* Makefile.in: Add stuff to build nlmstub.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39 #include <sys/ioctl.h>
40
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
43 #else
44 #include <a.out.h>
45 #endif
46 #ifndef N_SET_MAGIC
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include <sys/stat.h>
53 #include <machine/psl.h>
54 #include "wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66 static int is_branch PARAMS ((unsigned long));
67 static int inst_saves_gr PARAMS ((unsigned long));
68 static int inst_saves_fr PARAMS ((unsigned long));
69 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
70 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
71 static int compare_unwind_entries PARAMS ((struct unwind_table_entry *,
72 struct unwind_table_entry *));
73 static void read_unwind_info PARAMS ((struct objfile *));
74 static void internalize_unwinds PARAMS ((struct objfile *,
75 struct unwind_table_entry *,
76 asection *, unsigned int,
77 unsigned int));
78
79 \f
80 /* Routines to extract various sized constants out of hppa
81 instructions. */
82
83 /* This assumes that no garbage lies outside of the lower bits of
84 value. */
85
86 int
87 sign_extend (val, bits)
88 unsigned val, bits;
89 {
90 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
91 }
92
93 /* For many immediate values the sign bit is the low bit! */
94
95 int
96 low_sign_extend (val, bits)
97 unsigned val, bits;
98 {
99 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
100 }
101 /* extract the immediate field from a ld{bhw}s instruction */
102
103 unsigned
104 get_field (val, from, to)
105 unsigned val, from, to;
106 {
107 val = val >> 31 - to;
108 return val & ((1 << 32 - from) - 1);
109 }
110
111 unsigned
112 set_field (val, from, to, new_val)
113 unsigned *val, from, to;
114 {
115 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
116 return *val = *val & mask | (new_val << (31 - from));
117 }
118
119 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
120
121 extract_3 (word)
122 unsigned word;
123 {
124 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
125 }
126
127 extract_5_load (word)
128 unsigned word;
129 {
130 return low_sign_extend (word >> 16 & MASK_5, 5);
131 }
132
133 /* extract the immediate field from a st{bhw}s instruction */
134
135 int
136 extract_5_store (word)
137 unsigned word;
138 {
139 return low_sign_extend (word & MASK_5, 5);
140 }
141
142 /* extract the immediate field from a break instruction */
143
144 unsigned
145 extract_5r_store (word)
146 unsigned word;
147 {
148 return (word & MASK_5);
149 }
150
151 /* extract the immediate field from a {sr}sm instruction */
152
153 unsigned
154 extract_5R_store (word)
155 unsigned word;
156 {
157 return (word >> 16 & MASK_5);
158 }
159
160 /* extract an 11 bit immediate field */
161
162 int
163 extract_11 (word)
164 unsigned word;
165 {
166 return low_sign_extend (word & MASK_11, 11);
167 }
168
169 /* extract a 14 bit immediate field */
170
171 int
172 extract_14 (word)
173 unsigned word;
174 {
175 return low_sign_extend (word & MASK_14, 14);
176 }
177
178 /* deposit a 14 bit constant in a word */
179
180 unsigned
181 deposit_14 (opnd, word)
182 int opnd;
183 unsigned word;
184 {
185 unsigned sign = (opnd < 0 ? 1 : 0);
186
187 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
188 }
189
190 /* extract a 21 bit constant */
191
192 int
193 extract_21 (word)
194 unsigned word;
195 {
196 int val;
197
198 word &= MASK_21;
199 word <<= 11;
200 val = GET_FIELD (word, 20, 20);
201 val <<= 11;
202 val |= GET_FIELD (word, 9, 19);
203 val <<= 2;
204 val |= GET_FIELD (word, 5, 6);
205 val <<= 5;
206 val |= GET_FIELD (word, 0, 4);
207 val <<= 2;
208 val |= GET_FIELD (word, 7, 8);
209 return sign_extend (val, 21) << 11;
210 }
211
212 /* deposit a 21 bit constant in a word. Although 21 bit constants are
213 usually the top 21 bits of a 32 bit constant, we assume that only
214 the low 21 bits of opnd are relevant */
215
216 unsigned
217 deposit_21 (opnd, word)
218 unsigned opnd, word;
219 {
220 unsigned val = 0;
221
222 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
223 val <<= 2;
224 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
225 val <<= 2;
226 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
227 val <<= 11;
228 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
229 val <<= 1;
230 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
231 return word | val;
232 }
233
234 /* extract a 12 bit constant from branch instructions */
235
236 int
237 extract_12 (word)
238 unsigned word;
239 {
240 return sign_extend (GET_FIELD (word, 19, 28) |
241 GET_FIELD (word, 29, 29) << 10 |
242 (word & 0x1) << 11, 12) << 2;
243 }
244
245 /* extract a 17 bit constant from branch instructions, returning the
246 19 bit signed value. */
247
248 int
249 extract_17 (word)
250 unsigned word;
251 {
252 return sign_extend (GET_FIELD (word, 19, 28) |
253 GET_FIELD (word, 29, 29) << 10 |
254 GET_FIELD (word, 11, 15) << 11 |
255 (word & 0x1) << 16, 17) << 2;
256 }
257 \f
258
259 /* Compare the start address for two unwind entries returning 1 if
260 the first address is larger than the second, -1 if the second is
261 larger than the first, and zero if they are equal. */
262
263 static int
264 compare_unwind_entries (a, b)
265 struct unwind_table_entry *a;
266 struct unwind_table_entry *b;
267 {
268 if (a->region_start > b->region_start)
269 return 1;
270 else if (a->region_start < b->region_start)
271 return -1;
272 else
273 return 0;
274 }
275
276 static void
277 internalize_unwinds (objfile, table, section, entries, size)
278 struct objfile *objfile;
279 struct unwind_table_entry *table;
280 asection *section;
281 unsigned int entries, size;
282 {
283 /* We will read the unwind entries into temporary memory, then
284 fill in the actual unwind table. */
285 if (size > 0)
286 {
287 unsigned long tmp;
288 unsigned i;
289 char *buf = alloca (size);
290
291 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
292
293 /* Now internalize the information being careful to handle host/target
294 endian issues. */
295 for (i = 0; i < entries; i++)
296 {
297 table[i].region_start = bfd_get_32 (objfile->obfd,
298 (bfd_byte *)buf);
299 buf += 4;
300 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
301 buf += 4;
302 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
303 buf += 4;
304 table[i].Cannot_unwind = (tmp >> 31) & 0x1;;
305 table[i].Millicode = (tmp >> 30) & 0x1;
306 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
307 table[i].Region_description = (tmp >> 27) & 0x3;
308 table[i].reserved1 = (tmp >> 26) & 0x1;
309 table[i].Entry_SR = (tmp >> 25) & 0x1;
310 table[i].Entry_FR = (tmp >> 21) & 0xf;
311 table[i].Entry_GR = (tmp >> 16) & 0x1f;
312 table[i].Args_stored = (tmp >> 15) & 0x1;
313 table[i].Variable_Frame = (tmp >> 14) & 0x1;
314 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
315 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
316 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
317 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
318 table[i].Ada_Region = (tmp >> 9) & 0x1;
319 table[i].reserved2 = (tmp >> 5) & 0xf;
320 table[i].Save_SP = (tmp >> 4) & 0x1;
321 table[i].Save_RP = (tmp >> 3) & 0x1;
322 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
323 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
324 table[i].Cleanup_defined = tmp & 0x1;
325 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
326 buf += 4;
327 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
328 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
329 table[i].Large_frame = (tmp >> 29) & 0x1;
330 table[i].reserved4 = (tmp >> 27) & 0x3;
331 table[i].Total_frame_size = tmp & 0x7ffffff;
332 }
333 }
334 }
335
336 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
337 the object file. This info is used mainly by find_unwind_entry() to find
338 out the stack frame size and frame pointer used by procedures. We put
