Fix potential illegal memory access by readelf when parsing a binary containing corru...
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "bfd.h"
25 #include "inferior.h"
26 #include "regcache.h"
27 #include "completer.h"
28 #include "osabi.h"
29 #include "arch-utils.h"
30 /* For argument passing to the inferior. */
31 #include "symtab.h"
32 #include "dis-asm.h"
33 #include "trad-frame.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "gdbtypes.h"
40 #include "objfiles.h"
41 #include "hppa-tdep.h"
42 #include <algorithm>
43
44 static int hppa_debug = 0;
45
46 /* Some local constants. */
47 static const int hppa32_num_regs = 128;
48 static const int hppa64_num_regs = 96;
49
50 /* We use the objfile->obj_private pointer for two things:
51 * 1. An unwind table;
52 *
53 * 2. A pointer to any associated shared library object.
54 *
55 * #defines are used to help refer to these objects.
56 */
57
58 /* Info about the unwind table associated with an object file.
59 * This is hung off of the "objfile->obj_private" pointer, and
60 * is allocated in the objfile's psymbol obstack. This allows
61 * us to have unique unwind info for each executable and shared
62 * library that we are debugging.
63 */
64 struct hppa_unwind_info
65 {
66 struct unwind_table_entry *table; /* Pointer to unwind info */
67 struct unwind_table_entry *cache; /* Pointer to last entry we found */
68 int last; /* Index of last entry */
69 };
70
71 struct hppa_objfile_private
72 {
73 struct hppa_unwind_info *unwind_info; /* a pointer */
74 struct so_list *so_info; /* a pointer */
75 CORE_ADDR dp;
76
77 int dummy_call_sequence_reg;
78 CORE_ADDR dummy_call_sequence_addr;
79 };
80
81 /* hppa-specific object data -- unwind and solib info.
82 TODO/maybe: think about splitting this into two parts; the unwind data is
83 common to all hppa targets, but is only used in this file; we can register
84 that separately and make this static. The solib data is probably hpux-
85 specific, so we can create a separate extern objfile_data that is registered
86 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
87 static const struct objfile_data *hppa_objfile_priv_data = NULL;
88
89 /* Get at various relevent fields of an instruction word. */
90 #define MASK_5 0x1f
91 #define MASK_11 0x7ff
92 #define MASK_14 0x3fff
93 #define MASK_21 0x1fffff
94
95 /* Sizes (in bytes) of the native unwind entries. */
96 #define UNWIND_ENTRY_SIZE 16
97 #define STUB_UNWIND_ENTRY_SIZE 8
98
99 /* Routines to extract various sized constants out of hppa
100 instructions. */
101
102 /* This assumes that no garbage lies outside of the lower bits of
103 value. */
104
105 static int
106 hppa_sign_extend (unsigned val, unsigned bits)
107 {
108 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
109 }
110
111 /* For many immediate values the sign bit is the low bit! */
112
113 static int
114 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
115 {
116 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
117 }
118
119 /* Extract the bits at positions between FROM and TO, using HP's numbering
120 (MSB = 0). */
121
122 int
123 hppa_get_field (unsigned word, int from, int to)
124 {
125 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
126 }
127
128 /* Extract the immediate field from a ld{bhw}s instruction. */
129
130 int
131 hppa_extract_5_load (unsigned word)
132 {
133 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
134 }
135
136 /* Extract the immediate field from a break instruction. */
137
138 unsigned
139 hppa_extract_5r_store (unsigned word)
140 {
141 return (word & MASK_5);
142 }
143
144 /* Extract the immediate field from a {sr}sm instruction. */
145
146 unsigned
147 hppa_extract_5R_store (unsigned word)
148 {
149 return (word >> 16 & MASK_5);
150 }
151
152 /* Extract a 14 bit immediate field. */
153
154 int
155 hppa_extract_14 (unsigned word)
156 {
157 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
158 }
159
160 /* Extract a 21 bit constant. */
161
162 int
163 hppa_extract_21 (unsigned word)
164 {
165 int val;
166
167 word &= MASK_21;
168 word <<= 11;
169 val = hppa_get_field (word, 20, 20);
170 val <<= 11;
171 val |= hppa_get_field (word, 9, 19);
172 val <<= 2;
173 val |= hppa_get_field (word, 5, 6);
174 val <<= 5;
175 val |= hppa_get_field (word, 0, 4);
176 val <<= 2;
177 val |= hppa_get_field (word, 7, 8);
178 return hppa_sign_extend (val, 21) << 11;
179 }
180
181 /* extract a 17 bit constant from branch instructions, returning the
182 19 bit signed value. */
183
184 int
185 hppa_extract_17 (unsigned word)
186 {
187 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
188 hppa_get_field (word, 29, 29) << 10 |
189 hppa_get_field (word, 11, 15) << 11 |
190 (word & 0x1) << 16, 17) << 2;
191 }
192
193 CORE_ADDR
194 hppa_symbol_address(const char *sym)
195 {
196 struct bound_minimal_symbol minsym;
197
198 minsym = lookup_minimal_symbol (sym, NULL, NULL);
199 if (minsym.minsym)
200 return BMSYMBOL_VALUE_ADDRESS (minsym);
201 else
202 return (CORE_ADDR)-1;
203 }
204
205 static struct hppa_objfile_private *
206 hppa_init_objfile_priv_data (struct objfile *objfile)
207 {
208 hppa_objfile_private *priv
209 = OBSTACK_ZALLOC (&objfile->objfile_obstack, hppa_objfile_private);
210
211 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
212
213 return priv;
214 }
215 \f
216
217 /* Compare the start address for two unwind entries returning 1 if
218 the first address is larger than the second, -1 if the second is
219 larger than the first, and zero if they are equal. */
220
221 static int
222 compare_unwind_entries (const void *arg1, const void *arg2)
223 {
224 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
225 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
226
227 if (a->region_start > b->region_start)
228 return 1;
229 else if (a->region_start < b->region_start)
230 return -1;
231 else
232 return 0;
233 }
234
235 static void
236 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
237 {
238 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
239 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
240 {
241 bfd_vma value = section->vma - section->filepos;
242 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
243
244 if (value < *low_text_segment_address)
245 *low_text_segment_address = value;
246 }
247 }
248
249 static void
250 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
251 asection *section, unsigned int entries,
252 size_t size, CORE_ADDR text_offset)
253 {
254 /* We will read the unwind entries into temporary memory, then
255 fill in the actual unwind table. */
256
257 if (size > 0)
258 {
259 struct gdbarch *gdbarch = get_objfile_arch (objfile);
260 unsigned long tmp;
261 unsigned i;
262 char *buf = (char *) alloca (size);
263 CORE_ADDR low_text_segment_address;
264
265 /* For ELF targets, then unwinds are supposed to
266 be segment relative offsets instead of absolute addresses.
267
268 Note that when loading a shared library (text_offset != 0) the
269 unwinds are already relative to the text_offset that will be
270 passed in. */
271 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
272 {
273 low_text_segment_address = -1;
274
275 bfd_map_over_sections (objfile->obfd,
276 record_text_segment_lowaddr,
277 &low_text_segment_address);
278
279 text_offset = low_text_segment_address;
280 }
281 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
282 {
283 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
284 }
285
286 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
287
288 /* Now internalize the information being careful to handle host/target
289 endian issues. */
290 for (i = 0; i < entries; i++)
291 {
292 table[i].region_start = bfd_get_32 (objfile->obfd,
293 (bfd_byte *) buf);
294 table[i].region_start += text_offset;
295 buf += 4;
296 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
297 table[i].region_end += text_offset;
298 buf += 4;
299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
300 buf += 4;
301 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
302 table[i].Millicode = (tmp >> 30) & 0x1;
303 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
304 table[i].Region_description = (tmp >> 27) & 0x3;
305 table[i].reserved = (tmp >> 26) & 0x1;
306 table[i].Entry_SR = (tmp >> 25) & 0x1;
307 table[i].Entry_FR = (tmp >> 21) & 0xf;
308 table[i].Entry_GR = (tmp >> 16) & 0x1f;
309 table[i].Args_stored = (tmp >> 15) & 0x1;
310 table[i].Variable_Frame = (tmp >> 14) & 0x1;
311 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
312 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
313 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
314 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
315 table[i].sr4export = (tmp >> 9) & 0x1;
316 table[i].cxx_info = (tmp >> 8) & 0x1;
317 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
318 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
319 table[i].reserved1 = (tmp >> 5) & 0x1;
320 table[i].Save_SP = (tmp >> 4) & 0x1;
321 table[i].Save_RP = (tmp >> 3) & 0x1;
322 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
323 table[i].save_r19 = (tmp >> 1) & 0x1;
324 table[i].Cleanup_defined = tmp & 0x1;
325 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
326 buf += 4;
327 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
328 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
329 table[i].Large_frame = (tmp >> 29) & 0x1;
330 table[i].alloca_frame = (tmp >> 28) & 0x1;
331 table[i].reserved2 = (tmp >> 27) & 0x1;
332 table[i].Total_frame_size = tmp & 0x7ffffff;
333
334 /* Stub unwinds are handled elsewhere. */
335 table[i].stub_unwind.stub_type = 0;
336 table[i].stub_unwind.padding = 0;
337 }
338 }
339 }
340
341 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
342 the object file. This info is used mainly by find_unwind_entry() to find
343 out the stack frame size and frame pointer used by procedures. We put
344 everything on the psymbol obstack in the objfile so that it automatically
345 gets freed when the objfile is destroyed. */
346
347 static void
348 read_unwind_info (struct objfile *objfile)
349 {
350 asection *unwind_sec, *stub_unwind_sec;
351 size_t unwind_size, stub_unwind_size, total_size;
352 unsigned index, unwind_entries;
353 unsigned stub_entries, total_entries;
354 CORE_ADDR text_offset;
355 struct hppa_unwind_info *ui;
356 struct hppa_objfile_private *obj_private;
357
358 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
359 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
360 sizeof (struct hppa_unwind_info));
361
362 ui->table = NULL;
363 ui->cache = NULL;
364 ui->last = -1;
365
366 /* For reasons unknown the HP PA64 tools generate multiple unwinder
367 sections in a single executable. So we just iterate over every
368 section in the BFD looking for unwinder sections intead of trying
369 to do a lookup with bfd_get_section_by_name.
370
371 First determine the total size of the unwind tables so that we
372 can allocate memory in a nice big hunk. */
373 total_entries = 0;
374 for (unwind_sec = objfile->obfd->sections;
375 unwind_sec;
376 unwind_sec = unwind_sec->next)
377 {
378 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
379 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
380 {
381 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
382 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
383
384 total_entries += unwind_entries;
385 }
386 }
387
388 /* Now compute the size of the stub unwinds. Note the ELF tools do not
389 use stub unwinds at the current time. */
390 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
391
392 if (stub_unwind_sec)
393 {
394 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
395 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
396 }
397 else
398 {
399 stub_unwind_size = 0;
400 stub_entries = 0;
401 }
402
403 /* Compute total number of unwind entries and their total size. */
404 total_entries += stub_entries;
405 total_size = total_entries * sizeof (struct unwind_table_entry);
406
407 /* Allocate memory for the unwind table. */
408 ui->table = (struct unwind_table_entry *)
409 obstack_alloc (&objfile->objfile_obstack, total_size);
410 ui->last = total_entries - 1;
411
412 /* Now read in each unwind section and internalize the standard unwind
413 entries. */
414 index = 0;
415 for (unwind_sec = objfile->obfd->sections;
416 unwind_sec;
417 unwind_sec = unwind_sec->next)
418 {
419 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
420 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
421 {
422 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
423 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
424
425 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
426 unwind_entries, unwind_size, text_offset);
427 index += unwind_entries;
428 }
429 }
430
431 /* Now read in and internalize the stub unwind entries. */
432 if (stub_unwind_size > 0)
433 {
434 unsigned int i;
435 char *buf = (char *) alloca (stub_unwind_size);
436
437 /* Read in the stub unwind entries. */
438 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
439 0, stub_unwind_size);
440
441 /* Now convert them into regular unwind entries. */
442 for (i = 0; i < stub_entries; i++, index++)
443 {
444 /* Clear out the next unwind entry. */
445 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
446
447 /* Convert offset & size into region_start and region_end.
