1 /* Target-dependent code for the HP PA architecture, for GDB.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
10 This file is part of GDB.
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
33 #include "completer.h"
36 #include "gdb_assert.h"
37 #include "infttrace.h"
38 #include "arch-utils.h"
39 /* For argument passing to the inferior */
43 #include "trad-frame.h"
44 #include "frame-unwind.h"
45 #include "frame-base.h"
48 #include <sys/types.h>
52 #include <sys/param.h>
55 #include <sys/ptrace.h>
56 #include <machine/save_state.h>
58 #ifdef COFF_ENCAPSULATE
59 #include "a.out.encap.h"
63 /*#include <sys/user.h> After a.out.h */
73 #include "hppa-tdep.h"
75 /* Some local constants. */
76 static const int hppa32_num_regs
= 128;
77 static const int hppa64_num_regs
= 96;
79 static const int hppa64_call_dummy_breakpoint_offset
= 22 * 4;
81 /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
82 word on the target machine, not the size of an instruction. Since
83 a word on this target holds two instructions we have to divide the
84 instruction size by two to get the word size of the dummy. */
85 static const int hppa32_call_dummy_length
= INSTRUCTION_SIZE
* 28;
86 static const int hppa64_call_dummy_length
= INSTRUCTION_SIZE
* 26 / 2;
88 /* Get at various relevent fields of an instruction word. */
91 #define MASK_14 0x3fff
92 #define MASK_21 0x1fffff
94 /* Define offsets into the call dummy for the target function address.
95 See comments related to CALL_DUMMY for more info. */
96 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
97 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
99 /* Define offsets into the call dummy for the _sr4export address.
100 See comments related to CALL_DUMMY for more info. */
101 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
102 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
104 /* To support detection of the pseudo-initial frame
105 that threads have. */
106 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
107 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
109 /* Sizes (in bytes) of the native unwind entries. */
110 #define UNWIND_ENTRY_SIZE 16
111 #define STUB_UNWIND_ENTRY_SIZE 8
113 static int get_field (unsigned word
, int from
, int to
);
115 static int extract_5_load (unsigned int);
117 static unsigned extract_5R_store (unsigned int);
119 static unsigned extract_5r_store (unsigned int);
121 static void hppa_frame_init_saved_regs (struct frame_info
*frame
);
123 static void find_dummy_frame_regs (struct frame_info
*, CORE_ADDR
*);
125 static int find_proc_framesize (CORE_ADDR
);
127 static int find_return_regnum (CORE_ADDR
);
129 struct unwind_table_entry
*find_unwind_entry (CORE_ADDR
);
131 static int extract_17 (unsigned int);
133 static unsigned deposit_21 (unsigned int, unsigned int);
135 static int extract_21 (unsigned);
137 static unsigned deposit_14 (int, unsigned int);
139 static int extract_14 (unsigned);
141 static void unwind_command (char *, int);
143 static int low_sign_extend (unsigned int, unsigned int);
145 static int sign_extend (unsigned int, unsigned int);
147 static int restore_pc_queue (CORE_ADDR
*);
149 static int hppa_alignof (struct type
*);
151 static int prologue_inst_adjust_sp (unsigned long);
153 static int is_branch (unsigned long);
155 static int inst_saves_gr (unsigned long);
157 static int inst_saves_fr (unsigned long);
159 static int pc_in_interrupt_handler (CORE_ADDR
);
161 static int pc_in_linker_stub (CORE_ADDR
);
163 static int compare_unwind_entries (const void *, const void *);
165 static void read_unwind_info (struct objfile
*);
167 static void internalize_unwinds (struct objfile
*,
168 struct unwind_table_entry
*,
169 asection
*, unsigned int,
170 unsigned int, CORE_ADDR
);
171 static void pa_print_registers (char *, int, int);
172 static void pa_strcat_registers (char *, int, int, struct ui_file
*);
173 static void pa_register_look_aside (char *, int, long *);
174 static void pa_print_fp_reg (int);
175 static void pa_strcat_fp_reg (int, struct ui_file
*, enum precision_type
);
176 static void record_text_segment_lowaddr (bfd
*, asection
*, void *);
177 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
178 following functions static, once we hppa is partially multiarched. */
179 int hppa_reg_struct_has_addr (int gcc_p
, struct type
*type
);
180 CORE_ADDR
hppa_skip_prologue (CORE_ADDR pc
);
181 CORE_ADDR
hppa_skip_trampoline_code (CORE_ADDR pc
);
182 int hppa_in_solib_call_trampoline (CORE_ADDR pc
, char *name
);
183 int hppa_in_solib_return_trampoline (CORE_ADDR pc
, char *name
);
184 CORE_ADDR
hppa_saved_pc_after_call (struct frame_info
*frame
);
185 int hppa_inner_than (CORE_ADDR lhs
, CORE_ADDR rhs
);
186 CORE_ADDR
hppa64_stack_align (CORE_ADDR sp
);
187 int hppa_pc_requires_run_before_use (CORE_ADDR pc
);
188 int hppa_instruction_nullified (void);
189 int hppa_register_raw_size (int reg_nr
);
190 int hppa_register_byte (int reg_nr
);
191 struct type
* hppa32_register_virtual_type (int reg_nr
);
192 struct type
* hppa64_register_virtual_type (int reg_nr
);
193 void hppa_store_struct_return (CORE_ADDR addr
, CORE_ADDR sp
);
194 void hppa64_extract_return_value (struct type
*type
, char *regbuf
,
196 int hppa64_use_struct_convention (int gcc_p
, struct type
*type
);
197 void hppa64_store_return_value (struct type
*type
, char *valbuf
);
198 int hppa_cannot_store_register (int regnum
);
199 void hppa_init_extra_frame_info (int fromleaf
, struct frame_info
*frame
);
200 CORE_ADDR
hppa_frame_chain (struct frame_info
*frame
);
201 int hppa_frame_chain_valid (CORE_ADDR chain
, struct frame_info
*thisframe
);
202 int hppa_frameless_function_invocation (struct frame_info
*frame
);
203 CORE_ADDR
hppa_frame_saved_pc (struct frame_info
*frame
);
204 CORE_ADDR
hppa_frame_args_address (struct frame_info
*fi
);
205 int hppa_frame_num_args (struct frame_info
*frame
);
206 void hppa_push_dummy_frame (void);
207 void hppa_pop_frame (void);
208 CORE_ADDR
hppa_fix_call_dummy (char *dummy
, CORE_ADDR pc
, CORE_ADDR fun
,
209 int nargs
, struct value
**args
,
210 struct type
*type
, int gcc_p
);
211 CORE_ADDR
hppa_push_arguments (int nargs
, struct value
**args
, CORE_ADDR sp
,
212 int struct_return
, CORE_ADDR struct_addr
);
213 CORE_ADDR
hppa_smash_text_address (CORE_ADDR addr
);
214 CORE_ADDR
hppa_target_read_pc (ptid_t ptid
);
215 void hppa_target_write_pc (CORE_ADDR v
, ptid_t ptid
);
216 CORE_ADDR
hppa_target_read_fp (void);
220 struct minimal_symbol
*msym
;
221 CORE_ADDR solib_handle
;
222 CORE_ADDR return_val
;
226 static int cover_find_stub_with_shl_get (void *);
228 static int is_pa_2
= 0; /* False */
230 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
231 extern int hp_som_som_object_present
;
233 /* In breakpoint.c */
234 extern int exception_catchpoints_are_fragile
;
236 /* Should call_function allocate stack space for a struct return? */
239 hppa64_use_struct_convention (int gcc_p
, struct type
*type
)
241 /* RM: struct upto 128 bits are returned in registers */
242 return TYPE_LENGTH (type
) > 16;
245 /* Handle 32/64-bit struct return conventions. */
247 static enum return_value_convention
248 hppa32_return_value (struct gdbarch
*gdbarch
,
249 struct type
*type
, struct regcache
*regcache
,
250 void *readbuf
, const void *writebuf
)
252 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
255 regcache_cooked_read_part (regcache
, FP4_REGNUM
, 0,
256 TYPE_LENGTH (type
), readbuf
);
257 if (writebuf
!= NULL
)
258 regcache_cooked_write_part (regcache
, FP4_REGNUM
, 0,
259 TYPE_LENGTH (type
), writebuf
);
260 return RETURN_VALUE_REGISTER_CONVENTION
;
262 if (TYPE_LENGTH (type
) <= 2 * 4)
264 /* The value always lives in the right hand end of the register
265 (or register pair)? */
268 int part
= TYPE_LENGTH (type
) % 4;
269 /* The left hand register contains only part of the value,
270 transfer that first so that the rest can be xfered as entire
275 regcache_cooked_read_part (regcache
, reg
, 4 - part
,
277 if (writebuf
!= NULL
)
278 regcache_cooked_write_part (regcache
, reg
, 4 - part
,
282 /* Now transfer the remaining register values. */
283 for (b
= part
; b
< TYPE_LENGTH (type
); b
+= 4)
286 regcache_cooked_read (regcache
, reg
, (char *) readbuf
+ b
);
287 if (writebuf
!= NULL
)
288 regcache_cooked_write (regcache
, reg
, (const char *) writebuf
+ b
);
291 return RETURN_VALUE_REGISTER_CONVENTION
;
294 return RETURN_VALUE_STRUCT_CONVENTION
;
297 static enum return_value_convention
298 hppa64_return_value (struct gdbarch
*gdbarch
,
299 struct type
*type
, struct regcache
*regcache
,
300 void *readbuf
, const void *writebuf
)
302 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
303 are in r28, padded on the left. Aggregates less that 65 bits are
304 in r28, right padded. Aggregates upto 128 bits are in r28 and
305 r29, right padded. */
306 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