339 everything on the psymbol obstack in the objfile so that it automatically
340 gets freed when the objfile is destroyed. */
341
342 static void
343 read_unwind_info (objfile)
344 struct objfile *objfile;
345 {
346 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
347 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
348 unsigned index, unwind_entries, elf_unwind_entries;
349 unsigned stub_entries, total_entries;
350 struct obj_unwind_info *ui;
351
352 ui = obstack_alloc (&objfile->psymbol_obstack,
353 sizeof (struct obj_unwind_info));
354
355 ui->table = NULL;
356 ui->cache = NULL;
357 ui->last = -1;
358
359 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
360 section in ELF at the moment. */
361 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
362 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
363 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
364
365 /* Get sizes and unwind counts for all sections. */
366 if (unwind_sec)
367 {
368 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
369 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
370 }
371 else
372 {
373 unwind_size = 0;
374 unwind_entries = 0;
375 }
376
377 if (elf_unwind_sec)
378 {
379 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
380 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
381 }
382 else
383 {
384 elf_unwind_size = 0;
385 elf_unwind_entries = 0;
386 }
387
388 if (stub_unwind_sec)
389 {
390 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
391 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
392 }
393 else
394 {
395 stub_unwind_size = 0;
396 stub_entries = 0;
397 }
398
399 /* Compute total number of unwind entries and their total size. */
400 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
401 total_size = total_entries * sizeof (struct unwind_table_entry);
402
403 /* Allocate memory for the unwind table. */
404 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
405 ui->last = total_entries - 1;
406
407 /* Internalize the standard unwind entries. */
408 index = 0;
409 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
410 unwind_entries, unwind_size);
411 index += unwind_entries;
412 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
413 elf_unwind_entries, elf_unwind_size);
414 index += elf_unwind_entries;
415
416 /* Now internalize the stub unwind entries. */
417 if (stub_unwind_size > 0)
418 {
419 unsigned int i;
420 char *buf = alloca (stub_unwind_size);
421
422 /* Read in the stub unwind entries. */
423 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
424 0, stub_unwind_size);
425
426 /* Now convert them into regular unwind entries. */
427 for (i = 0; i < stub_entries; i++, index++)
428 {
429 /* Clear out the next unwind entry. */
430 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
431
432 /* Convert offset & size into region_start and region_end.
433 Stuff away the stub type into "reserved" fields. */
434 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
435 (bfd_byte *) buf);
436 buf += 4;
437 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
438 (bfd_byte *) buf);
439 buf += 2;
440 ui->table[index].region_end
441 = ui->table[index].region_start + 4 *
442 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
443 buf += 2;
444 }
445
446 }
447
448 /* Unwind table needs to be kept sorted. */
449 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
450 compare_unwind_entries);
451
452 /* Keep a pointer to the unwind information. */
453 objfile->obj_private = (PTR) ui;
454 }
455
456 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
457 of the objfiles seeking the unwind table entry for this PC. Each objfile
458 contains a sorted list of struct unwind_table_entry. Since we do a binary
459 search of the unwind tables, we depend upon them to be sorted. */
460
461 static struct unwind_table_entry *
462 find_unwind_entry(pc)
463 CORE_ADDR pc;
464 {
465 int first, middle, last;
466 struct objfile *objfile;
467
468 ALL_OBJFILES (objfile)
469 {
470 struct obj_unwind_info *ui;
471
472 ui = OBJ_UNWIND_INFO (objfile);
473
474 if (!ui)
475 {
476 read_unwind_info (objfile);
477 ui = OBJ_UNWIND_INFO (objfile);
478 }
479
480 /* First, check the cache */
481
482 if (ui->cache
483 && pc >= ui->cache->region_start
484 && pc <= ui->cache->region_end)
485 return ui->cache;
486
487 /* Not in the cache, do a binary search */
488
489 first = 0;
490 last = ui->last;
491
492 while (first <= last)
493 {
494 middle = (first + last) / 2;
495 if (pc >= ui->table[middle].region_start
496 && pc <= ui->table[middle].region_end)
497 {
498 ui->cache = &ui->table[middle];
499 return &ui->table[middle];
500 }
501
502 if (pc < ui->table[middle].region_start)
503 last = middle - 1;
504 else
505 first = middle + 1;
506 }
507 } /* ALL_OBJFILES() */
508 return NULL;
509 }
510
511 /* Called to determine if PC is in an interrupt handler of some
512 kind. */
513
514 static int
515 pc_in_interrupt_handler (pc)
516 CORE_ADDR pc;
517 {
518 struct unwind_table_entry *u;
519 struct minimal_symbol *msym_us;
520
521 u = find_unwind_entry (pc);
522 if (!u)
523 return 0;
524
525 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
526 its frame isn't a pure interrupt frame. Deal with this. */
527 msym_us = lookup_minimal_symbol_by_pc (pc);
528
529 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
530 }
531
532 /* Called when no unwind descriptor was found for PC. Returns 1 if it
533 appears that PC is in a linker stub. */
534
535 static int
536 pc_in_linker_stub (pc)
537 CORE_ADDR pc;
538 {
539 int found_magic_instruction = 0;
540 int i;
541 char buf[4];
542
543 /* If unable to read memory, assume pc is not in a linker stub. */
544 if (target_read_memory (pc, buf, 4) != 0)
545 return 0;
546
547 /* We are looking for something like
548
549 ; $$dyncall jams RP into this special spot in the frame (RP')
550 ; before calling the "call stub"
551 ldw -18(sp),rp
552
553 ldsid (rp),r1 ; Get space associated with RP into r1
554 mtsp r1,sp ; Move it into space register 0
555 be,n 0(sr0),rp) ; back to your regularly scheduled program
556 */
557
558 /* Maximum known linker stub size is 4 instructions. Search forward
559 from the given PC, then backward. */
560 for (i = 0; i < 4; i++)
561 {
562 /* If we hit something with an unwind, stop searching this direction. */
563
564 if (find_unwind_entry (pc + i * 4) != 0)
565 break;
566
567 /* Check for ldsid (rp),r1 which is the magic instruction for a
568 return from a cross-space function call. */
569 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
570 {
571 found_magic_instruction = 1;
572 break;
573 }
574 /* Add code to handle long call/branch and argument relocation stubs
575 here. */
576 }
577
578 if (found_magic_instruction != 0)
579 return 1;
580
581 /* Now look backward. */
582 for (i = 0; i < 4; i++)
583 {
584 /* If we hit something with an unwind, stop searching this direction. */
585
586 if (find_unwind_entry (pc - i * 4) != 0)
587 break;
588
589 /* Check for ldsid (rp),r1 which is the magic instruction for a
590 return from a cross-space function call. */
591 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
592 {
593 found_magic_instruction = 1;
594 break;
595 }
596 /* Add code to handle long call/branch and argument relocation stubs
597 here. */
598 }
599 return found_magic_instruction;
600 }
601
602 static int
603 find_return_regnum(pc)
604 CORE_ADDR pc;
605 {
606 struct unwind_table_entry *u;
607
608 u = find_unwind_entry (pc);
609
610 if (!u)
611 return RP_REGNUM;
612
613 if (u->Millicode)
614 return 31;
615
616 return RP_REGNUM;
617 }
618
619 /* Return size of frame, or -1 if we should use a frame pointer. */
620 int
621 find_proc_framesize (pc)
622 CORE_ADDR pc;
623 {
624 struct unwind_table_entry *u;
625 struct minimal_symbol *msym_us;
626
627 u = find_unwind_entry (pc);
628
629 if (!u)
630 {
631 if (pc_in_linker_stub (pc))
632 /* Linker stubs have a zero size frame. */
633 return 0;
634 else
635 return -1;
636 }
637
638 msym_us = lookup_minimal_symbol_by_pc (pc);