448 Stuff away the stub type into "reserved" fields. */
449 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
450 (bfd_byte *) buf);
451 ui->table[index].region_start += text_offset;
452 buf += 4;
453 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
454 (bfd_byte *) buf);
455 buf += 2;
456 ui->table[index].region_end
457 = ui->table[index].region_start + 4 *
458 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
459 buf += 2;
460 }
461
462 }
463
464 /* Unwind table needs to be kept sorted. */
465 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
466 compare_unwind_entries);
467
468 /* Keep a pointer to the unwind information. */
469 obj_private = (struct hppa_objfile_private *)
470 objfile_data (objfile, hppa_objfile_priv_data);
471 if (obj_private == NULL)
472 obj_private = hppa_init_objfile_priv_data (objfile);
473
474 obj_private->unwind_info = ui;
475 }
476
477 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
478 of the objfiles seeking the unwind table entry for this PC. Each objfile
479 contains a sorted list of struct unwind_table_entry. Since we do a binary
480 search of the unwind tables, we depend upon them to be sorted. */
481
482 struct unwind_table_entry *
483 find_unwind_entry (CORE_ADDR pc)
484 {
485 int first, middle, last;
486 struct hppa_objfile_private *priv;
487
488 if (hppa_debug)
489 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
490 hex_string (pc));
491
492 /* A function at address 0? Not in HP-UX! */
493 if (pc == (CORE_ADDR) 0)
494 {
495 if (hppa_debug)
496 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
497 return NULL;
498 }
499
500 for (objfile *objfile : current_program_space->objfiles ())
501 {
502 struct hppa_unwind_info *ui;
503 ui = NULL;
504 priv = ((struct hppa_objfile_private *)
505 objfile_data (objfile, hppa_objfile_priv_data));
506 if (priv)
507 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
508
509 if (!ui)
510 {
511 read_unwind_info (objfile);
512 priv = ((struct hppa_objfile_private *)
513 objfile_data (objfile, hppa_objfile_priv_data));
514 if (priv == NULL)
515 error (_("Internal error reading unwind information."));
516 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
517 }
518
519 /* First, check the cache. */
520
521 if (ui->cache
522 && pc >= ui->cache->region_start
523 && pc <= ui->cache->region_end)
524 {
525 if (hppa_debug)
526 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
527 hex_string ((uintptr_t) ui->cache));
528 return ui->cache;
529 }
530
531 /* Not in the cache, do a binary search. */
532
533 first = 0;
534 last = ui->last;
535
536 while (first <= last)
537 {
538 middle = (first + last) / 2;
539 if (pc >= ui->table[middle].region_start
540 && pc <= ui->table[middle].region_end)
541 {
542 ui->cache = &ui->table[middle];
543 if (hppa_debug)
544 fprintf_unfiltered (gdb_stdlog, "%s }\n",
545 hex_string ((uintptr_t) ui->cache));
546 return &ui->table[middle];
547 }
548
549 if (pc < ui->table[middle].region_start)
550 last = middle - 1;
551 else
552 first = middle + 1;
553 }
554 }
555
556 if (hppa_debug)
557 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
558
559 return NULL;
560 }
561
562 /* Implement the stack_frame_destroyed_p gdbarch method.
563
564 The epilogue is defined here as the area either on the `bv' instruction
565 itself or an instruction which destroys the function's stack frame.
566
567 We do not assume that the epilogue is at the end of a function as we can
568 also have return sequences in the middle of a function. */
569
570 static int
571 hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
572 {
573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
574 unsigned long status;
575 unsigned int inst;
576 gdb_byte buf[4];
577
578 status = target_read_memory (pc, buf, 4);
579 if (status != 0)
580 return 0;
581
582 inst = extract_unsigned_integer (buf, 4, byte_order);
583
584 /* The most common way to perform a stack adjustment ldo X(sp),sp
585 We are destroying a stack frame if the offset is negative. */
586 if ((inst & 0xffffc000) == 0x37de0000
587 && hppa_extract_14 (inst) < 0)
588 return 1;
589
590 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
591 if (((inst & 0x0fc010e0) == 0x0fc010e0
592 || (inst & 0x0fc010e0) == 0x0fc010e0)
593 && hppa_extract_14 (inst) < 0)
594 return 1;
595
596 /* bv %r0(%rp) or bv,n %r0(%rp) */
597 if (inst == 0xe840c000 || inst == 0xe840c002)
598 return 1;
599
600 return 0;
601 }
602
603 constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};
604
605 typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;
606
607 /* Return the name of a register. */
608
609 static const char *
610 hppa32_register_name (struct gdbarch *gdbarch, int i)
611 {
612 static const char *names[] = {
613 "flags", "r1", "rp", "r3",
614 "r4", "r5", "r6", "r7",
615 "r8", "r9", "r10", "r11",
616 "r12", "r13", "r14", "r15",
617 "r16", "r17", "r18", "r19",
618 "r20", "r21", "r22", "r23",
619 "r24", "r25", "r26", "dp",
620 "ret0", "ret1", "sp", "r31",
621 "sar", "pcoqh", "pcsqh", "pcoqt",
622 "pcsqt", "eiem", "iir", "isr",
623 "ior", "ipsw", "goto", "sr4",
624 "sr0", "sr1", "sr2", "sr3",
625 "sr5", "sr6", "sr7", "cr0",
626 "cr8", "cr9", "ccr", "cr12",
627 "cr13", "cr24", "cr25", "cr26",
628 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
629 "fpsr", "fpe1", "fpe2", "fpe3",
630 "fpe4", "fpe5", "fpe6", "fpe7",
631 "fr4", "fr4R", "fr5", "fr5R",
632 "fr6", "fr6R", "fr7", "fr7R",
633 "fr8", "fr8R", "fr9", "fr9R",
634 "fr10", "fr10R", "fr11", "fr11R",
635 "fr12", "fr12R", "fr13", "fr13R",
636 "fr14", "fr14R", "fr15", "fr15R",
637 "fr16", "fr16R", "fr17", "fr17R",
638 "fr18", "fr18R", "fr19", "fr19R",
639 "fr20", "fr20R", "fr21", "fr21R",
640 "fr22", "fr22R", "fr23", "fr23R",
641 "fr24", "fr24R", "fr25", "fr25R",
642 "fr26", "fr26R", "fr27", "fr27R",
643 "fr28", "fr28R", "fr29", "fr29R",
644 "fr30", "fr30R", "fr31", "fr31R"
645 };
646 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
647 return NULL;
648 else
649 return names[i];
650 }
651
652 static const char *
653 hppa64_register_name (struct gdbarch *gdbarch, int i)
654 {
655 static const char *names[] = {
656 "flags", "r1", "rp", "r3",
657 "r4", "r5", "r6", "r7",
658 "r8", "r9", "r10", "r11",
659 "r12", "r13", "r14", "r15",
660 "r16", "r17", "r18", "r19",
661 "r20", "r21", "r22", "r23",
662 "r24", "r25", "r26", "dp",
663 "ret0", "ret1", "sp", "r31",
664 "sar", "pcoqh", "pcsqh", "pcoqt",
665 "pcsqt", "eiem", "iir", "isr",
666 "ior", "ipsw", "goto", "sr4",
667 "sr0", "sr1", "sr2", "sr3",
668 "sr5", "sr6", "sr7", "cr0",
669 "cr8", "cr9", "ccr", "cr12",
670 "cr13", "cr24", "cr25", "cr26",
671 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
672 "fpsr", "fpe1", "fpe2", "fpe3",
673 "fr4", "fr5", "fr6", "fr7",
674 "fr8", "fr9", "fr10", "fr11",
675 "fr12", "fr13", "fr14", "fr15",
676 "fr16", "fr17", "fr18", "fr19",
677 "fr20", "fr21", "fr22", "fr23",
678 "fr24", "fr25", "fr26", "fr27",
679 "fr28", "fr29", "fr30", "fr31"
680 };
681 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
682 return NULL;
683 else
684 return names[i];
685 }
686
687 /* Map dwarf DBX register numbers to GDB register numbers. */
688 static int
689 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
690 {
691 /* The general registers and the sar are the same in both sets. */
692 if (reg >= 0 && reg <= 32)
693 return reg;
694
695 /* fr4-fr31 are mapped from 72 in steps of 2. */
696 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
697 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
698
699 return -1;
700 }
701
702 /* This function pushes a stack frame with arguments as part of the
703 inferior function calling mechanism.
704
705 This is the version of the function for the 32-bit PA machines, in
706 which later arguments appear at lower addresses. (The stack always
707 grows towards higher addresses.)
708
709 We simply allocate the appropriate amount of stack space and put
710 arguments into their proper slots. */
711
712 static CORE_ADDR
713 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
714 struct regcache *regcache, CORE_ADDR bp_addr,
715 int nargs, struct value **args, CORE_ADDR sp,
716 function_call_return_method return_method,
717 CORE_ADDR struct_addr)
718 {
719 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
720
721 /* Stack base address at which any pass-by-reference parameters are
722 stored. */
723 CORE_ADDR struct_end = 0;
724 /* Stack base address at which the first parameter is stored. */
725 CORE_ADDR param_end = 0;
726
727 /* Two passes. First pass computes the location of everything,
728 second pass writes the bytes out. */
729 int write_pass;
730
731 /* Global pointer (r19) of the function we are trying to call. */
732 CORE_ADDR gp;
733
734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
735
736 for (write_pass = 0; write_pass < 2; write_pass++)
737 {
738 CORE_ADDR struct_ptr = 0;
739 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
740 struct_ptr is adjusted for each argument below, so the first
741 argument will end up at sp-36. */
742 CORE_ADDR param_ptr = 32;
743 int i;
744 int small_struct = 0;
745
746 for (i = 0; i < nargs; i++)
747 {
748 struct value *arg = args[i];
749 struct type *type = check_typedef (value_type (arg));
750 /* The corresponding parameter that is pushed onto the
751 stack, and [possibly] passed in a register. */
752 gdb_byte param_val[8];
753 int param_len;
754 memset (param_val, 0, sizeof param_val);
755 if (TYPE_LENGTH (type) > 8)
756 {
757 /* Large parameter, pass by reference. Store the value
758 in "struct" area and then pass its address. */
759 param_len = 4;
760 struct_ptr += align_up (TYPE_LENGTH (type), 8);
761 if (write_pass)
762 write_memory (struct_end - struct_ptr, value_contents (arg),
763 TYPE_LENGTH (type));
764 store_unsigned_integer (param_val, 4, byte_order,
765 struct_end - struct_ptr);
766 }
767 else if (TYPE_CODE (type) == TYPE_CODE_INT
768 || TYPE_CODE (type) == TYPE_CODE_ENUM)
769 {
770 /* Integer value store, right aligned. "unpack_long"
771 takes care of any sign-extension problems. */
772 param_len = align_up (TYPE_LENGTH (type), 4);
773 store_unsigned_integer (param_val, param_len, byte_order,
774 unpack_long (type,
775 value_contents (arg)));
776 }
777 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
778 {
779 /* Floating point value store, right aligned. */
780 param_len = align_up (TYPE_LENGTH (type), 4);
781 memcpy (param_val, value_contents (arg), param_len);
782 }
783 else
784 {
785 param_len = align_up (TYPE_LENGTH (type), 4);
786
787 /* Small struct value are stored right-aligned. */
788 memcpy (param_val + param_len - TYPE_LENGTH (type),
789 value_contents (arg), TYPE_LENGTH (type));
790
791 /* Structures of size 5, 6 and 7 bytes are special in that
792 the higher-ordered word is stored in the lower-ordered
793 argument, and even though it is a 8-byte quantity the
794 registers need not be 8-byte aligned. */
795 if (param_len > 4 && param_len < 8)
796 small_struct = 1;
797 }
798
799 param_ptr += param_len;
800 if (param_len == 8 && !small_struct)
801 param_ptr = align_up (param_ptr, 8);
802
803 /* First 4 non-FP arguments are passed in gr26-gr23.
