8e863678c72a8bae990a1c8d82db6bc5fa49973d
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
41
42 #include "gdbcore.h"
43 #include "gdbcmd.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46
47 static int hppa_debug = 0;
48
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74 int hppa_instruction_nullified (void);
75
76 /* Handle 32/64-bit struct return conventions. */
77
78 static enum return_value_convention
79 hppa32_return_value (struct gdbarch *gdbarch,
80 struct type *type, struct regcache *regcache,
81 void *readbuf, const void *writebuf)
82 {
83 if (TYPE_LENGTH (type) <= 2 * 4)
84 {
85 /* The value always lives in the right hand end of the register
86 (or register pair)? */
87 int b;
88 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
89 int part = TYPE_LENGTH (type) % 4;
90 /* The left hand register contains only part of the value,
91 transfer that first so that the rest can be xfered as entire
92 4-byte registers. */
93 if (part > 0)
94 {
95 if (readbuf != NULL)
96 regcache_cooked_read_part (regcache, reg, 4 - part,
97 part, readbuf);
98 if (writebuf != NULL)
99 regcache_cooked_write_part (regcache, reg, 4 - part,
100 part, writebuf);
101 reg++;
102 }
103 /* Now transfer the remaining register values. */
104 for (b = part; b < TYPE_LENGTH (type); b += 4)
105 {
106 if (readbuf != NULL)
107 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
108 if (writebuf != NULL)
109 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
110 reg++;
111 }
112 return RETURN_VALUE_REGISTER_CONVENTION;
113 }
114 else
115 return RETURN_VALUE_STRUCT_CONVENTION;
116 }
117
118 static enum return_value_convention
119 hppa64_return_value (struct gdbarch *gdbarch,
120 struct type *type, struct regcache *regcache,
121 void *readbuf, const void *writebuf)
122 {
123 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
124 are in r28, padded on the left. Aggregates less that 65 bits are
125 in r28, right padded. Aggregates upto 128 bits are in r28 and
126 r29, right padded. */
127 if (TYPE_CODE (type) == TYPE_CODE_FLT
128 && TYPE_LENGTH (type) <= 8)
129 {
130 /* Floats are right aligned? */
131 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
132 if (readbuf != NULL)
133 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
134 TYPE_LENGTH (type), readbuf);
135 if (writebuf != NULL)
136 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
137 TYPE_LENGTH (type), writebuf);
138 return RETURN_VALUE_REGISTER_CONVENTION;
139 }
140 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
141 {
142 /* Integrals are right aligned. */
143 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
144 if (readbuf != NULL)
145 regcache_cooked_read_part (regcache, 28, offset,
146 TYPE_LENGTH (type), readbuf);
147 if (writebuf != NULL)
148 regcache_cooked_write_part (regcache, 28, offset,
149 TYPE_LENGTH (type), writebuf);
150 return RETURN_VALUE_REGISTER_CONVENTION;
151 }
152 else if (TYPE_LENGTH (type) <= 2 * 8)
153 {
154 /* Composite values are left aligned. */
155 int b;
156 for (b = 0; b < TYPE_LENGTH (type); b += 8)
157 {
158 int part = min (8, TYPE_LENGTH (type) - b);
159 if (readbuf != NULL)
160 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
161 (char *) readbuf + b);
162 if (writebuf != NULL)
163 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
164 (const char *) writebuf + b);
165 }
166 return RETURN_VALUE_REGISTER_CONVENTION;
167 }
168 else
169 return RETURN_VALUE_STRUCT_CONVENTION;
170 }
171
172 /* Routines to extract various sized constants out of hppa
173 instructions. */
174
175 /* This assumes that no garbage lies outside of the lower bits of
176 value. */
177
178 int
179 hppa_sign_extend (unsigned val, unsigned bits)
180 {
181 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
182 }
183
184 /* For many immediate values the sign bit is the low bit! */
185
186 int
187 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
188 {
189 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
190 }
191
192 /* Extract the bits at positions between FROM and TO, using HP's numbering
193 (MSB = 0). */
194
195 int
196 hppa_get_field (unsigned word, int from, int to)
197 {
198 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
199 }
200
201 /* extract the immediate field from a ld{bhw}s instruction */
202
203 int
204 hppa_extract_5_load (unsigned word)
205 {
206 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
207 }
208
209 /* extract the immediate field from a break instruction */
210
211 unsigned
212 hppa_extract_5r_store (unsigned word)
213 {
214 return (word & MASK_5);
215 }
216
217 /* extract the immediate field from a {sr}sm instruction */
218
219 unsigned
220 hppa_extract_5R_store (unsigned word)
221 {
222 return (word >> 16 & MASK_5);
223 }
224
225 /* extract a 14 bit immediate field */
226
227 int
228 hppa_extract_14 (unsigned word)
229 {
230 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
231 }
232
233 /* extract a 21 bit constant */
234
235 int
236 hppa_extract_21 (unsigned word)
237 {
238 int val;
239
240 word &= MASK_21;
241 word <<= 11;
242 val = hppa_get_field (word, 20, 20);
243 val <<= 11;
244 val |= hppa_get_field (word, 9, 19);
245 val <<= 2;
246 val |= hppa_get_field (word, 5, 6);
247 val <<= 5;
248 val |= hppa_get_field (word, 0, 4);
249 val <<= 2;
250 val |= hppa_get_field (word, 7, 8);
251 return hppa_sign_extend (val, 21) << 11;
252 }
253
254 /* extract a 17 bit constant from branch instructions, returning the
255 19 bit signed value. */
256
257 int
258 hppa_extract_17 (unsigned word)
259 {
260 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
261 hppa_get_field (word, 29, 29) << 10 |
262 hppa_get_field (word, 11, 15) << 11 |
263 (word & 0x1) << 16, 17) << 2;
264 }
265
266 CORE_ADDR
267 hppa_symbol_address(const char *sym)
268 {
269 struct minimal_symbol *minsym;
270
271 minsym = lookup_minimal_symbol (sym, NULL, NULL);
272 if (minsym)
273 return SYMBOL_VALUE_ADDRESS (minsym);
274 else
275 return (CORE_ADDR)-1;
276 }
277 \f
278
279 /* Compare the start address for two unwind entries returning 1 if
280 the first address is larger than the second, -1 if the second is
281 larger than the first, and zero if they are equal. */
282
283 static int
284 compare_unwind_entries (const void *arg1, const void *arg2)
285 {
286 const struct unwind_table_entry *a = arg1;
287 const struct unwind_table_entry *b = arg2;
288
289 if (a->region_start > b->region_start)
290 return 1;
291 else if (a->region_start < b->region_start)
292 return -1;
293 else
294 return 0;
295 }
296
297 static void
298 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
299 {
300 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
301 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
302 {
303 bfd_vma value = section->vma - section->filepos;
304 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
305
306 if (value < *low_text_segment_address)
307 *low_text_segment_address = value;
308 }
309 }
310
311 static void
312 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
313 asection *section, unsigned int entries, unsigned int size,
314 CORE_ADDR text_offset)
315 {
316 /* We will read the unwind entries into temporary memory, then
317 fill in the actual unwind table. */
318
319 if (size > 0)
320 {
321 unsigned long tmp;
322 unsigned i;
323 char *buf = alloca (size);
324 CORE_ADDR low_text_segment_address;
325
326 /* For ELF targets, then unwinds are supposed to
327 be segment relative offsets instead of absolute addresses.
328
329 Note that when loading a shared library (text_offset != 0) the
330 unwinds are already relative to the text_offset that will be
331 passed in. */
332 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
333 {
334 low_text_segment_address = -1;
335
336 bfd_map_over_sections (objfile->obfd,
337 record_text_segment_lowaddr,
338 &low_text_segment_address);
339
340 text_offset = low_text_segment_address;
341 }
342
343 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
344
345 /* Now internalize the information being careful to handle host/target
346 endian issues. */
347 for (i = 0; i < entries; i++)
348 {
349 table[i].region_start = bfd_get_32 (objfile->obfd,
350 (bfd_byte *) buf);
351 table[i].region_start += text_offset;
352 buf += 4;
353 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
354 table[i].region_end += text_offset;
355 buf += 4;
356 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
357 buf += 4;
358 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
359 table[i].Millicode = (tmp >> 30) & 0x1;
360 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
361 table[i].Region_description = (tmp >> 27) & 0x3;
362 table[i].reserved1 = (tmp >> 26) & 0x1;
363 table[i].Entry_SR = (tmp >> 25) & 0x1;
364 table[i].Entry_FR = (tmp >> 21) & 0xf;
365 table[i].Entry_GR = (tmp >> 16) & 0x1f;
366 table[i].Args_stored = (tmp >> 15) & 0x1;
367 table[i].Variable_Frame = (tmp >> 14) & 0x1;
368 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
369 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
370 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
371 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
372 table[i].Ada_Region = (tmp >> 9) & 0x1;
373 table[i].cxx_info = (tmp >> 8) & 0x1;
374 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
375 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
376 table[i].reserved2 = (tmp >> 5) & 0x1;
377 table[i].Save_SP = (tmp >> 4) & 0x1;
378 table[i].Save_RP = (tmp >> 3) & 0x1;
379 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
380 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
381 table[i].Cleanup_defined = tmp & 0x1;
382 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
383 buf += 4;
384 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
385 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
386 table[i].Large_frame = (tmp >> 29) & 0x1;
387 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
388 table[i].reserved4 = (tmp >> 27) & 0x1;
389 table[i].Total_frame_size = tmp & 0x7ffffff;
390
391 /* Stub unwinds are handled elsewhere. */
392 table[i].stub_unwind.stub_type = 0;
393 table[i].stub_unwind.padding = 0;
394 }
395 }
396 }
397
398 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
399 the object file. This info is used mainly by find_unwind_entry() to find
400 out the stack frame size and frame pointer used by procedures. We put
401 everything on the psymbol obstack in the objfile so that it automatically
402 gets freed when the objfile is destroyed. */
403
404 static void
405 read_unwind_info (struct objfile *objfile)
406 {
407 asection *unwind_sec, *stub_unwind_sec;
408 unsigned unwind_size, stub_unwind_size, total_size;
409 unsigned index, unwind_entries;
410 unsigned stub_entries, total_entries;
411 CORE_ADDR text_offset;
412 struct hppa_unwind_info *ui;
413 struct hppa_objfile_private *obj_private;
414
415 text_offset = ANOFFSET (objfile->section_offsets, 0);
416 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
417 sizeof (struct hppa_unwind_info));
418
419 ui->table = NULL;
420 ui->cache = NULL;
421 ui->last = -1;
422
423 /* For reasons unknown the HP PA64 tools generate multiple unwinder
424 sections in a single executable. So we just iterate over every
425 section in the BFD looking for unwinder sections intead of trying
426 to do a lookup with bfd_get_section_by_name.