639
640 /* If Save_SP is set, and we're not in an interrupt or signal caller,
641 then we have a frame pointer. Use it. */
642 if (u->Save_SP && !pc_in_interrupt_handler (pc)
643 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
644 return -1;
645
646 return u->Total_frame_size << 3;
647 }
648
649 /* Return offset from sp at which rp is saved, or 0 if not saved. */
650 static int rp_saved PARAMS ((CORE_ADDR));
651
652 static int
653 rp_saved (pc)
654 CORE_ADDR pc;
655 {
656 struct unwind_table_entry *u;
657
658 u = find_unwind_entry (pc);
659
660 if (!u)
661 {
662 if (pc_in_linker_stub (pc))
663 /* This is the so-called RP'. */
664 return -24;
665 else
666 return 0;
667 }
668
669 if (u->Save_RP)
670 return -20;
671 else if (u->stub_type != 0)
672 {
673 switch (u->stub_type)
674 {
675 case EXPORT:
676 return -24;
677 case PARAMETER_RELOCATION:
678 return -8;
679 default:
680 return 0;
681 }
682 }
683 else
684 return 0;
685 }
686 \f
687 int
688 frameless_function_invocation (frame)
689 FRAME frame;
690 {
691 struct unwind_table_entry *u;
692
693 u = find_unwind_entry (frame->pc);
694
695 if (u == 0)
696 return 0;
697
698 return (u->Total_frame_size == 0 && u->stub_type == 0);
699 }
700
701 CORE_ADDR
702 saved_pc_after_call (frame)
703 FRAME frame;
704 {
705 int ret_regnum;
706
707 ret_regnum = find_return_regnum (get_frame_pc (frame));
708
709 return read_register (ret_regnum) & ~0x3;
710 }
711 \f
712 CORE_ADDR
713 frame_saved_pc (frame)
714 FRAME frame;
715 {
716 CORE_ADDR pc = get_frame_pc (frame);
717 struct unwind_table_entry *u;
718
719 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
720 at the base of the frame in an interrupt handler. Registers within
721 are saved in the exact same order as GDB numbers registers. How
722 convienent. */
723 if (pc_in_interrupt_handler (pc))
724 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
725
726 /* Deal with signal handler caller frames too. */
727 if (frame->signal_handler_caller)
728 {
729 CORE_ADDR rp;
730 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
731 return rp;
732 }
733
734 restart:
735 if (frameless_function_invocation (frame))
736 {
737 int ret_regnum;
738
739 ret_regnum = find_return_regnum (pc);
740
741 /* If the next frame is an interrupt frame or a signal
742 handler caller, then we need to look in the saved
743 register area to get the return pointer (the values
744 in the registers may not correspond to anything useful). */
745 if (frame->next
746 && (frame->next->signal_handler_caller
747 || pc_in_interrupt_handler (frame->next->pc)))
748 {
749 struct frame_info *fi;
750 struct frame_saved_regs saved_regs;
751
752 fi = get_frame_info (frame->next);
753 get_frame_saved_regs (fi, &saved_regs);
754 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
755 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
756 else
757 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
758 }
759 else
760 pc = read_register (ret_regnum) & ~0x3;
761 }
762 else
763 {
764 int rp_offset = rp_saved (pc);
765
766 /* Similar to code in frameless function case. If the next
767 frame is a signal or interrupt handler, then dig the right
768 information out of the saved register info. */
769 if (rp_offset == 0
770 && frame->next
771 && (frame->next->signal_handler_caller
772 || pc_in_interrupt_handler (frame->next->pc)))
773 {
774 struct frame_info *fi;
775 struct frame_saved_regs saved_regs;
776
777 fi = get_frame_info (frame->next);
778 get_frame_saved_regs (fi, &saved_regs);
779 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
780 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
781 else
782 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
783 }
784 else if (rp_offset == 0)
785 pc = read_register (RP_REGNUM) & ~0x3;
786 else
787 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
788 }
789
790 /* If PC is inside a linker stub, then dig out the address the stub
791 will return to. */
792 u = find_unwind_entry (pc);
793 if (u && u->stub_type != 0)
794 goto restart;
795
796 return pc;
797 }
798 \f
799 /* We need to correct the PC and the FP for the outermost frame when we are
800 in a system call. */
801
802 void
803 init_extra_frame_info (fromleaf, frame)
804 int fromleaf;
805 struct frame_info *frame;
806 {
807 int flags;
808 int framesize;
809
810 if (frame->next && !fromleaf)
811 return;
812
813 /* If the next frame represents a frameless function invocation
814 then we have to do some adjustments that are normally done by
815 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
816 if (fromleaf)
817 {
818 /* Find the framesize of *this* frame without peeking at the PC
819 in the current frame structure (it isn't set yet). */
820 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
821
822 /* Now adjust our base frame accordingly. If we have a frame pointer
823 use it, else subtract the size of this frame from the current
824 frame. (we always want frame->frame to point at the lowest address
825 in the frame). */
826 if (framesize == -1)
827 frame->frame = read_register (FP_REGNUM);
828 else
829 frame->frame -= framesize;
830 return;
831 }
832
833 flags = read_register (FLAGS_REGNUM);
834 if (flags & 2) /* In system call? */
835 frame->pc = read_register (31) & ~0x3;
836
837 /* The outermost frame is always derived from PC-framesize
838
839 One might think frameless innermost frames should have
840 a frame->frame that is the same as the parent's frame->frame.
841 That is wrong; frame->frame in that case should be the *high*
842 address of the parent's frame. It's complicated as hell to
843 explain, but the parent *always* creates some stack space for
844 the child. So the child actually does have a frame of some
845 sorts, and its base is the high address in its parent's frame. */
846 framesize = find_proc_framesize(frame->pc);
847 if (framesize == -1)
848 frame->frame = read_register (FP_REGNUM);
849 else
850 frame->frame = read_register (SP_REGNUM) - framesize;
851 }
852 \f
853 /* Given a GDB frame, determine the address of the calling function's frame.
854 This will be used to create a new GDB frame struct, and then
855 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
856
857 This may involve searching through prologues for several functions
858 at boundaries where GCC calls HP C code, or where code which has
859 a frame pointer calls code without a frame pointer. */
860
861
862 FRAME_ADDR
863 frame_chain (frame)
864 struct frame_info *frame;
865 {
866 int my_framesize, caller_framesize;
867 struct unwind_table_entry *u;
868 CORE_ADDR frame_base;
869
870 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
871 are easy; at *sp we have a full save state strucutre which we can
872 pull the old stack pointer from. Also see frame_saved_pc for
873 code to dig a saved PC out of the save state structure. */
874 if (pc_in_interrupt_handler (frame->pc))
875 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
876 else if (frame->signal_handler_caller)
877 {
878 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
879 }
880 else
881 frame_base = frame->frame;
882
883 /* Get frame sizes for the current frame and the frame of the
884 caller. */
885 my_framesize = find_proc_framesize (frame->pc);
886 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
887
888 /* If caller does not have a frame pointer, then its frame
889 can be found at current_frame - caller_framesize. */
890 if (caller_framesize != -1)
891 return frame_base - caller_framesize;
892
893 /* Both caller and callee have frame pointers and are GCC compiled
894 (SAVE_SP bit in unwind descriptor is on for both functions.
895 The previous frame pointer is found at the top of the current frame. */
896 if (caller_framesize == -1 && my_framesize == -1)
897 return read_memory_integer (frame_base, 4);
898
899 /* Caller has a frame pointer, but callee does not. This is a little
900 more difficult as GCC and HP C lay out locals and callee register save
901 areas very differently.