804 First 4 32-bit FP arguments are passed in fr4L-fr7L.
805 First 2 64-bit FP arguments are passed in fr5 and fr7.
806
807 The rest go on the stack, starting at sp-36, towards lower
808 addresses. 8-byte arguments must be aligned to a 8-byte
809 stack boundary. */
810 if (write_pass)
811 {
812 write_memory (param_end - param_ptr, param_val, param_len);
813
814 /* There are some cases when we don't know the type
815 expected by the callee (e.g. for variadic functions), so
816 pass the parameters in both general and fp regs. */
817 if (param_ptr <= 48)
818 {
819 int grreg = 26 - (param_ptr - 36) / 4;
820 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
821 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
822
823 regcache->cooked_write (grreg, param_val);
824 regcache->cooked_write (fpLreg, param_val);
825
826 if (param_len > 4)
827 {
828 regcache->cooked_write (grreg + 1, param_val + 4);
829
830 regcache->cooked_write (fpreg, param_val);
831 regcache->cooked_write (fpreg + 1, param_val + 4);
832 }
833 }
834 }
835 }
836
837 /* Update the various stack pointers. */
838 if (!write_pass)
839 {
840 struct_end = sp + align_up (struct_ptr, 64);
841 /* PARAM_PTR already accounts for all the arguments passed
842 by the user. However, the ABI mandates minimum stack
843 space allocations for outgoing arguments. The ABI also
844 mandates minimum stack alignments which we must
845 preserve. */
846 param_end = struct_end + align_up (param_ptr, 64);
847 }
848 }
849
850 /* If a structure has to be returned, set up register 28 to hold its
851 address. */
852 if (return_method == return_method_struct)
853 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
854
855 gp = tdep->find_global_pointer (gdbarch, function);
856
857 if (gp != 0)
858 regcache_cooked_write_unsigned (regcache, 19, gp);
859
860 /* Set the return address. */
861 if (!gdbarch_push_dummy_code_p (gdbarch))
862 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
863
864 /* Update the Stack Pointer. */
865 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
866
867 return param_end;
868 }
869
870 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
871 Runtime Architecture for PA-RISC 2.0", which is distributed as part
872 as of the HP-UX Software Transition Kit (STK). This implementation
873 is based on version 3.3, dated October 6, 1997. */
874
875 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
876
877 static int
878 hppa64_integral_or_pointer_p (const struct type *type)
879 {
880 switch (TYPE_CODE (type))
881 {
882 case TYPE_CODE_INT:
883 case TYPE_CODE_BOOL:
884 case TYPE_CODE_CHAR:
885 case TYPE_CODE_ENUM:
886 case TYPE_CODE_RANGE:
887 {
888 int len = TYPE_LENGTH (type);
889 return (len == 1 || len == 2 || len == 4 || len == 8);
890 }
891 case TYPE_CODE_PTR:
892 case TYPE_CODE_REF:
893 case TYPE_CODE_RVALUE_REF:
894 return (TYPE_LENGTH (type) == 8);
895 default:
896 break;
897 }
898
899 return 0;
900 }
901
902 /* Check whether TYPE is a "Floating Scalar Type". */
903
904 static int
905 hppa64_floating_p (const struct type *type)
906 {
907 switch (TYPE_CODE (type))
908 {
909 case TYPE_CODE_FLT:
910 {
911 int len = TYPE_LENGTH (type);
912 return (len == 4 || len == 8 || len == 16);
913 }
914 default:
915 break;
916 }
917
918 return 0;
919 }
920
921 /* If CODE points to a function entry address, try to look up the corresponding
922 function descriptor and return its address instead. If CODE is not a
923 function entry address, then just return it unchanged. */
924 static CORE_ADDR
925 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
926 {
927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
928 struct obj_section *sec, *opd;
929
930 sec = find_pc_section (code);
931
932 if (!sec)
933 return code;
934
935 /* If CODE is in a data section, assume it's already a fptr. */
936 if (!(sec->the_bfd_section->flags & SEC_CODE))
937 return code;
938
939 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
940 {
941 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
942 break;
943 }
944
945 if (opd < sec->objfile->sections_end)
946 {
947 CORE_ADDR addr;
948
949 for (addr = obj_section_addr (opd);
950 addr < obj_section_endaddr (opd);
951 addr += 2 * 8)
952 {
953 ULONGEST opdaddr;
954 gdb_byte tmp[8];
955
956 if (target_read_memory (addr, tmp, sizeof (tmp)))
957 break;
958 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
959
960 if (opdaddr == code)
961 return addr - 16;
962 }
963 }
964
965 return code;
966 }
967
968 static CORE_ADDR
969 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
970 struct regcache *regcache, CORE_ADDR bp_addr,
971 int nargs, struct value **args, CORE_ADDR sp,
972 function_call_return_method return_method,
973 CORE_ADDR struct_addr)
974 {
975 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
976 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
977 int i, offset = 0;
978 CORE_ADDR gp;
979
980 /* "The outgoing parameter area [...] must be aligned at a 16-byte
981 boundary." */
982 sp = align_up (sp, 16);
983
984 for (i = 0; i < nargs; i++)
985 {
986 struct value *arg = args[i];
987 struct type *type = value_type (arg);
988 int len = TYPE_LENGTH (type);
989 const bfd_byte *valbuf;
990 bfd_byte fptrbuf[8];
991 int regnum;
992
993 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
994 offset = align_up (offset, 8);
995
996 if (hppa64_integral_or_pointer_p (type))
997 {
998 /* "Integral scalar parameters smaller than 64 bits are
999 padded on the left (i.e., the value is in the
1000 least-significant bits of the 64-bit storage unit, and
1001 the high-order bits are undefined)." Therefore we can
1002 safely sign-extend them. */
1003 if (len < 8)
1004 {
1005 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
1006 len = 8;
1007 }
1008 }
1009 else if (hppa64_floating_p (type))
1010 {
1011 if (len > 8)
1012 {
1013 /* "Quad-precision (128-bit) floating-point scalar
1014 parameters are aligned on a 16-byte boundary." */
1015 offset = align_up (offset, 16);
1016
1017 /* "Double-extended- and quad-precision floating-point
1018 parameters within the first 64 bytes of the parameter
1019 list are always passed in general registers." */
1020 }
1021 else
1022 {
1023 if (len == 4)
1024 {
1025 /* "Single-precision (32-bit) floating-point scalar
1026 parameters are padded on the left with 32 bits of
1027 garbage (i.e., the floating-point value is in the
1028 least-significant 32 bits of a 64-bit storage
1029 unit)." */
1030 offset += 4;
1031 }
1032
1033 /* "Single- and double-precision floating-point
1034 parameters in this area are passed according to the
1035 available formal parameter information in a function
1036 prototype. [...] If no prototype is in scope,
1037 floating-point parameters must be passed both in the
1038 corresponding general registers and in the
1039 corresponding floating-point registers." */
1040 regnum = HPPA64_FP4_REGNUM + offset / 8;
1041
1042 if (regnum < HPPA64_FP4_REGNUM + 8)
1043 {
1044 /* "Single-precision floating-point parameters, when
1045 passed in floating-point registers, are passed in
1046 the right halves of the floating point registers;
1047 the left halves are unused." */
1048 regcache->cooked_write_part (regnum, offset % 8, len,
1049 value_contents (arg));
1050 }
1051 }
1052 }
1053 else
1054 {
1055 if (len > 8)
1056 {
1057 /* "Aggregates larger than 8 bytes are aligned on a
1058 16-byte boundary, possibly leaving an unused argument
1059 slot, which is filled with garbage. If necessary,
1060 they are padded on the right (with garbage), to a
1061 multiple of 8 bytes." */
1062 offset = align_up (offset, 16);
1063 }
1064 }
1065
1066 /* If we are passing a function pointer, make sure we pass a function
1067 descriptor instead of the function entry address. */
1068 if (TYPE_CODE (type) == TYPE_CODE_PTR
1069 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1070 {
1071 ULONGEST codeptr, fptr;
1072
1073 codeptr = unpack_long (type, value_contents (arg));
1074 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1075 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1076 fptr);
1077 valbuf = fptrbuf;
1078 }
1079 else
1080 {
1081 valbuf = value_contents (arg);
1082 }
1083
1084 /* Always store the argument in memory. */
1085 write_memory (sp + offset, valbuf, len);
1086
1087 regnum = HPPA_ARG0_REGNUM - offset / 8;
1088 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1089 {
1090 regcache->cooked_write_part (regnum, offset % 8, std::min (len, 8),
1091 valbuf);
1092 offset += std::min (len, 8);
1093 valbuf += std::min (len, 8);
1094 len -= std::min (len, 8);
1095 regnum--;
1096 }
1097
1098 offset += len;
1099 }
1100
1101 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1102 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1103
1104 /* Allocate the outgoing parameter area. Make sure the outgoing
1105 parameter area is multiple of 16 bytes in length. */
1106 sp += std::max (align_up (offset, 16), (ULONGEST) 64);
1107
1108 /* Allocate 32-bytes of scratch space. The documentation doesn't
1109 mention this, but it seems to be needed. */
1110 sp += 32;
1111
1112 /* Allocate the frame marker area. */
1113 sp += 16;
1114
1115 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1116 its address. */
1117 if (return_method == return_method_struct)
1118 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1119
1120 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1121 gp = tdep->find_global_pointer (gdbarch, function);
1122 if (gp != 0)
1123 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1124
1125 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1126 if (!gdbarch_push_dummy_code_p (gdbarch))
1127 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1128
1129 /* Set up GR30 to hold the stack pointer (sp). */
1130 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1131
1132 return sp;
1133 }
1134 \f
1135
1136 /* Handle 32/64-bit struct return conventions. */
1137
1138 static enum return_value_convention
1139 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1140 struct type *type, struct regcache *regcache,
1141 gdb_byte *readbuf, const gdb_byte *writebuf)
1142 {
1143 if (TYPE_LENGTH (type) <= 2 * 4)
1144 {
1145 /* The value always lives in the right hand end of the register
1146 (or register pair)? */
1147 int b;
1148 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1149 int part = TYPE_LENGTH (type) % 4;
1150 /* The left hand register contains only part of the value,
1151 transfer that first so that the rest can be xfered as entire
1152 4-byte registers. */
1153 if (part > 0)
1154 {
1155 if (readbuf != NULL)
1156 regcache->cooked_read_part (reg, 4 - part, part, readbuf);
1157 if (writebuf != NULL)
1158 regcache->cooked_write_part (reg, 4 - part, part, writebuf);
1159 reg++;
1160 }
1161 /* Now transfer the remaining register values. */
1162 for (b = part; b < TYPE_LENGTH (type); b += 4)
1163 {
1164 if (readbuf != NULL)
1165 regcache->cooked_read (reg, readbuf + b);
1166 if (writebuf != NULL)
1167 regcache->cooked_write (reg, writebuf + b);
1168 reg++;
1169 }
1170 return RETURN_VALUE_REGISTER_CONVENTION;
1171 }
1172 else
1173 return RETURN_VALUE_STRUCT_CONVENTION;
1174 }
1175
1176 static enum return_value_convention
1177 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1178 struct type *type, struct regcache *regcache,
1179 gdb_byte *readbuf, const gdb_byte *writebuf)
1180 {
1181 int len = TYPE_LENGTH (type);
1182 int regnum, offset;
1183
1184 if (len > 16)
1185 {
1186 /* All return values larget than 128 bits must be aggregate
1187 return values. */
1188 gdb_assert (!hppa64_integral_or_pointer_p (type));
1189 gdb_assert (!hppa64_floating_p (type));
1190
1191 /* "Aggregate return values larger than 128 bits are returned in
1192 a buffer allocated by the caller. The address of the buffer
1193 must be passed in GR 28." */
1194 return RETURN_VALUE_STRUCT_CONVENTION;
1195 }
1196
1197 if (hppa64_integral_or_pointer_p (type))
1198 {
1199 /* "Integral return values are returned in GR 28. Values
1200 smaller than 64 bits are padded on the left (with garbage)." */
1201 regnum = HPPA_RET0_REGNUM;
1202 offset = 8 - len;
1203 }
1204 else if (hppa64_floating_p (type))
1205 {
1206 if (len > 8)
1207 {
1208 /* "Double-extended- and quad-precision floating-point
1209 values are returned in GRs 28 and 29. The sign,
1210 exponent, and most-significant bits of the mantissa are
1211 returned in GR 28; the least-significant bits of the
1212 mantissa are passed in GR 29. For double-extended
1213 precision values, GR 29 is padded on the right with 48
1214 bits of garbage." */
1215 regnum = HPPA_RET0_REGNUM;
1216 offset = 0;
1217 }
1218 else
1219 {
1220 /* "Single-precision and double-precision floating-point
1221 return values are returned in FR 4R (single precision) or
1222 FR 4 (double-precision)." */
1223 regnum = HPPA64_FP4_REGNUM;
1224 offset = 8 - len;
1225 }
1226 }
1227 else
1228 {
1229 /* "Aggregate return values up to 64 bits in size are returned
1230 in GR 28. Aggregates smaller than 64 bits are left aligned
1231 in the register; the pad bits on the right are undefined."
