENUM:
891 case TYPE_CODE_RANGE:
892 {
893 int len = TYPE_LENGTH (type);
894 return (len == 1 || len == 2 || len == 4 || len == 8);
895 }
896 case TYPE_CODE_PTR:
897 case TYPE_CODE_REF:
898 return (TYPE_LENGTH (type) == 8);
899 default:
900 break;
901 }
902
903 return 0;
904 }
905
906 /* Check whether TYPE is a "Floating Scalar Type". */
907
908 static int
909 hppa64_floating_p (const struct type *type)
910 {
911 switch (TYPE_CODE (type))
912 {
913 case TYPE_CODE_FLT:
914 {
915 int len = TYPE_LENGTH (type);
916 return (len == 4 || len == 8 || len == 16);
917 }
918 default:
919 break;
920 }
921
922 return 0;
923 }
924
925 /* If CODE points to a function entry address, try to look up the corresponding
926 function descriptor and return its address instead. If CODE is not a
927 function entry address, then just return it unchanged. */
928 static CORE_ADDR
929 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
930 {
931 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
932 struct obj_section *sec, *opd;
933
934 sec = find_pc_section (code);
935
936 if (!sec)
937 return code;
938
939 /* If CODE is in a data section, assume it's already a fptr. */
940 if (!(sec->the_bfd_section->flags & SEC_CODE))
941 return code;
942
943 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
944 {
945 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
946 break;
947 }
948
949 if (opd < sec->objfile->sections_end)
950 {
951 CORE_ADDR addr;
952
953 for (addr = obj_section_addr (opd);
954 addr < obj_section_endaddr (opd);
955 addr += 2 * 8)
956 {
957 ULONGEST opdaddr;
958 gdb_byte tmp[8];
959
960 if (target_read_memory (addr, tmp, sizeof (tmp)))
961 break;
962 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
963
964 if (opdaddr == code)
965 return addr - 16;
966 }
967 }
968
969 return code;
970 }
971
972 static CORE_ADDR
973 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
974 struct regcache *regcache, CORE_ADDR bp_addr,
975 int nargs, struct value **args, CORE_ADDR sp,
976 int struct_return, CORE_ADDR struct_addr)
977 {
978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
979 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
980 int i, offset = 0;
981 CORE_ADDR gp;
982
983 /* "The outgoing parameter area [...] must be aligned at a 16-byte
984 boundary." */
985 sp = align_up (sp, 16);
986
987 for (i = 0; i < nargs; i++)
988 {
989 struct value *arg = args[i];
990 struct type *type = value_type (arg);
991 int len = TYPE_LENGTH (type);
992 const bfd_byte *valbuf;
993 bfd_byte fptrbuf[8];
994 int regnum;
995
996 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
997 offset = align_up (offset, 8);
998
999 if (hppa64_integral_or_pointer_p (type))
1000 {
1001 /* "Integral scalar parameters smaller than 64 bits are
1002 padded on the left (i.e., the value is in the
1003 least-significant bits of the 64-bit storage unit, and
1004 the high-order bits are undefined)." Therefore we can
1005 safely sign-extend them. */
1006 if (len < 8)
1007 {
1008 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
1009 len = 8;
1010 }
1011 }
1012 else if (hppa64_floating_p (type))
1013 {
1014 if (len > 8)
1015 {
1016 /* "Quad-precision (128-bit) floating-point scalar
1017 parameters are aligned on a 16-byte boundary." */
1018 offset = align_up (offset, 16);
1019
1020 /* "Double-extended- and quad-precision floating-point
1021 parameters within the first 64 bytes of the parameter
1022 list are always passed in general registers." */
1023 }
1024 else
1025 {
1026 if (len == 4)
1027 {
1028 /* "Single-precision (32-bit) floating-point scalar
1029 parameters are padded on the left with 32 bits of
1030 garbage (i.e., the floating-point value is in the
1031 least-significant 32 bits of a 64-bit storage
1032 unit)." */
1033 offset += 4;
1034 }
1035
1036 /* "Single- and double-precision floating-point
1037 parameters in this area are passed according to the
1038 available formal parameter information in a function
1039 prototype. [...] If no prototype is in scope,
1040 floating-point parameters must be passed both in the
1041 corresponding general registers and in the
1042 corresponding floating-point registers." */
1043 regnum = HPPA64_FP4_REGNUM + offset / 8;
1044
1045 if (regnum < HPPA64_FP4_REGNUM + 8)
1046 {
1047 /* "Single-precision floating-point parameters, when
1048 passed in floating-point registers, are passed in
1049 the right halves of the floating point registers;
1050 the left halves are unused." */
1051 regcache_cooked_write_part (regcache, regnum, offset % 8,
1052 len, value_contents (arg));
1053 }
1054 }
1055 }
1056 else
1057 {
1058 if (len > 8)
1059 {
1060 /* "Aggregates larger than 8 bytes are aligned on a
1061 16-byte boundary, possibly leaving an unused argument
1062 slot, which is filled with garbage. If necessary,
1063 they are padded on the right (with garbage), to a
1064 multiple of 8 bytes." */
1065 offset = align_up (offset, 16);
1066 }
1067 }
1068
1069 /* If we are passing a function pointer, make sure we pass a function
1070 descriptor instead of the function entry address. */
1071 if (TYPE_CODE (type) == TYPE_CODE_PTR
1072 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1073 {
1074 ULONGEST codeptr, fptr;
1075
1076 codeptr = unpack_long (type, value_contents (arg));
1077 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1078 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1079 fptr);
1080 valbuf = fptrbuf;
1081 }
1082 else
1083 {
1084 valbuf = value_contents (arg);
1085 }
1086
1087 /* Always store the argument in memory. */
1088 write_memory (sp + offset, valbuf, len);
1089
1090 regnum = HPPA_ARG0_REGNUM - offset / 8;
1091 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1092 {
1093 regcache_cooked_write_part (regcache, regnum,
1094 offset % 8, std::min (len, 8), valbuf);
1095 offset += std::min (len, 8);
1096 valbuf += std::min (len, 8);
1097 len -= std::min (len, 8);
1098 regnum--;
1099 }
1100
1101 offset += len;
1102 }
1103
1104 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1105 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1106
1107 /* Allocate the outgoing parameter area. Make sure the outgoing
1108 parameter area is multiple of 16 bytes in length. */
1109 sp += std::max (align_up (offset, 16), (ULONGEST) 64);
1110
1111 /* Allocate 32-bytes of scratch space. The documentation doesn't
1112 mention this, but it seems to be needed. */
1113 sp += 32;
1114
1115 /* Allocate the frame marker area. */
1116 sp += 16;
1117
1118 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1119 its address. */
1120 if (struct_return)
1121 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1122
1123 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1124 gp = tdep->find_global_pointer (gdbarch, function);
1125 if (gp != 0)
1126 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1127
1128 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1129 if (!gdbarch_push_dummy_code_p (gdbarch))
1130 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1131
1132 /* Set up GR30 to hold the stack pointer (sp). */
1133 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1134
1135 return sp;
1136 }
1137 \f
1138
1139 /* Handle 32/64-bit struct return conventions. */
1140
1141 static enum return_value_convention
1142 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1143 struct type *type, struct regcache *regcache,
1144 gdb_byte *readbuf, const gdb_byte *writebuf)
1145 {
1146 if (TYPE_LENGTH (type) <= 2 * 4)
1147 {
1148 /* The value always lives in the right hand end of the register
1149 (or register pair)? */
1150 int b;
1151 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1152 int part = TYPE_LENGTH (type) % 4;
1153 /* The left hand register contains only part of the value,
1154 transfer that first so that the rest can be xfered as entire
1155 4-byte registers. */
1156 if (part > 0)
1157 {
1158 if (readbuf != NULL)
1159 regcache_cooked_read_part (regcache, reg, 4 - part,
1160 part, readbuf);
1161 if (writebuf != NULL)
1162 regcache_cooked_write_part (regcache, reg, 4 - part,
1163 part, writebuf);
1164 reg++;
1165 }
1166 /* Now transfer the remaining register values. */
1167 for (b = part; b < TYPE_LENGTH (type); b += 4)
1168 {
1169 if (readbuf != NULL)
1170 regcache_cooked_read (regcache, reg, readbuf + b);
1171 if (writebuf != NULL)
1172 regcache_cooked_write (regcache, reg, writebuf + b);
1173 reg++;
1174 }
1175 return RETURN_VALUE_REGISTER_CONVENTION;
1176 }
1177 else
1178 return RETURN_VALUE_STRUCT_CONVENTION;
1179 }
1180
1181 static enum return_value_convention
1182 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1183 struct type *type, struct regcache *regcache,
1184 gdb_byte *readbuf, const gdb_byte *writebuf)
1185 {
1186 int len = TYPE_LENGTH (type);
1187 int regnum, offset;
1188
1189 if (len > 16)
1190 {
1191 /* All return values larget than 128 bits must be aggregate
1192 return values. */
1193 gdb_assert (!hppa64_integral_or_pointer_p (type));
1194 gdb_assert (!hppa64_floating_p (type));
1195
1196 /* "Aggregate return values larger than 128 bits are returned in
1197 a buffer allocated by the caller. The address of the buffer
1198 must be passed in GR 28." */
1199 return RETURN_VALUE_STRUCT_CONVENTION;
1200 }
1201
1202 if (hppa64_integral_or_pointer_p (type))
1203 {
1204 /* "Integral return values are returned in GR 28. Values
1205 smaller than 64 bits are padded on the left (with garbage)." */
1206 regnum = HPPA_RET0_REGNUM;
1207 offset = 8 - len;
1208 }
1209 else if (hppa64_floating_p (type))
1210 {
1211 if (len > 8)
1212 {
1213 /* "Double-extended- and quad-precision floating-point
1214 values are returned in GRs 28 and 29. The sign,
1215 exponent, and most-significant bits of the mantissa are
1216 returned in GR 28; the least-significant bits of the
1217 mantissa are passed in GR 29. For double-extended
1218 precision values, GR 29 is padded on the right with 48
1219 bits of garbage." */
1220 regnum = HPPA_RET0_REGNUM;
1221 offset = 0;
1222 }
1223 else
1224 {
1225 /* "Single-precision and double-precision floating-point
1226 return values are returned in FR 4R (single precision) or
1227 FR 4 (double-precision)." */
1228 regnum = HPPA64_FP4_REGNUM;
1229 offset = 8 - len;
1230 }
1231 }
1232 else
1233 {
1234 /* "Aggregate return values up to 64 bits in size are returned
1235 in GR 28. Aggregates smaller than 64 bits are left aligned
1236 in the register; the pad bits on the right are undefined."