308 /* Floats are right aligned? */
309 int offset
= register_size (gdbarch
, FP4_REGNUM
) - TYPE_LENGTH (type
);
311 regcache_cooked_read_part (regcache
, FP4_REGNUM
, offset
,
312 TYPE_LENGTH (type
), readbuf
);
313 if (writebuf
!= NULL
)
314 regcache_cooked_write_part (regcache
, FP4_REGNUM
, offset
,
315 TYPE_LENGTH (type
), writebuf
);
316 return RETURN_VALUE_REGISTER_CONVENTION
;
318 else if (TYPE_LENGTH (type
) <= 8 && is_integral_type (type
))
320 /* Integrals are right aligned. */
321 int offset
= register_size (gdbarch
, FP4_REGNUM
) - TYPE_LENGTH (type
);
323 regcache_cooked_read_part (regcache
, 28, offset
,
324 TYPE_LENGTH (type
), readbuf
);
325 if (writebuf
!= NULL
)
326 regcache_cooked_write_part (regcache
, 28, offset
,
327 TYPE_LENGTH (type
), writebuf
);
328 return RETURN_VALUE_REGISTER_CONVENTION
;
330 else if (TYPE_LENGTH (type
) <= 2 * 8)
332 /* Composite values are left aligned. */
334 for (b
= 0; b
< TYPE_LENGTH (type
); b
+= 8)
336 int part
= (TYPE_LENGTH (type
) - b
- 1) % 8 + 1;
338 regcache_cooked_read_part (regcache
, 28, 0, part
,
339 (char *) readbuf
+ b
);
340 if (writebuf
!= NULL
)
341 regcache_cooked_write_part (regcache
, 28, 0, part
,
342 (const char *) writebuf
+ b
);
344 return RETURN_VALUE_REGISTER_CONVENTION
;
347 return RETURN_VALUE_STRUCT_CONVENTION
;
350 /* Routines to extract various sized constants out of hppa
353 /* This assumes that no garbage lies outside of the lower bits of
357 sign_extend (unsigned val
, unsigned bits
)
359 return (int) (val
>> (bits
- 1) ? (-1 << bits
) | val
: val
);
362 /* For many immediate values the sign bit is the low bit! */
365 low_sign_extend (unsigned val
, unsigned bits
)
367 return (int) ((val
& 0x1 ? (-1 << (bits
- 1)) : 0) | val
>> 1);
370 /* Extract the bits at positions between FROM and TO, using HP's numbering
374 get_field (unsigned word
, int from
, int to
)
376 return ((word
) >> (31 - (to
)) & ((1 << ((to
) - (from
) + 1)) - 1));
379 /* extract the immediate field from a ld{bhw}s instruction */
382 extract_5_load (unsigned word
)
384 return low_sign_extend (word
>> 16 & MASK_5
, 5);
387 /* extract the immediate field from a break instruction */
390 extract_5r_store (unsigned word
)
392 return (word
& MASK_5
);
395 /* extract the immediate field from a {sr}sm instruction */
398 extract_5R_store (unsigned word
)
400 return (word
>> 16 & MASK_5
);
403 /* extract a 14 bit immediate field */
406 extract_14 (unsigned word
)
408 return low_sign_extend (word
& MASK_14
, 14);
411 /* deposit a 14 bit constant in a word */
414 deposit_14 (int opnd
, unsigned word
)
416 unsigned sign
= (opnd
< 0 ? 1 : 0);
418 return word
| ((unsigned) opnd
<< 1 & MASK_14
) | sign
;
421 /* extract a 21 bit constant */
424 extract_21 (unsigned word
)
430 val
= get_field (word
, 20, 20);
432 val
|= get_field (word
, 9, 19);
434 val
|= get_field (word
, 5, 6);
436 val
|= get_field (word
, 0, 4);
438 val
|= get_field (word
, 7, 8);
439 return sign_extend (val
, 21) << 11;
442 /* deposit a 21 bit constant in a word. Although 21 bit constants are
443 usually the top 21 bits of a 32 bit constant, we assume that only
444 the low 21 bits of opnd are relevant */
447 deposit_21 (unsigned opnd
, unsigned word
)
451 val
|= get_field (opnd
, 11 + 14, 11 + 18);
453 val
|= get_field (opnd
, 11 + 12, 11 + 13);
455 val
|= get_field (opnd
, 11 + 19, 11 + 20);
457 val
|= get_field (opnd
, 11 + 1, 11 + 11);
459 val
|= get_field (opnd
, 11 + 0, 11 + 0);
463 /* extract a 17 bit constant from branch instructions, returning the
464 19 bit signed value. */
467 extract_17 (unsigned word
)
469 return sign_extend (get_field (word
, 19, 28) |
470 get_field (word
, 29, 29) << 10 |
471 get_field (word
, 11, 15) << 11 |
472 (word
& 0x1) << 16, 17) << 2;
476 /* Compare the start address for two unwind entries returning 1 if
477 the first address is larger than the second, -1 if the second is
478 larger than the first, and zero if they are equal. */
481 compare_unwind_entries (const void *arg1
, const void *arg2
)
483 const struct unwind_table_entry
*a
= arg1
;
484 const struct unwind_table_entry
*b
= arg2
;
486 if (a
->region_start
> b
->region_start
)
488 else if (a
->region_start
< b
->region_start
)
494 static CORE_ADDR low_text_segment_address
;
497 record_text_segment_lowaddr (bfd
*abfd
, asection
*section
, void *ignored
)
499 if (((section
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
))
500 == (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
))
501 && section
->vma
< low_text_segment_address
)
502 low_text_segment_address
= section
->vma
;
506 internalize_unwinds (struct objfile
*objfile
, struct unwind_table_entry
*table
,
507 asection
*section
, unsigned int entries
, unsigned int size
,
508 CORE_ADDR text_offset
)
510 /* We will read the unwind entries into temporary memory, then
511 fill in the actual unwind table. */
516 char *buf
= alloca (size
);
518 low_text_segment_address
= -1;
520 /* If addresses are 64 bits wide, then unwinds are supposed to
521 be segment relative offsets instead of absolute addresses.
523 Note that when loading a shared library (text_offset != 0) the
524 unwinds are already relative to the text_offset that will be
526 if (TARGET_PTR_BIT
== 64 && text_offset
== 0)
528 bfd_map_over_sections (objfile
->obfd
,
529 record_text_segment_lowaddr
, NULL
);
531 /* ?!? Mask off some low bits. Should this instead subtract
532 out the lowest section's filepos or something like that?
533 This looks very hokey to me. */
534 low_text_segment_address
&= ~0xfff;
535 text_offset
+= low_text_segment_address
;
538 bfd_get_section_contents (objfile
->obfd
, section
, buf
, 0, size
);
540 /* Now internalize the information being careful to handle host/target
542 for (i
= 0; i
< entries
; i
++)
544 table
[i
].region_start
= bfd_get_32 (objfile
->obfd
,
546 table
[i
].region_start
+= text_offset
;
548 table
[i
].region_end
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
549 table
[i
].region_end
+= text_offset
;
551 tmp
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
553 table
[i
].Cannot_unwind
= (tmp
>> 31) & 0x1;
554 table
[i
].Millicode
= (tmp
>> 30) & 0x1;
555 table
[i
].Millicode_save_sr0
= (tmp
>> 29) & 0x1;
556 table
[i
].Region_description
= (tmp
>> 27) & 0x3;
557 table
[i
].reserved1
= (tmp
>> 26) & 0x1;
558 table
[i
].Entry_SR
= (tmp
>> 25) & 0x1;
559 table
[i
].Entry_FR
= (tmp
>> 21) & 0xf;
560 table
[i
].Entry_GR
= (tmp
>> 16) & 0x1f;
561 table
[i
].Args_stored
= (tmp
>> 15) & 0x1;
562 table
[i
].Variable_Frame
= (tmp
>> 14) & 0x1;
563 table
[i
].Separate_Package_Body
= (tmp
>> 13) & 0x1;
564 table
[i
].Frame_Extension_Millicode
= (tmp
>> 12) & 0x1;
565 table
[i
].Stack_Overflow_Check
= (tmp
>> 11) & 0x1;
566 table
[i
].Two_Instruction_SP_Increment
= (tmp
>> 10) & 0x1;
567 table
[i
].Ada_Region
= (tmp
>> 9) & 0x1;
568 table
[i
].cxx_info
= (tmp
>> 8) & 0x1;
569 table
[i
].cxx_try_catch
= (tmp
>> 7) & 0x1;
570 table
[i
].sched_entry_seq
= (tmp
>> 6) & 0x1;
571 table
[i
].reserved2
= (tmp
>> 5) & 0x1;
572 table
[i
].Save_SP
= (tmp
>> 4) & 0x1;
573 table
[i
].Save_RP
= (tmp
>> 3) & 0x1;
574 table
[i
].Save_MRP_in_frame
= (tmp
>> 2) & 0x1;
575 table
[i
].extn_ptr_defined
= (tmp
>> 1) & 0x1;
576 table
[i
].Cleanup_defined
= tmp
& 0x1;
577 tmp
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
579 table
[i
].MPE_XL_interrupt_marker
= (tmp
>> 31) & 0x1;
580 table
[i
].HP_UX_interrupt_marker
= (tmp
>> 30) & 0x1;
581 table
[i
].Large_frame
= (tmp
>> 29) & 0x1;
582 table
[i
].Pseudo_SP_Set
= (tmp
>> 28) & 0x1;
583 table
[i
].reserved4
= (tmp
>> 27) & 0x1;
584 table
[i
].Total_frame_size
= tmp
& 0x7ffffff;
586 /* Stub unwinds are handled elsewhere. */
587 table
[i
].stub_unwind
.stub_type
= 0;
588 table
[i
].stub_unwind
.padding
= 0;
593 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
594 the object file. This info is used mainly by find_unwind_entry() to find
595 out the stack frame size and frame pointer used by procedures. We put
596 everything on the psymbol obstack in the objfile so that it automatically
597 gets freed when the objfile is destroyed. */
600 read_unwind_info (struct objfile
*objfile
)
602 asection
*unwind_sec
, *stub_unwind_sec
;
603 unsigned unwind_size
, stub_unwind_size
, total_size
;
604 unsigned index
, unwind_entries
;
605 unsigned stub_entries
, total_entries
;
606 CORE_ADDR text_offset
;
607 struct obj_unwind_info
*ui
;
608 obj_private_data_t
*obj_private
;
610 text_offset
= ANOFFSET (objfile
->section_offsets
, 0);
611 ui
= (struct obj_unwind_info
*) obstack_alloc (&objfile
->objfile_obstack
,
612 sizeof (struct obj_unwind_info
));
618 /* For reasons unknown the HP PA64 tools generate multiple unwinder
619 sections in a single executable. So we just iterate over every
620 section in the BFD looking for unwinder sections intead of trying
621 to do a lookup with bfd_get_section_by_name.