427
428 First determine the total size of the unwind tables so that we
429 can allocate memory in a nice big hunk. */
430 total_entries = 0;
431 for (unwind_sec = objfile->obfd->sections;
432 unwind_sec;
433 unwind_sec = unwind_sec->next)
434 {
435 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
436 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
437 {
438 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
439 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
440
441 total_entries += unwind_entries;
442 }
443 }
444
445 /* Now compute the size of the stub unwinds. Note the ELF tools do not
446 use stub unwinds at the curren time. */
447 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
448
449 if (stub_unwind_sec)
450 {
451 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
452 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
453 }
454 else
455 {
456 stub_unwind_size = 0;
457 stub_entries = 0;
458 }
459
460 /* Compute total number of unwind entries and their total size. */
461 total_entries += stub_entries;
462 total_size = total_entries * sizeof (struct unwind_table_entry);
463
464 /* Allocate memory for the unwind table. */
465 ui->table = (struct unwind_table_entry *)
466 obstack_alloc (&objfile->objfile_obstack, total_size);
467 ui->last = total_entries - 1;
468
469 /* Now read in each unwind section and internalize the standard unwind
470 entries. */
471 index = 0;
472 for (unwind_sec = objfile->obfd->sections;
473 unwind_sec;
474 unwind_sec = unwind_sec->next)
475 {
476 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
477 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
478 {
479 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
480 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
481
482 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
483 unwind_entries, unwind_size, text_offset);
484 index += unwind_entries;
485 }
486 }
487
488 /* Now read in and internalize the stub unwind entries. */
489 if (stub_unwind_size > 0)
490 {
491 unsigned int i;
492 char *buf = alloca (stub_unwind_size);
493
494 /* Read in the stub unwind entries. */
495 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
496 0, stub_unwind_size);
497
498 /* Now convert them into regular unwind entries. */
499 for (i = 0; i < stub_entries; i++, index++)
500 {
501 /* Clear out the next unwind entry. */
502 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
503
504 /* Convert offset & size into region_start and region_end.
505 Stuff away the stub type into "reserved" fields. */
506 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
507 (bfd_byte *) buf);
508 ui->table[index].region_start += text_offset;
509 buf += 4;
510 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
511 (bfd_byte *) buf);
512 buf += 2;
513 ui->table[index].region_end
514 = ui->table[index].region_start + 4 *
515 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
516 buf += 2;
517 }
518
519 }
520
521 /* Unwind table needs to be kept sorted. */
522 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
523 compare_unwind_entries);
524
525 /* Keep a pointer to the unwind information. */
526 obj_private = (struct hppa_objfile_private *)
527 objfile_data (objfile, hppa_objfile_priv_data);
528 if (obj_private == NULL)
529 {
530 obj_private = (struct hppa_objfile_private *)
531 obstack_alloc (&objfile->objfile_obstack,
532 sizeof (struct hppa_objfile_private));
533 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
534 obj_private->unwind_info = NULL;
535 obj_private->so_info = NULL;
536 obj_private->dp = 0;
537 }
538 obj_private->unwind_info = ui;
539 }
540
541 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
542 of the objfiles seeking the unwind table entry for this PC. Each objfile
543 contains a sorted list of struct unwind_table_entry. Since we do a binary
544 search of the unwind tables, we depend upon them to be sorted. */
545
546 struct unwind_table_entry *
547 find_unwind_entry (CORE_ADDR pc)
548 {
549 int first, middle, last;
550 struct objfile *objfile;
551 struct hppa_objfile_private *priv;
552
553 if (hppa_debug)
554 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
555 paddr_nz (pc));
556
557 /* A function at address 0? Not in HP-UX! */
558 if (pc == (CORE_ADDR) 0)
559 {
560 if (hppa_debug)
561 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
562 return NULL;
563 }
564
565 ALL_OBJFILES (objfile)
566 {
567 struct hppa_unwind_info *ui;
568 ui = NULL;
569 priv = objfile_data (objfile, hppa_objfile_priv_data);
570 if (priv)
571 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
572
573 if (!ui)
574 {
575 read_unwind_info (objfile);
576 priv = objfile_data (objfile, hppa_objfile_priv_data);
577 if (priv == NULL)
578 error ("Internal error reading unwind information.");
579 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
580 }
581
582 /* First, check the cache */
583
584 if (ui->cache
585 && pc >= ui->cache->region_start
586 && pc <= ui->cache->region_end)
587 {
588 if (hppa_debug)
589 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
590 paddr_nz ((CORE_ADDR) ui->cache));
591 return ui->cache;
592 }
593
594 /* Not in the cache, do a binary search */
595
596 first = 0;
597 last = ui->last;
598
599 while (first <= last)
600 {
601 middle = (first + last) / 2;
602 if (pc >= ui->table[middle].region_start
603 && pc <= ui->table[middle].region_end)
604 {
605 ui->cache = &ui->table[middle];
606 if (hppa_debug)
607 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
608 paddr_nz ((CORE_ADDR) ui->cache));
609 return &ui->table[middle];
610 }
611
612 if (pc < ui->table[middle].region_start)
613 last = middle - 1;
614 else
615 first = middle + 1;
616 }
617 } /* ALL_OBJFILES() */
618
619 if (hppa_debug)
620 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
621
622 return NULL;
623 }
624
625 static const unsigned char *
626 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
627 {
628 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
629 (*len) = sizeof (breakpoint);
630 return breakpoint;
631 }
632
633 /* Return the name of a register. */
634
635 static const char *
636 hppa32_register_name (int i)
637 {
638 static char *names[] = {
639 "flags", "r1", "rp", "r3",
640 "r4", "r5", "r6", "r7",
641 "r8", "r9", "r10", "r11",
642 "r12", "r13", "r14", "r15",
643 "r16", "r17", "r18", "r19",
644 "r20", "r21", "r22", "r23",
645 "r24", "r25", "r26", "dp",
646 "ret0", "ret1", "sp", "r31",
647 "sar", "pcoqh", "pcsqh", "pcoqt",
648 "pcsqt", "eiem", "iir", "isr",
649 "ior", "ipsw", "goto", "sr4",
650 "sr0", "sr1", "sr2", "sr3",
651 "sr5", "sr6", "sr7", "cr0",
652 "cr8", "cr9", "ccr", "cr12",
653 "cr13", "cr24", "cr25", "cr26",
654 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
655 "fpsr", "fpe1", "fpe2", "fpe3",
656 "fpe4", "fpe5", "fpe6", "fpe7",
657 "fr4", "fr4R", "fr5", "fr5R",
658 "fr6", "fr6R", "fr7", "fr7R",
659 "fr8", "fr8R", "fr9", "fr9R",
660 "fr10", "fr10R", "fr11", "fr11R",
661 "fr12", "fr12R", "fr13", "fr13R",
662 "fr14", "fr14R", "fr15", "fr15R",
663 "fr16", "fr16R", "fr17", "fr17R",
664 "fr18", "fr18R", "fr19", "fr19R",
665 "fr20", "fr20R", "fr21", "fr21R",
666 "fr22", "fr22R", "fr23", "fr23R",
667 "fr24", "fr24R", "fr25", "fr25R",
668 "fr26", "fr26R", "fr27", "fr27R",
669 "fr28", "fr28R", "fr29", "fr29R",
670 "fr30", "fr30R", "fr31", "fr31R"
671 };
672 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
673 return NULL;
674 else
675 return names[i];
676 }
677
678 static const char *
679 hppa64_register_name (int i)
680 {
681 static char *names[] = {
682 "flags", "r1", "rp", "r3",
683 "r4", "r5", "r6", "r7",
684 "r8", "r9", "r10", "r11",
685 "r12", "r13", "r14", "r15",
686 "r16", "r17", "r18", "r19",
687 "r20", "r21", "r22", "r23",
688 "r24", "r25", "r26", "dp",
689 "ret0", "ret1", "sp", "r31",
690 "sar", "pcoqh", "pcsqh", "pcoqt",
691 "pcsqt", "eiem", "iir", "isr",
692 "ior", "ipsw", "goto", "sr4",
693 "sr0", "sr1", "sr2", "sr3",
694 "sr5", "sr6", "sr7", "cr0",
695 "cr8", "cr9", "ccr", "cr12",
696 "cr13", "cr24", "cr25", "cr26",
697 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
698 "fpsr", "fpe1", "fpe2", "fpe3",
699 "fr4", "fr5", "fr6", "fr7",
700 "fr8", "fr9", "fr10", "fr11",
701 "fr12", "fr13", "fr14", "fr15",
702 "fr16", "fr17", "fr18", "fr19",
703 "fr20", "fr21", "fr22", "fr23",
704 "fr24", "fr25", "fr26", "fr27",
705 "fr28", "fr29", "fr30", "fr31"
706 };
707 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
708 return NULL;
709 else
710 return names[i];
711 }
712
713 /* This function pushes a stack frame with arguments as part of the
714 inferior function calling mechanism.
715
716 This is the version of the function for the 32-bit PA machines, in
717 which later arguments appear at lower addresses. (The stack always
718 grows towards higher addresses.)