1237
1238 "Aggregate return values between 65 and 128 bits are returned
1239 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1240 the remaining bits are placed, left aligned, in GR 29. The
1241 pad bits on the right of GR 29 (if any) are undefined." */
1242 regnum = HPPA_RET0_REGNUM;
1243 offset = 0;
1244 }
1245
1246 if (readbuf)
1247 {
1248 while (len > 0)
1249 {
1250 regcache_cooked_read_part (regcache, regnum, offset,
1251 std::min (len, 8), readbuf);
1252 readbuf += std::min (len, 8);
1253 len -= std::min (len, 8);
1254 regnum++;
1255 }
1256 }
1257
1258 if (writebuf)
1259 {
1260 while (len > 0)
1261 {
1262 regcache_cooked_write_part (regcache, regnum, offset,
1263 std::min (len, 8), writebuf);
1264 writebuf += std::min (len, 8);
1265 len -= std::min (len, 8);
1266 regnum++;
1267 }
1268 }
1269
1270 return RETURN_VALUE_REGISTER_CONVENTION;
1271 }
1272 \f
1273
1274 static CORE_ADDR
1275 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1276 struct target_ops *targ)
1277 {
1278 if (addr & 2)
1279 {
1280 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1281 CORE_ADDR plabel = addr & ~3;
1282 return read_memory_typed_address (plabel, func_ptr_type);
1283 }
1284
1285 return addr;
1286 }
1287
1288 static CORE_ADDR
1289 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1290 {
1291 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1292 and not _bit_)! */
1293 return align_up (addr, 64);
1294 }
1295
1296 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1297
1298 static CORE_ADDR
1299 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1300 {
1301 /* Just always 16-byte align. */
1302 return align_up (addr, 16);
1303 }
1304
1305 CORE_ADDR
1306 hppa_read_pc (struct regcache *regcache)
1307 {
1308 ULONGEST ipsw;
1309 ULONGEST pc;
1310
1311 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1312 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1313
1314 /* If the current instruction is nullified, then we are effectively
1315 still executing the previous instruction. Pretend we are still
1316 there. This is needed when single stepping; if the nullified
1317 instruction is on a different line, we don't want GDB to think
1318 we've stepped onto that line. */
1319 if (ipsw & 0x00200000)
1320 pc -= 4;
1321
1322 return pc & ~0x3;
1323 }
1324
1325 void
1326 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1327 {
1328 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1329 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1330 }
1331
1332 /* For the given instruction (INST), return any adjustment it makes
1333 to the stack pointer or zero for no adjustment.
1334
1335 This only handles instructions commonly found in prologues. */
1336
1337 static int
1338 prologue_inst_adjust_sp (unsigned long inst)
1339 {
1340 /* This must persist across calls. */
1341 static int save_high21;
1342
1343 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1344 if ((inst & 0xffffc000) == 0x37de0000)
1345 return hppa_extract_14 (inst);
1346
1347 /* stwm X,D(sp) */
1348 if ((inst & 0xffe00000) == 0x6fc00000)
1349 return hppa_extract_14 (inst);
1350
1351 /* std,ma X,D(sp) */
1352 if ((inst & 0xffe00008) == 0x73c00008)
1353 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
1354
1355 /* addil high21,%r30; ldo low11,(%r1),%r30)
1356 save high bits in save_high21 for later use. */
1357 if ((inst & 0xffe00000) == 0x2bc00000)
1358 {
1359 save_high21 = hppa_extract_21 (inst);
1360 return 0;
1361 }
1362
1363 if ((inst & 0xffff0000) == 0x343e0000)
1364 return save_high21 + hppa_extract_14 (inst);
1365
1366 /* fstws as used by the HP compilers. */
1367 if ((inst & 0xffffffe0) == 0x2fd01220)
1368 return hppa_extract_5_load (inst);
1369
1370 /* No adjustment. */
1371 return 0;
1372 }
1373
1374 /* Return nonzero if INST is a branch of some kind, else return zero. */
1375
1376 static int
1377 is_branch (unsigned long inst)
1378 {
1379 switch (inst >> 26)
1380 {
1381 case 0x20:
1382 case 0x21:
1383 case 0x22:
1384 case 0x23:
1385 case 0x27:
1386 case 0x28:
1387 case 0x29:
1388 case 0x2a:
1389 case 0x2b:
1390 case 0x2f:
1391 case 0x30:
1392 case 0x31:
1393 case 0x32:
1394 case 0x33:
1395 case 0x38:
1396 case 0x39:
1397 case 0x3a:
1398 case 0x3b:
1399 return 1;
1400
1401 default:
1402 return 0;
1403 }
1404 }
1405
1406 /* Return the register number for a GR which is saved by INST or
1407 zero if INST does not save a GR.
1408
1409 Referenced from:
1410
1411 parisc 1.1:
1412 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
1413
1414 parisc 2.0:
1415 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
1416
1417 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1418 on page 106 in parisc 2.0, all instructions for storing values from
1419 the general registers are:
1420
1421 Store: stb, sth, stw, std (according to Chapter 7, they
1422 are only in both "inst >> 26" and "inst >> 6".
1423 Store Absolute: stwa, stda (according to Chapter 7, they are only
1424 in "inst >> 6".
1425 Store Bytes: stby, stdby (according to Chapter 7, they are
1426 only in "inst >> 6").
1427
1428 For (inst >> 26), according to Chapter 7:
1429
1430 The effective memory reference address is formed by the addition
1431 of an immediate displacement to a base value.
1432
1433 - stb: 0x18, store a byte from a general register.
1434
1435 - sth: 0x19, store a halfword from a general register.
1436
1437 - stw: 0x1a, store a word from a general register.
1438
1439 - stwm: 0x1b, store a word from a general register and perform base
1440 register modification (2.0 will still treate it as stw).
1441
1442 - std: 0x1c, store a doubleword from a general register (2.0 only).
1443
1444 - stw: 0x1f, store a word from a general register (2.0 only).
1445
1446 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1447
1448 The effective memory reference address is formed by the addition
1449 of an index value to a base value specified in the instruction.
1450
1451 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1452
1453 - sth: 0x09, store a halfword from a general register (1.1 calls
1454 sths).
1455
1456 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1457
1458 - std: 0x0b: store a doubleword from a general register (2.0 only)
1459
1460 Implement fast byte moves (stores) to unaligned word or doubleword
1461 destination.
1462
1463 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1464
1465 - stdby: 0x0d for unaligned doubleword (2.0 only).