1232
1233 "Aggregate return values between 65 and 128 bits are returned
1234 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1235 the remaining bits are placed, left aligned, in GR 29. The
1236 pad bits on the right of GR 29 (if any) are undefined." */
1237 regnum = HPPA_RET0_REGNUM;
1238 offset = 0;
1239 }
1240
1241 if (readbuf)
1242 {
1243 while (len > 0)
1244 {
1245 regcache->cooked_read_part (regnum, offset, std::min (len, 8),
1246 readbuf);
1247 readbuf += std::min (len, 8);
1248 len -= std::min (len, 8);
1249 regnum++;
1250 }
1251 }
1252
1253 if (writebuf)
1254 {
1255 while (len > 0)
1256 {
1257 regcache->cooked_write_part (regnum, offset, std::min (len, 8),
1258 writebuf);
1259 writebuf += std::min (len, 8);
1260 len -= std::min (len, 8);
1261 regnum++;
1262 }
1263 }
1264
1265 return RETURN_VALUE_REGISTER_CONVENTION;
1266 }
1267 \f
1268
1269 static CORE_ADDR
1270 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1271 struct target_ops *targ)
1272 {
1273 if (addr & 2)
1274 {
1275 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1276 CORE_ADDR plabel = addr & ~3;
1277 return read_memory_typed_address (plabel, func_ptr_type);
1278 }
1279
1280 return addr;
1281 }
1282
1283 static CORE_ADDR
1284 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1285 {
1286 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1287 and not _bit_)! */
1288 return align_up (addr, 64);
1289 }
1290
1291 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1292
1293 static CORE_ADDR
1294 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1295 {
1296 /* Just always 16-byte align. */
1297 return align_up (addr, 16);
1298 }
1299
1300 CORE_ADDR
1301 hppa_read_pc (readable_regcache *regcache)
1302 {
1303 ULONGEST ipsw;
1304 ULONGEST pc;
1305
1306 regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw);
1307 regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc);
1308
1309 /* If the current instruction is nullified, then we are effectively
1310 still executing the previous instruction. Pretend we are still
1311 there. This is needed when single stepping; if the nullified
1312 instruction is on a different line, we don't want GDB to think
1313 we've stepped onto that line. */
1314 if (ipsw & 0x00200000)
1315 pc -= 4;
1316
1317 return pc & ~0x3;
1318 }
1319
1320 void
1321 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1322 {
1323 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1324 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1325 }
1326
1327 /* For the given instruction (INST), return any adjustment it makes
1328 to the stack pointer or zero for no adjustment.
1329
1330 This only handles instructions commonly found in prologues. */
1331
1332 static int
1333 prologue_inst_adjust_sp (unsigned long inst)
1334 {
1335 /* This must persist across calls. */
1336 static int save_high21;
1337
1338 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1339 if ((inst & 0xffffc000) == 0x37de0000)
1340 return hppa_extract_14 (inst);
1341
1342 /* stwm X,D(sp) */
1343 if ((inst & 0xffe00000) == 0x6fc00000)
1344 return hppa_extract_14 (inst);
1345
1346 /* std,ma X,D(sp) */
1347 if ((inst & 0xffe00008) == 0x73c00008)
1348 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
1349
1350 /* addil high21,%r30; ldo low11,(%r1),%r30)
1351 save high bits in save_high21 for later use. */
1352 if ((inst & 0xffe00000) == 0x2bc00000)
1353 {
1354 save_high21 = hppa_extract_21 (inst);
1355 return 0;
1356 }
1357
1358 if ((inst & 0xffff0000) == 0x343e0000)
1359 return save_high21 + hppa_extract_14 (inst);
1360
1361 /* fstws as used by the HP compilers. */
1362 if ((inst & 0xffffffe0) == 0x2fd01220)
1363 return hppa_extract_5_load (inst);
1364
1365 /* No adjustment. */
1366 return 0;
1367 }
1368
1369 /* Return nonzero if INST is a branch of some kind, else return zero. */
1370
1371 static int
1372 is_branch (unsigned long inst)
1373 {
1374 switch (inst >> 26)
1375 {
1376 case 0x20:
1377 case 0x21:
1378 case 0x22:
1379 case 0x23:
1380 case 0x27:
1381 case 0x28:
1382 case 0x29:
1383 case 0x2a:
1384 case 0x2b:
1385 case 0x2f:
1386 case 0x30:
1387 case 0x31:
1388 case 0x32:
1389 case 0x33:
1390 case 0x38:
1391 case 0x39:
1392 case 0x3a:
1393 case 0x3b:
1394 return 1;
1395
1396 default:
1397 return 0;
1398 }
1399 }
1400
1401 /* Return the register number for a GR which is saved by INST or
1402 zero if INST does not save a GR.
1403
1404 Referenced from:
1405
1406 parisc 1.1:
1407 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
1408
1409 parisc 2.0:
1410 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
1411
1412 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1413 on page 106 in parisc 2.0, all instructions for storing values from
1414 the general registers are:
1415
1416 Store: stb, sth, stw, std (according to Chapter 7, they
1417 are only in both "inst >> 26" and "inst >> 6".
1418 Store Absolute: stwa, stda (according to Chapter 7, they are only
1419 in "inst >> 6".
1420 Store Bytes: stby, stdby (according to Chapter 7, they are
1421 only in "inst >> 6").
1422
1423 For (inst >> 26), according to Chapter 7:
1424
1425 The effective memory reference address is formed by the addition
1426 of an immediate displacement to a base value.
1427
1428 - stb: 0x18, store a byte from a general register.
1429
1430 - sth: 0x19, store a halfword from a general register.
1431
1432 - stw: 0x1a, store a word from a general register.
1433
1434 - stwm: 0x1b, store a word from a general register and perform base
1435 register modification (2.0 will still treate it as stw).
1436
1437 - std: 0x1c, store a doubleword from a general register (2.0 only).
1438
1439 - stw: 0x1f, store a word from a general register (2.0 only).
1440
1441 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1442
1443 The effective memory reference address is formed by the addition
1444 of an index value to a base value specified in the instruction.
1445
1446 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1447
1448 - sth: 0x09, store a halfword from a general register (1.1 calls
1449 sths).
1450
1451 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1452
1453 - std: 0x0b: store a doubleword from a general register (2.0 only)
1454
1455 Implement fast byte moves (stores) to unaligned word or doubleword
1456 destination.
1457
1458 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1459
1460 - stdby: 0x0d for unaligned doubleword (2.0 only).
1461
1462 Store a word or doubleword using an absolute memory address formed
1463 using short or long displacement or indexed
1464
1465 - stwa: 0x0e, store a word from a general register to an absolute
1466 address (1.0 calls stwas).
1467
1468 - stda: 0x0f, store a doubleword from a general register to an
1469 absolute address (2.0 only). */
1470
1471 static int
1472 inst_saves_gr (unsigned long inst)
1473 {
1474 switch ((inst >> 26) & 0x0f)
1475 {
1476 case 0x03:
1477 switch ((inst >> 6) & 0x0f)
1478 {
1479 case 0x08:
1480 case 0x09:
1481 case 0x0a:
1482 case 0x0b:
1483 case 0x0c:
1484 case 0x0d:
1485 case 0x0e:
1486 case 0x0f:
1487 return hppa_extract_5R_store (inst);
1488 default:
1489 return 0;
1490 }
1491 case 0x18:
1492 case 0x19:
1493 case 0x1a:
1494 case 0x1b:
1495 case 0x1c:
1496 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1497 case 0x1f:
1498 return hppa_extract_5R_store (inst);
1499 default:
1500 return 0;
1501 }
1502 }
1503
1504 /* Return the register number for a FR which is saved by INST or
1505 zero it INST does not save a FR.
1506
1507 Note we only care about full 64bit register stores (that's the only
1508 kind of stores the prologue will use).
1509
1510 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1511
1512 static int
1513 inst_saves_fr (unsigned long inst)
1514 {
1515 /* Is this an FSTD? */
1516 if ((inst & 0xfc00dfc0) == 0x2c001200)
1517 return hppa_extract_5r_store (inst);
1518 if ((inst & 0xfc000002) == 0x70000002)
1519 return hppa_extract_5R_store (inst);
1520 /* Is this an FSTW? */
1521 if ((inst & 0xfc00df80) == 0x24001200)
1522 return hppa_extract_5r_store (inst);
1523 if ((inst & 0xfc000002) == 0x7c000000)
1524 return hppa_extract_5R_store (inst);
1525 return 0;
1526 }
1527
1528 /* Advance PC across any function entry prologue instructions
1529 to reach some "real" code.
1530
1531 Use information in the unwind table to determine what exactly should
1532 be in the prologue. */
1533
1534
1535 static CORE_ADDR
1536 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1537 int stop_before_branch)
1538 {
1539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1540 gdb_byte buf[4];
1541 CORE_ADDR orig_pc = pc;
1542 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1543 unsigned long args_stored, status, i, restart_gr, restart_fr;
1544 struct unwind_table_entry *u;
1545 int final_iteration;
1546
1547 restart_gr = 0;
1548 restart_fr = 0;
1549
1550 restart:
1551 u = find_unwind_entry (pc);
1552 if (!u)
1553 return pc;
1554
1555 /* If we are not at the beginning of a function, then return now. */
1556 if ((pc & ~0x3) != u->region_start)
1557 return pc;
1558
1559 /* This is how much of a frame adjustment we need to account for. */
1560 stack_remaining = u->Total_frame_size << 3;
1561
1562 /* Magic register saves we want to know about. */
1563 save_rp = u->Save_RP;
1564 save_sp = u->Save_SP;
1565
1566 /* An indication that args may be stored into the stack. Unfortunately
1567 the HPUX compilers tend to set this in cases where no args were
1568 stored too!. */
1569 args_stored = 1;
1570
1571 /* Turn the Entry_GR field into a bitmask. */
1572 save_gr = 0;
1573 for (i = 3; i < u->Entry_GR + 3; i++)
1574 {
1575 /* Frame pointer gets saved into a special location. */
1576 if (u->Save_SP && i == HPPA_FP_REGNUM)
1577 continue;
1578
1579 save_gr |= (1 << i);
1580 }
1581 save_gr &= ~restart_gr;
1582
1583 /* Turn the Entry_FR field into a bitmask too. */
1584 save_fr = 0;
1585 for (i = 12; i < u->Entry_FR + 12; i++)
1586 save_fr |= (1 << i);
1587 save_fr &= ~restart_fr;
1588
1589 final_iteration = 0;
1590
1591 /* Loop until we find everything of interest or hit a branch.