719
720 We simply allocate the appropriate amount of stack space and put
721 arguments into their proper slots. */
722
723 static CORE_ADDR
724 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
725 struct regcache *regcache, CORE_ADDR bp_addr,
726 int nargs, struct value **args, CORE_ADDR sp,
727 int struct_return, CORE_ADDR struct_addr)
728 {
729 /* Stack base address at which any pass-by-reference parameters are
730 stored. */
731 CORE_ADDR struct_end = 0;
732 /* Stack base address at which the first parameter is stored. */
733 CORE_ADDR param_end = 0;
734
735 /* The inner most end of the stack after all the parameters have
736 been pushed. */
737 CORE_ADDR new_sp = 0;
738
739 /* Two passes. First pass computes the location of everything,
740 second pass writes the bytes out. */
741 int write_pass;
742
743 /* Global pointer (r19) of the function we are trying to call. */
744 CORE_ADDR gp;
745
746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
747
748 for (write_pass = 0; write_pass < 2; write_pass++)
749 {
750 CORE_ADDR struct_ptr = 0;
751 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
752 struct_ptr is adjusted for each argument below, so the first
753 argument will end up at sp-36. */
754 CORE_ADDR param_ptr = 32;
755 int i;
756 int small_struct = 0;
757
758 for (i = 0; i < nargs; i++)
759 {
760 struct value *arg = args[i];
761 struct type *type = check_typedef (VALUE_TYPE (arg));
762 /* The corresponding parameter that is pushed onto the
763 stack, and [possibly] passed in a register. */
764 char param_val[8];
765 int param_len;
766 memset (param_val, 0, sizeof param_val);
767 if (TYPE_LENGTH (type) > 8)
768 {
769 /* Large parameter, pass by reference. Store the value
770 in "struct" area and then pass its address. */
771 param_len = 4;
772 struct_ptr += align_up (TYPE_LENGTH (type), 8);
773 if (write_pass)
774 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
775 TYPE_LENGTH (type));
776 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
777 }
778 else if (TYPE_CODE (type) == TYPE_CODE_INT
779 || TYPE_CODE (type) == TYPE_CODE_ENUM)
780 {
781 /* Integer value store, right aligned. "unpack_long"
782 takes care of any sign-extension problems. */
783 param_len = align_up (TYPE_LENGTH (type), 4);
784 store_unsigned_integer (param_val, param_len,
785 unpack_long (type,
786 VALUE_CONTENTS (arg)));
787 }
788 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
789 {
790 /* Floating point value store, right aligned. */
791 param_len = align_up (TYPE_LENGTH (type), 4);
792 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
793 }
794 else
795 {
796 param_len = align_up (TYPE_LENGTH (type), 4);
797
798 /* Small struct value are stored right-aligned. */
799 memcpy (param_val + param_len - TYPE_LENGTH (type),
800 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
801
802 /* Structures of size 5, 6 and 7 bytes are special in that
803 the higher-ordered word is stored in the lower-ordered
804 argument, and even though it is a 8-byte quantity the
805 registers need not be 8-byte aligned. */
806 if (param_len > 4 && param_len < 8)
807 small_struct = 1;
808 }
809
810 param_ptr += param_len;
811 if (param_len == 8 && !small_struct)
812 param_ptr = align_up (param_ptr, 8);
813
814 /* First 4 non-FP arguments are passed in gr26-gr23.
815 First 4 32-bit FP arguments are passed in fr4L-fr7L.
816 First 2 64-bit FP arguments are passed in fr5 and fr7.
817
818 The rest go on the stack, starting at sp-36, towards lower
819 addresses. 8-byte arguments must be aligned to a 8-byte
820 stack boundary. */
821 if (write_pass)
822 {
823 write_memory (param_end - param_ptr, param_val, param_len);
824
825 /* There are some cases when we don't know the type
826 expected by the callee (e.g. for variadic functions), so
827 pass the parameters in both general and fp regs. */
828 if (param_ptr <= 48)
829 {
830 int grreg = 26 - (param_ptr - 36) / 4;
831 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
832 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
833
834 regcache_cooked_write (regcache, grreg, param_val);
835 regcache_cooked_write (regcache, fpLreg, param_val);
836
837 if (param_len > 4)
838 {
839 regcache_cooked_write (regcache, grreg + 1,
840 param_val + 4);
841
842 regcache_cooked_write (regcache, fpreg, param_val);
843 regcache_cooked_write (regcache, fpreg + 1,
844 param_val + 4);
845 }
846 }
847 }
848 }
849
850 /* Update the various stack pointers. */
851 if (!write_pass)
852 {
853 struct_end = sp + align_up (struct_ptr, 64);
854 /* PARAM_PTR already accounts for all the arguments passed
855 by the user. However, the ABI mandates minimum stack
856 space allocations for outgoing arguments. The ABI also
857 mandates minimum stack alignments which we must
858 preserve. */
859 param_end = struct_end + align_up (param_ptr, 64);
860 }
861 }
862
863 /* If a structure has to be returned, set up register 28 to hold its
864 address */
865 if (struct_return)
866 write_register (28, struct_addr);
867
868 gp = tdep->find_global_pointer (function);
869
870 if (gp != 0)
871 write_register (19, gp);
872
873 /* Set the return address. */
874 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
875
876 /* Update the Stack Pointer. */
877 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
878
879 return param_end;
880 }
881
882 /* This function pushes a stack frame with arguments as part of the
883 inferior function calling mechanism.
884
885 This is the version for the PA64, in which later arguments appear
886 at higher addresses. (The stack always grows towards higher
887 addresses.)
888
889 We simply allocate the appropriate amount of stack space and put
890 arguments into their proper slots.
891
892 This ABI also requires that the caller provide an argument pointer
893 to the callee, so we do that too. */
894
895 static CORE_ADDR
896 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
897 struct regcache *regcache, CORE_ADDR bp_addr,
898 int nargs, struct value **args, CORE_ADDR sp,
899 int struct_return, CORE_ADDR struct_addr)
900 {
901 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
902 reverse engineering testsuite failures. */
903
904 /* Stack base address at which any pass-by-reference parameters are
905 stored. */
906 CORE_ADDR struct_end = 0;
907 /* Stack base address at which the first parameter is stored. */
908 CORE_ADDR param_end = 0;
909
910 /* The inner most end of the stack after all the parameters have
911 been pushed. */
912 CORE_ADDR new_sp = 0;
913
914 /* Two passes. First pass computes the location of everything,
915 second pass writes the bytes out. */
916 int write_pass;
917 for (write_pass = 0; write_pass < 2; write_pass++)
918 {
919 CORE_ADDR struct_ptr = 0;
920 CORE_ADDR param_ptr = 0;
921 int i;
922 for (i = 0; i < nargs; i++)
923 {
924 struct value *arg = args[i];
925 struct type *type = check_typedef (VALUE_TYPE (arg));
926 if ((TYPE_CODE (type) == TYPE_CODE_INT
927 || TYPE_CODE (type) == TYPE_CODE_ENUM)
928 && TYPE_LENGTH (type) <= 8)
929 {
930 /* Integer value store, right aligned. "unpack_long"
931 takes care of any sign-extension problems. */
932 param_ptr += 8;
933 if (write_pass)
934 {
935 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
936 int reg = 27 - param_ptr / 8;
937 write_memory_unsigned_integer (param_end - param_ptr,
938 val, 8);
939 if (reg >= 19)
940 regcache_cooked_write_unsigned (regcache, reg, val);
941 }
942 }
943 else
944 {
945 /* Small struct value, store left aligned? */
946 int reg;
947 if (TYPE_LENGTH (type) > 8)
948 {
949 param_ptr = align_up (param_ptr, 16);
950 reg = 26 - param_ptr / 8;
951 param_ptr += align_up (TYPE_LENGTH (type), 16);
952 }
953 else
954 {
955 param_ptr = align_up (param_ptr, 8);
956 reg = 26 - param_ptr / 8;
957 param_ptr += align_up (TYPE_LENGTH (type), 8);
958 }
959 if (write_pass)
960 {
961 int byte;
962 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
963 TYPE_LENGTH (type));
964 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
965 {
966 if (reg >= 19)
967 {
968 int len = min (8, TYPE_LENGTH (type) - byte);
969 regcache_cooked_write_part (regcache, reg, 0, len,
970 VALUE_CONTENTS (arg) + byte);
971 }
972 reg--;
973 }
974 }
975 }
976 }
977 /* Update the various stack pointers. */
978 if (!write_pass)
979 {
980 struct_end = sp + struct_ptr;
981 /* PARAM_PTR already accounts for all the arguments passed
982 by the user. However, the ABI mandates minimum stack
983 space allocations for outgoing arguments. The ABI also
984 mandates minimum stack alignments which we must
985 preserve. */
986 param_end = struct_end + max (align_up (param_ptr, 16), 64);
987 }
988 }
989
990 /* If a structure has to be returned, set up register 28 to hold its
991 address */
992 if (struct_return)
993 write_register (28, struct_addr);
994
995 /* Set the return address. */
996 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
997
998 /* Update the Stack Pointer. */
999 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
1000
1001 /* The stack will have 32 bytes of additional space for a frame marker. */
1002 return param_end + 64;
1003 }
1004
1005 static CORE_ADDR
1006 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1007 CORE_ADDR addr,
1008 struct target_ops *targ)
1009 {
1010 if (addr & 2)
1011 {
1012 CORE_ADDR plabel;
1013
1014 plabel = addr & ~3;
1015 target_read_memory(plabel, (char *)&addr, 4);
1016 }
1017
1018 return addr;
1019 }
1020
1021 static CORE_ADDR
1022 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1023 {
1024 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1025 and not _bit_)! */
1026 return align_up (addr, 64);
1027 }
1028
1029 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1030
1031 static CORE_ADDR
1032 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1033 {
1034 /* Just always 16-byte align. */
1035 return align_up (addr, 16);
1036 }
1037
1038
1039 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1040 bits. */
1041
1042 static CORE_ADDR
1043 hppa_target_read_pc (ptid_t ptid)
1044 {
1045 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1046
1047 /* The following test does not belong here. It is OS-specific, and belongs
1048 in native code. */
1049 /* Test SS_INSYSCALL */
1050 if (flags & 2)
1051 return read_register_pid (31, ptid) & ~0x3;
1052
1053 return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
1054 }
1055
1056 /* Write out the PC. If currently in a syscall, then also write the new
1057 PC value into %r31. */
1058
1059 static void
1060 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
1061 {
1062 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1063
1064 /* The following test does not belong here. It is OS-specific, and belongs
1065 in native code. */
1066 /* If in a syscall, then set %r31. Also make sure to get the
1067 privilege bits set correctly. */
1068 /* Test SS_INSYSCALL */
1069 if (flags & 2)
1070 write_register_pid (31, v | 0x3, ptid);
1071
1072 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1073 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
1074 }
1075
1076 /* return the alignment of a type in bytes. Structures have the maximum
1077 alignment required by their fields. */
1078
1079 static int
1080 hppa_alignof (struct type *type)
1081 {
1082 int max_align, align, i;
1083 CHECK_TYPEDEF (type);
1084 switch (TYPE_CODE (type))
1085 {
1086 case TYPE_CODE_PTR:
1087 case TYPE_CODE_INT:
1088 case TYPE_CODE_FLT:
1089 return TYPE_LENGTH (type);
1090 case TYPE_CODE_ARRAY:
1091 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1092 case TYPE_CODE_STRUCT:
1093 case TYPE_CODE_UNION:
1094 max_align = 1;
1095 for (i = 0; i < TYPE_NFIELDS (type); i++)
1096 {
1097 /* Bit fields have no real alignment. */
1098 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1099 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1100 {
1101 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1102 max_align = max (max_align, align);
1103 }
1104 }
1105 return max_align;
1106 default:
1107 return 4;
1108 }
1109 }
1110
1111 /* For the given instruction (INST), return any adjustment it makes
1112 to the stack pointer or zero for no adjustment.