1466
1467 Store a word or doubleword using an absolute memory address formed
1468 using short or long displacement or indexed
1469
1470 - stwa: 0x0e, store a word from a general register to an absolute
1471 address (1.0 calls stwas).
1472
1473 - stda: 0x0f, store a doubleword from a general register to an
1474 absolute address (2.0 only). */
1475
1476 static int
1477 inst_saves_gr (unsigned long inst)
1478 {
1479 switch ((inst >> 26) & 0x0f)
1480 {
1481 case 0x03:
1482 switch ((inst >> 6) & 0x0f)
1483 {
1484 case 0x08:
1485 case 0x09:
1486 case 0x0a:
1487 case 0x0b:
1488 case 0x0c:
1489 case 0x0d:
1490 case 0x0e:
1491 case 0x0f:
1492 return hppa_extract_5R_store (inst);
1493 default:
1494 return 0;
1495 }
1496 case 0x18:
1497 case 0x19:
1498 case 0x1a:
1499 case 0x1b:
1500 case 0x1c:
1501 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1502 case 0x1f:
1503 return hppa_extract_5R_store (inst);
1504 default:
1505 return 0;
1506 }
1507 }
1508
1509 /* Return the register number for a FR which is saved by INST or
1510 zero it INST does not save a FR.
1511
1512 Note we only care about full 64bit register stores (that's the only
1513 kind of stores the prologue will use).
1514
1515 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1516
1517 static int
1518 inst_saves_fr (unsigned long inst)
1519 {
1520 /* Is this an FSTD? */
1521 if ((inst & 0xfc00dfc0) == 0x2c001200)
1522 return hppa_extract_5r_store (inst);
1523 if ((inst & 0xfc000002) == 0x70000002)
1524 return hppa_extract_5R_store (inst);
1525 /* Is this an FSTW? */
1526 if ((inst & 0xfc00df80) == 0x24001200)
1527 return hppa_extract_5r_store (inst);
1528 if ((inst & 0xfc000002) == 0x7c000000)
1529 return hppa_extract_5R_store (inst);
1530 return 0;
1531 }
1532
1533 /* Advance PC across any function entry prologue instructions
1534 to reach some "real" code.
1535
1536 Use information in the unwind table to determine what exactly should
1537 be in the prologue. */
1538
1539
1540 static CORE_ADDR
1541 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1542 int stop_before_branch)
1543 {
1544 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1545 gdb_byte buf[4];
1546 CORE_ADDR orig_pc = pc;
1547 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1548 unsigned long args_stored, status, i, restart_gr, restart_fr;
1549 struct unwind_table_entry *u;
1550 int final_iteration;
1551
1552 restart_gr = 0;
1553 restart_fr = 0;
1554
1555 restart:
1556 u = find_unwind_entry (pc);
1557 if (!u)
1558 return pc;
1559
1560 /* If we are not at the beginning of a function, then return now. */
1561 if ((pc & ~0x3) != u->region_start)
1562 return pc;
1563
1564 /* This is how much of a frame adjustment we need to account for. */
1565 stack_remaining = u->Total_frame_size << 3;
1566
1567 /* Magic register saves we want to know about. */
1568 save_rp = u->Save_RP;
1569 save_sp = u->Save_SP;
1570
1571 /* An indication that args may be stored into the stack. Unfortunately
1572 the HPUX compilers tend to set this in cases where no args were
1573 stored too!. */
1574 args_stored = 1;
1575
1576 /* Turn the Entry_GR field into a bitmask. */
1577 save_gr = 0;
1578 for (i = 3; i < u->Entry_GR + 3; i++)
1579 {
1580 /* Frame pointer gets saved into a special location. */
1581 if (u->Save_SP && i == HPPA_FP_REGNUM)
1582 continue;
1583
1584 save_gr |= (1 << i);
1585 }
1586 save_gr &= ~restart_gr;
1587
1588 /* Turn the Entry_FR field into a bitmask too. */
1589 save_fr = 0;
1590 for (i = 12; i < u->Entry_FR + 12; i++)
1591 save_fr |= (1 << i);
1592 save_fr &= ~restart_fr;
1593
1594 final_iteration = 0;
1595
1596 /* Loop until we find everything of interest or hit a branch.
1597
1598 For unoptimized GCC code and for any HP CC code this will never ever
1599 examine any user instructions.
1600
1601 For optimzied GCC code we're faced with problems. GCC will schedule
1602 its prologue and make prologue instructions available for delay slot
1603 filling. The end result is user code gets mixed in with the prologue
1604 and a prologue instruction may be in the delay slot of the first branch
1605 or call.
1606
1607 Some unexpected things are expected with debugging optimized code, so
1608 we allow this routine to walk past user instructions in optimized
1609 GCC code. */
1610 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1611 || args_stored)
1612 {
1613 unsigned int reg_num;
1614 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1615 unsigned long old_save_rp, old_save_sp, next_inst;
1616
1617 /* Save copies of all the triggers so we can compare them later
1618 (only for HPC). */
1619 old_save_gr = save_gr;
1620 old_save_fr = save_fr;
1621 old_save_rp = save_rp;
1622 old_save_sp = save_sp;
1623 old_stack_remaining = stack_remaining;
1624
1625 status = target_read_memory (pc, buf, 4);
1626 inst = extract_unsigned_integer (buf, 4, byte_order);
1627
1628 /* Yow! */
1629 if (status != 0)
1630 return pc;
1631
1632 /* Note the interesting effects of this instruction. */
1633 stack_remaining -= prologue_inst_adjust_sp (inst);
1634
1635 /* There are limited ways to store the return pointer into the
1636 stack. */
1637 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1638 save_rp = 0;
1639
1640 /* These are the only ways we save SP into the stack. At this time
1641 the HP compilers never bother to save SP into the stack. */
1642 if ((inst & 0xffffc000) == 0x6fc10000
1643 || (inst & 0xffffc00c) == 0x73c10008)
1644 save_sp = 0;
1645
1646 /* Are we loading some register with an offset from the argument
1647 pointer? */
1648 if ((inst & 0xffe00000) == 0x37a00000
1649 || (inst & 0xffffffe0) == 0x081d0240)
1650 {
1651 pc += 4;
1652 continue;
1653 }
1654
1655 /* Account for general and floating-point register saves. */
1656 reg_num = inst_saves_gr (inst);
1657 save_gr &= ~(1 << reg_num);
1658
1659 /* Ugh. Also account for argument stores into the stack.
1660 Unfortunately args_stored only tells us that some arguments
1661 where stored into the stack. Not how many or what kind!
1662
1663 This is a kludge as on the HP compiler sets this bit and it
1664 never does prologue scheduling. So once we see one, skip past
1665 all of them. We have similar code for the fp arg stores below.
1666
1667 FIXME. Can still die if we have a mix of GR and FR argument
1668 stores! */
1669 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1670 && reg_num <= 26)
1671 {
1672 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1673 && reg_num <= 26)
1674 {
1675 pc += 4;
1676 status = target_read_memory (pc, buf, 4);
1677 inst = extract_unsigned_integer (buf, 4, byte_order);
1678 if (status != 0)
1679 return pc;
1680 reg_num = inst_saves_gr (inst);
1681 }
1682 args_stored = 0;
1683 continue;
1684 }
1685
1686 reg_num = inst_saves_fr (inst);
1687 save_fr &= ~(1 << reg_num);
1688
1689 status = target_read_memory (pc + 4, buf, 4);
1690 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1691
1692 /* Yow! */
1693 if (status != 0)
1694 return pc;
1695
1696 /* We've got to be read to handle the ldo before the fp register
1697 save. */
1698 if ((inst & 0xfc000000) == 0x34000000
1699 && inst_saves_fr (next_inst) >= 4
1700 && inst_saves_fr (next_inst)
1701 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1702 {
1703 /* So we drop into the code below in a reasonable state. */
1704 reg_num = inst_saves_fr (next_inst);
1705 pc -= 4;
1706 }
1707
1708 /* Ugh. Also account for argument stores into the stack.
1709 This is a kludge as on the HP compiler sets this bit and it
1710 never does prologue scheduling. So once we see one, skip past
1711 all of them. */
1712 if (reg_num >= 4
1713 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1714 {
1715 while (reg_num >= 4
1716 && reg_num
1717 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1718 {
1719 pc += 8;
1720 status = target_read_memory (pc, buf, 4);
1721 inst = extract_unsigned_integer (buf, 4, byte_order);
1722 if (status != 0)
1723 return pc;
1724 if ((inst & 0xfc000000) != 0x34000000)
1725 break;
1726 status = target_read_memory (pc + 4, buf, 4);
1727 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1728 if (status != 0)
1729 return pc;
1730 reg_num = inst_saves_fr (next_inst);
1731 }
1732 args_stored = 0;
1733 continue;
1734 }
1735
1736 /* Quit if we hit any kind of branch. This can happen if a prologue
1737 instruction is in the delay slot of the first call/branch. */
1738 if (is_branch (inst) && stop_before_branch)
1739 break;
1740
1741 /* What a crock. The HP compilers set args_stored even if no
1742 arguments were stored into the stack (boo hiss). This could
1743 cause this code to then skip a bunch of user insns (up to the
1744 first branch).