902
903 The previous frame pointer could be in a register, or in one of
904 several areas on the stack.
905
906 Walk from the current frame to the innermost frame examining
907 unwind descriptors to determine if %r3 ever gets saved into the
908 stack. If so return whatever value got saved into the stack.
909 If it was never saved in the stack, then the value in %r3 is still
910 valid, so use it.
911
912 We use information from unwind descriptors to determine if %r3
913 is saved into the stack (Entry_GR field has this information). */
914
915 while (frame)
916 {
917 u = find_unwind_entry (frame->pc);
918
919 if (!u)
920 {
921 /* We could find this information by examining prologues. I don't
922 think anyone has actually written any tools (not even "strip")
923 which leave them out of an executable, so maybe this is a moot
924 point. */
925 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
926 return 0;
927 }
928
929 /* Entry_GR specifies the number of callee-saved general registers
930 saved in the stack. It starts at %r3, so %r3 would be 1. */
931 if (u->Entry_GR >= 1 || u->Save_SP
932 || frame->signal_handler_caller
933 || pc_in_interrupt_handler (frame->pc))
934 break;
935 else
936 frame = frame->next;
937 }
938
939 if (frame)
940 {
941 /* We may have walked down the chain into a function with a frame
942 pointer. */
943 if (u->Save_SP
944 && !frame->signal_handler_caller
945 && !pc_in_interrupt_handler (frame->pc))
946 return read_memory_integer (frame->frame, 4);
947 /* %r3 was saved somewhere in the stack. Dig it out. */
948 else
949 {
950 struct frame_info *fi;
951 struct frame_saved_regs saved_regs;
952
953 fi = get_frame_info (frame);
954 get_frame_saved_regs (fi, &saved_regs);
955 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
956 }
957 }
958 else
959 {
960 /* The value in %r3 was never saved into the stack (thus %r3 still
961 holds the value of the previous frame pointer). */
962 return read_register (FP_REGNUM);
963 }
964 }
965
966 \f
967 /* To see if a frame chain is valid, see if the caller looks like it
968 was compiled with gcc. */
969
970 int
971 frame_chain_valid (chain, thisframe)
972 FRAME_ADDR chain;
973 FRAME thisframe;
974 {
975 struct minimal_symbol *msym_us;
976 struct minimal_symbol *msym_start;
977 struct unwind_table_entry *u, *next_u = NULL;
978 FRAME next;
979
980 if (!chain)
981 return 0;
982
983 u = find_unwind_entry (thisframe->pc);
984
985 if (u == NULL)
986 return 1;
987
988 /* We can't just check that the same of msym_us is "_start", because
989 someone idiotically decided that they were going to make a Ltext_end
990 symbol with the same address. This Ltext_end symbol is totally
991 indistinguishable (as nearly as I can tell) from the symbol for a function
992 which is (legitimately, since it is in the user's namespace)
993 named Ltext_end, so we can't just ignore it. */
994 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
995 msym_start = lookup_minimal_symbol ("_start", NULL);
996 if (msym_us
997 && msym_start
998 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
999 return 0;
1000
1001 next = get_next_frame (thisframe);
1002 if (next)
1003 next_u = find_unwind_entry (next->pc);
1004
1005 /* If this frame does not save SP, has no stack, isn't a stub,
1006 and doesn't "call" an interrupt routine or signal handler caller,
1007 then its not valid. */
1008 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1009 || (thisframe->next && thisframe->next->signal_handler_caller)
1010 || (next_u && next_u->HP_UX_interrupt_marker))
1011 return 1;
1012
1013 if (pc_in_linker_stub (thisframe->pc))
1014 return 1;
1015
1016 return 0;
1017 }
1018
1019 /*
1020 * These functions deal with saving and restoring register state
1021 * around a function call in the inferior. They keep the stack
1022 * double-word aligned; eventually, on an hp700, the stack will have
1023 * to be aligned to a 64-byte boundary.
1024 */
1025
1026 int
1027 push_dummy_frame ()
1028 {
1029 register CORE_ADDR sp;
1030 register int regnum;
1031 int int_buffer;
1032 double freg_buffer;
1033
1034 /* Space for "arguments"; the RP goes in here. */
1035 sp = read_register (SP_REGNUM) + 48;
1036 int_buffer = read_register (RP_REGNUM) | 0x3;
1037 write_memory (sp - 20, (char *)&int_buffer, 4);
1038
1039 int_buffer = read_register (FP_REGNUM);
1040 write_memory (sp, (char *)&int_buffer, 4);
1041
1042 write_register (FP_REGNUM, sp);
1043
1044 sp += 8;
1045
1046 for (regnum = 1; regnum < 32; regnum++)
1047 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1048 sp = push_word (sp, read_register (regnum));
1049
1050 sp += 4;
1051
1052 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1053 {
1054 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1055 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1056 }
1057 sp = push_word (sp, read_register (IPSW_REGNUM));
1058 sp = push_word (sp, read_register (SAR_REGNUM));
1059 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
1060 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
1061 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
1062 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
1063 write_register (SP_REGNUM, sp);
1064 }
1065
1066 find_dummy_frame_regs (frame, frame_saved_regs)
1067 struct frame_info *frame;
1068 struct frame_saved_regs *frame_saved_regs;
1069 {
1070 CORE_ADDR fp = frame->frame;
1071 int i;
1072
1073 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1074 frame_saved_regs->regs[FP_REGNUM] = fp;
1075 frame_saved_regs->regs[1] = fp + 8;
1076
1077 for (fp += 12, i = 3; i < 32; i++)
1078 {
1079 if (i != FP_REGNUM)
1080 {
1081 frame_saved_regs->regs[i] = fp;
1082 fp += 4;
1083 }
1084 }
1085
1086 fp += 4;
1087 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1088 frame_saved_regs->regs[i] = fp;
1089
1090 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1091 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1092 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1093 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1094 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1095 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1096 }
1097
1098 int
1099 hppa_pop_frame ()
1100 {
1101 register FRAME frame = get_current_frame ();
1102 register CORE_ADDR fp;
1103 register int regnum;
1104 struct frame_saved_regs fsr;
1105 struct frame_info *fi;
1106 double freg_buffer;
1107
1108 fi = get_frame_info (frame);
1109 fp = fi->frame;
1110 get_frame_saved_regs (fi, &fsr);
1111
1112 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1113 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1114 restore_pc_queue (&fsr);
1115 #endif
1116
1117 for (regnum = 31; regnum > 0; regnum--)
1118 if (fsr.regs[regnum])
1119 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1120
1121 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1122 if (fsr.regs[regnum])
1123 {
1124 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1125 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1126 }
1127
1128 if (fsr.regs[IPSW_REGNUM])
1129 write_register (IPSW_REGNUM,
1130 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1131
1132 if (fsr.regs[SAR_REGNUM])
1133 write_register (SAR_REGNUM,
1134 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1135
1136 /* If the PC was explicitly saved, then just restore it. */
1137 if (fsr.regs[PCOQ_TAIL_REGNUM])
1138 write_register (PCOQ_TAIL_REGNUM,
1139 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
1140
1141 /* Else use the value in %rp to set the new PC. */
1142 else
1143 target_write_pc (read_register (RP_REGNUM), 0);
1144
1145 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1146
1147 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1148 write_register (SP_REGNUM, fp - 48);
1149 else
1150 write_register (SP_REGNUM, fp);
1151
1152 flush_cached_frames ();
1153 set_current_frame (create_new_frame (read_register (FP_REGNUM),
1154 read_pc ()));
1155 }
1156
1157 /*
1158 * After returning to a dummy on the stack, restore the instruction
1159 * queue space registers. */
1160
1161 static int
1162 restore_pc_queue (fsr)
1163 struct frame_saved_regs *fsr;
1164 {
1165 CORE_ADDR pc = read_pc ();
1166 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1167 int pid;
1168 struct target_waitstatus w;
1169 int insn_count;
1170
1171 /* Advance past break instruction in the call dummy. */
1172 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1173 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1174
1175 /*
1176 * HPUX doesn't let us set the space registers or the space
1177 * registers of the PC queue through ptrace. Boo, hiss.