623 First determine the total size of the unwind tables so that we
624 can allocate memory in a nice big hunk. */
626 for (unwind_sec
= objfile
->obfd
->sections
;
628 unwind_sec
= unwind_sec
->next
)
630 if (strcmp (unwind_sec
->name
, "$UNWIND_START$") == 0
631 || strcmp (unwind_sec
->name
, ".PARISC.unwind") == 0)
633 unwind_size
= bfd_section_size (objfile
->obfd
, unwind_sec
);
634 unwind_entries
= unwind_size
/ UNWIND_ENTRY_SIZE
;
636 total_entries
+= unwind_entries
;
640 /* Now compute the size of the stub unwinds. Note the ELF tools do not
641 use stub unwinds at the curren time. */
642 stub_unwind_sec
= bfd_get_section_by_name (objfile
->obfd
, "$UNWIND_END$");
646 stub_unwind_size
= bfd_section_size (objfile
->obfd
, stub_unwind_sec
);
647 stub_entries
= stub_unwind_size
/ STUB_UNWIND_ENTRY_SIZE
;
651 stub_unwind_size
= 0;
655 /* Compute total number of unwind entries and their total size. */
656 total_entries
+= stub_entries
;
657 total_size
= total_entries
* sizeof (struct unwind_table_entry
);
659 /* Allocate memory for the unwind table. */
660 ui
->table
= (struct unwind_table_entry
*)
661 obstack_alloc (&objfile
->objfile_obstack
, total_size
);
662 ui
->last
= total_entries
- 1;
664 /* Now read in each unwind section and internalize the standard unwind
667 for (unwind_sec
= objfile
->obfd
->sections
;
669 unwind_sec
= unwind_sec
->next
)
671 if (strcmp (unwind_sec
->name
, "$UNWIND_START$") == 0
672 || strcmp (unwind_sec
->name
, ".PARISC.unwind") == 0)
674 unwind_size
= bfd_section_size (objfile
->obfd
, unwind_sec
);
675 unwind_entries
= unwind_size
/ UNWIND_ENTRY_SIZE
;
677 internalize_unwinds (objfile
, &ui
->table
[index
], unwind_sec
,
678 unwind_entries
, unwind_size
, text_offset
);
679 index
+= unwind_entries
;
683 /* Now read in and internalize the stub unwind entries. */
684 if (stub_unwind_size
> 0)
687 char *buf
= alloca (stub_unwind_size
);
689 /* Read in the stub unwind entries. */
690 bfd_get_section_contents (objfile
->obfd
, stub_unwind_sec
, buf
,
691 0, stub_unwind_size
);
693 /* Now convert them into regular unwind entries. */
694 for (i
= 0; i
< stub_entries
; i
++, index
++)
696 /* Clear out the next unwind entry. */
697 memset (&ui
->table
[index
], 0, sizeof (struct unwind_table_entry
));
699 /* Convert offset & size into region_start and region_end.
700 Stuff away the stub type into "reserved" fields. */
701 ui
->table
[index
].region_start
= bfd_get_32 (objfile
->obfd
,
703 ui
->table
[index
].region_start
+= text_offset
;
705 ui
->table
[index
].stub_unwind
.stub_type
= bfd_get_8 (objfile
->obfd
,
708 ui
->table
[index
].region_end
709 = ui
->table
[index
].region_start
+ 4 *
710 (bfd_get_16 (objfile
->obfd
, (bfd_byte
*) buf
) - 1);
716 /* Unwind table needs to be kept sorted. */
717 qsort (ui
->table
, total_entries
, sizeof (struct unwind_table_entry
),
718 compare_unwind_entries
);
720 /* Keep a pointer to the unwind information. */
721 if (objfile
->obj_private
== NULL
)
723 obj_private
= (obj_private_data_t
*)
724 obstack_alloc (&objfile
->objfile_obstack
,
725 sizeof (obj_private_data_t
));
726 obj_private
->unwind_info
= NULL
;
727 obj_private
->so_info
= NULL
;
730 objfile
->obj_private
= obj_private
;
732 obj_private
= (obj_private_data_t
*) objfile
->obj_private
;
733 obj_private
->unwind_info
= ui
;
736 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
737 of the objfiles seeking the unwind table entry for this PC. Each objfile
738 contains a sorted list of struct unwind_table_entry. Since we do a binary
739 search of the unwind tables, we depend upon them to be sorted. */
741 struct unwind_table_entry
*
742 find_unwind_entry (CORE_ADDR pc
)
744 int first
, middle
, last
;
745 struct objfile
*objfile
;
747 /* A function at address 0? Not in HP-UX! */
748 if (pc
== (CORE_ADDR
) 0)
751 ALL_OBJFILES (objfile
)
753 struct obj_unwind_info
*ui
;
755 if (objfile
->obj_private
)
756 ui
= ((obj_private_data_t
*) (objfile
->obj_private
))->unwind_info
;
760 read_unwind_info (objfile
);
761 if (objfile
->obj_private
== NULL
)
762 error ("Internal error reading unwind information.");
763 ui
= ((obj_private_data_t
*) (objfile
->obj_private
))->unwind_info
;
766 /* First, check the cache */
769 && pc
>= ui
->cache
->region_start
770 && pc
<= ui
->cache
->region_end
)
773 /* Not in the cache, do a binary search */
778 while (first
<= last
)
780 middle
= (first
+ last
) / 2;
781 if (pc
>= ui
->table
[middle
].region_start
782 && pc
<= ui
->table
[middle
].region_end
)
784 ui
->cache
= &ui
->table
[middle
];
785 return &ui
->table
[middle
];
788 if (pc
< ui
->table
[middle
].region_start
)
793 } /* ALL_OBJFILES() */
797 const unsigned char *
798 hppa_breakpoint_from_pc (CORE_ADDR
*pc
, int *len
)
800 static const unsigned char breakpoint
[] = {0x00, 0x01, 0x00, 0x04};
801 (*len
) = sizeof (breakpoint
);
805 /* Return the name of a register. */
808 hppa32_register_name (int i
)
810 static char *names
[] = {
811 "flags", "r1", "rp", "r3",
812 "r4", "r5", "r6", "r7",
813 "r8", "r9", "r10", "r11",
814 "r12", "r13", "r14", "r15",
815 "r16", "r17", "r18", "r19",
816 "r20", "r21", "r22", "r23",
817 "r24", "r25", "r26", "dp",
818 "ret0", "ret1", "sp", "r31",
819 "sar", "pcoqh", "pcsqh", "pcoqt",
820 "pcsqt", "eiem", "iir", "isr",
821 "ior", "ipsw", "goto", "sr4",
822 "sr0", "sr1", "sr2", "sr3",
823 "sr5", "sr6", "sr7", "cr0",
824 "cr8", "cr9", "ccr", "cr12",
825 "cr13", "cr24", "cr25", "cr26",
826 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
827 "fpsr", "fpe1", "fpe2", "fpe3",
828 "fpe4", "fpe5", "fpe6", "fpe7",
829 "fr4", "fr4R", "fr5", "fr5R",
830 "fr6", "fr6R", "fr7", "fr7R",
831 "fr8", "fr8R", "fr9", "fr9R",
832 "fr10", "fr10R", "fr11", "fr11R",
833 "fr12", "fr12R", "fr13", "fr13R",
834 "fr14", "fr14R", "fr15", "fr15R",
835 "fr16", "fr16R", "fr17", "fr17R",
836 "fr18", "fr18R", "fr19", "fr19R",
837 "fr20", "fr20R", "fr21", "fr21R",
838 "fr22", "fr22R", "fr23", "fr23R",
839 "fr24", "fr24R", "fr25", "fr25R",
840 "fr26", "fr26R", "fr27", "fr27R",
841 "fr28", "fr28R", "fr29", "fr29R",
842 "fr30", "fr30R", "fr31", "fr31R"
844 if (i
< 0 || i
>= (sizeof (names
) / sizeof (*names
)))
851 hppa64_register_name (int i
)
853 static char *names
[] = {
854 "flags", "r1", "rp", "r3",
855 "r4", "r5", "r6", "r7",
856 "r8", "r9", "r10", "r11",
857 "r12", "r13", "r14", "r15",
858 "r16", "r17", "r18", "r19",
859 "r20", "r21", "r22", "r23",
860 "r24", "r25", "r26", "dp",
861 "ret0", "ret1", "sp", "r31",
862 "sar", "pcoqh", "pcsqh", "pcoqt",
863 "pcsqt", "eiem", "iir", "isr",
864 "ior", "ipsw", "goto", "sr4",
865 "sr0", "sr1", "sr2", "sr3",
866 "sr5", "sr6", "sr7", "cr0",
867 "cr8", "cr9", "ccr", "cr12",
868 "cr13", "cr24", "cr25", "cr26",
869 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
870 "fpsr", "fpe1", "fpe2", "fpe3",
871 "fr4", "fr5", "fr6", "fr7",
872 "fr8", "fr9", "fr10", "fr11",
873 "fr12", "fr13", "fr14", "fr15",
874 "fr16", "fr17", "fr18", "fr19",
875 "fr20", "fr21", "fr22", "fr23",
876 "fr24", "fr25", "fr26", "fr27",
877 "fr28", "fr29", "fr30", "fr31"
879 if (i
< 0 || i
>= (sizeof (names
) / sizeof (*names
)))
887 /* Return the adjustment necessary to make for addresses on the stack
888 as presented by hpread.c.