1745
1746 To combat this we try to identify when args_stored was bogusly
1747 set and clear it. We only do this when args_stored is nonzero,
1748 all other resources are accounted for, and nothing changed on
1749 this pass. */
1750 if (args_stored
1751 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1752 && old_save_gr == save_gr && old_save_fr == save_fr
1753 && old_save_rp == save_rp && old_save_sp == save_sp
1754 && old_stack_remaining == stack_remaining)
1755 break;
1756
1757 /* Bump the PC. */
1758 pc += 4;
1759
1760 /* !stop_before_branch, so also look at the insn in the delay slot
1761 of the branch. */
1762 if (final_iteration)
1763 break;
1764 if (is_branch (inst))
1765 final_iteration = 1;
1766 }
1767
1768 /* We've got a tenative location for the end of the prologue. However
1769 because of limitations in the unwind descriptor mechanism we may
1770 have went too far into user code looking for the save of a register
1771 that does not exist. So, if there registers we expected to be saved
1772 but never were, mask them out and restart.
1773
1774 This should only happen in optimized code, and should be very rare. */
1775 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1776 {
1777 pc = orig_pc;
1778 restart_gr = save_gr;
1779 restart_fr = save_fr;
1780 goto restart;
1781 }
1782
1783 return pc;
1784 }
1785
1786
1787 /* Return the address of the PC after the last prologue instruction if
1788 we can determine it from the debug symbols. Else return zero. */
1789
1790 static CORE_ADDR
1791 after_prologue (CORE_ADDR pc)
1792 {
1793 struct symtab_and_line sal;
1794 CORE_ADDR func_addr, func_end;
1795
1796 /* If we can not find the symbol in the partial symbol table, then
1797 there is no hope we can determine the function's start address
1798 with this code. */
1799 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1800 return 0;
1801
1802 /* Get the line associated with FUNC_ADDR. */
1803 sal = find_pc_line (func_addr, 0);
1804
1805 /* There are only two cases to consider. First, the end of the source line
1806 is within the function bounds. In that case we return the end of the
1807 source line. Second is the end of the source line extends beyond the
1808 bounds of the current function. We need to use the slow code to
1809 examine instructions in that case.
1810
1811 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1812 the wrong thing to do. In fact, it should be entirely possible for this
1813 function to always return zero since the slow instruction scanning code
1814 is supposed to *always* work. If it does not, then it is a bug. */
1815 if (sal.end < func_end)
1816 return sal.end;
1817 else
1818 return 0;
1819 }
1820
1821 /* To skip prologues, I use this predicate. Returns either PC itself
1822 if the code at PC does not look like a function prologue; otherwise
1823 returns an address that (if we're lucky) follows the prologue.
1824
1825 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1826 It doesn't necessarily skips all the insns in the prologue. In fact
1827 we might not want to skip all the insns because a prologue insn may
1828 appear in the delay slot of the first branch, and we don't want to
1829 skip over the branch in that case. */
1830
1831 static CORE_ADDR
1832 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1833 {
1834 CORE_ADDR post_prologue_pc;
1835
1836 /* See if we can determine the end of the prologue via the symbol table.
1837 If so, then return either PC, or the PC after the prologue, whichever
1838 is greater. */
1839
1840 post_prologue_pc = after_prologue (pc);
1841
1842 /* If after_prologue returned a useful address, then use it. Else
1843 fall back on the instruction skipping code.
1844
1845 Some folks have claimed this causes problems because the breakpoint
1846 may be the first instruction of the prologue. If that happens, then
1847 the instruction skipping code has a bug that needs to be fixed. */
1848 if (post_prologue_pc != 0)
1849 return std::max (pc, post_prologue_pc);
1850 else
1851 return (skip_prologue_hard_way (gdbarch, pc, 1));
1852 }
1853
1854 /* Return an unwind entry that falls within the frame's code block. */
1855
1856 static struct unwind_table_entry *
1857 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1858 {
1859 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1860
1861 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1862 result of get_frame_address_in_block implies a problem.
1863 The bits should have been removed earlier, before the return
1864 value of gdbarch_unwind_pc. That might be happening already;
1865 if it isn't, it should be fixed. Then this call can be
1866 removed. */
1867 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1868 return find_unwind_entry (pc);
1869 }
1870
1871 struct hppa_frame_cache
1872 {
1873 CORE_ADDR base;
1874 struct trad_frame_saved_reg *saved_regs;
1875 };
1876
1877 static struct hppa_frame_cache *
1878 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1879 {
1880 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1882 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1883 struct hppa_frame_cache *cache;
1884 long saved_gr_mask;
1885 long saved_fr_mask;
1886 long frame_size;
1887 struct unwind_table_entry *u;
1888 CORE_ADDR prologue_end;
1889 int fp_in_r1 = 0;
1890 int i;
1891
1892 if (hppa_debug)
1893 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1894 frame_relative_level(this_frame));
1895
1896 if ((*this_cache) != NULL)
1897 {
1898 if (hppa_debug)
1899 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1900 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1901 return (struct hppa_frame_cache *) (*this_cache);
1902 }
1903 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1904 (*this_cache) = cache;
1905 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1906
1907 /* Yow! */
1908 u = hppa_find_unwind_entry_in_block (this_frame);
1909 if (!u)
1910 {
1911 if (hppa_debug)
1912 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1913 return (struct hppa_frame_cache *) (*this_cache);
1914 }
1915
1916 /* Turn the Entry_GR field into a bitmask. */
1917 saved_gr_mask = 0;
1918 for (i = 3; i < u->Entry_GR + 3; i++)
1919 {
1920 /* Frame pointer gets saved into a special location. */
1921 if (u->Save_SP && i == HPPA_FP_REGNUM)
1922 continue;
1923
1924 saved_gr_mask |= (1 << i);
1925 }
1926
1927 /* Turn the Entry_FR field into a bitmask too. */
1928 saved_fr_mask = 0;
1929 for (i = 12; i < u->Entry_FR + 12; i++)
1930 saved_fr_mask |= (1 << i);
1931
1932 /* Loop until we find everything of interest or hit a branch.
1933
1934 For unoptimized GCC code and for any HP CC code this will never ever
1935 examine any user instructions.
1936
1937 For optimized GCC code we're faced with problems. GCC will schedule
1938 its prologue and make prologue instructions available for delay slot
1939 filling. The end result is user code gets mixed in with the prologue
1940 and a prologue instruction may be in the delay slot of the first branch
1941 or call.
1942
1943 Some unexpected things are expected with debugging optimized code, so
1944 we allow this routine to walk past user instructions in optimized
1945 GCC code. */
1946 {
1947 int final_iteration = 0;
1948 CORE_ADDR pc, start_pc, end_pc;
1949 int looking_for_sp = u->Save_SP;
1950 int looking_for_rp = u->Save_RP;
1951 int fp_loc = -1;
1952
1953 /* We have to use skip_prologue_hard_way instead of just
1954 skip_prologue_using_sal, in case we stepped into a function without
1955 symbol information. hppa_skip_prologue also bounds the returned
1956 pc by the passed in pc, so it will not return a pc in the next
1957 function.
1958
1959 We used to call hppa_skip_prologue to find the end of the prologue,
1960 but if some non-prologue instructions get scheduled into the prologue,
1961 and the program is compiled with debug information, the "easy" way
1962 in hppa_skip_prologue will return a prologue end that is too early
1963 for us to notice any potential frame adjustments. */
1964
1965 /* We used to use get_frame_func to locate the beginning of the
1966 function to pass to skip_prologue. However, when objects are
1967 compiled without debug symbols, get_frame_func can return the wrong
1968 function (or 0). We can do better than that by using unwind records.
1969 This only works if the Region_description of the unwind record
1970 indicates that it includes the entry point of the function.