1178 * Conveniently, the call dummy has this sequence of instructions
1179 * after the break:
1180 * mtsp r21, sr0
1181 * ble,n 0(sr0, r22)
1182 *
1183 * So, load up the registers and single step until we are in the
1184 * right place.
1185 */
1186
1187 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1188 write_register (22, new_pc);
1189
1190 for (insn_count = 0; insn_count < 3; insn_count++)
1191 {
1192 /* FIXME: What if the inferior gets a signal right now? Want to
1193 merge this into wait_for_inferior (as a special kind of
1194 watchpoint? By setting a breakpoint at the end? Is there
1195 any other choice? Is there *any* way to do this stuff with
1196 ptrace() or some equivalent?). */
1197 resume (1, 0);
1198 target_wait (inferior_pid, &w);
1199
1200 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1201 {
1202 stop_signal = w.value.sig;
1203 terminal_ours_for_output ();
1204 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1205 target_signal_to_name (stop_signal),
1206 target_signal_to_string (stop_signal));
1207 gdb_flush (gdb_stdout);
1208 return 0;
1209 }
1210 }
1211 target_terminal_ours ();
1212 target_fetch_registers (-1);
1213 return 1;
1214 }
1215
1216 CORE_ADDR
1217 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1218 int nargs;
1219 value_ptr *args;
1220 CORE_ADDR sp;
1221 int struct_return;
1222 CORE_ADDR struct_addr;
1223 {
1224 /* array of arguments' offsets */
1225 int *offset = (int *)alloca(nargs * sizeof (int));
1226 int cum = 0;
1227 int i, alignment;
1228
1229 for (i = 0; i < nargs; i++)
1230 {
1231 /* Coerce chars to int & float to double if necessary */
1232 args[i] = value_arg_coerce (args[i]);
1233
1234 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1235
1236 /* value must go at proper alignment. Assume alignment is a
1237 power of two.*/
1238 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1239 if (cum % alignment)
1240 cum = (cum + alignment) & -alignment;
1241 offset[i] = -cum;
1242 }
1243 sp += max ((cum + 7) & -8, 16);
1244
1245 for (i = 0; i < nargs; i++)
1246 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1247 TYPE_LENGTH (VALUE_TYPE (args[i])));
1248
1249 if (struct_return)
1250 write_register (28, struct_addr);
1251 return sp + 32;
1252 }
1253
1254 /*
1255 * Insert the specified number of args and function address
1256 * into a call sequence of the above form stored at DUMMYNAME.
1257 *
1258 * On the hppa we need to call the stack dummy through $$dyncall.
1259 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1260 * real_pc, which is the location where gdb should start up the
1261 * inferior to do the function call.
1262 */
1263
1264 CORE_ADDR
1265 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1266 char *dummy;
1267 CORE_ADDR pc;
1268 CORE_ADDR fun;
1269 int nargs;
1270 value_ptr *args;
1271 struct type *type;
1272 int gcc_p;
1273 {
1274 CORE_ADDR dyncall_addr, sr4export_addr;
1275 struct minimal_symbol *msymbol;
1276 int flags = read_register (FLAGS_REGNUM);
1277 struct unwind_table_entry *u;
1278
1279 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1280 if (msymbol == NULL)
1281 error ("Can't find an address for $$dyncall trampoline");
1282
1283 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1284
1285 /* FUN could be a procedure label, in which case we have to get
1286 its real address and the value of its GOT/DP. */
1287 if (fun & 0x2)
1288 {
1289 /* Get the GOT/DP value for the target function. It's
1290 at *(fun+4). Note the call dummy is *NOT* allowed to
1291 trash %r19 before calling the target function. */
1292 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1293
1294 /* Now get the real address for the function we are calling, it's
1295 at *fun. */
1296 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1297 }
1298
1299 /* If we are calling an import stub (eg calling into a dynamic library)
1300 then have sr4export call the magic __d_plt_call routine which is linked
1301 in from end.o. (You can't use _sr4export to call the import stub as
1302 the value in sp-24 will get fried and you end up returning to the
1303 wrong location. You can't call the import stub directly as the code
1304 to bind the PLT entry to a function can't return to a stack address.) */
1305 u = find_unwind_entry (fun);
1306 if (u && u->stub_type == IMPORT)
1307 {
1308 CORE_ADDR new_fun;
1309 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1310 if (msymbol == NULL)
1311 error ("Can't find an address for __d_plt_call trampoline");
1312
1313 /* This is where sr4export will jump to. */
1314 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1315
1316 /* We have to store the address of the stub in __shlib_funcptr. */
1317 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1318 (struct objfile *)NULL);
1319 if (msymbol == NULL)
1320 error ("Can't find an address for __shlib_funcptr");
1321
1322 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1323 fun = new_fun;
1324
1325 }
1326
1327 /* We still need sr4export's address too. */
1328 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1329 if (msymbol == NULL)
1330 error ("Can't find an address for _sr4export trampoline");
1331
1332 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1333
1334 store_unsigned_integer
1335 (&dummy[9*REGISTER_SIZE],
1336 REGISTER_SIZE,
1337 deposit_21 (fun >> 11,
1338 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1339 REGISTER_SIZE)));
1340 store_unsigned_integer
1341 (&dummy[10*REGISTER_SIZE],
1342 REGISTER_SIZE,
1343 deposit_14 (fun & MASK_11,
1344 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1345 REGISTER_SIZE)));
1346 store_unsigned_integer
1347 (&dummy[12*REGISTER_SIZE],
1348 REGISTER_SIZE,
1349 deposit_21 (sr4export_addr >> 11,
1350 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1351 REGISTER_SIZE)));
1352 store_unsigned_integer
1353 (&dummy[13*REGISTER_SIZE],
1354 REGISTER_SIZE,
1355 deposit_14 (sr4export_addr & MASK_11,
1356 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1357 REGISTER_SIZE)));
1358
1359 write_register (22, pc);
1360
1361 /* If we are in a syscall, then we should call the stack dummy
1362 directly. $$dyncall is not needed as the kernel sets up the
1363 space id registers properly based on the value in %r31. In
1364 fact calling $$dyncall will not work because the value in %r22
1365 will be clobbered on the syscall exit path. */
1366 if (flags & 2)
1367 return pc;
1368 else
1369 return dyncall_addr;
1370
1371 }
1372
1373 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1374 bits. */
1375 CORE_ADDR
1376 target_read_pc (pid)
1377 int pid;
1378 {
1379 int flags = read_register (FLAGS_REGNUM);
1380
1381 if (flags & 2)
1382 return read_register (31) & ~0x3;
1383 return read_register (PC_REGNUM) & ~0x3;
1384 }
1385
1386 /* Write out the PC. If currently in a syscall, then also write the new
1387 PC value into %r31. */
1388 void
1389 target_write_pc (v, pid)
1390 CORE_ADDR v;
1391 int pid;
1392 {
1393 int flags = read_register (FLAGS_REGNUM);
1394
1395 /* If in a syscall, then set %r31. Also make sure to get the
1396 privilege bits set correctly. */
1397 if (flags & 2)
1398 write_register (31, (long) (v | 0x3));
1399
1400 write_register (PC_REGNUM, (long) v);
1401 write_register (NPC_REGNUM, (long) v + 4);
1402 }
1403
1404 /* return the alignment of a type in bytes. Structures have the maximum
1405 alignment required by their fields. */
1406
1407 static int
1408 hppa_alignof (arg)
1409 struct type *arg;
1410 {
1411 int max_align, align, i;
1412 switch (TYPE_CODE (arg))
1413 {
1414 case TYPE_CODE_PTR:
1415 case TYPE_CODE_INT:
1416 case TYPE_CODE_FLT:
1417 return TYPE_LENGTH (arg);
1418 case TYPE_CODE_ARRAY:
1419 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1420 case TYPE_CODE_STRUCT:
1421 case TYPE_CODE_UNION:
1422 max_align = 2;
1423 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1424 {