1592
1593 For unoptimized GCC code and for any HP CC code this will never ever
1594 examine any user instructions.
1595
1596 For optimzied GCC code we're faced with problems. GCC will schedule
1597 its prologue and make prologue instructions available for delay slot
1598 filling. The end result is user code gets mixed in with the prologue
1599 and a prologue instruction may be in the delay slot of the first branch
1600 or call.
1601
1602 Some unexpected things are expected with debugging optimized code, so
1603 we allow this routine to walk past user instructions in optimized
1604 GCC code. */
1605 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1606 || args_stored)
1607 {
1608 unsigned int reg_num;
1609 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1610 unsigned long old_save_rp, old_save_sp, next_inst;
1611
1612 /* Save copies of all the triggers so we can compare them later
1613 (only for HPC). */
1614 old_save_gr = save_gr;
1615 old_save_fr = save_fr;
1616 old_save_rp = save_rp;
1617 old_save_sp = save_sp;
1618 old_stack_remaining = stack_remaining;
1619
1620 status = target_read_memory (pc, buf, 4);
1621 inst = extract_unsigned_integer (buf, 4, byte_order);
1622
1623 /* Yow! */
1624 if (status != 0)
1625 return pc;
1626
1627 /* Note the interesting effects of this instruction. */
1628 stack_remaining -= prologue_inst_adjust_sp (inst);
1629
1630 /* There are limited ways to store the return pointer into the
1631 stack. */
1632 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1633 save_rp = 0;
1634
1635 /* These are the only ways we save SP into the stack. At this time
1636 the HP compilers never bother to save SP into the stack. */
1637 if ((inst & 0xffffc000) == 0x6fc10000
1638 || (inst & 0xffffc00c) == 0x73c10008)
1639 save_sp = 0;
1640
1641 /* Are we loading some register with an offset from the argument
1642 pointer? */
1643 if ((inst & 0xffe00000) == 0x37a00000
1644 || (inst & 0xffffffe0) == 0x081d0240)
1645 {
1646 pc += 4;
1647 continue;
1648 }
1649
1650 /* Account for general and floating-point register saves. */
1651 reg_num = inst_saves_gr (inst);
1652 save_gr &= ~(1 << reg_num);
1653
1654 /* Ugh. Also account for argument stores into the stack.
1655 Unfortunately args_stored only tells us that some arguments
1656 where stored into the stack. Not how many or what kind!
1657
1658 This is a kludge as on the HP compiler sets this bit and it
1659 never does prologue scheduling. So once we see one, skip past
1660 all of them. We have similar code for the fp arg stores below.
1661
1662 FIXME. Can still die if we have a mix of GR and FR argument
1663 stores! */
1664 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1665 && reg_num <= 26)
1666 {
1667 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1668 && reg_num <= 26)
1669 {
1670 pc += 4;
1671 status = target_read_memory (pc, buf, 4);
1672 inst = extract_unsigned_integer (buf, 4, byte_order);
1673 if (status != 0)
1674 return pc;
1675 reg_num = inst_saves_gr (inst);
1676 }
1677 args_stored = 0;
1678 continue;
1679 }
1680
1681 reg_num = inst_saves_fr (inst);
1682 save_fr &= ~(1 << reg_num);
1683
1684 status = target_read_memory (pc + 4, buf, 4);
1685 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1686
1687 /* Yow! */
1688 if (status != 0)
1689 return pc;
1690
1691 /* We've got to be read to handle the ldo before the fp register
1692 save. */
1693 if ((inst & 0xfc000000) == 0x34000000
1694 && inst_saves_fr (next_inst) >= 4
1695 && inst_saves_fr (next_inst)
1696 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1697 {
1698 /* So we drop into the code below in a reasonable state. */
1699 reg_num = inst_saves_fr (next_inst);
1700 pc -= 4;
1701 }
1702
1703 /* Ugh. Also account for argument stores into the stack.
1704 This is a kludge as on the HP compiler sets this bit and it
1705 never does prologue scheduling. So once we see one, skip past
1706 all of them. */
1707 if (reg_num >= 4
1708 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1709 {
1710 while (reg_num >= 4
1711 && reg_num
1712 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1713 {
1714 pc += 8;
1715 status = target_read_memory (pc, buf, 4);
1716 inst = extract_unsigned_integer (buf, 4, byte_order);
1717 if (status != 0)
1718 return pc;
1719 if ((inst & 0xfc000000) != 0x34000000)
1720 break;
1721 status = target_read_memory (pc + 4, buf, 4);
1722 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1723 if (status != 0)
1724 return pc;
1725 reg_num = inst_saves_fr (next_inst);
1726 }
1727 args_stored = 0;
1728 continue;
1729 }
1730
1731 /* Quit if we hit any kind of branch. This can happen if a prologue
1732 instruction is in the delay slot of the first call/branch. */
1733 if (is_branch (inst) && stop_before_branch)
1734 break;
1735
1736 /* What a crock. The HP compilers set args_stored even if no
1737 arguments were stored into the stack (boo hiss). This could
1738 cause this code to then skip a bunch of user insns (up to the
1739 first branch).
1740
1741 To combat this we try to identify when args_stored was bogusly
1742 set and clear it. We only do this when args_stored is nonzero,
1743 all other resources are accounted for, and nothing changed on
1744 this pass. */
1745 if (args_stored
1746 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1747 && old_save_gr == save_gr && old_save_fr == save_fr
1748 && old_save_rp == save_rp && old_save_sp == save_sp
1749 && old_stack_remaining == stack_remaining)
1750 break;
1751
1752 /* Bump the PC. */
1753 pc += 4;
1754
1755 /* !stop_before_branch, so also look at the insn in the delay slot
1756 of the branch. */
1757 if (final_iteration)
1758 break;
1759 if (is_branch (inst))
1760 final_iteration = 1;
1761 }
1762
1763 /* We've got a tenative location for the end of the prologue. However
1764 because of limitations in the unwind descriptor mechanism we may
1765 have went too far into user code looking for the save of a register
1766 that does not exist. So, if there registers we expected to be saved
1767 but never were, mask them out and restart.
1768
1769 This should only happen in optimized code, and should be very rare. */
1770 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1771 {
1772 pc = orig_pc;
1773 restart_gr = save_gr;
1774 restart_fr = save_fr;
1775 goto restart;
1776 }
1777
1778 return pc;
1779 }
1780
1781
1782 /* Return the address of the PC after the last prologue instruction if
1783 we can determine it from the debug symbols. Else return zero. */
1784
1785 static CORE_ADDR
1786 after_prologue (CORE_ADDR pc)
1787 {
1788 struct symtab_and_line sal;
1789 CORE_ADDR func_addr, func_end;
1790
1791 /* If we can not find the symbol in the partial symbol table, then
1792 there is no hope we can determine the function's start address
1793 with this code. */
1794 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1795 return 0;
1796
1797 /* Get the line associated with FUNC_ADDR. */
1798 sal = find_pc_line (func_addr, 0);
1799
1800 /* There are only two cases to consider. First, the end of the source line
1801 is within the function bounds. In that case we return the end of the
1802 source line. Second is the end of the source line extends beyond the
1803 bounds of the current function. We need to use the slow code to
1804 examine instructions in that case.
1805
1806 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1807 the wrong thing to do. In fact, it should be entirely possible for this
1808 function to always return zero since the slow instruction scanning code
1809 is supposed to *always* work. If it does not, then it is a bug. */
1810 if (sal.end < func_end)
1811 return sal.end;
1812 else
1813 return 0;
1814 }
1815
1816 /* To skip prologues, I use this predicate. Returns either PC itself
1817 if the code at PC does not look like a function prologue; otherwise
1818 returns an address that (if we're lucky) follows the prologue.
1819
1820 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1821 It doesn't necessarily skips all the insns in the prologue. In fact
1822 we might not want to skip all the insns because a prologue insn may
1823 appear in the delay slot of the first branch, and we don't want to
1824 skip over the branch in that case. */
1825
1826 static CORE_ADDR
1827 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1828 {
1829 CORE_ADDR post_prologue_pc;
1830
1831 /* See if we can determine the end of the prologue via the symbol table.
1832 If so, then return either PC, or the PC after the prologue, whichever
1833 is greater. */
1834
1835 post_prologue_pc = after_prologue (pc);
1836
1837 /* If after_prologue returned a useful address, then use it. Else
1838 fall back on the instruction skipping code.
1839
1840 Some folks have claimed this causes problems because the breakpoint
1841 may be the first instruction of the prologue. If that happens, then
1842 the instruction skipping code has a bug that needs to be fixed. */
1843 if (post_prologue_pc != 0)
1844 return std::max (pc, post_prologue_pc);
1845 else
1846 return (skip_prologue_hard_way (gdbarch, pc, 1));
1847 }
1848
1849 /* Return an unwind entry that falls within the frame's code block. */
1850
1851 static struct unwind_table_entry *
1852 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1853 {
1854 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1855
1856 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1857 result of get_frame_address_in_block implies a problem.
1858 The bits should have been removed earlier, before the return
1859 value of gdbarch_unwind_pc. That might be happening already;
1860 if it isn't, it should be fixed. Then this call can be
1861 removed. */
1862 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1863 return find_unwind_entry (pc);
1864 }
1865
1866 struct hppa_frame_cache
1867 {
1868 CORE_ADDR base;
1869 struct trad_frame_saved_reg *saved_regs;
1870 };
1871
1872 static struct hppa_frame_cache *
1873 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1874 {
1875 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1876 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1877 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1878 struct hppa_frame_cache *cache;
1879 long saved_gr_mask;
1880 long saved_fr_mask;
1881 long frame_size;
1882 struct unwind_table_entry *u;
1883 CORE_ADDR prologue_end;
1884 int fp_in_r1 = 0;
1885 int i;
1886
1887 if (hppa_debug)
1888 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1889 frame_relative_level(this_frame));
1890
1891 if ((*this_cache) != NULL)
1892 {
1893 if (hppa_debug)
1894 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1895 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1896 return (struct hppa_frame_cache *) (*this_cache);
1897 }
1898 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1899 (*this_cache) = cache;
1900 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1901
1902 /* Yow! */
1903 u = hppa_find_unwind_entry_in_block (this_frame);
1904 if (!u)
1905 {
1906 if (hppa_debug)
1907 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1908 return (struct hppa_frame_cache *) (*this_cache);
1909 }
1910
1911 /* Turn the Entry_GR field into a bitmask. */
1912 saved_gr_mask = 0;
1913 for (i = 3; i < u->Entry_GR + 3; i++)
1914 {
1915 /* Frame pointer gets saved into a special location. */
1916 if (u->Save_SP && i == HPPA_FP_REGNUM)
1917 continue;
1918
1919 saved_gr_mask |= (1 << i);
1920 }
1921
1922 /* Turn the Entry_FR field into a bitmask too. */
1923 saved_fr_mask = 0;
1924 for (i = 12; i < u->Entry_FR + 12; i++)
1925 saved_fr_mask |= (1 << i);
1926
1927 /* Loop until we find everything of interest or hit a branch.
1928
1929 For unoptimized GCC code and for any HP CC code this will never ever
1930 examine any user instructions.
1931
1932 For optimized GCC code we're faced with problems. GCC will schedule
1933 its prologue and make prologue instructions available for delay slot
1934 filling. The end result is user code gets mixed in with the prologue
1935 and a prologue instruction may be in the delay slot of the first branch
1936 or call.