1113
1114 This only handles instructions commonly found in prologues. */
1115
1116 static int
1117 prologue_inst_adjust_sp (unsigned long inst)
1118 {
1119 /* This must persist across calls. */
1120 static int save_high21;
1121
1122 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1123 if ((inst & 0xffffc000) == 0x37de0000)
1124 return hppa_extract_14 (inst);
1125
1126 /* stwm X,D(sp) */
1127 if ((inst & 0xffe00000) == 0x6fc00000)
1128 return hppa_extract_14 (inst);
1129
1130 /* std,ma X,D(sp) */
1131 if ((inst & 0xffe00008) == 0x73c00008)
1132 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1133
1134 /* addil high21,%r1; ldo low11,(%r1),%r30)
1135 save high bits in save_high21 for later use. */
1136 if ((inst & 0xffe00000) == 0x28200000)
1137 {
1138 save_high21 = hppa_extract_21 (inst);
1139 return 0;
1140 }
1141
1142 if ((inst & 0xffff0000) == 0x343e0000)
1143 return save_high21 + hppa_extract_14 (inst);
1144
1145 /* fstws as used by the HP compilers. */
1146 if ((inst & 0xffffffe0) == 0x2fd01220)
1147 return hppa_extract_5_load (inst);
1148
1149 /* No adjustment. */
1150 return 0;
1151 }
1152
1153 /* Return nonzero if INST is a branch of some kind, else return zero. */
1154
1155 static int
1156 is_branch (unsigned long inst)
1157 {
1158 switch (inst >> 26)
1159 {
1160 case 0x20:
1161 case 0x21:
1162 case 0x22:
1163 case 0x23:
1164 case 0x27:
1165 case 0x28:
1166 case 0x29:
1167 case 0x2a:
1168 case 0x2b:
1169 case 0x2f:
1170 case 0x30:
1171 case 0x31:
1172 case 0x32:
1173 case 0x33:
1174 case 0x38:
1175 case 0x39:
1176 case 0x3a:
1177 case 0x3b:
1178 return 1;
1179
1180 default:
1181 return 0;
1182 }
1183 }
1184
1185 /* Return the register number for a GR which is saved by INST or
1186 zero it INST does not save a GR. */
1187
1188 static int
1189 inst_saves_gr (unsigned long inst)
1190 {
1191 /* Does it look like a stw? */
1192 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1193 || (inst >> 26) == 0x1f
1194 || ((inst >> 26) == 0x1f
1195 && ((inst >> 6) == 0xa)))
1196 return hppa_extract_5R_store (inst);
1197
1198 /* Does it look like a std? */
1199 if ((inst >> 26) == 0x1c
1200 || ((inst >> 26) == 0x03
1201 && ((inst >> 6) & 0xf) == 0xb))
1202 return hppa_extract_5R_store (inst);
1203
1204 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1205 if ((inst >> 26) == 0x1b)
1206 return hppa_extract_5R_store (inst);
1207
1208 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1209 too. */
1210 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1211 || ((inst >> 26) == 0x3
1212 && (((inst >> 6) & 0xf) == 0x8
1213 || (inst >> 6) & 0xf) == 0x9))
1214 return hppa_extract_5R_store (inst);
1215
1216 return 0;
1217 }
1218
1219 /* Return the register number for a FR which is saved by INST or
1220 zero it INST does not save a FR.
1221
1222 Note we only care about full 64bit register stores (that's the only
1223 kind of stores the prologue will use).
1224
1225 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1226
1227 static int
1228 inst_saves_fr (unsigned long inst)
1229 {
1230 /* is this an FSTD ? */
1231 if ((inst & 0xfc00dfc0) == 0x2c001200)
1232 return hppa_extract_5r_store (inst);
1233 if ((inst & 0xfc000002) == 0x70000002)
1234 return hppa_extract_5R_store (inst);
1235 /* is this an FSTW ? */
1236 if ((inst & 0xfc00df80) == 0x24001200)
1237 return hppa_extract_5r_store (inst);
1238 if ((inst & 0xfc000002) == 0x7c000000)
1239 return hppa_extract_5R_store (inst);
1240 return 0;
1241 }
1242
1243 /* Advance PC across any function entry prologue instructions
1244 to reach some "real" code.
1245
1246 Use information in the unwind table to determine what exactly should
1247 be in the prologue. */
1248
1249
1250 static CORE_ADDR
1251 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1252 {
1253 char buf[4];
1254 CORE_ADDR orig_pc = pc;
1255 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1256 unsigned long args_stored, status, i, restart_gr, restart_fr;
1257 struct unwind_table_entry *u;
1258 int final_iteration;
1259
1260 restart_gr = 0;
1261 restart_fr = 0;
1262
1263 restart:
1264 u = find_unwind_entry (pc);
1265 if (!u)
1266 return pc;
1267
1268 /* If we are not at the beginning of a function, then return now. */
1269 if ((pc & ~0x3) != u->region_start)
1270 return pc;
1271
1272 /* This is how much of a frame adjustment we need to account for. */
1273 stack_remaining = u->Total_frame_size << 3;
1274
1275 /* Magic register saves we want to know about. */
1276 save_rp = u->Save_RP;
1277 save_sp = u->Save_SP;
1278
1279 /* An indication that args may be stored into the stack. Unfortunately
1280 the HPUX compilers tend to set this in cases where no args were
1281 stored too!. */
1282 args_stored = 1;
1283
1284 /* Turn the Entry_GR field into a bitmask. */
1285 save_gr = 0;
1286 for (i = 3; i < u->Entry_GR + 3; i++)
1287 {
1288 /* Frame pointer gets saved into a special location. */
1289 if (u->Save_SP && i == HPPA_FP_REGNUM)
1290 continue;
1291
1292 save_gr |= (1 << i);
1293 }
1294 save_gr &= ~restart_gr;
1295
1296 /* Turn the Entry_FR field into a bitmask too. */
1297 save_fr = 0;
1298 for (i = 12; i < u->Entry_FR + 12; i++)
1299 save_fr |= (1 << i);
1300 save_fr &= ~restart_fr;
1301
1302 final_iteration = 0;
1303
1304 /* Loop until we find everything of interest or hit a branch.
1305
1306 For unoptimized GCC code and for any HP CC code this will never ever
1307 examine any user instructions.
1308
1309 For optimzied GCC code we're faced with problems. GCC will schedule
1310 its prologue and make prologue instructions available for delay slot
1311 filling. The end result is user code gets mixed in with the prologue
1312 and a prologue instruction may be in the delay slot of the first branch
1313 or call.
1314
1315 Some unexpected things are expected with debugging optimized code, so
1316 we allow this routine to walk past user instructions in optimized
1317 GCC code. */
1318 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1319 || args_stored)
1320 {
1321 unsigned int reg_num;
1322 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1323 unsigned long old_save_rp, old_save_sp, next_inst;
1324
1325 /* Save copies of all the triggers so we can compare them later
1326 (only for HPC). */
1327 old_save_gr = save_gr;
1328 old_save_fr = save_fr;
1329 old_save_rp = save_rp;
1330 old_save_sp = save_sp;
1331 old_stack_remaining = stack_remaining;
1332
1333 status = deprecated_read_memory_nobpt (pc, buf, 4);
1334 inst = extract_unsigned_integer (buf, 4);
1335
1336 /* Yow! */
1337 if (status != 0)
1338 return pc;
1339
1340 /* Note the interesting effects of this instruction. */
1341 stack_remaining -= prologue_inst_adjust_sp (inst);
1342
1343 /* There are limited ways to store the return pointer into the
1344 stack. */
1345 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1346 save_rp = 0;
1347
1348 /* These are the only ways we save SP into the stack. At this time
1349 the HP compilers never bother to save SP into the stack. */
1350 if ((inst & 0xffffc000) == 0x6fc10000
1351 || (inst & 0xffffc00c) == 0x73c10008)
1352 save_sp = 0;
1353
1354 /* Are we loading some register with an offset from the argument
1355 pointer? */
1356 if ((inst & 0xffe00000) == 0x37a00000
1357 || (inst & 0xffffffe0) == 0x081d0240)
1358 {
1359 pc += 4;
1360 continue;
1361 }
1362
1363 /* Account for general and floating-point register saves. */
1364 reg_num = inst_saves_gr (inst);
1365 save_gr &= ~(1 << reg_num);
1366
1367 /* Ugh. Also account for argument stores into the stack.