890 This is necessary because of the stack direction on the PA and the
891 bizarre way in which someone (?) decided they wanted to handle
892 frame pointerless code in GDB. */
894 hpread_adjust_stack_address (CORE_ADDR func_addr
)
896 struct unwind_table_entry
*u
;
898 u
= find_unwind_entry (func_addr
);
902 return u
->Total_frame_size
<< 3;
905 /* Called to determine if PC is in an interrupt handler of some
909 pc_in_interrupt_handler (CORE_ADDR pc
)
911 struct unwind_table_entry
*u
;
912 struct minimal_symbol
*msym_us
;
914 u
= find_unwind_entry (pc
);
918 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
919 its frame isn't a pure interrupt frame. Deal with this. */
920 msym_us
= lookup_minimal_symbol_by_pc (pc
);
922 return (u
->HP_UX_interrupt_marker
923 && !PC_IN_SIGTRAMP (pc
, DEPRECATED_SYMBOL_NAME (msym_us
)));
926 /* Called when no unwind descriptor was found for PC. Returns 1 if it
927 appears that PC is in a linker stub.
929 ?!? Need to handle stubs which appear in PA64 code. */
932 pc_in_linker_stub (CORE_ADDR pc
)
934 int found_magic_instruction
= 0;
938 /* If unable to read memory, assume pc is not in a linker stub. */
939 if (target_read_memory (pc
, buf
, 4) != 0)
942 /* We are looking for something like
944 ; $$dyncall jams RP into this special spot in the frame (RP')
945 ; before calling the "call stub"
948 ldsid (rp),r1 ; Get space associated with RP into r1
949 mtsp r1,sp ; Move it into space register 0
950 be,n 0(sr0),rp) ; back to your regularly scheduled program */
952 /* Maximum known linker stub size is 4 instructions. Search forward
953 from the given PC, then backward. */
954 for (i
= 0; i
< 4; i
++)
956 /* If we hit something with an unwind, stop searching this direction. */
958 if (find_unwind_entry (pc
+ i
* 4) != 0)
961 /* Check for ldsid (rp),r1 which is the magic instruction for a
962 return from a cross-space function call. */
963 if (read_memory_integer (pc
+ i
* 4, 4) == 0x004010a1)
965 found_magic_instruction
= 1;
968 /* Add code to handle long call/branch and argument relocation stubs
972 if (found_magic_instruction
!= 0)
975 /* Now look backward. */
976 for (i
= 0; i
< 4; i
++)
978 /* If we hit something with an unwind, stop searching this direction. */
980 if (find_unwind_entry (pc
- i
* 4) != 0)
983 /* Check for ldsid (rp),r1 which is the magic instruction for a
984 return from a cross-space function call. */
985 if (read_memory_integer (pc
- i
* 4, 4) == 0x004010a1)
987 found_magic_instruction
= 1;
990 /* Add code to handle long call/branch and argument relocation stubs
993 return found_magic_instruction
;
997 find_return_regnum (CORE_ADDR pc
)
999 struct unwind_table_entry
*u
;
1001 u
= find_unwind_entry (pc
);
1012 /* Return size of frame, or -1 if we should use a frame pointer. */
1014 find_proc_framesize (CORE_ADDR pc
)
1016 struct unwind_table_entry
*u
;
1017 struct minimal_symbol
*msym_us
;
1019 /* This may indicate a bug in our callers... */
1020 if (pc
== (CORE_ADDR
) 0)
1023 u
= find_unwind_entry (pc
);
1027 if (pc_in_linker_stub (pc
))
1028 /* Linker stubs have a zero size frame. */
1034 msym_us
= lookup_minimal_symbol_by_pc (pc
);
1036 /* If Save_SP is set, and we're not in an interrupt or signal caller,
1037 then we have a frame pointer. Use it. */
1039 && !pc_in_interrupt_handler (pc
)
1041 && !PC_IN_SIGTRAMP (pc
, DEPRECATED_SYMBOL_NAME (msym_us
)))
1044 return u
->Total_frame_size
<< 3;
1047 /* Return offset from sp at which rp is saved, or 0 if not saved. */
1048 static int rp_saved (CORE_ADDR
);
1051 rp_saved (CORE_ADDR pc
)
1053 struct unwind_table_entry
*u
;
1055 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
1056 if (pc
== (CORE_ADDR
) 0)
1059 u
= find_unwind_entry (pc
);
1063 if (pc_in_linker_stub (pc
))
1064 /* This is the so-called RP'. */
1071 return (TARGET_PTR_BIT
== 64 ? -16 : -20);
1072 else if (u
->stub_unwind
.stub_type
!= 0)
1074 switch (u
->stub_unwind
.stub_type
)
1079 case PARAMETER_RELOCATION
:
1090 hppa_frameless_function_invocation (struct frame_info
*frame
)
1092 struct unwind_table_entry
*u
;
1094 u
= find_unwind_entry (get_frame_pc (frame
));
1099 return (u
->Total_frame_size
== 0 && u
->stub_unwind
.stub_type
== 0);
1102 /* Immediately after a function call, return the saved pc.