1937
1938 Some unexpected things are expected with debugging optimized code, so
1939 we allow this routine to walk past user instructions in optimized
1940 GCC code. */
1941 {
1942 int final_iteration = 0;
1943 CORE_ADDR pc, start_pc, end_pc;
1944 int looking_for_sp = u->Save_SP;
1945 int looking_for_rp = u->Save_RP;
1946 int fp_loc = -1;
1947
1948 /* We have to use skip_prologue_hard_way instead of just
1949 skip_prologue_using_sal, in case we stepped into a function without
1950 symbol information. hppa_skip_prologue also bounds the returned
1951 pc by the passed in pc, so it will not return a pc in the next
1952 function.
1953
1954 We used to call hppa_skip_prologue to find the end of the prologue,
1955 but if some non-prologue instructions get scheduled into the prologue,
1956 and the program is compiled with debug information, the "easy" way
1957 in hppa_skip_prologue will return a prologue end that is too early
1958 for us to notice any potential frame adjustments. */
1959
1960 /* We used to use get_frame_func to locate the beginning of the
1961 function to pass to skip_prologue. However, when objects are
1962 compiled without debug symbols, get_frame_func can return the wrong
1963 function (or 0). We can do better than that by using unwind records.
1964 This only works if the Region_description of the unwind record
1965 indicates that it includes the entry point of the function.
1966 HP compilers sometimes generate unwind records for regions that
1967 do not include the entry or exit point of a function. GNU tools
1968 do not do this. */
1969
1970 if ((u->Region_description & 0x2) == 0)
1971 start_pc = u->region_start;
1972 else
1973 start_pc = get_frame_func (this_frame);
1974
1975 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1976 end_pc = get_frame_pc (this_frame);
1977
1978 if (prologue_end != 0 && end_pc > prologue_end)
1979 end_pc = prologue_end;
1980
1981 frame_size = 0;
1982
1983 for (pc = start_pc;
1984 ((saved_gr_mask || saved_fr_mask
1985 || looking_for_sp || looking_for_rp
1986 || frame_size < (u->Total_frame_size << 3))
1987 && pc < end_pc);
1988 pc += 4)
1989 {
1990 int reg;
1991 gdb_byte buf4[4];
1992 long inst;
1993
1994 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1995 {
1996 error (_("Cannot read instruction at %s."),
1997 paddress (gdbarch, pc));
1998 return (struct hppa_frame_cache *) (*this_cache);
1999 }
2000
2001 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
2002
2003 /* Note the interesting effects of this instruction. */
2004 frame_size += prologue_inst_adjust_sp (inst);
2005
2006 /* There are limited ways to store the return pointer into the
2007 stack. */
2008 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2009 {
2010 looking_for_rp = 0;
2011 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2012 }
2013 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2014 {
2015 looking_for_rp = 0;
2016 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2017 }
2018 else if (inst == 0x0fc212c1
2019 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2020 {
2021 looking_for_rp = 0;
2022 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2023 }
2024
2025 /* Check to see if we saved SP into the stack. This also
2026 happens to indicate the location of the saved frame
2027 pointer. */
2028 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2029 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2030 {
2031 looking_for_sp = 0;
2032 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
2033 }
2034 else if (inst == 0x08030241) /* copy %r3, %r1 */
2035 {
2036 fp_in_r1 = 1;
2037 }
2038
2039 /* Account for general and floating-point register saves. */
2040 reg = inst_saves_gr (inst);
2041 if (reg >= 3 && reg <= 18
2042 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2043 {
2044 saved_gr_mask &= ~(1 << reg);
2045 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
2046 /* stwm with a positive displacement is a _post_
2047 _modify_. */
2048 cache->saved_regs[reg].addr = 0;
2049 else if ((inst & 0xfc00000c) == 0x70000008)
2050 /* A std has explicit post_modify forms. */
2051 cache->saved_regs[reg].addr = 0;
2052 else
2053 {
2054 CORE_ADDR offset;
2055
2056 if ((inst >> 26) == 0x1c)
2057 offset = (inst & 0x1 ? -(1 << 13) : 0)
2058 | (((inst >> 4) & 0x3ff) << 3);
2059 else if ((inst >> 26) == 0x03)
2060 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2061 else
2062 offset = hppa_extract_14 (inst);
2063
2064 /* Handle code with and without frame pointers. */
2065 if (u->Save_SP)
2066 cache->saved_regs[reg].addr = offset;
2067 else
2068 cache->saved_regs[reg].addr
2069 = (u->Total_frame_size << 3) + offset;
2070 }
2071 }
2072
2073 /* GCC handles callee saved FP regs a little differently.
2074
2075 It emits an instruction to put the value of the start of
2076 the FP store area into %r1. It then uses fstds,ma with a
2077 basereg of %r1 for the stores.
2078
2079 HP CC emits them at the current stack pointer modifying the
2080 stack pointer as it stores each register. */
2081
2082 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2083 if ((inst & 0xffffc000) == 0x34610000
2084 || (inst & 0xffffc000) == 0x37c10000)
2085 fp_loc = hppa_extract_14 (inst);
2086
2087 reg = inst_saves_fr (inst);
2088 if (reg >= 12 && reg <= 21)
2089 {
2090 /* Note +4 braindamage below is necessary because the FP
2091 status registers are internally 8 registers rather than
2092 the expected 4 registers. */
2093 saved_fr_mask &= ~(1 << reg);
2094 if (fp_loc == -1)
2095 {
2096 /* 1st HP CC FP register store. After this
2097 instruction we've set enough state that the GCC and
2098 HPCC code are both handled in the same manner. */
2099 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2100 fp_loc = 8;
2101 }
2102 else
2103 {
2104 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2105 fp_loc += 8;
2106 }
2107 }
2108
2109 /* Quit if we hit any kind of branch the previous iteration. */
2110 if (final_iteration)
2111 break;
2112 /* We want to look precisely one instruction beyond the branch
2113 if we have not found everything yet. */
2114 if (is_branch (inst))
2115 final_iteration = 1;
2116 }
2117 }
2118
2119 {
2120 /* The frame base always represents the value of %sp at entry to
2121 the current function (and is thus equivalent to the "saved"
2122 stack pointer. */
2123 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2124 HPPA_SP_REGNUM);
2125 CORE_ADDR fp;
2126
2127 if (hppa_debug)
2128 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2129 "prologue_end=%s) ",
2130 paddress (gdbarch, this_sp),
2131 paddress (gdbarch, get_frame_pc (this_frame)),
2132 paddress (gdbarch, prologue_end));
2133
2134 /* Check to see if a frame pointer is available, and use it for
2135 frame unwinding if it is.
2136
2137 There are some situations where we need to rely on the frame
2138 pointer to do stack unwinding. For example, if a function calls
2139 alloca (), the stack pointer can get adjusted inside the body of
2140 the function. In this case, the ABI requires that the compiler
2141 maintain a frame pointer for the function.
2142
2143 The unwind record has a flag (alloca_frame) that indicates that
2144 a function has a variable frame; unfortunately, gcc/binutils
2145 does not set this flag. Instead, whenever a frame pointer is used
2146 and saved on the stack, the Save_SP flag is set. We use this to
2147 decide whether to use the frame pointer for unwinding.
2148
2149 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2150 instead of Save_SP. */
2151
2152 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2153
2154 if (u->alloca_frame)
2155 fp -= u->Total_frame_size << 3;
2156
2157 if (get_frame_pc (this_frame) >= prologue_end
2158 && (u->Save_SP || u->alloca_frame) && fp != 0)
2159 {
2160 cache->base = fp;
2161
2162 if (hppa_debug)
2163 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2164 paddress (gdbarch, cache->base));
2165 }
2166 else if (u->Save_SP
2167 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2168 {
2169 /* Both we're expecting the SP to be saved and the SP has been
2170 saved. The entry SP value is saved at this frame's SP
2171 address. */
2172 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2173
2174 if (hppa_debug)
2175 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2176 paddress (gdbarch, cache->base));
2177 }
2178 else
2179 {
2180 /* The prologue has been slowly allocating stack space. Adjust
2181 the SP back. */
2182 cache->base = this_sp - frame_size;
2183 if (hppa_debug)
2184 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2185 paddress (gdbarch, cache->base));
2186
2187 }
2188 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2189 }
2190
2191 /* The PC is found in the "return register", "Millicode" uses "r31"
2192 as the return register while normal code uses "rp". */
2193 if (u->Millicode)
2194 {
2195 if (trad_frame_addr_p (cache->saved_regs, 31))
2196 {
2197 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2198 if (hppa_debug)
2199 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2200 }
2201 else
2202 {
2203 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2204 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2205 if (hppa_debug)
2206 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2207 }
2208 }
2209 else
2210 {
2211 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2212 {
2213 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2214 cache->saved_regs[HPPA_RP_REGNUM];
2215 if (hppa_debug)
2216 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2217 }
2218 else
2219 {
2220 ULONGEST rp = get_frame_register_unsigned (this_frame,
2221 HPPA_RP_REGNUM);
2222 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2223 if (hppa_debug)
2224 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2225 }
2226 }
2227
2228 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2229 frame. However, there is a one-insn window where we haven't saved it
2230 yet, but we've already clobbered it. Detect this case and fix it up.