1368 Unfortunately args_stored only tells us that some arguments
1369 where stored into the stack. Not how many or what kind!
1370
1371 This is a kludge as on the HP compiler sets this bit and it
1372 never does prologue scheduling. So once we see one, skip past
1373 all of them. We have similar code for the fp arg stores below.
1374
1375 FIXME. Can still die if we have a mix of GR and FR argument
1376 stores! */
1377 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1378 {
1379 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1380 {
1381 pc += 4;
1382 status = deprecated_read_memory_nobpt (pc, buf, 4);
1383 inst = extract_unsigned_integer (buf, 4);
1384 if (status != 0)
1385 return pc;
1386 reg_num = inst_saves_gr (inst);
1387 }
1388 args_stored = 0;
1389 continue;
1390 }
1391
1392 reg_num = inst_saves_fr (inst);
1393 save_fr &= ~(1 << reg_num);
1394
1395 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1396 next_inst = extract_unsigned_integer (buf, 4);
1397
1398 /* Yow! */
1399 if (status != 0)
1400 return pc;
1401
1402 /* We've got to be read to handle the ldo before the fp register
1403 save. */
1404 if ((inst & 0xfc000000) == 0x34000000
1405 && inst_saves_fr (next_inst) >= 4
1406 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1407 {
1408 /* So we drop into the code below in a reasonable state. */
1409 reg_num = inst_saves_fr (next_inst);
1410 pc -= 4;
1411 }
1412
1413 /* Ugh. Also account for argument stores into the stack.
1414 This is a kludge as on the HP compiler sets this bit and it
1415 never does prologue scheduling. So once we see one, skip past
1416 all of them. */
1417 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1418 {
1419 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1420 {
1421 pc += 8;
1422 status = deprecated_read_memory_nobpt (pc, buf, 4);
1423 inst = extract_unsigned_integer (buf, 4);
1424 if (status != 0)
1425 return pc;
1426 if ((inst & 0xfc000000) != 0x34000000)
1427 break;
1428 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1429 next_inst = extract_unsigned_integer (buf, 4);
1430 if (status != 0)
1431 return pc;
1432 reg_num = inst_saves_fr (next_inst);
1433 }
1434 args_stored = 0;
1435 continue;
1436 }
1437
1438 /* Quit if we hit any kind of branch. This can happen if a prologue
1439 instruction is in the delay slot of the first call/branch. */
1440 if (is_branch (inst) && stop_before_branch)
1441 break;
1442
1443 /* What a crock. The HP compilers set args_stored even if no
1444 arguments were stored into the stack (boo hiss). This could
1445 cause this code to then skip a bunch of user insns (up to the
1446 first branch).
1447
1448 To combat this we try to identify when args_stored was bogusly
1449 set and clear it. We only do this when args_stored is nonzero,
1450 all other resources are accounted for, and nothing changed on
1451 this pass. */
1452 if (args_stored
1453 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1454 && old_save_gr == save_gr && old_save_fr == save_fr
1455 && old_save_rp == save_rp && old_save_sp == save_sp
1456 && old_stack_remaining == stack_remaining)
1457 break;
1458
1459 /* Bump the PC. */
1460 pc += 4;
1461
1462 /* !stop_before_branch, so also look at the insn in the delay slot
1463 of the branch. */
1464 if (final_iteration)
1465 break;
1466 if (is_branch (inst))
1467 final_iteration = 1;
1468 }
1469
1470 /* We've got a tenative location for the end of the prologue. However
1471 because of limitations in the unwind descriptor mechanism we may
1472 have went too far into user code looking for the save of a register
1473 that does not exist. So, if there registers we expected to be saved
1474 but never were, mask them out and restart.
1475
1476 This should only happen in optimized code, and should be very rare. */
1477 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1478 {
1479 pc = orig_pc;
1480 restart_gr = save_gr;
1481 restart_fr = save_fr;
1482 goto restart;
1483 }
1484
1485 return pc;
1486 }
1487
1488
1489 /* Return the address of the PC after the last prologue instruction if
1490 we can determine it from the debug symbols. Else return zero. */
1491
1492 static CORE_ADDR
1493 after_prologue (CORE_ADDR pc)
1494 {
1495 struct symtab_and_line sal;
1496 CORE_ADDR func_addr, func_end;
1497 struct symbol *f;
1498
1499 /* If we can not find the symbol in the partial symbol table, then
1500 there is no hope we can determine the function's start address
1501 with this code. */
1502 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1503 return 0;
1504
1505 /* Get the line associated with FUNC_ADDR. */
1506 sal = find_pc_line (func_addr, 0);
1507
1508 /* There are only two cases to consider. First, the end of the source line
1509 is within the function bounds. In that case we return the end of the
1510 source line. Second is the end of the source line extends beyond the
1511 bounds of the current function. We need to use the slow code to
1512 examine instructions in that case.
1513
1514 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1515 the wrong thing to do. In fact, it should be entirely possible for this
1516 function to always return zero since the slow instruction scanning code
1517 is supposed to *always* work. If it does not, then it is a bug. */
1518 if (sal.end < func_end)
1519 return sal.end;
1520 else
1521 return 0;
1522 }
1523
1524 /* To skip prologues, I use this predicate. Returns either PC itself
1525 if the code at PC does not look like a function prologue; otherwise
1526 returns an address that (if we're lucky) follows the prologue.
1527
1528 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1529 It doesn't necessarily skips all the insns in the prologue. In fact
1530 we might not want to skip all the insns because a prologue insn may
1531 appear in the delay slot of the first branch, and we don't want to
1532 skip over the branch in that case. */
1533
1534 static CORE_ADDR
1535 hppa_skip_prologue (CORE_ADDR pc)
1536 {
1537 unsigned long inst;
1538 int offset;
1539 CORE_ADDR post_prologue_pc;
1540 char buf[4];
1541
1542 /* See if we can determine the end of the prologue via the symbol table.
1543 If so, then return either PC, or the PC after the prologue, whichever
1544 is greater. */
1545
1546 post_prologue_pc = after_prologue (pc);
1547
1548 /* If after_prologue returned a useful address, then use it. Else
1549 fall back on the instruction skipping code.
1550
1551 Some folks have claimed this causes problems because the breakpoint
1552 may be the first instruction of the prologue. If that happens, then
1553 the instruction skipping code has a bug that needs to be fixed. */
1554 if (post_prologue_pc != 0)
1555 return max (pc, post_prologue_pc);
1556 else
1557 return (skip_prologue_hard_way (pc, 1));
1558 }
1559
1560 struct hppa_frame_cache
1561 {
1562 CORE_ADDR base;
1563 struct trad_frame_saved_reg *saved_regs;
1564 };
1565
1566 static struct hppa_frame_cache *
1567 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1568 {
1569 struct hppa_frame_cache *cache;
1570 long saved_gr_mask;
1571 long saved_fr_mask;
1572 CORE_ADDR this_sp;
1573 long frame_size;
1574 struct unwind_table_entry *u;
1575 CORE_ADDR prologue_end;
1576 int fp_in_r1 = 0;
1577 int i;
1578
1579 if (hppa_debug)
1580 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1581 frame_relative_level(next_frame));
1582
1583 if ((*this_cache) != NULL)
1584 {
1585 if (hppa_debug)
1586 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1587 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1588 return (*this_cache);
1589 }
1590 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1591 (*this_cache) = cache;
1592 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1593
1594 /* Yow! */
1595 u = find_unwind_entry (frame_pc_unwind (next_frame));
1596 if (!u)
1597 {
1598 if (hppa_debug)
1599 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1600 return (*this_cache);
1601 }
1602
1603 /* Turn the Entry_GR field into a bitmask. */
1604 saved_gr_mask = 0;
1605 for (i = 3; i < u->Entry_GR + 3; i++)
1606 {
1607 /* Frame pointer gets saved into a special location. */
1608 if (u->Save_SP && i == HPPA_FP_REGNUM)
1609 continue;
1610
1611 saved_gr_mask |= (1 << i);
1612 }
1613
1614 /* Turn the Entry_FR field into a bitmask too. */
1615 saved_fr_mask = 0;
1616 for (i = 12; i < u->Entry_FR + 12; i++)
1617 saved_fr_mask |= (1 << i);
1618
1619 /* Loop until we find everything of interest or hit a branch.
1620
1621 For unoptimized GCC code and for any HP CC code this will never ever
1622 examine any user instructions.
1623
1624 For optimized GCC code we're faced with problems. GCC will schedule
1625 its prologue and make prologue instructions available for delay slot
1626 filling. The end result is user code gets mixed in with the prologue
1627 and a prologue instruction may be in the delay slot of the first branch
1628 or call.
1629
1630 Some unexpected things are expected with debugging optimized code, so
1631 we allow this routine to walk past user instructions in optimized
1632 GCC code. */
1633 {
1634 int final_iteration = 0;
1635 CORE_ADDR pc, end_pc;
1636 int looking_for_sp = u->Save_SP;
1637 int looking_for_rp = u->Save_RP;
1638 int fp_loc = -1;
1639
1640 /* We have to use skip_prologue_hard_way instead of just
1641 skip_prologue_using_sal, in case we stepped into a function without
1642 symbol information. hppa_skip_prologue also bounds the returned
1643 pc by the passed in pc, so it will not return a pc in the next
1644 function.