1103 Can't go through the frames for this because on some machines
1104 the new frame is not set up until the new function executes
1105 some instructions. */
1108 hppa_saved_pc_after_call (struct frame_info
*frame
)
1112 struct unwind_table_entry
*u
;
1114 ret_regnum
= find_return_regnum (get_frame_pc (frame
));
1115 pc
= read_register (ret_regnum
) & ~0x3;
1117 /* If PC is in a linker stub, then we need to dig the address
1118 the stub will return to out of the stack. */
1119 u
= find_unwind_entry (pc
);
1120 if (u
&& u
->stub_unwind
.stub_type
!= 0)
1121 return DEPRECATED_FRAME_SAVED_PC (frame
);
1127 hppa_frame_saved_pc (struct frame_info
*frame
)
1129 CORE_ADDR pc
= get_frame_pc (frame
);
1130 struct unwind_table_entry
*u
;
1131 CORE_ADDR old_pc
= 0;
1132 int spun_around_loop
= 0;
1135 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1136 at the base of the frame in an interrupt handler. Registers within
1137 are saved in the exact same order as GDB numbers registers. How
1139 if (pc_in_interrupt_handler (pc
))
1140 return read_memory_integer (get_frame_base (frame
) + PC_REGNUM
* 4,
1141 TARGET_PTR_BIT
/ 8) & ~0x3;
1143 if ((get_frame_pc (frame
) >= get_frame_base (frame
)
1144 && (get_frame_pc (frame
)
1145 <= (get_frame_base (frame
)
1146 /* A call dummy is sized in words, but it is actually a
1147 series of instructions. Account for that scaling
1149 + ((DEPRECATED_REGISTER_SIZE
/ INSTRUCTION_SIZE
)
1150 * DEPRECATED_CALL_DUMMY_LENGTH
)
1151 /* Similarly we have to account for 64bit wide register
1153 + (32 * DEPRECATED_REGISTER_SIZE
)
1154 /* We always consider FP regs 8 bytes long. */
1155 + (NUM_REGS
- FP0_REGNUM
) * 8
1156 /* Similarly we have to account for 64bit wide register
1158 + (6 * DEPRECATED_REGISTER_SIZE
)))))
1160 return read_memory_integer ((get_frame_base (frame
)
1161 + (TARGET_PTR_BIT
== 64 ? -16 : -20)),
1162 TARGET_PTR_BIT
/ 8) & ~0x3;
1165 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1166 /* Deal with signal handler caller frames too. */
1167 if ((get_frame_type (frame
) == SIGTRAMP_FRAME
))
1170 FRAME_SAVED_PC_IN_SIGTRAMP (frame
, &rp
);
1175 if (hppa_frameless_function_invocation (frame
))
1179 ret_regnum
= find_return_regnum (pc
);
1181 /* If the next frame is an interrupt frame or a signal
1182 handler caller, then we need to look in the saved
1183 register area to get the return pointer (the values
1184 in the registers may not correspond to anything useful). */
1185 if (get_next_frame (frame
)
1186 && ((get_frame_type (get_next_frame (frame
)) == SIGTRAMP_FRAME
)
1187 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame
)))))
1189 CORE_ADDR
*saved_regs
;
1190 hppa_frame_init_saved_regs (get_next_frame (frame
));
1191 saved_regs
= deprecated_get_frame_saved_regs (get_next_frame (frame
));
1192 if (read_memory_integer (saved_regs
[FLAGS_REGNUM
],
1193 TARGET_PTR_BIT
/ 8) & 0x2)
1195 pc
= read_memory_integer (saved_regs
[31],
1196 TARGET_PTR_BIT
/ 8) & ~0x3;
1198 /* Syscalls are really two frames. The syscall stub itself
1199 with a return pointer in %rp and the kernel call with
1200 a return pointer in %r31. We return the %rp variant
1201 if %r31 is the same as frame->pc. */
1202 if (pc
== get_frame_pc (frame
))
1203 pc
= read_memory_integer (saved_regs
[RP_REGNUM
],
1204 TARGET_PTR_BIT
/ 8) & ~0x3;
1207 pc
= read_memory_integer (saved_regs
[RP_REGNUM
],
1208 TARGET_PTR_BIT
/ 8) & ~0x3;
1211 pc
= read_register (ret_regnum
) & ~0x3;
1215 spun_around_loop
= 0;
1219 rp_offset
= rp_saved (pc
);
1221 /* Similar to code in frameless function case. If the next
1222 frame is a signal or interrupt handler, then dig the right
1223 information out of the saved register info. */
1225 && get_next_frame (frame
)
1226 && ((get_frame_type (get_next_frame (frame
)) == SIGTRAMP_FRAME
)
1227 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame
)))))
1229 CORE_ADDR
*saved_regs
;
1230 hppa_frame_init_saved_regs (get_next_frame (frame
));
1231 saved_regs
= deprecated_get_frame_saved_regs (get_next_frame (frame
));
1232 if (read_memory_integer (saved_regs
[FLAGS_REGNUM
],
1233 TARGET_PTR_BIT
/ 8) & 0x2)
1235 pc
= read_memory_integer (saved_regs
[31],
1236 TARGET_PTR_BIT
/ 8) & ~0x3;
1238 /* Syscalls are really two frames. The syscall stub itself
1239 with a return pointer in %rp and the kernel call with
1240 a return pointer in %r31. We return the %rp variant
1241 if %r31 is the same as frame->pc. */
1242 if (pc
== get_frame_pc (frame
))
1243 pc
= read_memory_integer (saved_regs
[RP_REGNUM
],
1244 TARGET_PTR_BIT
/ 8) & ~0x3;
1247 pc
= read_memory_integer (saved_regs
[RP_REGNUM
],
1248 TARGET_PTR_BIT
/ 8) & ~0x3;
1250 else if (rp_offset
== 0)
1253 pc
= read_register (RP_REGNUM
) & ~0x3;
1258 pc
= read_memory_integer (get_frame_base (frame
) + rp_offset
,
1259 TARGET_PTR_BIT
/ 8) & ~0x3;
1263 /* If PC is inside a linker stub, then dig out the address the stub
1266 Don't do this for long branch stubs. Why? For some unknown reason
1267 _start is marked as a long branch stub in hpux10. */
1268 u
= find_unwind_entry (pc
);
1269 if (u
&& u
->stub_unwind
.stub_type
!= 0
1270 && u
->stub_unwind
.stub_type
!= LONG_BRANCH
)
1274 /* If this is a dynamic executable, and we're in a signal handler,
1275 then the call chain will eventually point us into the stub for
1276 _sigreturn. Unlike most cases, we'll be pointed to the branch
1277 to the real sigreturn rather than the code after the real branch!.
1279 Else, try to dig the address the stub will return to in the normal
1281 insn
= read_memory_integer (pc
, 4);
1282 if ((insn
& 0xfc00e000) == 0xe8000000)
1283 return (pc
+ extract_17 (insn
) + 8) & ~0x3;
1289 if (spun_around_loop
> 1)
1291 /* We're just about to go around the loop again with
1292 no more hope of success. Die. */
1293 error ("Unable to find return pc for this frame");
1303 /* We need to correct the PC and the FP for the outermost frame when we are
1304 in a system call. */
1307 hppa_init_extra_frame_info (int fromleaf
, struct frame_info
*frame
)
1312 if (get_next_frame (frame
) && !fromleaf
)
1315 /* If the next frame represents a frameless function invocation then
1316 we have to do some adjustments that are normally done by
1317 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1321 /* Find the framesize of *this* frame without peeking at the PC
1322 in the current frame structure (it isn't set yet). */
1323 framesize
= find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame
)));
1325 /* Now adjust our base frame accordingly. If we have a frame pointer
1326 use it, else subtract the size of this frame from the current
1327 frame. (we always want frame->frame to point at the lowest address
1329 if (framesize
== -1)
1330 deprecated_update_frame_base_hack (frame
, deprecated_read_fp ());
1332 deprecated_update_frame_base_hack (frame
, get_frame_base (frame
) - framesize
);
1336 flags
= read_register (FLAGS_REGNUM
);
1337 if (flags
& 2) /* In system call? */
1338 deprecated_update_frame_pc_hack (frame
, read_register (31) & ~0x3);
1340 /* The outermost frame is always derived from PC-framesize
1342 One might think frameless innermost frames should have
1343 a frame->frame that is the same as the parent's frame->frame.
1344 That is wrong; frame->frame in that case should be the *high*
1345 address of the parent's frame. It's complicated as hell to
1346 explain, but the parent *always* creates some stack space for
1347 the child. So the child actually does have a frame of some
1348 sorts, and its base is the high address in its parent's frame. */
1349 framesize
= find_proc_framesize (get_frame_pc (frame
));
1350 if (framesize
== -1)
1351 deprecated_update_frame_base_hack (frame
, deprecated_read_fp ());
1353 deprecated_update_frame_base_hack (frame
, read_register (SP_REGNUM
) - framesize
);
1356 /* Given a GDB frame, determine the address of the calling function's
1357 frame. This will be used to create a new GDB frame struct, and
1358 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1359 will be called for the new frame.
1361 This may involve searching through prologues for several functions
1362 at boundaries where GCC calls HP C code, or where code which has
1363 a frame pointer calls code without a frame pointer. */
1366 hppa_frame_chain (struct frame_info
*frame
)
1368 int my_framesize
, caller_framesize
;
1369 struct unwind_table_entry
*u
;
1370 CORE_ADDR frame_base
;
1371 struct frame_info
*tmp_frame
;
1373 /* A frame in the current frame list, or zero. */
1374 struct frame_info
*saved_regs_frame
= 0;
1375 /* Where the registers were saved in saved_regs_frame. If
1376 saved_regs_frame is zero, this is garbage. */
1377 CORE_ADDR
*saved_regs
= NULL
;
1379 CORE_ADDR caller_pc
;
1381 struct minimal_symbol
*min_frame_symbol
;
1382 struct symbol
*frame_symbol
;
1383 char *frame_symbol_name
;
1385 /* If this is a threaded application, and we see the
1386 routine "__pthread_exit", treat it as the stack root
1388 min_frame_symbol
= lookup_minimal_symbol_by_pc (get_frame_pc (frame
));
1389 frame_symbol
= find_pc_function (get_frame_pc (frame
));
1391 if ((min_frame_symbol
!= 0) /* && (frame_symbol == 0) */ )
1393 /* The test above for "no user function name" would defend
1394 against the slim likelihood that a user might define a
1395 routine named "__pthread_exit" and then try to debug it.
1397 If it weren't commented out, and you tried to debug the
1398 pthread library itself, you'd get errors.