1971 HP compilers sometimes generate unwind records for regions that
1972 do not include the entry or exit point of a function. GNU tools
1973 do not do this. */
1974
1975 if ((u->Region_description & 0x2) == 0)
1976 start_pc = u->region_start;
1977 else
1978 start_pc = get_frame_func (this_frame);
1979
1980 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1981 end_pc = get_frame_pc (this_frame);
1982
1983 if (prologue_end != 0 && end_pc > prologue_end)
1984 end_pc = prologue_end;
1985
1986 frame_size = 0;
1987
1988 for (pc = start_pc;
1989 ((saved_gr_mask || saved_fr_mask
1990 || looking_for_sp || looking_for_rp
1991 || frame_size < (u->Total_frame_size << 3))
1992 && pc < end_pc);
1993 pc += 4)
1994 {
1995 int reg;
1996 gdb_byte buf4[4];
1997 long inst;
1998
1999 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
2000 {
2001 error (_("Cannot read instruction at %s."),
2002 paddress (gdbarch, pc));
2003 return (struct hppa_frame_cache *) (*this_cache);
2004 }
2005
2006 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
2007
2008 /* Note the interesting effects of this instruction. */
2009 frame_size += prologue_inst_adjust_sp (inst);
2010
2011 /* There are limited ways to store the return pointer into the
2012 stack. */
2013 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2014 {
2015 looking_for_rp = 0;
2016 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2017 }
2018 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2019 {
2020 looking_for_rp = 0;
2021 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2022 }
2023 else if (inst == 0x0fc212c1
2024 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2025 {
2026 looking_for_rp = 0;
2027 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2028 }
2029
2030 /* Check to see if we saved SP into the stack. This also
2031 happens to indicate the location of the saved frame
2032 pointer. */
2033 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2034 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2035 {
2036 looking_for_sp = 0;
2037 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
2038 }
2039 else if (inst == 0x08030241) /* copy %r3, %r1 */
2040 {
2041 fp_in_r1 = 1;
2042 }
2043
2044 /* Account for general and floating-point register saves. */
2045 reg = inst_saves_gr (inst);
2046 if (reg >= 3 && reg <= 18
2047 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2048 {
2049 saved_gr_mask &= ~(1 << reg);
2050 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
2051 /* stwm with a positive displacement is a _post_
2052 _modify_. */
2053 cache->saved_regs[reg].addr = 0;
2054 else if ((inst & 0xfc00000c) == 0x70000008)
2055 /* A std has explicit post_modify forms. */
2056 cache->saved_regs[reg].addr = 0;
2057 else
2058 {
2059 CORE_ADDR offset;
2060
2061 if ((inst >> 26) == 0x1c)
2062 offset = (inst & 0x1 ? -(1 << 13) : 0)
2063 | (((inst >> 4) & 0x3ff) << 3);
2064 else if ((inst >> 26) == 0x03)
2065 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2066 else
2067 offset = hppa_extract_14 (inst);
2068
2069 /* Handle code with and without frame pointers. */
2070 if (u->Save_SP)
2071 cache->saved_regs[reg].addr = offset;
2072 else
2073 cache->saved_regs[reg].addr
2074 = (u->Total_frame_size << 3) + offset;
2075 }
2076 }
2077
2078 /* GCC handles callee saved FP regs a little differently.
2079
2080 It emits an instruction to put the value of the start of
2081 the FP store area into %r1. It then uses fstds,ma with a
2082 basereg of %r1 for the stores.
2083
2084 HP CC emits them at the current stack pointer modifying the
2085 stack pointer as it stores each register. */
2086
2087 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2088 if ((inst & 0xffffc000) == 0x34610000
2089 || (inst & 0xffffc000) == 0x37c10000)
2090 fp_loc = hppa_extract_14 (inst);
2091
2092 reg = inst_saves_fr (inst);
2093 if (reg >= 12 && reg <= 21)
2094 {
2095 /* Note +4 braindamage below is necessary because the FP
2096 status registers are internally 8 registers rather than
2097 the expected 4 registers. */
2098 saved_fr_mask &= ~(1 << reg);
2099 if (fp_loc == -1)
2100 {
2101 /* 1st HP CC FP register store. After this
2102 instruction we've set enough state that the GCC and
2103 HPCC code are both handled in the same manner. */
2104 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2105 fp_loc = 8;
2106 }
2107 else
2108 {
2109 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2110 fp_loc += 8;
2111 }
2112 }
2113
2114 /* Quit if we hit any kind of branch the previous iteration. */
2115 if (final_iteration)
2116 break;
2117 /* We want to look precisely one instruction beyond the branch
2118 if we have not found everything yet. */
2119 if (is_branch (inst))
2120 final_iteration = 1;
2121 }
2122 }
2123
2124 {
2125 /* The frame base always represents the value of %sp at entry to
2126 the current function (and is thus equivalent to the "saved"
2127 stack pointer. */
2128 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2129 HPPA_SP_REGNUM);
2130 CORE_ADDR fp;
2131
2132 if (hppa_debug)
2133 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2134 "prologue_end=%s) ",
2135 paddress (gdbarch, this_sp),
2136 paddress (gdbarch, get_frame_pc (this_frame)),
2137 paddress (gdbarch, prologue_end));
2138
2139 /* Check to see if a frame pointer is available, and use it for
2140 frame unwinding if it is.
2141
2142 There are some situations where we need to rely on the frame
2143 pointer to do stack unwinding. For example, if a function calls
2144 alloca (), the stack pointer can get adjusted inside the body of
2145 the function. In this case, the ABI requires that the compiler
2146 maintain a frame pointer for the function.
2147
2148 The unwind record has a flag (alloca_frame) that indicates that
2149 a function has a variable frame; unfortunately, gcc/binutils
2150 does not set this flag. Instead, whenever a frame pointer is used
2151 and saved on the stack, the Save_SP flag is set. We use this to
2152 decide whether to use the frame pointer for unwinding.
2153
2154 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2155 instead of Save_SP. */
2156
2157 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2158
2159 if (u->alloca_frame)
2160 fp -= u->Total_frame_size << 3;
2161
2162 if (get_frame_pc (this_frame) >= prologue_end
2163 && (u->Save_SP || u->alloca_frame) && fp != 0)
2164 {
2165 cache->base = fp;
2166
2167 if (hppa_debug)
2168 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2169 paddress (gdbarch, cache->base));
2170 }
2171 else if (u->Save_SP
2172 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2173 {
2174 /* Both we're expecting the SP to be saved and the SP has been
2175 saved. The entry SP value is saved at this frame's SP
2176 address. */
2177 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2178
2179 if (hppa_debug)
2180 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2181 paddress (gdbarch, cache->base));
2182 }
2183 else
2184 {
2185 /* The prologue has been slowly allocating stack space. Adjust
2186 the SP back. */
2187 cache->base = this_sp - frame_size;
2188 if (hppa_debug)
2189 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2190 paddress (gdbarch, cache->base));
2191
2192 }
2193 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2194 }
2195
2196 /* The PC is found in the "return register", "Millicode" uses "r31"
2197 as the return register while normal code uses "rp". */
2198 if (u->Millicode)
2199 {
2200 if (trad_frame_addr_p (cache->saved_regs, 31))
2201 {
2202 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2203 if (hppa_debug)
2204 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2205 }
2206 else
2207 {
2208 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2209 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2210 if (hppa_debug)
2211 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2212 }
2213 }
2214 else
2215 {
2216 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2217 {
2218 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2219 cache->saved_regs[HPPA_RP_REGNUM];
2220 if (hppa_debug)
2221 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2222 }
2223 else
2224 {
2225 ULONGEST rp = get_frame_register_unsigned (this_frame,
2226 HPPA_RP_REGNUM);
2227 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2228 if (hppa_debug)
2229 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2230 }
2231 }
2232
2233 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2234 frame. However, there is a one-insn window where we haven't saved it
2235 yet, but we've already clobbered it. Detect this case and fix it up.