2231
2232 The prologue sequence for frame-pointer functions is:
2233 0: stw %rp, -20(%sp)
2234 4: copy %r3, %r1
2235 8: copy %sp, %r3
2236 c: stw,ma %r1, XX(%sp)
2237
2238 So if we are at offset c, the r3 value that we want is not yet saved
2239 on the stack, but it's been overwritten. The prologue analyzer will
2240 set fp_in_r1 when it sees the copy insn so we know to get the value
2241 from r1 instead. */
2242 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2243 && fp_in_r1)
2244 {
2245 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2246 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2247 }
2248
2249 {
2250 /* Convert all the offsets into addresses. */
2251 int reg;
2252 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2253 {
2254 if (trad_frame_addr_p (cache->saved_regs, reg))
2255 cache->saved_regs[reg].addr += cache->base;
2256 }
2257 }
2258
2259 {
2260 struct gdbarch_tdep *tdep;
2261
2262 tdep = gdbarch_tdep (gdbarch);
2263
2264 if (tdep->unwind_adjust_stub)
2265 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2266 }
2267
2268 if (hppa_debug)
2269 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2270 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2271 return (struct hppa_frame_cache *) (*this_cache);
2272 }
2273
2274 static void
2275 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2276 struct frame_id *this_id)
2277 {
2278 struct hppa_frame_cache *info;
2279 struct unwind_table_entry *u;
2280
2281 info = hppa_frame_cache (this_frame, this_cache);
2282 u = hppa_find_unwind_entry_in_block (this_frame);
2283
2284 (*this_id) = frame_id_build (info->base, u->region_start);
2285 }
2286
2287 static struct value *
2288 hppa_frame_prev_register (struct frame_info *this_frame,
2289 void **this_cache, int regnum)
2290 {
2291 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2292
2293 return hppa_frame_prev_register_helper (this_frame,
2294 info->saved_regs, regnum);
2295 }
2296
2297 static int
2298 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2299 struct frame_info *this_frame, void **this_cache)
2300 {
2301 if (hppa_find_unwind_entry_in_block (this_frame))
2302 return 1;
2303
2304 return 0;
2305 }
2306
2307 static const struct frame_unwind hppa_frame_unwind =
2308 {
2309 NORMAL_FRAME,
2310 default_frame_unwind_stop_reason,
2311 hppa_frame_this_id,
2312 hppa_frame_prev_register,
2313 NULL,
2314 hppa_frame_unwind_sniffer
2315 };
2316
2317 /* This is a generic fallback frame unwinder that kicks in if we fail all
2318 the other ones. Normally we would expect the stub and regular unwinder
2319 to work, but in some cases we might hit a function that just doesn't
2320 have any unwind information available. In this case we try to do
2321 unwinding solely based on code reading. This is obviously going to be
2322 slow, so only use this as a last resort. Currently this will only
2323 identify the stack and pc for the frame. */
2324
2325 static struct hppa_frame_cache *
2326 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2327 {
2328 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2329 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2330 struct hppa_frame_cache *cache;
2331 unsigned int frame_size = 0;
2332 int found_rp = 0;
2333 CORE_ADDR start_pc;
2334
2335 if (hppa_debug)
2336 fprintf_unfiltered (gdb_stdlog,
2337 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2338 frame_relative_level (this_frame));
2339
2340 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2341 (*this_cache) = cache;
2342 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2343
2344 start_pc = get_frame_func (this_frame);
2345 if (start_pc)
2346 {
2347 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2348 CORE_ADDR pc;
2349
2350 for (pc = start_pc; pc < cur_pc; pc += 4)
2351 {
2352 unsigned int insn;
2353
2354 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2355 frame_size += prologue_inst_adjust_sp (insn);
2356
2357 /* There are limited ways to store the return pointer into the
2358 stack. */
2359 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2360 {
2361 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2362 found_rp = 1;
2363 }
2364 else if (insn == 0x0fc212c1
2365 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2366 {
2367 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2368 found_rp = 1;
2369 }
2370 }
2371 }
2372
2373 if (hppa_debug)
2374 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2375 frame_size, found_rp);
2376
2377 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2378 cache->base -= frame_size;
2379 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2380
2381 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2382 {
2383 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2384 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2385 cache->saved_regs[HPPA_RP_REGNUM];
2386 }
2387 else
2388 {
2389 ULONGEST rp;
2390 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2391 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2392 }
2393
2394 return cache;
2395 }
2396
2397 static void
2398 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2399 struct frame_id *this_id)
2400 {
2401 struct hppa_frame_cache *info =
2402 hppa_fallback_frame_cache (this_frame, this_cache);
2403
2404 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2405 }
2406
2407 static struct value *
2408 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2409 void **this_cache, int regnum)
2410 {
2411 struct hppa_frame_cache *info
2412 = hppa_fallback_frame_cache (this_frame, this_cache);
2413
2414 return hppa_frame_prev_register_helper (this_frame,
2415 info->saved_regs, regnum);
2416 }
2417
2418 static const struct frame_unwind hppa_fallback_frame_unwind =
2419 {
2420 NORMAL_FRAME,
2421 default_frame_unwind_stop_reason,
2422 hppa_fallback_frame_this_id,
2423 hppa_fallback_frame_prev_register,
2424 NULL,
2425 default_frame_sniffer
2426 };
2427
2428 /* Stub frames, used for all kinds of call stubs. */
2429 struct hppa_stub_unwind_cache
2430 {
2431 CORE_ADDR base;
2432 struct trad_frame_saved_reg *saved_regs;
2433 };
2434
2435 static struct hppa_stub_unwind_cache *
2436 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2437 void **this_cache)
2438 {
2439 struct hppa_stub_unwind_cache *info;
2440
2441 if (*this_cache)
2442 return (struct hppa_stub_unwind_cache *) *this_cache;
2443
2444 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2445 *this_cache = info;
2446 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2447
2448 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2449
2450 /* By default we assume that stubs do not change the rp. */
2451 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2452
2453 return info;
2454 }
2455
2456 static void
2457 hppa_stub_frame_this_id (struct frame_info *this_frame,
2458 void **this_prologue_cache,
2459 struct frame_id *this_id)
2460 {
2461 struct hppa_stub_unwind_cache *info
2462 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2463
2464 if (info)
2465 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2466 }
2467
2468 static struct value *
2469 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2470 void **this_prologue_cache, int regnum)
2471 {
2472 struct hppa_stub_unwind_cache *info
2473 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2474
2475 if (info == NULL)
2476 error (_("Requesting registers from null frame."));
2477
2478 return hppa_frame_prev_register_helper (this_frame,
2479 info->saved_regs, regnum);
2480 }
2481
2482 static int
2483 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2484 struct frame_info *this_frame,
2485 void **this_cache)
2486 {
2487 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2488 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2489 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2490
2491 if (pc == 0
2492 || (tdep->in_solib_call_trampoline != NULL
2493 && tdep->in_solib_call_trampoline (gdbarch, pc))
2494 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2495 return 1;
2496 return 0;
2497 }
2498
2499 static const struct frame_unwind hppa_stub_frame_unwind = {
2500 NORMAL_FRAME,
2501 default_frame_unwind_stop_reason,
2502 hppa_stub_frame_this_id,
2503 hppa_stub_frame_prev_register,
2504 NULL,
2505 hppa_stub_unwind_sniffer
2506 };
2507
2508 static struct frame_id
2509 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2510 {
2511 return frame_id_build (get_frame_register_unsigned (this_frame,
2512 HPPA_SP_REGNUM),
2513 get_frame_pc (this_frame));
2514 }
2515
2516 CORE_ADDR
2517 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2518 {
2519 ULONGEST ipsw;
2520 CORE_ADDR pc;
2521
2522 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2523 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2524
2525 /* If the current instruction is nullified, then we are effectively
2526 still executing the previous instruction. Pretend we are still
2527 there. This is needed when single stepping; if the nullified
2528 instruction is on a different line, we don't want GDB to think
2529 we've stepped onto that line. */
2530 if (ipsw & 0x00200000)
2531 pc -= 4;
2532
2533 return pc & ~0x3;
2534 }
2535
2536 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2537 Return NULL if no such symbol was found. */
2538
2539 struct bound_minimal_symbol
2540 hppa_lookup_stub_minimal_symbol (const char *name,
2541 enum unwind_stub_types stub_type)
2542 {
2543 struct bound_minimal_symbol result = { NULL, NULL };
2544
2545 for (objfile *objfile : current_program_space->objfiles ())
2546 {
2547 for (minimal_symbol *msym : objfile->msymbols ())
2548 {
2549 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2550 {
2551 struct unwind_table_entry *u;
2552
2553 u = find_unwind_entry (MSYMBOL_VALUE (msym));
2554 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2555 {
2556 result.objfile = objfile;
2557 result.minsym = msym;
2558 return result;
2559 }
2560 }
2561 }
2562 }
2563
2564 return result;
2565 }
2566
2567 static void
2568 unwind_command (const char *exp, int from_tty)
2569 {
2570 CORE_ADDR address;
2571 struct unwind_table_entry *u;
2572
2573 /* If we have an expression, evaluate it and use it as the address. */
2574
2575 if (exp != 0 && *exp != 0)
2576 address = parse_and_eval_address (exp);
2577 else
2578 return;
2579
2580 u = find_unwind_entry (address);
2581
2582 if (!u)
2583 {
2584 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2585 return;
2586 }
2587
2588 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2589
2590 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2591 gdb_flush (gdb_stdout);
2592
2593 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2594 gdb_flush (gdb_stdout);
2595
2596 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2597
2598 printf_unfiltered ("\n\tflags =");
2599 pif (Cannot_unwind);
2600 pif (Millicode);
2601 pif (Millicode_save_sr0);
2602 pif (Entry_SR);
2603 pif (Args_stored);
2604 pif (Variable_Frame);
2605 pif (Separate_Package_Body);
2606 pif (Frame_Extension_Millicode);
2607 pif (Stack_Overflow_Check);
2608 pif (Two_Instruction_SP_Increment);
2609 pif (sr4export);
2610 pif (cxx_info);
2611 pif (cxx_try_catch);
2612 pif (sched_entry_seq);
2613 pif (Save_SP);
2614 pif (Save_RP);
2615 pif (Save_MRP_in_frame);
2616 pif (save_r19);
2617 pif (Cleanup_defined);
2618 pif (MPE_XL_interrupt_marker);
2619 pif (HP_UX_interrupt_marker);
2620 pif (Large_frame);
2621 pif (alloca_frame);
2622
2623 putchar_unfiltered ('\n');
2624
2625 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2626
2627 pin (Region_description);
2628 pin (Entry_FR);
2629 pin (Entry_GR);
2630 pin (Total_frame_size);
2631
2632 if (u->stub_unwind.stub_type)
2633 {
2634 printf_unfiltered ("\tstub type = ");
2635 switch (u->stub_unwind.stub_type)
2636 {
2637 case LONG_BRANCH:
2638 printf_unfiltered ("long branch\n");
2639 break;
2640 case PARAMETER_RELOCATION:
2641 printf_unfiltered ("parameter relocation\n");
2642 break;
2643 case EXPORT:
2644 printf_unfiltered ("export\n");
2645 break;
2646 case IMPORT:
2647 printf_unfiltered ("import\n");
2648 break;
2649 case IMPORT_SHLIB:
2650 printf_unfiltered ("import shlib\n");
2651 break;
2652 default:
2653 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2654 }
2655 }
2656 }
2657
2658 /* Return the GDB type object for the "standard" data type of data in
2659 register REGNUM. */
2660
2661 static struct type *
2662 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2663 {
2664 if (regnum < HPPA_FP4_REGNUM)
2665 return builtin_type (gdbarch)->builtin_uint32;
2666 else
2667 return builtin_type (gdbarch)->builtin_float;
2668 }
2669
2670 static struct type *
2671 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2672 {
2673 if (regnum < HPPA64_FP4_REGNUM)
2674 return builtin_type (gdbarch)->builtin_uint64;
2675 else
2676 return builtin_type (gdbarch)->builtin_double;
2677 }
2678
2679 /* Return non-zero if REGNUM is not a register available to the user
2680 through ptrace/ttrace. */
2681
2682 static int
2683 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2684 {
2685 return (regnum == 0
2686 || regnum == HPPA_PCSQ_HEAD_REGNUM
2687 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2688 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2689 }
2690
2691 static int
2692 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2693 {
2694 /* cr26 and cr27 are readable (but not writable) from userspace. */
2695 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2696 return 0;
2697 else
2698 return hppa32_cannot_store_register (gdbarch, regnum);
2699 }
2700
2701 static int
2702 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2703 {
2704 return (regnum == 0
2705 || regnum == HPPA_PCSQ_HEAD_REGNUM
2706 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2707 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2708 }
2709
2710 static int
2711 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2712 {
2713 /* cr26 and cr27 are readable (but not writable) from userspace. */
2714 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2715 return 0;
2716 else
2717 return hppa64_cannot_store_register (gdbarch, regnum);
2718 }
2719
2720 static CORE_ADDR
2721 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2722 {
2723 /* The low two bits of the PC on the PA contain the privilege level.
2724 Some genius implementing a (non-GCC) compiler apparently decided
2725 this means that "addresses" in a text section therefore include a
2726 privilege level, and thus symbol tables should contain these bits.