1400 So for today, we don't make that check. */
1401 frame_symbol_name
= DEPRECATED_SYMBOL_NAME (min_frame_symbol
);
1402 if (frame_symbol_name
!= 0)
1404 if (0 == strncmp (frame_symbol_name
,
1405 THREAD_INITIAL_FRAME_SYMBOL
,
1406 THREAD_INITIAL_FRAME_SYM_LEN
))
1408 /* Pretend we've reached the bottom of the stack. */
1409 return (CORE_ADDR
) 0;
1412 } /* End of hacky code for threads. */
1414 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1415 are easy; at *sp we have a full save state strucutre which we can
1416 pull the old stack pointer from. Also see frame_saved_pc for
1417 code to dig a saved PC out of the save state structure. */
1418 if (pc_in_interrupt_handler (get_frame_pc (frame
)))
1419 frame_base
= read_memory_integer (get_frame_base (frame
) + SP_REGNUM
* 4,
1420 TARGET_PTR_BIT
/ 8);
1421 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1422 else if ((get_frame_type (frame
) == SIGTRAMP_FRAME
))
1424 FRAME_BASE_BEFORE_SIGTRAMP (frame
, &frame_base
);
1428 frame_base
= get_frame_base (frame
);
1430 /* Get frame sizes for the current frame and the frame of the
1432 my_framesize
= find_proc_framesize (get_frame_pc (frame
));
1433 caller_pc
= DEPRECATED_FRAME_SAVED_PC (frame
);
1435 /* If we can't determine the caller's PC, then it's not likely we can
1436 really determine anything meaningful about its frame. We'll consider
1437 this to be stack bottom. */
1438 if (caller_pc
== (CORE_ADDR
) 0)
1439 return (CORE_ADDR
) 0;
1441 caller_framesize
= find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame
));
1443 /* If caller does not have a frame pointer, then its frame
1444 can be found at current_frame - caller_framesize. */
1445 if (caller_framesize
!= -1)
1447 return frame_base
- caller_framesize
;
1449 /* Both caller and callee have frame pointers and are GCC compiled
1450 (SAVE_SP bit in unwind descriptor is on for both functions.
1451 The previous frame pointer is found at the top of the current frame. */
1452 if (caller_framesize
== -1 && my_framesize
== -1)
1454 return read_memory_integer (frame_base
, TARGET_PTR_BIT
/ 8);
1456 /* Caller has a frame pointer, but callee does not. This is a little
1457 more difficult as GCC and HP C lay out locals and callee register save
1458 areas very differently.
1460 The previous frame pointer could be in a register, or in one of
1461 several areas on the stack.
1463 Walk from the current frame to the innermost frame examining
1464 unwind descriptors to determine if %r3 ever gets saved into the
1465 stack. If so return whatever value got saved into the stack.
1466 If it was never saved in the stack, then the value in %r3 is still
1469 We use information from unwind descriptors to determine if %r3
1470 is saved into the stack (Entry_GR field has this information). */
1472 for (tmp_frame
= frame
; tmp_frame
; tmp_frame
= get_next_frame (tmp_frame
))
1474 u
= find_unwind_entry (get_frame_pc (tmp_frame
));
1478 /* We could find this information by examining prologues. I don't
1479 think anyone has actually written any tools (not even "strip")
1480 which leave them out of an executable, so maybe this is a moot
1482 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1483 code that doesn't have unwind entries. For example, stepping into
1484 the dynamic linker will give you a PC that has none. Thus, I've
1485 disabled this warning. */
1487 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame
));
1489 return (CORE_ADDR
) 0;
1493 || (get_frame_type (tmp_frame
) == SIGTRAMP_FRAME
)
1494 || pc_in_interrupt_handler (get_frame_pc (tmp_frame
)))
1497 /* Entry_GR specifies the number of callee-saved general registers
1498 saved in the stack. It starts at %r3, so %r3 would be 1. */
1499 if (u
->Entry_GR
>= 1)
1501 /* The unwind entry claims that r3 is saved here. However,
1502 in optimized code, GCC often doesn't actually save r3.
1503 We'll discover this if we look at the prologue. */
1504 hppa_frame_init_saved_regs (tmp_frame
);
1505 saved_regs
= deprecated_get_frame_saved_regs (tmp_frame
);
1506 saved_regs_frame
= tmp_frame
;
1508 /* If we have an address for r3, that's good. */
1509 if (saved_regs
[DEPRECATED_FP_REGNUM
])
1516 /* We may have walked down the chain into a function with a frame
1519 && !(get_frame_type (tmp_frame
) == SIGTRAMP_FRAME
)
1520 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame
)))
1522 return read_memory_integer (get_frame_base (tmp_frame
), TARGET_PTR_BIT
/ 8);
1524 /* %r3 was saved somewhere in the stack. Dig it out. */
1529 For optimization purposes many kernels don't have the
1530 callee saved registers into the save_state structure upon
1531 entry into the kernel for a syscall; the optimization
1532 is usually turned off if the process is being traced so
1533 that the debugger can get full register state for the
1536 This scheme works well except for two cases:
1538 * Attaching to a process when the process is in the
1539 kernel performing a system call (debugger can't get
1540 full register state for the inferior process since
1541 the process wasn't being traced when it entered the
1544 * Register state is not complete if the system call
1545 causes the process to core dump.
1548 The following heinous code is an attempt to deal with
1549 the lack of register state in a core dump. It will
1550 fail miserably if the function which performs the
1551 system call has a variable sized stack frame. */
1553 if (tmp_frame
!= saved_regs_frame
)
1555 hppa_frame_init_saved_regs (tmp_frame
);
1556 saved_regs
= deprecated_get_frame_saved_regs (tmp_frame
);
1559 /* Abominable hack. */
1560 if (current_target
.to_has_execution
== 0
1561 && ((saved_regs
[FLAGS_REGNUM
]
1562 && (read_memory_integer (saved_regs
[FLAGS_REGNUM
],
1565 || (saved_regs
[FLAGS_REGNUM
] == 0
1566 && read_register (FLAGS_REGNUM
) & 0x2)))
1568 u
= find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame
));
1571 return read_memory_integer (saved_regs
[DEPRECATED_FP_REGNUM
],
1572 TARGET_PTR_BIT
/ 8);
1576 return frame_base
- (u
->Total_frame_size
<< 3);
1580 return read_memory_integer (saved_regs
[DEPRECATED_FP_REGNUM
],
1581 TARGET_PTR_BIT
/ 8);
1586 /* Get the innermost frame. */
1588 while (get_next_frame (tmp_frame
) != NULL
)
1589 tmp_frame
= get_next_frame (tmp_frame
);
1591 if (tmp_frame
!= saved_regs_frame
)
1593 hppa_frame_init_saved_regs (tmp_frame
);
1594 saved_regs
= deprecated_get_frame_saved_regs (tmp_frame
);
1597 /* Abominable hack. See above. */
1598 if (current_target
.to_has_execution
== 0
1599 && ((saved_regs
[FLAGS_REGNUM
]
1600 && (read_memory_integer (saved_regs
[FLAGS_REGNUM
],
1603 || (saved_regs
[FLAGS_REGNUM
] == 0
1604 && read_register (FLAGS_REGNUM
) & 0x2)))
1606 u
= find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame
));
1609 return read_memory_integer (saved_regs
[DEPRECATED_FP_REGNUM
],
1610 TARGET_PTR_BIT
/ 8);
1614 return frame_base
- (u
->Total_frame_size
<< 3);
1618 /* The value in %r3 was never saved into the stack (thus %r3 still
1619 holds the value of the previous frame pointer). */
1620 return deprecated_read_fp ();
1625 /* To see if a frame chain is valid, see if the caller looks like it
1626 was compiled with gcc. */
1629 hppa_frame_chain_valid (CORE_ADDR chain
, struct frame_info
*thisframe
)
1631 struct minimal_symbol
*msym_us
;
1632 struct minimal_symbol
*msym_start
;
1633 struct unwind_table_entry
*u
, *next_u
= NULL
;
1634 struct frame_info
*next
;
1636 u
= find_unwind_entry (get_frame_pc (thisframe
));
1641 /* We can't just check that the same of msym_us is "_start", because
1642 someone idiotically decided that they were going to make a Ltext_end
1643 symbol with the same address. This Ltext_end symbol is totally
1644 indistinguishable (as nearly as I can tell) from the symbol for a function
1645 which is (legitimately, since it is in the user's namespace)