2236
2237 The prologue sequence for frame-pointer functions is:
2238 0: stw %rp, -20(%sp)
2239 4: copy %r3, %r1
2240 8: copy %sp, %r3
2241 c: stw,ma %r1, XX(%sp)
2242
2243 So if we are at offset c, the r3 value that we want is not yet saved
2244 on the stack, but it's been overwritten. The prologue analyzer will
2245 set fp_in_r1 when it sees the copy insn so we know to get the value
2246 from r1 instead. */
2247 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2248 && fp_in_r1)
2249 {
2250 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2251 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2252 }
2253
2254 {
2255 /* Convert all the offsets into addresses. */
2256 int reg;
2257 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2258 {
2259 if (trad_frame_addr_p (cache->saved_regs, reg))
2260 cache->saved_regs[reg].addr += cache->base;
2261 }
2262 }
2263
2264 {
2265 struct gdbarch_tdep *tdep;
2266
2267 tdep = gdbarch_tdep (gdbarch);
2268
2269 if (tdep->unwind_adjust_stub)
2270 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2271 }
2272
2273 if (hppa_debug)
2274 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2275 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2276 return (struct hppa_frame_cache *) (*this_cache);
2277 }
2278
2279 static void
2280 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2281 struct frame_id *this_id)
2282 {
2283 struct hppa_frame_cache *info;
2284 struct unwind_table_entry *u;
2285
2286 info = hppa_frame_cache (this_frame, this_cache);
2287 u = hppa_find_unwind_entry_in_block (this_frame);
2288
2289 (*this_id) = frame_id_build (info->base, u->region_start);
2290 }
2291
2292 static struct value *
2293 hppa_frame_prev_register (struct frame_info *this_frame,
2294 void **this_cache, int regnum)
2295 {
2296 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2297
2298 return hppa_frame_prev_register_helper (this_frame,
2299 info->saved_regs, regnum);
2300 }
2301
2302 static int
2303 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2304 struct frame_info *this_frame, void **this_cache)
2305 {
2306 if (hppa_find_unwind_entry_in_block (this_frame))
2307 return 1;
2308
2309 return 0;
2310 }
2311
2312 static const struct frame_unwind hppa_frame_unwind =
2313 {
2314 NORMAL_FRAME,
2315 default_frame_unwind_stop_reason,
2316 hppa_frame_this_id,
2317 hppa_frame_prev_register,
2318 NULL,
2319 hppa_frame_unwind_sniffer
2320 };
2321
2322 /* This is a generic fallback frame unwinder that kicks in if we fail all
2323 the other ones. Normally we would expect the stub and regular unwinder
2324 to work, but in some cases we might hit a function that just doesn't
2325 have any unwind information available. In this case we try to do
2326 unwinding solely based on code reading. This is obviously going to be
2327 slow, so only use this as a last resort. Currently this will only
2328 identify the stack and pc for the frame. */
2329
2330 static struct hppa_frame_cache *
2331 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2332 {
2333 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2335 struct hppa_frame_cache *cache;
2336 unsigned int frame_size = 0;
2337 int found_rp = 0;
2338 CORE_ADDR start_pc;
2339
2340 if (hppa_debug)
2341 fprintf_unfiltered (gdb_stdlog,
2342 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2343 frame_relative_level (this_frame));
2344
2345 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2346 (*this_cache) = cache;
2347 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2348
2349 start_pc = get_frame_func (this_frame);
2350 if (start_pc)
2351 {
2352 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2353 CORE_ADDR pc;
2354
2355 for (pc = start_pc; pc < cur_pc; pc += 4)
2356 {
2357 unsigned int insn;
2358
2359 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2360 frame_size += prologue_inst_adjust_sp (insn);
2361
2362 /* There are limited ways to store the return pointer into the
2363 stack. */
2364 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2365 {
2366 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2367 found_rp = 1;
2368 }
2369 else if (insn == 0x0fc212c1
2370 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2371 {
2372 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2373 found_rp = 1;
2374 }
2375 }
2376 }
2377
2378 if (hppa_debug)
2379 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2380 frame_size, found_rp);
2381
2382 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2383 cache->base -= frame_size;
2384 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2385
2386 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2387 {
2388 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2389 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2390 cache->saved_regs[HPPA_RP_REGNUM];
2391 }
2392 else
2393 {
2394 ULONGEST rp;
2395 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2396 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2397 }
2398
2399 return cache;
2400 }
2401
2402 static void
2403 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2404 struct frame_id *this_id)
2405 {
2406 struct hppa_frame_cache *info =
2407 hppa_fallback_frame_cache (this_frame, this_cache);
2408
2409 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2410 }
2411
2412 static struct value *
2413 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2414 void **this_cache, int regnum)
2415 {
2416 struct hppa_frame_cache *info
2417 = hppa_fallback_frame_cache (this_frame, this_cache);
2418
2419 return hppa_frame_prev_register_helper (this_frame,
2420 info->saved_regs, regnum);
2421 }
2422
2423 static const struct frame_unwind hppa_fallback_frame_unwind =
2424 {
2425 NORMAL_FRAME,
2426 default_frame_unwind_stop_reason,
2427 hppa_fallback_frame_this_id,
2428 hppa_fallback_frame_prev_register,
2429 NULL,
2430 default_frame_sniffer
2431 };
2432
2433 /* Stub frames, used for all kinds of call stubs. */
2434 struct hppa_stub_unwind_cache
2435 {
2436 CORE_ADDR base;
2437 struct trad_frame_saved_reg *saved_regs;
2438 };
2439
2440 static struct hppa_stub_unwind_cache *
2441 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2442 void **this_cache)
2443 {
2444 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2445 struct hppa_stub_unwind_cache *info;
2446 struct unwind_table_entry *u;
2447
2448 if (*this_cache)
2449 return (struct hppa_stub_unwind_cache *) *this_cache;
2450
2451 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2452 *this_cache = info;
2453 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2454
2455 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2456
2457 /* By default we assume that stubs do not change the rp. */
2458 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2459
2460 return info;
2461 }
2462
2463 static void
2464 hppa_stub_frame_this_id (struct frame_info *this_frame,
2465 void **this_prologue_cache,
2466 struct frame_id *this_id)
2467 {
2468 struct hppa_stub_unwind_cache *info
2469 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2470
2471 if (info)
2472 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2473 }
2474
2475 static struct value *
2476 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2477 void **this_prologue_cache, int regnum)
2478 {
2479 struct hppa_stub_unwind_cache *info
2480 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2481
2482 if (info == NULL)
2483 error (_("Requesting registers from null frame."));
2484
2485 return hppa_frame_prev_register_helper (this_frame,
2486 info->saved_regs, regnum);
2487 }
2488
2489 static int
2490 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2491 struct frame_info *this_frame,
2492 void **this_cache)
2493 {
2494 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2495 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2496 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2497
2498 if (pc == 0
2499 || (tdep->in_solib_call_trampoline != NULL
2500 && tdep->in_solib_call_trampoline (gdbarch, pc))
2501 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2502 return 1;
2503 return 0;
2504 }
2505
2506 static const struct frame_unwind hppa_stub_frame_unwind = {
2507 NORMAL_FRAME,
2508 default_frame_unwind_stop_reason,
2509 hppa_stub_frame_this_id,
2510 hppa_stub_frame_prev_register,
2511 NULL,
2512 hppa_stub_unwind_sniffer
2513 };
2514
2515 static struct frame_id
2516 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2517 {
2518 return frame_id_build (get_frame_register_unsigned (this_frame,
2519 HPPA_SP_REGNUM),
2520 get_frame_pc (this_frame));
2521 }
2522
2523 CORE_ADDR
2524 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2525 {
2526 ULONGEST ipsw;
2527 CORE_ADDR pc;
2528
2529 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2530 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2531
2532 /* If the current instruction is nullified, then we are effectively
2533 still executing the previous instruction. Pretend we are still
2534 there. This is needed when single stepping; if the nullified
2535 instruction is on a different line, we don't want GDB to think
2536 we've stepped onto that line. */
2537 if (ipsw & 0x00200000)
2538 pc -= 4;
2539