1645
1646 We used to call hppa_skip_prologue to find the end of the prologue,
1647 but if some non-prologue instructions get scheduled into the prologue,
1648 and the program is compiled with debug information, the "easy" way
1649 in hppa_skip_prologue will return a prologue end that is too early
1650 for us to notice any potential frame adjustments. */
1651
1652 /* We used to use frame_func_unwind () to locate the beginning of the
1653 function to pass to skip_prologue (). However, when objects are
1654 compiled without debug symbols, frame_func_unwind can return the wrong
1655 function (or 0). We can do better than that by using unwind records. */
1656
1657 prologue_end = skip_prologue_hard_way (u->region_start, 0);
1658 end_pc = frame_pc_unwind (next_frame);
1659
1660 if (prologue_end != 0 && end_pc > prologue_end)
1661 end_pc = prologue_end;
1662
1663 frame_size = 0;
1664
1665 for (pc = u->region_start;
1666 ((saved_gr_mask || saved_fr_mask
1667 || looking_for_sp || looking_for_rp
1668 || frame_size < (u->Total_frame_size << 3))
1669 && pc < end_pc);
1670 pc += 4)
1671 {
1672 int reg;
1673 char buf4[4];
1674 long inst;
1675
1676 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1677 sizeof buf4))
1678 {
1679 error ("Cannot read instruction at 0x%s\n", paddr_nz (pc));
1680 return (*this_cache);
1681 }
1682
1683 inst = extract_unsigned_integer (buf4, sizeof buf4);
1684
1685 /* Note the interesting effects of this instruction. */
1686 frame_size += prologue_inst_adjust_sp (inst);
1687
1688 /* There are limited ways to store the return pointer into the
1689 stack. */
1690 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1691 {
1692 looking_for_rp = 0;
1693 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1694 }
1695 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1696 {
1697 looking_for_rp = 0;
1698 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1699 }
1700 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1701 {
1702 looking_for_rp = 0;
1703 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1704 }
1705
1706 /* Check to see if we saved SP into the stack. This also
1707 happens to indicate the location of the saved frame
1708 pointer. */
1709 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1710 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1711 {
1712 looking_for_sp = 0;
1713 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1714 }
1715 else if (inst == 0x08030241) /* copy %r3, %r1 */
1716 {
1717 fp_in_r1 = 1;
1718 }
1719
1720 /* Account for general and floating-point register saves. */
1721 reg = inst_saves_gr (inst);
1722 if (reg >= 3 && reg <= 18
1723 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1724 {
1725 saved_gr_mask &= ~(1 << reg);
1726 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1727 /* stwm with a positive displacement is a _post_
1728 _modify_. */
1729 cache->saved_regs[reg].addr = 0;
1730 else if ((inst & 0xfc00000c) == 0x70000008)
1731 /* A std has explicit post_modify forms. */
1732 cache->saved_regs[reg].addr = 0;
1733 else
1734 {
1735 CORE_ADDR offset;
1736
1737 if ((inst >> 26) == 0x1c)
1738 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1739 else if ((inst >> 26) == 0x03)
1740 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1741 else
1742 offset = hppa_extract_14 (inst);
1743
1744 /* Handle code with and without frame pointers. */
1745 if (u->Save_SP)
1746 cache->saved_regs[reg].addr = offset;
1747 else
1748 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1749 }
1750 }
1751
1752 /* GCC handles callee saved FP regs a little differently.
1753
1754 It emits an instruction to put the value of the start of
1755 the FP store area into %r1. It then uses fstds,ma with a
1756 basereg of %r1 for the stores.
1757
1758 HP CC emits them at the current stack pointer modifying the
1759 stack pointer as it stores each register. */
1760
1761 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1762 if ((inst & 0xffffc000) == 0x34610000
1763 || (inst & 0xffffc000) == 0x37c10000)
1764 fp_loc = hppa_extract_14 (inst);
1765
1766 reg = inst_saves_fr (inst);
1767 if (reg >= 12 && reg <= 21)
1768 {
1769 /* Note +4 braindamage below is necessary because the FP
1770 status registers are internally 8 registers rather than
1771 the expected 4 registers. */
1772 saved_fr_mask &= ~(1 << reg);
1773 if (fp_loc == -1)
1774 {
1775 /* 1st HP CC FP register store. After this
1776 instruction we've set enough state that the GCC and
1777 HPCC code are both handled in the same manner. */
1778 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1779 fp_loc = 8;
1780 }
1781 else
1782 {
1783 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1784 fp_loc += 8;
1785 }
1786 }
1787
1788 /* Quit if we hit any kind of branch the previous iteration. */
1789 if (final_iteration)
1790 break;
1791 /* We want to look precisely one instruction beyond the branch
1792 if we have not found everything yet. */
1793 if (is_branch (inst))
1794 final_iteration = 1;
1795 }
1796 }
1797
1798 {
1799 /* The frame base always represents the value of %sp at entry to
1800 the current function (and is thus equivalent to the "saved"
1801 stack pointer. */
1802 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1803 CORE_ADDR fp;
1804
1805 if (hppa_debug)
1806 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1807 "prologue_end=0x%s) ",
1808 paddr_nz (this_sp),
1809 paddr_nz (frame_pc_unwind (next_frame)),
1810 paddr_nz (prologue_end));
1811
1812 /* Check to see if a frame pointer is available, and use it for
1813 frame unwinding if it is.
1814
1815 There are some situations where we need to rely on the frame
1816 pointer to do stack unwinding. For example, if a function calls
1817 alloca (), the stack pointer can get adjusted inside the body of
1818 the function. In this case, the ABI requires that the compiler
1819 maintain a frame pointer for the function.
1820
1821 The unwind record has a flag (alloca_frame) that indicates that
1822 a function has a variable frame; unfortunately, gcc/binutils
1823 does not set this flag. Instead, whenever a frame pointer is used
1824 and saved on the stack, the Save_SP flag is set. We use this to
1825 decide whether to use the frame pointer for unwinding.
1826
1827 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1828 instead of Save_SP. */
1829
1830 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1831
1832 if (frame_pc_unwind (next_frame) >= prologue_end
1833 && u->Save_SP && fp != 0)
1834 {
1835 cache->base = fp;
1836
1837 if (hppa_debug)
1838 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1839 paddr_nz (cache->base));
1840 }
1841 else if (u->Save_SP
1842 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1843 {
1844 /* Both we're expecting the SP to be saved and the SP has been
1845 saved. The entry SP value is saved at this frame's SP
1846 address. */
1847 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1848
1849 if (hppa_debug)
1850 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1851 paddr_nz (cache->base));
1852 }
1853 else
1854 {
1855 /* The prologue has been slowly allocating stack space. Adjust
1856 the SP back. */
1857 cache->base = this_sp - frame_size;
1858 if (hppa_debug)
1859 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
1860 paddr_nz (cache->base));
1861
1862 }
1863 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1864 }
1865
1866 /* The PC is found in the "return register", "Millicode" uses "r31"
1867 as the return register while normal code uses "rp". */
1868 if (u->Millicode)
1869 {
1870 if (trad_frame_addr_p (cache->saved_regs, 31))
1871 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
1872 else
1873 {
1874 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
1875 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
1876 }
1877 }
1878 else
1879 {
1880 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1881 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1882 else
1883 {
1884 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1885 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1886 }
1887 }
1888
1889 /* If Save_SP is set, then we expect the frame pointer to be saved in the
1890 frame. However, there is a one-insn window where we haven't saved it
1891 yet, but we've already clobbered it. Detect this case and fix it up.