1425 /* Bit fields have no real alignment. */
1426 if (!TYPE_FIELD_BITPOS (arg, i))
1427 {
1428 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1429 max_align = max (max_align, align);
1430 }
1431 }
1432 return max_align;
1433 default:
1434 return 4;
1435 }
1436 }
1437
1438 /* Print the register regnum, or all registers if regnum is -1 */
1439
1440 pa_do_registers_info (regnum, fpregs)
1441 int regnum;
1442 int fpregs;
1443 {
1444 char raw_regs [REGISTER_BYTES];
1445 int i;
1446
1447 for (i = 0; i < NUM_REGS; i++)
1448 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1449 if (regnum == -1)
1450 pa_print_registers (raw_regs, regnum, fpregs);
1451 else if (regnum < FP0_REGNUM)
1452 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1453 REGISTER_BYTE (regnum)));
1454 else
1455 pa_print_fp_reg (regnum);
1456 }
1457
1458 pa_print_registers (raw_regs, regnum, fpregs)
1459 char *raw_regs;
1460 int regnum;
1461 int fpregs;
1462 {
1463 int i;
1464
1465 for (i = 0; i < 18; i++)
1466 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1467 reg_names[i],
1468 *(int *)(raw_regs + REGISTER_BYTE (i)),
1469 reg_names[i + 18],
1470 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1471 reg_names[i + 36],
1472 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1473 reg_names[i + 54],
1474 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1475
1476 if (fpregs)
1477 for (i = 72; i < NUM_REGS; i++)
1478 pa_print_fp_reg (i);
1479 }
1480
1481 pa_print_fp_reg (i)
1482 int i;
1483 {
1484 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1485 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1486
1487 /* Get 32bits of data. */
1488 read_relative_register_raw_bytes (i, raw_buffer);
1489
1490 /* Put it in the buffer. No conversions are ever necessary. */
1491 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1492
1493 fputs_filtered (reg_names[i], gdb_stdout);
1494 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1495 fputs_filtered ("(single precision) ", gdb_stdout);
1496
1497 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1498 1, 0, Val_pretty_default);
1499 printf_filtered ("\n");
1500
1501 /* If "i" is even, then this register can also be a double-precision
1502 FP register. Dump it out as such. */
1503 if ((i % 2) == 0)
1504 {
1505 /* Get the data in raw format for the 2nd half. */
1506 read_relative_register_raw_bytes (i + 1, raw_buffer);
1507
1508 /* Copy it into the appropriate part of the virtual buffer. */
1509 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1510 REGISTER_RAW_SIZE (i));
1511
1512 /* Dump it as a double. */
1513 fputs_filtered (reg_names[i], gdb_stdout);
1514 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1515 fputs_filtered ("(double precision) ", gdb_stdout);
1516
1517 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1518 1, 0, Val_pretty_default);
1519 printf_filtered ("\n");
1520 }
1521 }
1522
1523 /* Figure out if PC is in a trampoline, and if so find out where
1524 the trampoline will jump to. If not in a trampoline, return zero.
1525
1526 Simple code examination probably is not a good idea since the code
1527 sequences in trampolines can also appear in user code.
1528
1529 We use unwinds and information from the minimal symbol table to
1530 determine when we're in a trampoline. This won't work for ELF
1531 (yet) since it doesn't create stub unwind entries. Whether or
1532 not ELF will create stub unwinds or normal unwinds for linker
1533 stubs is still being debated.
1534
1535 This should handle simple calls through dyncall or sr4export,
1536 long calls, argument relocation stubs, and dyncall/sr4export
1537 calling an argument relocation stub. It even handles some stubs
1538 used in dynamic executables. */
1539
1540 CORE_ADDR
1541 skip_trampoline_code (pc, name)
1542 CORE_ADDR pc;
1543 char *name;
1544 {
1545 long orig_pc = pc;
1546 long prev_inst, curr_inst, loc;
1547 static CORE_ADDR dyncall = 0;
1548 static CORE_ADDR sr4export = 0;
1549 struct minimal_symbol *msym;
1550 struct unwind_table_entry *u;
1551
1552 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1553 new exec file */
1554
1555 if (!dyncall)
1556 {
1557 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1558 if (msym)
1559 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1560 else
1561 dyncall = -1;
1562 }
1563
1564 if (!sr4export)
1565 {
1566 msym = lookup_minimal_symbol ("_sr4export", NULL);
1567 if (msym)
1568 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1569 else
1570 sr4export = -1;
1571 }
1572
1573 /* Addresses passed to dyncall may *NOT* be the actual address
1574 of the funtion. So we may have to do something special. */
1575 if (pc == dyncall)
1576 {
1577 pc = (CORE_ADDR) read_register (22);
1578
1579 /* If bit 30 (counting from the left) is on, then pc is the address of
1580 the PLT entry for this function, not the address of the function
1581 itself. Bit 31 has meaning too, but only for MPE. */
1582 if (pc & 0x2)
1583 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1584 }
1585 else if (pc == sr4export)
1586 pc = (CORE_ADDR) (read_register (22));
1587
1588 /* Get the unwind descriptor corresponding to PC, return zero
1589 if no unwind was found. */
1590 u = find_unwind_entry (pc);
1591 if (!u)
1592 return 0;
1593
1594 /* If this isn't a linker stub, then return now. */
1595 if (u->stub_type == 0)
1596 return orig_pc == pc ? 0 : pc & ~0x3;
1597
1598 /* It's a stub. Search for a branch and figure out where it goes.
1599 Note we have to handle multi insn branch sequences like ldil;ble.
1600 Most (all?) other branches can be determined by examining the contents
1601 of certain registers and the stack. */
1602 loc = pc;
1603 curr_inst = 0;
1604 prev_inst = 0;
1605 while (1)
1606 {
1607 /* Make sure we haven't walked outside the range of this stub. */
1608 if (u != find_unwind_entry (loc))
1609 {
1610 warning ("Unable to find branch in linker stub");
1611 return orig_pc == pc ? 0 : pc & ~0x3;
1612 }
1613
1614 prev_inst = curr_inst;
1615 curr_inst = read_memory_integer (loc, 4);
1616
1617 /* Does it look like a branch external using %r1? Then it's the
1618 branch from the stub to the actual function. */
1619 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1620 {
1621 /* Yup. See if the previous instruction loaded
1622 a value into %r1. If so compute and return the jump address. */
1623 if ((prev_inst & 0xffe0e000) == 0x20202000)
1624 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1625 else
1626 {
1627 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1628 return orig_pc == pc ? 0 : pc & ~0x3;
1629 }
1630 }
1631
1632 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1633 branch from the stub to the actual function. */
1634 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1635 || (curr_inst & 0xffe0e000) == 0xe8000000)
1636 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1637
1638 /* Does it look like bv (rp)? Note this depends on the
1639 current stack pointer being the same as the stack
1640 pointer in the stub itself! This is a branch on from the
1641 stub back to the original caller. */
1642 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1643 {
1644 /* Yup. See if the previous instruction loaded
1645 rp from sp - 8. */
1646 if (prev_inst == 0x4bc23ff1)
1647 return (read_memory_integer
1648 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1649 else
1650 {
1651 warning ("Unable to find restore of %%rp before bv (%%rp).");
1652 return orig_pc == pc ? 0 : pc & ~0x3;
1653 }
1654 }
1655
1656 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1657 the original caller from the stub. Used in dynamic executables. */
1658 else if (curr_inst == 0xe0400002)
1659 {
1660 /* The value we jump to is sitting in sp - 24. But that's
1661 loaded several instructions before the be instruction.