2727 This seems like a bonehead thing to do--anyway, it seems to work
2728 for our purposes to just ignore those bits. */
2729
2730 return (addr &= ~0x3);
2731 }
2732
2733 /* Get the ARGIth function argument for the current function. */
2734
2735 static CORE_ADDR
2736 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2737 struct type *type)
2738 {
2739 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2740 }
2741
2742 static enum register_status
2743 hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2744 int regnum, gdb_byte *buf)
2745 {
2746 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2747 ULONGEST tmp;
2748 enum register_status status;
2749
2750 status = regcache->raw_read (regnum, &tmp);
2751 if (status == REG_VALID)
2752 {
2753 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2754 tmp &= ~0x3;
2755 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2756 }
2757 return status;
2758 }
2759
2760 static CORE_ADDR
2761 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2762 {
2763 return 0;
2764 }
2765
2766 struct value *
2767 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2768 struct trad_frame_saved_reg saved_regs[],
2769 int regnum)
2770 {
2771 struct gdbarch *arch = get_frame_arch (this_frame);
2772 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2773
2774 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2775 {
2776 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2777 CORE_ADDR pc;
2778 struct value *pcoq_val =
2779 trad_frame_get_prev_register (this_frame, saved_regs,
2780 HPPA_PCOQ_HEAD_REGNUM);
2781
2782 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2783 size, byte_order);
2784 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2785 }
2786
2787 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2788 }
2789 \f
2790
2791 /* An instruction to match. */
2792 struct insn_pattern
2793 {
2794 unsigned int data; /* See if it matches this.... */
2795 unsigned int mask; /* ... with this mask. */
2796 };
2797
2798 /* See bfd/elf32-hppa.c */
2799 static struct insn_pattern hppa_long_branch_stub[] = {
2800 /* ldil LR'xxx,%r1 */
2801 { 0x20200000, 0xffe00000 },
2802 /* be,n RR'xxx(%sr4,%r1) */
2803 { 0xe0202002, 0xffe02002 },
2804 { 0, 0 }
2805 };
2806
2807 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2808 /* b,l .+8, %r1 */
2809 { 0xe8200000, 0xffe00000 },
2810 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2811 { 0x28200000, 0xffe00000 },
2812 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2813 { 0xe0202002, 0xffe02002 },
2814 { 0, 0 }
2815 };
2816
2817 static struct insn_pattern hppa_import_stub[] = {
2818 /* addil LR'xxx, %dp */
2819 { 0x2b600000, 0xffe00000 },
2820 /* ldw RR'xxx(%r1), %r21 */
2821 { 0x48350000, 0xffffb000 },
2822 /* bv %r0(%r21) */
2823 { 0xeaa0c000, 0xffffffff },
2824 /* ldw RR'xxx+4(%r1), %r19 */
2825 { 0x48330000, 0xffffb000 },
2826 { 0, 0 }
2827 };
2828
2829 static struct insn_pattern hppa_import_pic_stub[] = {
2830 /* addil LR'xxx,%r19 */
2831 { 0x2a600000, 0xffe00000 },
2832 /* ldw RR'xxx(%r1),%r21 */
2833 { 0x48350000, 0xffffb000 },
2834 /* bv %r0(%r21) */
2835 { 0xeaa0c000, 0xffffffff },
2836 /* ldw RR'xxx+4(%r1),%r19 */
2837 { 0x48330000, 0xffffb000 },
2838 { 0, 0 },
2839 };
2840
2841 static struct insn_pattern hppa_plt_stub[] = {
2842 /* b,l 1b, %r20 - 1b is 3 insns before here */
2843 { 0xea9f1fdd, 0xffffffff },
2844 /* depi 0,31,2,%r20 */
2845 { 0xd6801c1e, 0xffffffff },
2846 { 0, 0 }
2847 };
2848
2849 /* Maximum number of instructions on the patterns above. */
2850 #define HPPA_MAX_INSN_PATTERN_LEN 4
2851
2852 /* Return non-zero if the instructions at PC match the series
2853 described in PATTERN, or zero otherwise. PATTERN is an array of
2854 'struct insn_pattern' objects, terminated by an entry whose mask is
2855 zero.
2856
2857 When the match is successful, fill INSN[i] with what PATTERN[i]
2858 matched. */
2859
2860 static int
2861 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2862 struct insn_pattern *pattern, unsigned int *insn)
2863 {
2864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2865 CORE_ADDR npc = pc;
2866 int i;
2867
2868 for (i = 0; pattern[i].mask; i++)
2869 {
2870 gdb_byte buf[HPPA_INSN_SIZE];
2871
2872 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2873 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2874 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2875 npc += 4;
2876 else
2877 return 0;
2878 }
2879
2880 return 1;
2881 }
2882
2883 /* This relaxed version of the insstruction matcher allows us to match
2884 from somewhere inside the pattern, by looking backwards in the
2885 instruction scheme. */
2886
2887 static int
2888 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2889 struct insn_pattern *pattern, unsigned int *insn)
2890 {
2891 int offset, len = 0;
2892
2893 while (pattern[len].mask)
2894 len++;
2895
2896 for (offset = 0; offset < len; offset++)
2897 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2898 pattern, insn))
2899 return 1;
2900
2901 return 0;
2902 }
2903
2904 static int
2905 hppa_in_dyncall (CORE_ADDR pc)
2906 {
2907 struct unwind_table_entry *u;
2908
2909 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2910 if (!u)
2911 return 0;
2912
2913 return (pc >= u->region_start && pc <= u->region_end);
2914 }
2915
2916 int
2917 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2918 {
2919 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2920 struct unwind_table_entry *u;
2921
2922 if (in_plt_section (pc) || hppa_in_dyncall (pc))
2923 return 1;
2924
2925 /* The GNU toolchain produces linker stubs without unwind
2926 information. Since the pattern matching for linker stubs can be
2927 quite slow, so bail out if we do have an unwind entry. */
2928
2929 u = find_unwind_entry (pc);
2930 if (u != NULL)
2931 return 0;
2932
2933 return
2934 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2935 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2936 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2937 || hppa_match_insns_relaxed (gdbarch, pc,
2938 hppa_long_branch_pic_stub, insn));
2939 }
2940
2941 /* This code skips several kind of "trampolines" used on PA-RISC
2942 systems: $$dyncall, import stubs and PLT stubs. */
2943
2944 CORE_ADDR
2945 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2946 {
2947 struct gdbarch *gdbarch = get_frame_arch (frame);
2948 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2949
2950 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2951 int dp_rel;
2952
2953 /* $$dyncall handles both PLABELs and direct addresses. */
2954 if (hppa_in_dyncall (pc))
2955 {
2956 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2957
2958 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2959 if (pc & 0x2)
2960 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2961
2962 return pc;
2963 }
2964
2965 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2966 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2967 {
2968 /* Extract the target address from the addil/ldw sequence. */
2969 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2970
2971 if (dp_rel)
2972 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2973 else
2974 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2975
2976 /* fallthrough */
2977 }
2978
2979 if (in_plt_section (pc))
2980 {
2981 pc = read_memory_typed_address (pc, func_ptr_type);
2982
2983 /* If the PLT slot has not yet been resolved, the target will be
2984 the PLT stub. */
2985 if (in_plt_section (pc))
2986 {
2987 /* Sanity check: are we pointing to the PLT stub? */
2988 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
2989 {
2990 warning (_("Cannot resolve PLT stub at %s."),
2991 paddress (gdbarch, pc));
2992 return 0;
2993 }
2994
2995 /* This should point to the fixup routine. */
2996 pc = read_memory_typed_address (pc + 8, func_ptr_type);
2997 }
2998 }
2999
3000 return pc;
3001 }
3002 \f
3003
3004 /* Here is a table of C type sizes on hppa with various compiles
3005 and options. I measured this on PA 9000/800 with HP-UX 11.11
3006 and these compilers:
3007
3008 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3009 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3010 /opt/aCC/bin/aCC B3910B A.03.45
3011 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3012
3013 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3014 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3015 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3016 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3017 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3018 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3019 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3020 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3021
3022 Each line is:
3023
3024 compiler and options
3025 char, short, int, long, long long
3026 float, double, long double
3027 char *, void (*)()
3028
3029 So all these compilers use either ILP32 or LP64 model.
3030 TODO: gcc has more options so it needs more investigation.
3031
3032 For floating point types, see:
3033
3034 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3035 HP-UX floating-point guide, hpux 11.00
3036
3037 -- chastain 2003-12-18 */
3038
3039 static struct gdbarch *
3040 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3041 {
3042 struct gdbarch_tdep *tdep;
3043 struct gdbarch *gdbarch;
3044
3045 /* find a candidate among the list of pre-declared architectures. */
3046 arches = gdbarch_list_lookup_by_info (arches, &info);
3047 if (arches != NULL)
3048 return (arches->gdbarch);
3049
3050 /* If none found, then allocate and initialize one. */
3051 tdep = XCNEW (struct gdbarch_tdep);
3052 gdbarch = gdbarch_alloc (&info, tdep);
3053
3054 /* Determine from the bfd_arch_info structure if we are dealing with
3055 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3056 then default to a 32bit machine. */
3057 if (info.bfd_arch_info != NULL)
3058 tdep->bytes_per_address =
3059 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3060 else
3061 tdep->bytes_per_address = 4;
3062
3063 tdep->find_global_pointer = hppa_find_global_pointer;
3064
3065 /* Some parts of the gdbarch vector depend on whether we are running
3066 on a 32 bits or 64 bits target. */
3067 switch (tdep->bytes_per_address)
3068 {
3069 case 4:
3070 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3071 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3072 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3073 set_gdbarch_cannot_store_register (gdbarch,
3074 hppa32_cannot_store_register);
3075 set_gdbarch_cannot_fetch_register (gdbarch,
3076 hppa32_cannot_fetch_register);
3077 break;
3078 case 8:
3079 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3080 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3081 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3082 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3083 set_gdbarch_cannot_store_register (gdbarch,
3084 hppa64_cannot_store_register);
3085 set_gdbarch_cannot_fetch_register (gdbarch,
3086 hppa64_cannot_fetch_register);
3087 break;
3088 default:
3089 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3090 tdep->bytes_per_address);
3091 }
3092
3093 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3094 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3095
3096 /* The following gdbarch vector elements are the same in both ILP32
3097 and LP64, but might show differences some day. */
3098 set_gdbarch_long_long_bit (gdbarch, 64);
3099 set_gdbarch_long_double_bit (gdbarch, 128);
3100 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3101
3102 /* The following gdbarch vector elements do not depend on the address
3103 size, or in any other gdbarch element previously set. */
3104 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3105 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3106 hppa_stack_frame_destroyed_p);
3107 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3108 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3109 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3110 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3111 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3112 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3113 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3114
3115 /* Helper for function argument information. */
3116 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3117
3118 /* When a hardware watchpoint triggers, we'll move the inferior past
3119 it by removing all eventpoints; stepping past the instruction
3120 that caused the trigger; reinserting eventpoints; and checking
3121 whether any watched location changed. */
3122 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3123
3124 /* Inferior function call methods. */
3125 switch (tdep->bytes_per_address)
3126 {
3127 case 4:
3128 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3129 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3130 set_gdbarch_convert_from_func_ptr_addr
3131 (gdbarch, hppa32_convert_from_func_ptr_addr);
3132 break;
3133 case 8:
3134 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3135 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3136 break;
3137 default:
3138 internal_error (__FILE__, __LINE__, _("bad switch"));
3139 }
3140
3141 /* Struct return methods. */
3142 switch (tdep->bytes_per_address)
3143 {
3144 case 4:
3145 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3146 break;
3147 case 8:
3148 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3149 break;
3150 default:
3151 internal_error (__FILE__, __LINE__, _("bad switch"));
3152 }
3153
3154 set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
3155 set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
3156 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3157
3158 /* Frame unwind methods. */
3159 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3160 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3161
3162 /* Hook in ABI-specific overrides, if they have been registered. */
3163 gdbarch_init_osabi (info, gdbarch);
3164
3165 /* Hook in the default unwinders. */
3166 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3167 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3168 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3169
3170 return gdbarch;
3171 }
3172
3173 static void
3174 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3175 {
3176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3177
3178 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3179 tdep->bytes_per_address);
3180 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3181 }
3182
3183 void
3184 _initialize_hppa_tdep (void)
3185 {
3186 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3187
3188 hppa_objfile_priv_data = register_objfile_data ();
3189
3190 add_cmd ("unwind", class_maintenance, unwind_command,
3191 _("Print unwind table entry at given address."),
3192 &maintenanceprintlist);
3193
3194 /* Debug this files internals. */
3195 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3196 Set whether hppa target specific debugging information should be displayed."),
3197 _("\
3198 Show whether hppa target specific debugging information is displayed."), _("\
3199 This flag controls whether hppa target specific debugging information is\n\
3200 displayed. This information is particularly useful for debugging frame\n\
3201 unwinding problems."),
3202 NULL,
3203 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3204 &setdebuglist, &showdebuglist);
3205 }
This page took 0.179327 seconds and 4 git commands to generate.