1892
1893 The prologue sequence for frame-pointer functions is:
1894 0: stw %rp, -20(%sp)
1895 4: copy %r3, %r1
1896 8: copy %sp, %r3
1897 c: stw,ma %r1, XX(%sp)
1898
1899 So if we are at offset c, the r3 value that we want is not yet saved
1900 on the stack, but it's been overwritten. The prologue analyzer will
1901 set fp_in_r1 when it sees the copy insn so we know to get the value
1902 from r1 instead. */
1903 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
1904 && fp_in_r1)
1905 {
1906 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
1907 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
1908 }
1909
1910 {
1911 /* Convert all the offsets into addresses. */
1912 int reg;
1913 for (reg = 0; reg < NUM_REGS; reg++)
1914 {
1915 if (trad_frame_addr_p (cache->saved_regs, reg))
1916 cache->saved_regs[reg].addr += cache->base;
1917 }
1918 }
1919
1920 if (hppa_debug)
1921 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1922 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1923 return (*this_cache);
1924 }
1925
1926 static void
1927 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1928 struct frame_id *this_id)
1929 {
1930 struct hppa_frame_cache *info;
1931 CORE_ADDR pc = frame_pc_unwind (next_frame);
1932 struct unwind_table_entry *u;
1933
1934 info = hppa_frame_cache (next_frame, this_cache);
1935 u = find_unwind_entry (pc);
1936
1937 (*this_id) = frame_id_build (info->base, u->region_start);
1938 }
1939
1940 static void
1941 hppa_frame_prev_register (struct frame_info *next_frame,
1942 void **this_cache,
1943 int regnum, int *optimizedp,
1944 enum lval_type *lvalp, CORE_ADDR *addrp,
1945 int *realnump, void *valuep)
1946 {
1947 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1948 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1949 optimizedp, lvalp, addrp, realnump, valuep);
1950 }
1951
1952 static const struct frame_unwind hppa_frame_unwind =
1953 {
1954 NORMAL_FRAME,
1955 hppa_frame_this_id,
1956 hppa_frame_prev_register
1957 };
1958
1959 static const struct frame_unwind *
1960 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1961 {
1962 CORE_ADDR pc = frame_pc_unwind (next_frame);
1963
1964 if (find_unwind_entry (pc))
1965 return &hppa_frame_unwind;
1966
1967 return NULL;
1968 }
1969
1970 /* This is a generic fallback frame unwinder that kicks in if we fail all
1971 the other ones. Normally we would expect the stub and regular unwinder
1972 to work, but in some cases we might hit a function that just doesn't
1973 have any unwind information available. In this case we try to do
1974 unwinding solely based on code reading. This is obviously going to be
1975 slow, so only use this as a last resort. Currently this will only
1976 identify the stack and pc for the frame. */
1977
1978 static struct hppa_frame_cache *
1979 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1980 {
1981 struct hppa_frame_cache *cache;
1982 unsigned int frame_size;
1983 int found_rp;
1984 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1985
1986 if (hppa_debug)
1987 fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
1988 frame_relative_level(next_frame));
1989
1990 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1991 (*this_cache) = cache;
1992 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1993
1994 pc = frame_func_unwind (next_frame);
1995 cur_pc = frame_pc_unwind (next_frame);
1996 frame_size = 0;
1997 found_rp = 0;
1998
1999 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
2000
2001 if (start_pc == 0 || end_pc == 0)
2002 {
2003 error ("Cannot find bounds of current function (@0x%s), unwinding will "
2004 "fail.", paddr_nz (pc));
2005 return cache;
2006 }
2007
2008 if (end_pc > cur_pc)
2009 end_pc = cur_pc;
2010
2011 for (pc = start_pc; pc < end_pc; pc += 4)
2012 {
2013 unsigned int insn;
2014
2015 insn = read_memory_unsigned_integer (pc, 4);
2016
2017 frame_size += prologue_inst_adjust_sp (insn);
2018
2019 /* There are limited ways to store the return pointer into the
2020 stack. */
2021 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2022 {
2023 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2024 found_rp = 1;
2025 }
2026 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
2027 {
2028 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2029 found_rp = 1;
2030 }
2031 }
2032
2033 if (hppa_debug)
2034 fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
2035 frame_size, found_rp);
2036
2037 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
2038 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2039
2040 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2041 {
2042 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2043 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2044 }
2045 else
2046 {
2047 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2048 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2049 }
2050
2051 return cache;
2052 }
2053
2054 static void
2055 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2056 struct frame_id *this_id)
2057 {
2058 struct hppa_frame_cache *info =
2059 hppa_fallback_frame_cache (next_frame, this_cache);
2060 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2061 }
2062
2063 static void
2064 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2065 void **this_cache,
2066 int regnum, int *optimizedp,
2067 enum lval_type *lvalp, CORE_ADDR *addrp,
2068 int *realnump, void *valuep)
2069 {
2070 struct hppa_frame_cache *info =
2071 hppa_fallback_frame_cache (next_frame, this_cache);
2072 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2073 optimizedp, lvalp, addrp, realnump, valuep);
2074 }
2075
2076 static const struct frame_unwind hppa_fallback_frame_unwind =
2077 {
2078 NORMAL_FRAME,
2079 hppa_fallback_frame_this_id,
2080 hppa_fallback_frame_prev_register
2081 };
2082
2083 static const struct frame_unwind *
2084 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2085 {
2086 return &hppa_fallback_frame_unwind;
2087 }
2088
2089 /* Stub frames, used for all kinds of call stubs. */
2090 struct hppa_stub_unwind_cache
2091 {
2092 CORE_ADDR base;
2093 struct trad_frame_saved_reg *saved_regs;
2094 };
2095
2096 static struct hppa_stub_unwind_cache *
2097 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2098 void **this_cache)
2099 {
2100 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2101 struct hppa_stub_unwind_cache *info;
2102 struct unwind_table_entry *u;
2103
2104 if (*this_cache)
2105 return *this_cache;
2106
2107 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2108 *this_cache = info;
2109 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2110
2111 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2112
2113 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2114 {
2115 /* HPUX uses export stubs in function calls; the export stub clobbers
2116 the return value of the caller, and, later restores it from the
2117 stack. */
2118 u = find_unwind_entry (frame_pc_unwind (next_frame));
2119
2120 if (u && u->stub_unwind.stub_type == EXPORT)
2121 {
2122 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2123
2124 return info;
2125 }
2126 }
2127
2128 /* By default we assume that stubs do not change the rp. */
2129 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2130
2131 return info;
2132 }
2133
2134 static void
2135 hppa_stub_frame_this_id (struct frame_info *next_frame,
2136 void **this_prologue_cache,
2137 struct frame_id *this_id)
2138 {
2139 struct hppa_stub_unwind_cache *info
2140 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2141 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2142 }
2143
2144 static void
2145 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2146 void **this_prologue_cache,
2147 int regnum, int *optimizedp,
2148 enum lval_type *lvalp, CORE_ADDR *addrp,
2149 int *realnump, void *valuep)
2150 {
2151 struct hppa_stub_unwind_cache *info
2152 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2153 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2154 optimizedp, lvalp, addrp, realnump, valuep);
2155 }
2156
2157 static const struct frame_unwind hppa_stub_frame_unwind = {
2158 NORMAL_FRAME,
2159 hppa_stub_frame_this_id,
2160 hppa_stub_frame_prev_register
2161 };
2162
2163 static const struct frame_unwind *
2164 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2165 {
2166 CORE_ADDR pc = frame_pc_unwind (next_frame);
2167 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2169
2170 if (pc == 0
2171 || (tdep->in_solib_call_trampoline != NULL
2172 && tdep->in_solib_call_trampoline (pc, NULL))
2173 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2174 return &hppa_stub_frame_unwind;
2175 return NULL;
2176 }
2177
2178 static struct frame_id
2179 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2180 {
2181 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2182 HPPA_SP_REGNUM),
2183 frame_pc_unwind (next_frame));
2184 }
2185
2186 static CORE_ADDR
2187 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2188 {
2189 return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
2190 }
2191
2192 /* Instead of this nasty cast, add a method pvoid() that prints out a
2193 host VOID data type (remember %p isn't portable). */
2194
2195 static CORE_ADDR
2196 hppa_pointer_to_address_hack (void *ptr)
2197 {
2198 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2199 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2200 }
2201
2202 static void
2203 unwind_command (char *exp, int from_tty)
2204 {
2205 CORE_ADDR address;
2206 struct unwind_table_entry *u;
2207
2208 /* If we have an expression, evaluate it and use it as the address. */
2209
2210 if (exp != 0 && *exp != 0)
2211 address = parse_and_eval_address (exp);
2212 else
2213 return;
2214
2215 u = find_unwind_entry (address);
2216
2217 if (!u)
2218 {
2219 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2220 return;
2221 }
2222
2223 printf_unfiltered ("unwind_table_entry (0x%s):\n",
2224 paddr_nz (hppa_pointer_to_address_hack (u)));
2225
2226 printf_unfiltered ("\tregion_start = ");
2227 print_address (u->region_start, gdb_stdout);
2228 gdb_flush (gdb_stdout);
2229
2230 printf_unfiltered ("\n\tregion_end = ");
2231 print_address (u->region_end, gdb_stdout);
2232 gdb_flush (gdb_stdout);
2233
2234 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2235
2236 printf_unfiltered ("\n\tflags =");
2237 pif (Cannot_unwind);
2238 pif (Millicode);
2239 pif (Millicode_save_sr0);
2240 pif (Entry_SR);
2241 pif (Args_stored);
2242 pif (Variable_Frame);
2243 pif (Separate_Package_Body);
2244 pif (Frame_Extension_Millicode);
2245 pif (Stack_Overflow_Check);
2246 pif (Two_Instruction_SP_Increment);
2247 pif (Ada_Region);
2248 pif (Save_SP);
2249 pif (Save_RP);
2250 pif (Save_MRP_in_frame);
2251 pif (extn_ptr_defined);
2252 pif (Cleanup_defined);
2253 pif (MPE_XL_interrupt_marker);
2254 pif (HP_UX_interrupt_marker);
2255 pif (Large_frame);
2256
2257 putchar_unfiltered ('\n');
2258
2259 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2260
2261 pin (Region_description);
2262 pin (Entry_FR);
2263 pin (Entry_GR);
2264 pin (Total_frame_size);
2265 }
2266
2267 void
2268 hppa_skip_permanent_breakpoint (void)
2269 {
2270 /* To step over a breakpoint instruction on the PA takes some
2271 fiddling with the instruction address queue.
2272
2273 When we stop at a breakpoint, the IA queue front (the instruction
2274 we're executing now) points at the breakpoint instruction, and
2275 the IA queue back (the next instruction to execute) points to
2276 whatever instruction we would execute after the breakpoint, if it
2277 were an ordinary instruction. This is the case even if the
2278 breakpoint is in the delay slot of a branch instruction.
2279
2280 Clearly, to step past the breakpoint, we need to set the queue
2281 front to the back. But what do we put in the back? What
2282 instruction comes after that one? Because of the branch delay
2283 slot, the next insn is always at the back + 4. */
2284 write_register (HPPA_PCOQ_HEAD_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM));
2285 write_register (HPPA_PCSQ_HEAD_REGNUM, read_register (HPPA_PCSQ_TAIL_REGNUM));
2286
2287 write_register (HPPA_PCOQ_TAIL_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM) + 4);
2288 /* We can leave the tail's space the same, since there's no jump. */
2289 }
2290
2291 int
2292 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2293 {
2294 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2295
2296 An example of this occurs when an a.out is linked against a foo.sl.
2297 The foo.sl defines a global bar(), and the a.out declares a signature
2298 for bar(). However, the a.out doesn't directly call bar(), but passes
2299 its address in another call.
2300
2301 If you have this scenario and attempt to "break bar" before running,
2302 gdb will find a minimal symbol for bar() in the a.out. But that
2303 symbol's address will be negative. What this appears to denote is
2304 an index backwards from the base of the procedure linkage table (PLT)
2305 into the data linkage table (DLT), the end of which is contiguous
2306 with the start of the PLT. This is clearly not a valid address for
2307 us to set a breakpoint on.