1662 I guess we could check for the previous instruction being
1663 mtsp %r1,%sr0 if we want to do sanity checking. */
1664 return (read_memory_integer
1665 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1666 }
1667
1668 /* Haven't found the branch yet, but we're still in the stub.
1669 Keep looking. */
1670 loc += 4;
1671 }
1672 }
1673
1674 /* For the given instruction (INST), return any adjustment it makes
1675 to the stack pointer or zero for no adjustment.
1676
1677 This only handles instructions commonly found in prologues. */
1678
1679 static int
1680 prologue_inst_adjust_sp (inst)
1681 unsigned long inst;
1682 {
1683 /* This must persist across calls. */
1684 static int save_high21;
1685
1686 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1687 if ((inst & 0xffffc000) == 0x37de0000)
1688 return extract_14 (inst);
1689
1690 /* stwm X,D(sp) */
1691 if ((inst & 0xffe00000) == 0x6fc00000)
1692 return extract_14 (inst);
1693
1694 /* addil high21,%r1; ldo low11,(%r1),%r30)
1695 save high bits in save_high21 for later use. */
1696 if ((inst & 0xffe00000) == 0x28200000)
1697 {
1698 save_high21 = extract_21 (inst);
1699 return 0;
1700 }
1701
1702 if ((inst & 0xffff0000) == 0x343e0000)
1703 return save_high21 + extract_14 (inst);
1704
1705 /* fstws as used by the HP compilers. */
1706 if ((inst & 0xffffffe0) == 0x2fd01220)
1707 return extract_5_load (inst);
1708
1709 /* No adjustment. */
1710 return 0;
1711 }
1712
1713 /* Return nonzero if INST is a branch of some kind, else return zero. */
1714
1715 static int
1716 is_branch (inst)
1717 unsigned long inst;
1718 {
1719 switch (inst >> 26)
1720 {
1721 case 0x20:
1722 case 0x21:
1723 case 0x22:
1724 case 0x23:
1725 case 0x28:
1726 case 0x29:
1727 case 0x2a:
1728 case 0x2b:
1729 case 0x30:
1730 case 0x31:
1731 case 0x32:
1732 case 0x33:
1733 case 0x38:
1734 case 0x39:
1735 case 0x3a:
1736 return 1;
1737
1738 default:
1739 return 0;
1740 }
1741 }
1742
1743 /* Return the register number for a GR which is saved by INST or
1744 zero it INST does not save a GR.
1745
1746 Note we only care about full 32bit register stores (that's the only
1747 kind of stores the prologue will use). */
1748
1749 static int
1750 inst_saves_gr (inst)
1751 unsigned long inst;
1752 {
1753 /* Does it look like a stw? */
1754 if ((inst >> 26) == 0x1a)
1755 return extract_5R_store (inst);
1756
1757 /* Does it look like a stwm? */
1758 if ((inst >> 26) == 0x1b)
1759 return extract_5R_store (inst);
1760
1761 return 0;
1762 }
1763
1764 /* Return the register number for a FR which is saved by INST or
1765 zero it INST does not save a FR.
1766
1767 Note we only care about full 64bit register stores (that's the only
1768 kind of stores the prologue will use). */
1769
1770 static int
1771 inst_saves_fr (inst)
1772 unsigned long inst;
1773 {
1774 if ((inst & 0xfc1fffe0) == 0x2c101220)
1775 return extract_5r_store (inst);
1776 return 0;
1777 }
1778
1779 /* Advance PC across any function entry prologue instructions
1780 to reach some "real" code.
1781
1782 Use information in the unwind table to determine what exactly should
1783 be in the prologue. */
1784
1785 CORE_ADDR
1786 skip_prologue (pc)
1787 CORE_ADDR pc;
1788 {
1789 char buf[4];
1790 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1791 int status, i;
1792 struct unwind_table_entry *u;
1793
1794 u = find_unwind_entry (pc);
1795 if (!u)
1796 return pc;
1797
1798 /* If we are not at the beginning of a function, then return now. */
1799 if ((pc & ~0x3) != u->region_start)
1800 return pc;
1801
1802 /* This is how much of a frame adjustment we need to account for. */
1803 stack_remaining = u->Total_frame_size << 3;
1804
1805 /* Magic register saves we want to know about. */
1806 save_rp = u->Save_RP;
1807 save_sp = u->Save_SP;
1808
1809 /* Turn the Entry_GR field into a bitmask. */
1810 save_gr = 0;
1811 for (i = 3; i < u->Entry_GR + 3; i++)
1812 {
1813 /* Frame pointer gets saved into a special location. */
1814 if (u->Save_SP && i == FP_REGNUM)
1815 continue;
1816
1817 save_gr |= (1 << i);
1818 }
1819
1820 /* Turn the Entry_FR field into a bitmask too. */
1821 save_fr = 0;
1822 for (i = 12; i < u->Entry_FR + 12; i++)
1823 save_fr |= (1 << i);
1824
1825 /* Loop until we find everything of interest or hit a branch.
1826
1827 For unoptimized GCC code and for any HP CC code this will never ever
1828 examine any user instructions.
1829
1830 For optimzied GCC code we're faced with problems. GCC will schedule
1831 its prologue and make prologue instructions available for delay slot
1832 filling. The end result is user code gets mixed in with the prologue
1833 and a prologue instruction may be in the delay slot of the first branch
1834 or call.
1835
1836 Some unexpected things are expected with debugging optimized code, so
1837 we allow this routine to walk past user instructions in optimized
1838 GCC code. */
1839 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1840 {
1841 status = target_read_memory (pc, buf, 4);
1842 inst = extract_unsigned_integer (buf, 4);
1843
1844 /* Yow! */
1845 if (status != 0)
1846 return pc;
1847
1848 /* Note the interesting effects of this instruction. */
1849 stack_remaining -= prologue_inst_adjust_sp (inst);
1850
1851 /* There is only one instruction used for saving RP into the stack. */
1852 if (inst == 0x6bc23fd9)
1853 save_rp = 0;
1854
1855 /* This is the only way we save SP into the stack. At this time
1856 the HP compilers never bother to save SP into the stack. */
1857 if ((inst & 0xffffc000) == 0x6fc10000)
1858 save_sp = 0;
1859
1860 /* Account for general and floating-point register saves. */
1861 save_gr &= ~(1 << inst_saves_gr (inst));
1862 save_fr &= ~(1 << inst_saves_fr (inst));
1863
1864 /* Quit if we hit any kind of branch. This can happen if a prologue
1865 instruction is in the delay slot of the first call/branch. */
1866 if (is_branch (inst))
1867 break;
1868
1869 /* Bump the PC. */
1870 pc += 4;
1871 }
1872
1873 return pc;
1874 }
1875
1876 /* Put here the code to store, into a struct frame_saved_regs,
1877 the addresses of the saved registers of frame described by FRAME_INFO.