1646 named Ltext_end, so we can't just ignore it. */
1647 msym_us
= lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe
));
1648 msym_start
= lookup_minimal_symbol ("_start", NULL
, NULL
);
1651 && SYMBOL_VALUE_ADDRESS (msym_us
) == SYMBOL_VALUE_ADDRESS (msym_start
))
1654 /* Grrrr. Some new idiot decided that they don't want _start for the
1655 PRO configurations; $START$ calls main directly.... Deal with it. */
1656 msym_start
= lookup_minimal_symbol ("$START$", NULL
, NULL
);
1659 && SYMBOL_VALUE_ADDRESS (msym_us
) == SYMBOL_VALUE_ADDRESS (msym_start
))
1662 next
= get_next_frame (thisframe
);
1664 next_u
= find_unwind_entry (get_frame_pc (next
));
1666 /* If this frame does not save SP, has no stack, isn't a stub,
1667 and doesn't "call" an interrupt routine or signal handler caller,
1668 then its not valid. */
1669 if (u
->Save_SP
|| u
->Total_frame_size
|| u
->stub_unwind
.stub_type
!= 0
1670 || (get_next_frame (thisframe
) && (get_frame_type (get_next_frame (thisframe
)) == SIGTRAMP_FRAME
))
1671 || (next_u
&& next_u
->HP_UX_interrupt_marker
))
1674 if (pc_in_linker_stub (get_frame_pc (thisframe
)))
1680 /* These functions deal with saving and restoring register state
1681 around a function call in the inferior. They keep the stack
1682 double-word aligned; eventually, on an hp700, the stack will have
1683 to be aligned to a 64-byte boundary. */
1686 hppa_push_dummy_frame (void)
1688 CORE_ADDR sp
, pc
, pcspace
;
1690 CORE_ADDR int_buffer
;
1693 pc
= hppa_target_read_pc (inferior_ptid
);
1694 int_buffer
= read_register (FLAGS_REGNUM
);
1695 if (int_buffer
& 0x2)
1697 const unsigned int sid
= (pc
>> 30) & 0x3;
1699 pcspace
= read_register (SR4_REGNUM
);
1701 pcspace
= read_register (SR4_REGNUM
+ 4 + sid
);
1704 pcspace
= read_register (PCSQ_HEAD_REGNUM
);
1706 /* Space for "arguments"; the RP goes in here. */
1707 sp
= read_register (SP_REGNUM
) + 48;
1708 int_buffer
= read_register (RP_REGNUM
) | 0x3;
1710 /* The 32bit and 64bit ABIs save the return pointer into different
1712 if (DEPRECATED_REGISTER_SIZE
== 8)
1713 write_memory (sp
- 16, (char *) &int_buffer
, DEPRECATED_REGISTER_SIZE
);
1715 write_memory (sp
- 20, (char *) &int_buffer
, DEPRECATED_REGISTER_SIZE
);
1717 int_buffer
= deprecated_read_fp ();
1718 write_memory (sp
, (char *) &int_buffer
, DEPRECATED_REGISTER_SIZE
);
1720 write_register (DEPRECATED_FP_REGNUM
, sp
);
1722 sp
+= 2 * DEPRECATED_REGISTER_SIZE
;
1724 for (regnum
= 1; regnum
< 32; regnum
++)
1725 if (regnum
!= RP_REGNUM
&& regnum
!= DEPRECATED_FP_REGNUM
)
1726 sp
= push_word (sp
, read_register (regnum
));
1728 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1729 if (DEPRECATED_REGISTER_SIZE
!= 8)
1732 for (regnum
= FP0_REGNUM
; regnum
< NUM_REGS
; regnum
++)
1734 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum
),
1735 (char *) &freg_buffer
, 8);
1736 sp
= push_bytes (sp
, (char *) &freg_buffer
, 8);
1738 sp
= push_word (sp
, read_register (IPSW_REGNUM
));
1739 sp
= push_word (sp
, read_register (SAR_REGNUM
));
1740 sp
= push_word (sp
, pc
);
1741 sp
= push_word (sp
, pcspace
);
1742 sp
= push_word (sp
, pc
+ 4);
1743 sp
= push_word (sp
, pcspace
);
1744 write_register (SP_REGNUM
, sp
);
1748 find_dummy_frame_regs (struct frame_info
*frame
,
1749 CORE_ADDR frame_saved_regs
[])
1751 CORE_ADDR fp
= get_frame_base (frame
);
1754 /* The 32bit and 64bit ABIs save RP into different locations. */
1755 if (DEPRECATED_REGISTER_SIZE
== 8)
1756 frame_saved_regs
[RP_REGNUM
] = (fp
- 16) & ~0x3;
1758 frame_saved_regs
[RP_REGNUM
] = (fp
- 20) & ~0x3;
1760 frame_saved_regs
[DEPRECATED_FP_REGNUM
] = fp
;
1762 frame_saved_regs
[1] = fp
+ (2 * DEPRECATED_REGISTER_SIZE
);
1764 for (fp
+= 3 * DEPRECATED_REGISTER_SIZE
, i
= 3; i
< 32; i
++)
1766 if (i
!= DEPRECATED_FP_REGNUM
)
1768 frame_saved_regs
[i
] = fp
;
1769 fp
+= DEPRECATED_REGISTER_SIZE
;
1773 /* This is not necessary or desirable for the 64bit ABI. */
1774 if (DEPRECATED_REGISTER_SIZE
!= 8)
1777 for (i
= FP0_REGNUM
; i
< NUM_REGS
; i
++, fp
+= 8)
1778 frame_saved_regs
[i
] = fp
;
1780 frame_saved_regs
[IPSW_REGNUM
] = fp
;
1781 frame_saved_regs
[SAR_REGNUM
] = fp
+ DEPRECATED_REGISTER_SIZE
;
1782 frame_saved_regs
[PCOQ_HEAD_REGNUM
] = fp
+ 2 * DEPRECATED_REGISTER_SIZE
;
1783 frame_saved_regs
[PCSQ_HEAD_REGNUM
] = fp
+ 3 * DEPRECATED_REGISTER_SIZE
;
1784 frame_saved_regs
[PCOQ_TAIL_REGNUM
] = fp
+ 4 * DEPRECATED_REGISTER_SIZE
;
1785 frame_saved_regs
[PCSQ_TAIL_REGNUM
] = fp
+ 5 * DEPRECATED_REGISTER_SIZE
;
1789 hppa_pop_frame (void)
1791 struct frame_info
*frame
= get_current_frame ();
1792 CORE_ADDR fp
, npc
, target_pc
;
1797 fp
= get_frame_base (frame
);
1798 hppa_frame_init_saved_regs (frame
);
1799 fsr
= deprecated_get_frame_saved_regs (frame
);
1801 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1802 if (fsr
[IPSW_REGNUM
]) /* Restoring a call dummy frame */
1803 restore_pc_queue (fsr
);
1806 for (regnum
= 31; regnum
> 0; regnum
--)
1808 write_register (regnum
, read_memory_integer (fsr
[regnum
],
1809 DEPRECATED_REGISTER_SIZE
));
1811 for (regnum
= NUM_REGS
- 1; regnum
>= FP0_REGNUM
; regnum
--)
1814 read_memory (fsr
[regnum
], (char *) &freg_buffer
, 8);
1815 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum
),
1816 (char *) &freg_buffer
, 8);
1819 if (fsr
[IPSW_REGNUM
])
1820 write_register (IPSW_REGNUM
,
1821 read_memory_integer (fsr
[IPSW_REGNUM
],
1822 DEPRECATED_REGISTER_SIZE
));
1824 if (fsr
[SAR_REGNUM
])
1825 write_register (SAR_REGNUM
,
1826 read_memory_integer (fsr
[SAR_REGNUM
],
1827 DEPRECATED_REGISTER_SIZE
));
1829 /* If the PC was explicitly saved, then just restore it. */
1830 if (fsr
[PCOQ_TAIL_REGNUM
])
1832 npc
= read_memory_integer (fsr
[PCOQ_TAIL_REGNUM
],
1833 DEPRECATED_REGISTER_SIZE
);
1834 write_register (PCOQ_TAIL_REGNUM
, npc
);
1836 /* Else use the value in %rp to set the new PC. */
1839 npc
= read_register (RP_REGNUM
);
1843 write_register (DEPRECATED_FP_REGNUM
, read_memory_integer (fp
, DEPRECATED_REGISTER_SIZE
));
1845 if (fsr
[IPSW_REGNUM
]) /* call dummy */
1846 write_register (SP_REGNUM
, fp
- 48);
1848 write_register (SP_REGNUM
, fp
);
1850 /* The PC we just restored may be inside a return trampoline. If so
1851 we want to restart the inferior and run it through the trampoline.
1853 Do this by setting a momentary breakpoint at the location the
1854 trampoline returns to.
1856 Don't skip through the trampoline if we're popping a dummy frame. */
1857 target_pc
= SKIP_TRAMPOLINE_CODE (npc
& ~0x3) & ~0x3;
1858 if (target_pc
&& !fsr
[IPSW_REGNUM
])
1860 struct symtab_and_line sal
;
1861 struct breakpoint
*breakpoint
;
1862 struct cleanup
*old_chain
;
1864 /* Set up our breakpoint. Set it to be silent as the MI code
1865 for "return_command" will print the frame we returned to. */
1866 sal
= find_pc_line (target_pc
, 0);
1868 breakpoint
= set_momentary_breakpoint (sal
, null_frame_id
, bp_finish
);
1869 breakpoint
->silent
= 1;
1871 /* So we can clean things up. */
1872 old_chain
= make_cleanup_delete_breakpoint (breakpoint
);
1874 /* Start up the inferior. */
1875 clear_proceed_status ();
1876 proceed_to_finish
= 1;
1877 proceed ((CORE_ADDR
) -1, TARGET_SIGNAL_DEFAULT
, 0);
1879 /* Perform our cleanups. */
1880 do_cleanups (old_chain
);
1882 flush_cached_frames ();
1885 /* After returning to a dummy on the stack, restore the instruction
1886 queue space registers. */
1889 restore_pc_queue (CORE_ADDR
*fsr
)
1891 CORE_ADDR pc
= read_pc ();
1892 CORE_ADDR new_pc
= read_memory_integer (fsr
[PCOQ_HEAD_REGNUM
],
1893 TARGET_PTR_BIT
/ 8);
1894 struct target_waitstatus w
;
1897 /* Advance past break instruction in the call dummy. */
1898 write_register (PCOQ_HEAD_REGNUM
, pc
+ 4);
1899 write_register (PCOQ_TAIL_REGNUM
, pc
+ 8);
1901 /* HPUX doesn't let us set the space registers or the space
1902 registers of the PC queue through ptrace. Boo, hiss.