2308
2309 Note that one must be careful in how one checks for a negative address.
2310 0xc0000000 is a legitimate address of something in a shared text
2311 segment, for example. Since I don't know what the possible range
2312 is of these "really, truly negative" addresses that come from the
2313 minimal symbols, I'm resorting to the gross hack of checking the
2314 top byte of the address for all 1's. Sigh. */
2315
2316 return (!target_has_stack && (pc & 0xFF000000));
2317 }
2318
2319 int
2320 hppa_instruction_nullified (void)
2321 {
2322 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
2323 avoid the type cast. I'm leaving it as is for now as I'm doing
2324 semi-mechanical multiarching-related changes. */
2325 const int ipsw = (int) read_register (HPPA_IPSW_REGNUM);
2326 const int flags = (int) read_register (HPPA_FLAGS_REGNUM);
2327
2328 return ((ipsw & 0x00200000) && !(flags & 0x2));
2329 }
2330
2331 /* Return the GDB type object for the "standard" data type of data
2332 in register N. */
2333
2334 static struct type *
2335 hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
2336 {
2337 if (reg_nr < HPPA_FP4_REGNUM)
2338 return builtin_type_uint32;
2339 else
2340 return builtin_type_ieee_single_big;
2341 }
2342
2343 /* Return the GDB type object for the "standard" data type of data
2344 in register N. hppa64 version. */
2345
2346 static struct type *
2347 hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
2348 {
2349 if (reg_nr < HPPA_FP4_REGNUM)
2350 return builtin_type_uint64;
2351 else
2352 return builtin_type_ieee_double_big;
2353 }
2354
2355 /* Return True if REGNUM is not a register available to the user
2356 through ptrace(). */
2357
2358 static int
2359 hppa_cannot_store_register (int regnum)
2360 {
2361 return (regnum == 0
2362 || regnum == HPPA_PCSQ_HEAD_REGNUM
2363 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2364 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2365
2366 }
2367
2368 static CORE_ADDR
2369 hppa_smash_text_address (CORE_ADDR addr)
2370 {
2371 /* The low two bits of the PC on the PA contain the privilege level.
2372 Some genius implementing a (non-GCC) compiler apparently decided
2373 this means that "addresses" in a text section therefore include a
2374 privilege level, and thus symbol tables should contain these bits.
2375 This seems like a bonehead thing to do--anyway, it seems to work
2376 for our purposes to just ignore those bits. */
2377
2378 return (addr &= ~0x3);
2379 }
2380
2381 /* Get the ith function argument for the current function. */
2382 static CORE_ADDR
2383 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2384 struct type *type)
2385 {
2386 CORE_ADDR addr;
2387 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
2388 return addr;
2389 }
2390
2391 static void
2392 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2393 int regnum, void *buf)
2394 {
2395 ULONGEST tmp;
2396
2397 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2398 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2399 tmp &= ~0x3;
2400 store_unsigned_integer (buf, sizeof(tmp), tmp);
2401 }
2402
2403 static CORE_ADDR
2404 hppa_find_global_pointer (struct value *function)
2405 {
2406 return 0;
2407 }
2408
2409 void
2410 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2411 struct trad_frame_saved_reg saved_regs[],
2412 int regnum, int *optimizedp,
2413 enum lval_type *lvalp, CORE_ADDR *addrp,
2414 int *realnump, void *valuep)
2415 {
2416 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2417 {
2418 if (valuep)
2419 {
2420 CORE_ADDR pc;
2421
2422 trad_frame_get_prev_register (next_frame, saved_regs,
2423 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2424 lvalp, addrp, realnump, valuep);
2425
2426 pc = extract_unsigned_integer (valuep, 4);
2427 store_unsigned_integer (valuep, 4, pc + 4);
2428 }
2429
2430 /* It's a computed value. */
2431 *optimizedp = 0;
2432 *lvalp = not_lval;
2433 *addrp = 0;
2434 *realnump = -1;
2435 return;
2436 }
2437
2438 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2439 optimizedp, lvalp, addrp, realnump, valuep);
2440 }
2441 \f
2442
2443 /* Here is a table of C type sizes on hppa with various compiles
2444 and options. I measured this on PA 9000/800 with HP-UX 11.11
2445 and these compilers:
2446
2447 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2448 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2449 /opt/aCC/bin/aCC B3910B A.03.45
2450 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2451
2452 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2453 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2454 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2455 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2456 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2457 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2458 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2459 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2460
2461 Each line is:
2462
2463 compiler and options
2464 char, short, int, long, long long
2465 float, double, long double
2466 char *, void (*)()
2467
2468 So all these compilers use either ILP32 or LP64 model.
2469 TODO: gcc has more options so it needs more investigation.
2470
2471 For floating point types, see:
2472
2473 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2474 HP-UX floating-point guide, hpux 11.00
2475
2476 -- chastain 2003-12-18 */
2477
2478 static struct gdbarch *
2479 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2480 {
2481 struct gdbarch_tdep *tdep;
2482 struct gdbarch *gdbarch;
2483
2484 /* Try to determine the ABI of the object we are loading. */
2485 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2486 {
2487 /* If it's a SOM file, assume it's HP/UX SOM. */
2488 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2489 info.osabi = GDB_OSABI_HPUX_SOM;
2490 }
2491
2492 /* find a candidate among the list of pre-declared architectures. */
2493 arches = gdbarch_list_lookup_by_info (arches, &info);
2494 if (arches != NULL)
2495 return (arches->gdbarch);
2496
2497 /* If none found, then allocate and initialize one. */
2498 tdep = XZALLOC (struct gdbarch_tdep);
2499 gdbarch = gdbarch_alloc (&info, tdep);
2500
2501 /* Determine from the bfd_arch_info structure if we are dealing with
2502 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2503 then default to a 32bit machine. */
2504 if (info.bfd_arch_info != NULL)
2505 tdep->bytes_per_address =
2506 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2507 else
2508 tdep->bytes_per_address = 4;
2509
2510 tdep->find_global_pointer = hppa_find_global_pointer;
2511
2512 /* Some parts of the gdbarch vector depend on whether we are running
2513 on a 32 bits or 64 bits target. */
2514 switch (tdep->bytes_per_address)
2515 {
2516 case 4:
2517 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2518 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2519 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2520 break;
2521 case 8:
2522 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2523 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2524 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2525 break;
2526 default:
2527 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2528 tdep->bytes_per_address);
2529 }
2530
2531 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2532 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2533
2534 /* The following gdbarch vector elements are the same in both ILP32
2535 and LP64, but might show differences some day. */
2536 set_gdbarch_long_long_bit (gdbarch, 64);
2537 set_gdbarch_long_double_bit (gdbarch, 128);
2538 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2539
2540 /* The following gdbarch vector elements do not depend on the address
2541 size, or in any other gdbarch element previously set. */
2542 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2543 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2544 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2545 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2546 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
2547 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
2548 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2549 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2550 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2551 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2552 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
2553
2554 /* Helper for function argument information. */
2555 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2556
2557 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2558
2559 /* When a hardware watchpoint triggers, we'll move the inferior past
2560 it by removing all eventpoints; stepping past the instruction
2561 that caused the trigger; reinserting eventpoints; and checking
2562 whether any watched location changed. */
2563 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2564
2565 /* Inferior function call methods. */
2566 switch (tdep->bytes_per_address)
2567 {
2568 case 4:
2569 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2570 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2571 set_gdbarch_convert_from_func_ptr_addr
2572 (gdbarch, hppa32_convert_from_func_ptr_addr);
2573 break;
2574 case 8:
2575 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2576 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2577 break;
2578 default:
2579 internal_error (__FILE__, __LINE__, "bad switch");
2580 }
2581
2582 /* Struct return methods. */
2583 switch (tdep->bytes_per_address)
2584 {
2585 case 4:
2586 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2587 break;
2588 case 8:
2589 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2590 break;
2591 default:
2592 internal_error (__FILE__, __LINE__, "bad switch");
2593 }
2594
2595 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2596 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2597
2598 /* Frame unwind methods. */
2599 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2600 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2601
2602 /* Hook in ABI-specific overrides, if they have been registered. */
2603 gdbarch_init_osabi (info, gdbarch);
2604
2605 /* Hook in the default unwinders. */
2606 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2607 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2608 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2609
2610 return gdbarch;
2611 }
2612
2613 static void
2614 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2615 {
2616 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2617
2618 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2619 tdep->bytes_per_address);
2620 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2621 }
2622
2623 void
2624 _initialize_hppa_tdep (void)
2625 {
2626 struct cmd_list_element *c;
2627 void break_at_finish_command (char *arg, int from_tty);
2628 void tbreak_at_finish_command (char *arg, int from_tty);
2629 void break_at_finish_at_depth_command (char *arg, int from_tty);
2630
2631 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2632
2633 hppa_objfile_priv_data = register_objfile_data ();
2634
2635 add_cmd ("unwind", class_maintenance, unwind_command,
2636 "Print unwind table entry at given address.",
2637 &maintenanceprintlist);
2638
2639 deprecate_cmd (add_com ("xbreak", class_breakpoint,
2640 break_at_finish_command,
2641 concat ("Set breakpoint at procedure exit. \n\
2642 Argument may be function name, or \"*\" and an address.\n\
2643 If function is specified, break at end of code for that function.\n\
2644 If an address is specified, break at the end of the function that contains \n\
2645 that exact address.\n",
2646 "With no arg, uses current execution address of selected stack frame.\n\
2647 This is useful for breaking on return to a stack frame.\n\
2648 \n\
2649 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2650 \n\
2651 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2652 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2653 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2654 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2655 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2656
2657 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2658 tbreak_at_finish_command,
2659 "Set temporary breakpoint at procedure exit. Either there should\n\
2660 be no argument or the argument must be a depth.\n"), NULL);
2661 set_cmd_completer (c, location_completer);
2662
2663 if (xdb_commands)
2664 deprecate_cmd (add_com ("bx", class_breakpoint,
2665 break_at_finish_at_depth_command,
2666 "Set breakpoint at procedure exit. Either there should\n\
2667 be no argument or the argument must be a depth.\n"), NULL);
2668
2669 /* Debug this files internals. */
2670 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, "\
2671 Set whether hppa target specific debugging information should be displayed.", "\
2672 Show whether hppa target specific debugging information is displayed.", "\
2673 This flag controls whether hppa target specific debugging information is\n\
2674 displayed. This information is particularly useful for debugging frame\n\
2675 unwinding problems.", "hppa debug flag is %s.",
2676 NULL, NULL, &setdebuglist, &showdebuglist);
2677 }
This page took 0.106399 seconds and 4 git commands to generate.