1878 This includes special registers such as pc and fp saved in special
1879 ways in the stack frame. sp is even more special:
1880 the address we return for it IS the sp for the next frame. */
1881
1882 void
1883 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
1884 struct frame_info *frame_info;
1885 struct frame_saved_regs *frame_saved_regs;
1886 {
1887 CORE_ADDR pc;
1888 struct unwind_table_entry *u;
1889 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1890 int status, i, reg;
1891 char buf[4];
1892 int fp_loc = -1;
1893
1894 /* Zero out everything. */
1895 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
1896
1897 /* Call dummy frames always look the same, so there's no need to
1898 examine the dummy code to determine locations of saved registers;
1899 instead, let find_dummy_frame_regs fill in the correct offsets
1900 for the saved registers. */
1901 if ((frame_info->pc >= frame_info->frame
1902 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
1903 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
1904 + 6 * 4)))
1905 find_dummy_frame_regs (frame_info, frame_saved_regs);
1906
1907 /* Interrupt handlers are special too. They lay out the register
1908 state in the exact same order as the register numbers in GDB. */
1909 if (pc_in_interrupt_handler (frame_info->pc))
1910 {
1911 for (i = 0; i < NUM_REGS; i++)
1912 {
1913 /* SP is a little special. */
1914 if (i == SP_REGNUM)
1915 frame_saved_regs->regs[SP_REGNUM]
1916 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
1917 else
1918 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
1919 }
1920 return;
1921 }
1922
1923 /* Handle signal handler callers. */
1924 if (frame_info->signal_handler_caller)
1925 {
1926 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
1927 return;
1928 }
1929
1930 /* Get the starting address of the function referred to by the PC
1931 saved in frame_info. */
1932 pc = get_pc_function_start (frame_info->pc);
1933
1934 /* Yow! */
1935 u = find_unwind_entry (pc);
1936 if (!u)
1937 return;
1938
1939 /* This is how much of a frame adjustment we need to account for. */
1940 stack_remaining = u->Total_frame_size << 3;
1941
1942 /* Magic register saves we want to know about. */
1943 save_rp = u->Save_RP;
1944 save_sp = u->Save_SP;
1945
1946 /* Turn the Entry_GR field into a bitmask. */
1947 save_gr = 0;
1948 for (i = 3; i < u->Entry_GR + 3; i++)
1949 {
1950 /* Frame pointer gets saved into a special location. */
1951 if (u->Save_SP && i == FP_REGNUM)
1952 continue;
1953
1954 save_gr |= (1 << i);
1955 }
1956
1957 /* Turn the Entry_FR field into a bitmask too. */
1958 save_fr = 0;
1959 for (i = 12; i < u->Entry_FR + 12; i++)
1960 save_fr |= (1 << i);
1961
1962 /* The frame always represents the value of %sp at entry to the
1963 current function (and is thus equivalent to the "saved" stack
1964 pointer. */
1965 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
1966
1967 /* Loop until we find everything of interest or hit a branch.
1968
1969 For unoptimized GCC code and for any HP CC code this will never ever
1970 examine any user instructions.
1971
1972 For optimzied GCC code we're faced with problems. GCC will schedule
1973 its prologue and make prologue instructions available for delay slot
1974 filling. The end result is user code gets mixed in with the prologue
1975 and a prologue instruction may be in the delay slot of the first branch
1976 or call.
1977
1978 Some unexpected things are expected with debugging optimized code, so
1979 we allow this routine to walk past user instructions in optimized
1980 GCC code. */
1981 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1982 {
1983 status = target_read_memory (pc, buf, 4);
1984 inst = extract_unsigned_integer (buf, 4);
1985
1986 /* Yow! */
1987 if (status != 0)
1988 return;
1989
1990 /* Note the interesting effects of this instruction. */
1991 stack_remaining -= prologue_inst_adjust_sp (inst);
1992
1993 /* There is only one instruction used for saving RP into the stack. */
1994 if (inst == 0x6bc23fd9)
1995 {
1996 save_rp = 0;
1997 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
1998 }
1999
2000 /* Just note that we found the save of SP into the stack. The
2001 value for frame_saved_regs was computed above. */
2002 if ((inst & 0xffffc000) == 0x6fc10000)
2003 save_sp = 0;
2004
2005 /* Account for general and floating-point register saves. */
2006 reg = inst_saves_gr (inst);
2007 if (reg >= 3 && reg <= 18
2008 && (!u->Save_SP || reg != FP_REGNUM))
2009 {
2010 save_gr &= ~(1 << reg);
2011
2012 /* stwm with a positive displacement is a *post modify*. */
2013 if ((inst >> 26) == 0x1b
2014 && extract_14 (inst) >= 0)
2015 frame_saved_regs->regs[reg] = frame_info->frame;
2016 else
2017 {
2018 /* Handle code with and without frame pointers. */
2019 if (u->Save_SP)
2020 frame_saved_regs->regs[reg]
2021 = frame_info->frame + extract_14 (inst);
2022 else
2023 frame_saved_regs->regs[reg]
2024 = frame_info->frame + (u->Total_frame_size << 3)
2025 + extract_14 (inst);
2026 }
2027 }
2028
2029
2030 /* GCC handles callee saved FP regs a little differently.
2031
2032 It emits an instruction to put the value of the start of
2033 the FP store area into %r1. It then uses fstds,ma with
2034 a basereg of %r1 for the stores.
2035
2036 HP CC emits them at the current stack pointer modifying
2037 the stack pointer as it stores each register. */
2038
2039 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2040 if ((inst & 0xffffc000) == 0x34610000
2041 || (inst & 0xffffc000) == 0x37c10000)
2042 fp_loc = extract_14 (inst);
2043
2044 reg = inst_saves_fr (inst);
2045 if (reg >= 12 && reg <= 21)
2046 {
2047 /* Note +4 braindamage below is necessary because the FP status
2048 registers are internally 8 registers rather than the expected
2049 4 registers. */
2050 save_fr &= ~(1 << reg);
2051 if (fp_loc == -1)
2052 {
2053 /* 1st HP CC FP register store. After this instruction
2054 we've set enough state that the GCC and HPCC code are
2055 both handled in the same manner. */
2056 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2057 fp_loc = 8;
2058 }
2059 else
2060 {
2061 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2062 = frame_info->frame + fp_loc;
2063 fp_loc += 8;
2064 }
2065 }
2066
2067 /* Quit if we hit any kind of branch. This can happen if a prologue
2068 instruction is in the delay slot of the first call/branch. */
2069 if (is_branch (inst))
2070 break;
2071
2072 /* Bump the PC. */
2073 pc += 4;
2074 }
2075 }
2076
2077 #ifdef MAINTENANCE_CMDS
2078
2079 static void
2080 unwind_command (exp, from_tty)
2081 char *exp;
2082 int from_tty;
2083 {
2084 CORE_ADDR address;
2085 union
2086 {
2087 int *foo;
2088 struct unwind_table_entry *u;
2089 } xxx;
2090
2091 /* If we have an expression, evaluate it and use it as the address. */
2092
2093 if (exp != 0 && *exp != 0)
2094 address = parse_and_eval_address (exp);
2095 else
2096 return;
2097
2098 xxx.u = find_unwind_entry (address);
2099
2100 if (!xxx.u)
2101 {
2102 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
2103 return;
2104 }
2105
2106 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
2107 xxx.foo[3]);
2108 }
2109 #endif /* MAINTENANCE_CMDS */
2110
2111 void
2112 _initialize_hppa_tdep ()
2113 {
2114 #ifdef MAINTENANCE_CMDS
2115 add_cmd ("unwind", class_maintenance, unwind_command,
2116 "Print unwind table entry at given address.",
2117 &maintenanceprintlist);
2118 #endif /* MAINTENANCE_CMDS */
2119 }
This page took 0.075717 seconds and 4 git commands to generate.