2540 return pc & ~0x3;
2541 }
2542
2543 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2544 Return NULL if no such symbol was found. */
2545
2546 struct bound_minimal_symbol
2547 hppa_lookup_stub_minimal_symbol (const char *name,
2548 enum unwind_stub_types stub_type)
2549 {
2550 struct objfile *objfile;
2551 struct minimal_symbol *msym;
2552 struct bound_minimal_symbol result = { NULL, NULL };
2553
2554 ALL_MSYMBOLS (objfile, msym)
2555 {
2556 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2557 {
2558 struct unwind_table_entry *u;
2559
2560 u = find_unwind_entry (MSYMBOL_VALUE (msym));
2561 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2562 {
2563 result.objfile = objfile;
2564 result.minsym = msym;
2565 return result;
2566 }
2567 }
2568 }
2569
2570 return result;
2571 }
2572
2573 static void
2574 unwind_command (char *exp, int from_tty)
2575 {
2576 CORE_ADDR address;
2577 struct unwind_table_entry *u;
2578
2579 /* If we have an expression, evaluate it and use it as the address. */
2580
2581 if (exp != 0 && *exp != 0)
2582 address = parse_and_eval_address (exp);
2583 else
2584 return;
2585
2586 u = find_unwind_entry (address);
2587
2588 if (!u)
2589 {
2590 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2591 return;
2592 }
2593
2594 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2595
2596 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2597 gdb_flush (gdb_stdout);
2598
2599 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2600 gdb_flush (gdb_stdout);
2601
2602 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2603
2604 printf_unfiltered ("\n\tflags =");
2605 pif (Cannot_unwind);
2606 pif (Millicode);
2607 pif (Millicode_save_sr0);
2608 pif (Entry_SR);
2609 pif (Args_stored);
2610 pif (Variable_Frame);
2611 pif (Separate_Package_Body);
2612 pif (Frame_Extension_Millicode);
2613 pif (Stack_Overflow_Check);
2614 pif (Two_Instruction_SP_Increment);
2615 pif (sr4export);
2616 pif (cxx_info);
2617 pif (cxx_try_catch);
2618 pif (sched_entry_seq);
2619 pif (Save_SP);
2620 pif (Save_RP);
2621 pif (Save_MRP_in_frame);
2622 pif (save_r19);
2623 pif (Cleanup_defined);
2624 pif (MPE_XL_interrupt_marker);
2625 pif (HP_UX_interrupt_marker);
2626 pif (Large_frame);
2627 pif (alloca_frame);
2628
2629 putchar_unfiltered ('\n');
2630
2631 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2632
2633 pin (Region_description);
2634 pin (Entry_FR);
2635 pin (Entry_GR);
2636 pin (Total_frame_size);
2637
2638 if (u->stub_unwind.stub_type)
2639 {
2640 printf_unfiltered ("\tstub type = ");
2641 switch (u->stub_unwind.stub_type)
2642 {
2643 case LONG_BRANCH:
2644 printf_unfiltered ("long branch\n");
2645 break;
2646 case PARAMETER_RELOCATION:
2647 printf_unfiltered ("parameter relocation\n");
2648 break;
2649 case EXPORT:
2650 printf_unfiltered ("export\n");
2651 break;
2652 case IMPORT:
2653 printf_unfiltered ("import\n");
2654 break;
2655 case IMPORT_SHLIB:
2656 printf_unfiltered ("import shlib\n");
2657 break;
2658 default:
2659 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2660 }
2661 }
2662 }
2663
2664 /* Return the GDB type object for the "standard" data type of data in
2665 register REGNUM. */
2666
2667 static struct type *
2668 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2669 {
2670 if (regnum < HPPA_FP4_REGNUM)
2671 return builtin_type (gdbarch)->builtin_uint32;
2672 else
2673 return builtin_type (gdbarch)->builtin_float;
2674 }
2675
2676 static struct type *
2677 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2678 {
2679 if (regnum < HPPA64_FP4_REGNUM)
2680 return builtin_type (gdbarch)->builtin_uint64;
2681 else
2682 return builtin_type (gdbarch)->builtin_double;
2683 }
2684
2685 /* Return non-zero if REGNUM is not a register available to the user
2686 through ptrace/ttrace. */
2687
2688 static int
2689 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2690 {
2691 return (regnum == 0
2692 || regnum == HPPA_PCSQ_HEAD_REGNUM
2693 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2694 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2695 }
2696
2697 static int
2698 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2699 {
2700 /* cr26 and cr27 are readable (but not writable) from userspace. */
2701 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2702 return 0;
2703 else
2704 return hppa32_cannot_store_register (gdbarch, regnum);
2705 }
2706
2707 static int
2708 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2709 {
2710 return (regnum == 0
2711 || regnum == HPPA_PCSQ_HEAD_REGNUM
2712 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2713 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2714 }
2715
2716 static int
2717 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2718 {
2719 /* cr26 and cr27 are readable (but not writable) from userspace. */
2720 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2721 return 0;
2722 else
2723 return hppa64_cannot_store_register (gdbarch, regnum);
2724 }
2725
2726 static CORE_ADDR
2727 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2728 {
2729 /* The low two bits of the PC on the PA contain the privilege level.
2730 Some genius implementing a (non-GCC) compiler apparently decided
2731 this means that "addresses" in a text section therefore include a
2732 privilege level, and thus symbol tables should contain these bits.
2733 This seems like a bonehead thing to do--anyway, it seems to work
2734 for our purposes to just ignore those bits. */
2735
2736 return (addr &= ~0x3);
2737 }
2738
2739 /* Get the ARGIth function argument for the current function. */
2740
2741 static CORE_ADDR
2742 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2743 struct type *type)
2744 {
2745 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2746 }
2747
2748 static enum register_status
2749 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2750 int regnum, gdb_byte *buf)
2751 {
2752 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2753 ULONGEST tmp;
2754 enum register_status status;
2755
2756 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2757 if (status == REG_VALID)
2758 {
2759 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2760 tmp &= ~0x3;
2761 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2762 }
2763 return status;
2764 }
2765
2766 static CORE_ADDR
2767 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2768 {
2769 return 0;
2770 }
2771
2772 struct value *
2773 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2774 struct trad_frame_saved_reg saved_regs[],
2775 int regnum)
2776 {
2777 struct gdbarch *arch = get_frame_arch (this_frame);
2778 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2779
2780 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2781 {
2782 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2783 CORE_ADDR pc;
2784 struct value *pcoq_val =
2785 trad_frame_get_prev_register (this_frame, saved_regs,
2786 HPPA_PCOQ_HEAD_REGNUM);
2787
2788 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2789 size, byte_order);
2790 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2791 }
2792
2793 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2794 }
2795 \f
2796
2797 /* An instruction to match. */
2798 struct insn_pattern
2799 {
2800 unsigned int data; /* See if it matches this.... */
2801 unsigned int mask; /* ... with this mask. */
2802 };
2803
2804 /* See bfd/elf32-hppa.c */
2805 static struct insn_pattern hppa_long_branch_stub[] = {
2806 /* ldil LR'xxx,%r1 */
2807 { 0x20200000, 0xffe00000 },
2808 /* be,n RR'xxx(%sr4,%r1) */
2809 { 0xe0202002, 0xffe02002 },
2810 { 0, 0 }
2811 };
2812
2813 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2814 /* b,l .+8, %r1 */
2815 { 0xe8200000, 0xffe00000 },
2816 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2817 { 0x28200000, 0xffe00000 },
2818 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2819 { 0xe0202002, 0xffe02002 },
2820 { 0, 0 }
2821 };
2822
2823 static struct insn_pattern hppa_import_stub[] = {
2824 /* addil LR'xxx, %dp */
2825 { 0x2b600000, 0xffe00000 },
2826 /* ldw RR'xxx(%r1), %r21 */
2827 { 0x48350000, 0xffffb000 },
2828 /* bv %r0(%r21) */
2829 { 0xeaa0c000, 0xffffffff },
2830 /* ldw RR'xxx+4(%r1), %r19 */
2831 { 0x48330000, 0xffffb000 },
2832 { 0, 0 }
2833 };
2834
2835 static struct insn_pattern hppa_import_pic_stub[] = {
2836 /* addil LR'xxx,%r19 */
2837 { 0x2a600000, 0xffe00000 },
2838 /* ldw RR'xxx(%r1),%r21 */
2839 { 0x48350000, 0xffffb000 },
2840 /* bv %r0(%r21) */
2841 { 0xeaa0c000, 0xffffffff },
2842 /* ldw RR'xxx+4(%r1),%r19 */
2843 { 0x48330000, 0xffffb000 },
2844 { 0, 0 },
2845 };
2846
2847 static struct insn_pattern hppa_plt_stub[] = {
2848 /* b,l 1b, %r20 - 1b is 3 insns before here */
2849 { 0xea9f1fdd, 0xffffffff },
2850 /* depi 0,31,2,%r20 */
2851 { 0xd6801c1e, 0xffffffff },
2852 { 0, 0 }
2853 };
2854
2855 /* Maximum number of instructions on the patterns above. */
2856 #define HPPA_MAX_INSN_PATTERN_LEN 4
2857
2858 /* Return non-zero if the instructions at PC match the series
2859 described in PATTERN, or zero otherwise. PATTERN is an array of
2860 'struct insn_pattern' objects, terminated by an entry whose mask is
2861 zero.
2862
2863 When the match is successful, fill INSN[i] with what PATTERN[i]
2864 matched. */
2865
2866 static int
2867 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2868 struct insn_pattern *pattern, unsigned int *insn)
2869 {
2870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2871 CORE_ADDR npc = pc;
2872 int i;
2873
2874 for (i = 0; pattern[i].mask; i++)
2875 {
2876 gdb_byte buf[HPPA_INSN_SIZE];
2877
2878 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2879 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2880 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2881 npc += 4;
2882 else
2883 return 0;
2884 }
2885
2886 return 1;
2887 }
2888
2889 /* This relaxed version of the insstruction matcher allows us to match
2890 from somewhere inside the pattern, by looking backwards in the
2891 instruction scheme. */
2892
2893 static int
2894 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2895 struct insn_pattern *pattern, unsigned int *insn)
2896 {
2897 int offset, len = 0;
2898
2899 while (pattern[len].mask)
2900 len++;
2901
2902 for (offset = 0; offset < len; offset++)
2903 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2904 pattern, insn))
2905 return 1;
2906
2907 return 0;
2908 }
2909
2910 static int
2911 hppa_in_dyncall (CORE_ADDR pc)
2912 {
2913 struct unwind_table_entry *u;
2914
2915 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2916 if (!u)
2917 return 0;
2918
2919 return (pc >= u->region_start && pc <= u->region_end);
2920 }
2921
2922 int
2923 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2924 {
2925 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2926 struct unwind_table_entry *u;
2927
2928 if (in_plt_section (pc) || hppa_in_dyncall (pc))
2929 return 1;
2930
2931 /* The GNU toolchain produces linker stubs without unwind
2932 information. Since the pattern matching for linker stubs can be
2933 quite slow, so bail out if we do have an unwind entry. */
2934
2935 u = find_unwind_entry (pc);
2936 if (u != NULL)
2937 return 0;
2938
2939 return
2940 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2941 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2942 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2943 || hppa_match_insns_relaxed (gdbarch, pc,
2944 hppa_long_branch_pic_stub, insn));
2945 }
2946
2947 /* This code skips several kind of "trampolines" used on PA-RISC
2948 systems: $$dyncall, import stubs and PLT stubs. */
2949
2950 CORE_ADDR
2951 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2952 {
2953 struct gdbarch *gdbarch = get_frame_arch (frame);
2954 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2955
2956 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2957 int dp_rel;
2958
2959 /* $$dyncall handles both PLABELs and direct addresses. */
2960 if (hppa_in_dyncall (pc))
2961 {
2962 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2963
2964 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2965 if (pc & 0x2)
2966 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2967
2968 return pc;
2969 }
2970
2971 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2972 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2973 {
2974 /* Extract the target address from the addil/ldw sequence. */
2975 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2976
2977 if (dp_rel)
2978 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2979 else
2980 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2981
2982 /* fallthrough */
2983 }
2984
2985 if (in_plt_section (pc))
2986 {
2987 pc = read_memory_typed_address (pc, func_ptr_type);
2988
2989 /* If the PLT slot has not yet been resolved, the target will be
2990 the PLT stub. */
2991 if (in_plt_section (pc))
2992 {
2993 /* Sanity check: are we pointing to the PLT stub? */
2994 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
2995 {
2996 warning (_("Cannot resolve PLT stub at %s."),
2997 paddress (gdbarch, pc));
2998 return 0;
2999 }
3000
3001 /* This should point to the fixup routine. */
3002 pc = read_memory_typed_address (pc + 8, func_ptr_type);
3003 }
3004 }
3005
3006 return pc;
3007 }
3008 \f
3009
3010 /* Here is a table of C type sizes on hppa with various compiles
3011 and options. I measured this on PA 9000/800 with HP-UX 11.11
3012 and these compilers:
3013
3014 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3015 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3016 /opt/aCC/bin/aCC B3910B A.03.45
3017 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3018
3019 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3020 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3021 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3022 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3023 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3024 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3025 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3026 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3027
3028 Each line is:
3029
3030 compiler and options
3031 char, short, int, long, long long
3032 float, double, long double
3033 char *, void (*)()
3034
3035 So all these compilers use either ILP32 or LP64 model.
3036 TODO: gcc has more options so it needs more investigation.
3037
3038 For floating point types, see:
3039
3040 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3041 HP-UX floating-point guide, hpux 11.00
3042
3043 -- chastain 2003-12-18 */
3044
3045 static struct gdbarch *
3046 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3047 {
3048 struct gdbarch_tdep *tdep;
3049 struct gdbarch *gdbarch;
3050
3051 /* find a candidate among the list of pre-declared architectures. */
3052 arches = gdbarch_list_lookup_by_info (arches, &info);
3053 if (arches != NULL)
3054 return (arches->gdbarch);
3055
3056 /* If none found, then allocate and initialize one. */
3057 tdep = XCNEW (struct gdbarch_tdep);
3058 gdbarch = gdbarch_alloc (&info, tdep);
3059
3060 /* Determine from the bfd_arch_info structure if we are dealing with
3061 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3062 then default to a 32bit machine. */
3063 if (info.bfd_arch_info != NULL)
3064 tdep->bytes_per_address =
3065 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3066 else
3067 tdep->bytes_per_address = 4;
3068
3069 tdep->find_global_pointer = hppa_find_global_pointer;
3070
3071 /* Some parts of the gdbarch vector depend on whether we are running
3072 on a 32 bits or 64 bits target. */
3073 switch (tdep->bytes_per_address)
3074 {
3075 case 4:
3076 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3077 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3078 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3079 set_gdbarch_cannot_store_register (gdbarch,
3080 hppa32_cannot_store_register);
3081 set_gdbarch_cannot_fetch_register (gdbarch,
3082 hppa32_cannot_fetch_register);
3083 break;
3084 case 8:
3085 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3086 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3087 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3088 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3089 set_gdbarch_cannot_store_register (gdbarch,
3090 hppa64_cannot_store_register);
3091 set_gdbarch_cannot_fetch_register (gdbarch,
3092 hppa64_cannot_fetch_register);
3093 break;
3094 default:
3095 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3096 tdep->bytes_per_address);
3097 }
3098
3099 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3100 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3101
3102 /* The following gdbarch vector elements are the same in both ILP32
3103 and LP64, but might show differences some day. */
3104 set_gdbarch_long_long_bit (gdbarch, 64);
3105 set_gdbarch_long_double_bit (gdbarch, 128);
3106 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3107
3108 /* The following gdbarch vector elements do not depend on the address
3109 size, or in any other gdbarch element previously set. */
3110 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3111 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3112 hppa_stack_frame_destroyed_p);
3113 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3114 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3115 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3116 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3117 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3118 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3119 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3120
3121 /* Helper for function argument information. */
3122 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3123
3124 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3125
3126 /* When a hardware watchpoint triggers, we'll move the inferior past
3127 it by removing all eventpoints; stepping past the instruction
3128 that caused the trigger; reinserting eventpoints; and checking
3129 whether any watched location changed. */
3130 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3131
3132 /* Inferior function call methods. */
3133 switch (tdep->bytes_per_address)
3134 {
3135 case 4:
3136 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3137 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3138 set_gdbarch_convert_from_func_ptr_addr
3139 (gdbarch, hppa32_convert_from_func_ptr_addr);
3140 break;
3141 case 8:
3142 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3143 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3144 break;
3145 default:
3146 internal_error (__FILE__, __LINE__, _("bad switch"));
3147 }
3148
3149 /* Struct return methods. */
3150 switch (tdep->bytes_per_address)
3151 {
3152 case 4:
3153 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3154 break;
3155 case 8:
3156 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3157 break;
3158 default:
3159 internal_error (__FILE__, __LINE__, _("bad switch"));
3160 }
3161
3162 set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
3163 set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
3164 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3165
3166 /* Frame unwind methods. */
3167 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3168 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3169
3170 /* Hook in ABI-specific overrides, if they have been registered. */
3171 gdbarch_init_osabi (info, gdbarch);
3172
3173 /* Hook in the default unwinders. */
3174 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3175 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3176 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3177
3178 return gdbarch;
3179 }
3180
3181 static void
3182 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3183 {
3184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3185
3186 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3187 tdep->bytes_per_address);
3188 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3189 }
3190
3191 /* Provide a prototype to silence -Wmissing-prototypes. */
3192 extern initialize_file_ftype _initialize_hppa_tdep;
3193
3194 void
3195 _initialize_hppa_tdep (void)
3196 {
3197 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3198
3199 hppa_objfile_priv_data = register_objfile_data ();
3200
3201 add_cmd ("unwind", class_maintenance, unwind_command,
3202 _("Print unwind table entry at given address."),
3203 &maintenanceprintlist);
3204
3205 /* Debug this files internals. */
3206 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3207 Set whether hppa target specific debugging information should be displayed."),
3208 _("\
3209 Show whether hppa target specific debugging information is displayed."), _("\
3210 This flag controls whether hppa target specific debugging information is\n\
3211 displayed. This information is particularly useful for debugging frame\n\
3212 unwinding problems."),
3213 NULL,
3214 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3215 &setdebuglist, &showdebuglist);
3216 }
This page took 0.099611 seconds and 4 git commands to generate.