1903 Conveniently, the call dummy has this sequence of instructions
1908 So, load up the registers and single step until we are in the
1911 write_register (21, read_memory_integer (fsr
[PCSQ_HEAD_REGNUM
],
1912 DEPRECATED_REGISTER_SIZE
));
1913 write_register (22, new_pc
);
1915 for (insn_count
= 0; insn_count
< 3; insn_count
++)
1917 /* FIXME: What if the inferior gets a signal right now? Want to
1918 merge this into wait_for_inferior (as a special kind of
1919 watchpoint? By setting a breakpoint at the end? Is there
1920 any other choice? Is there *any* way to do this stuff with
1921 ptrace() or some equivalent?). */
1923 target_wait (inferior_ptid
, &w
);
1925 if (w
.kind
== TARGET_WAITKIND_SIGNALLED
)
1927 stop_signal
= w
.value
.sig
;
1928 terminal_ours_for_output ();
1929 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1930 target_signal_to_name (stop_signal
),
1931 target_signal_to_string (stop_signal
));
1932 gdb_flush (gdb_stdout
);
1936 target_terminal_ours ();
1937 target_fetch_registers (-1);
1942 #ifdef PA20W_CALLING_CONVENTIONS
1944 /* This function pushes a stack frame with arguments as part of the
1945 inferior function calling mechanism.
1947 This is the version for the PA64, in which later arguments appear
1948 at higher addresses. (The stack always grows towards higher
1951 We simply allocate the appropriate amount of stack space and put
1952 arguments into their proper slots. The call dummy code will copy
1953 arguments into registers as needed by the ABI.
1955 This ABI also requires that the caller provide an argument pointer
1956 to the callee, so we do that too. */
1959 hppa_push_arguments (int nargs
, struct value
**args
, CORE_ADDR sp
,
1960 int struct_return
, CORE_ADDR struct_addr
)
1962 /* array of arguments' offsets */
1963 int *offset
= (int *) alloca (nargs
* sizeof (int));
1965 /* array of arguments' lengths: real lengths in bytes, not aligned to
1967 int *lengths
= (int *) alloca (nargs
* sizeof (int));
1969 /* The value of SP as it was passed into this function after
1971 CORE_ADDR orig_sp
= DEPRECATED_STACK_ALIGN (sp
);
1973 /* The number of stack bytes occupied by the current argument. */
1976 /* The total number of bytes reserved for the arguments. */
1977 int cum_bytes_reserved
= 0;
1979 /* Similarly, but aligned. */
1980 int cum_bytes_aligned
= 0;
1983 /* Iterate over each argument provided by the user. */
1984 for (i
= 0; i
< nargs
; i
++)
1986 struct type
*arg_type
= VALUE_TYPE (args
[i
]);
1988 /* Integral scalar values smaller than a register are padded on
1989 the left. We do this by promoting them to full-width,
1990 although the ABI says to pad them with garbage. */
1991 if (is_integral_type (arg_type
)
1992 && TYPE_LENGTH (arg_type
) < DEPRECATED_REGISTER_SIZE
)
1994 args
[i
] = value_cast ((TYPE_UNSIGNED (arg_type
)
1995 ? builtin_type_unsigned_long
1996 : builtin_type_long
),
1998 arg_type
= VALUE_TYPE (args
[i
]);
2001 lengths
[i
] = TYPE_LENGTH (arg_type
);
2003 /* Align the size of the argument to the word size for this
2005 bytes_reserved
= (lengths
[i
] + DEPRECATED_REGISTER_SIZE
- 1) & -DEPRECATED_REGISTER_SIZE
;
2007 offset
[i
] = cum_bytes_reserved
;
2009 /* Aggregates larger than eight bytes (the only types larger
2010 than eight bytes we have) are aligned on a 16-byte boundary,
2011 possibly padded on the right with garbage. This may leave an
2012 empty word on the stack, and thus an unused register, as per
2014 if (bytes_reserved
> 8)
2016 /* Round up the offset to a multiple of two slots. */
2017 int new_offset
= ((offset
[i
] + 2*DEPRECATED_REGISTER_SIZE
-1)
2018 & -(2*DEPRECATED_REGISTER_SIZE
));
2020 /* Note the space we've wasted, if any. */
2021 bytes_reserved
+= new_offset
- offset
[i
];
2022 offset
[i
] = new_offset
;
2025 cum_bytes_reserved
+= bytes_reserved
;
2028 /* CUM_BYTES_RESERVED already accounts for all the arguments
2029 passed by the user. However, the ABIs mandate minimum stack space
2030 allocations for outgoing arguments.
2032 The ABIs also mandate minimum stack alignments which we must
2034 cum_bytes_aligned
= DEPRECATED_STACK_ALIGN (cum_bytes_reserved
);
2035 sp
+= max (cum_bytes_aligned
, REG_PARM_STACK_SPACE
);
2037 /* Now write each of the args at the proper offset down the stack. */
2038 for (i
= 0; i
< nargs
; i
++)
2039 write_memory (orig_sp
+ offset
[i
], VALUE_CONTENTS (args
[i
]), lengths
[i
]);
2041 /* If a structure has to be returned, set up register 28 to hold its
2044 write_register (28, struct_addr
);
2046 /* For the PA64 we must pass a pointer to the outgoing argument list.
2047 The ABI mandates that the pointer should point to the first byte of
2048 storage beyond the register flushback area.
2050 However, the call dummy expects the outgoing argument pointer to
2051 be passed in register %r4. */
2052 write_register (4, orig_sp
+ REG_PARM_STACK_SPACE
);
2054 /* ?!? This needs further work. We need to set up the global data
2055 pointer for this procedure. This assumes the same global pointer
2056 for every procedure. The call dummy expects the dp value to
2057 be passed in register %r6. */
2058 write_register (6, read_register (27));
2060 /* The stack will have 64 bytes of additional space for a frame marker. */
2066 /* This function pushes a stack frame with arguments as part of the
2067 inferior function calling mechanism.
2069 This is the version of the function for the 32-bit PA machines, in
2070 which later arguments appear at lower addresses. (The stack always
2071 grows towards higher addresses.)
2073 We simply allocate the appropriate amount of stack space and put
2074 arguments into their proper slots. The call dummy code will copy
2075 arguments into registers as needed by the ABI. */
2078 hppa_push_arguments (int nargs
, struct value
**args
, CORE_ADDR sp
,
2079 int struct_return
, CORE_ADDR struct_addr
)
2081 /* array of arguments' offsets */
2082 int *offset
= (int *) alloca (nargs
* sizeof (int));
2084 /* array of arguments' lengths: real lengths in bytes, not aligned to
2086 int *lengths
= (int *) alloca (nargs
* sizeof (int));
2088 /* The number of stack bytes occupied by the current argument. */
2091 /* The total number of bytes reserved for the arguments. */
2092 int cum_bytes_reserved
= 0;
2094 /* Similarly, but aligned. */
2095 int cum_bytes_aligned
= 0;
2098 /* Iterate over each argument provided by the user. */
2099 for (i
= 0; i
< nargs
; i
++)
2101 lengths
[i
] = TYPE_LENGTH (VALUE_TYPE (args
[i
]));
2103 /* Align the size of the argument to the word size for this
2105 bytes_reserved
= (lengths
[i
] + DEPRECATED_REGISTER_SIZE
- 1) & -DEPRECATED_REGISTER_SIZE
;
2107 offset
[i
] = (cum_bytes_reserved
2108 + (lengths
[i
] > 4 ? bytes_reserved
: lengths
[i
]));
2110 /* If the argument is a double word argument, then it needs to be
2111 double word aligned. */
2112 if ((bytes_reserved
== 2 * DEPRECATED_REGISTER_SIZE
)
2113 && (offset
[i
] % 2 * DEPRECATED_REGISTER_SIZE
))
2116 /* BYTES_RESERVED is already aligned to the word, so we put
2117 the argument at one word more down the stack.
2119 This will leave one empty word on the stack, and one unused
2120 register as mandated by the ABI. */
2121 new_offset
= ((offset
[i
] + 2 * DEPRECATED_REGISTER_SIZE
- 1)
2122 & -(2 * DEPRECATED_REGISTER_SIZE
));
2124 if ((new_offset
- offset
[i
]) >= 2 * DEPRECATED_REGISTER_SIZE
)
2126 bytes_reserved
+= DEPRECATED_REGISTER_SIZE
;
2127 offset
[i
] += DEPRECATED_REGISTER_SIZE
;
2131 cum_bytes_reserved
+= bytes_reserved
;
2135 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2136 by the user. However, the ABI mandates minimum stack space
2137 allocations for outgoing arguments.
2139 The ABI also mandates minimum stack alignments which we must
2141 cum_bytes_aligned
= DEPRECATED_STACK_ALIGN (cum_bytes_reserved
);
2142 sp
+= max (cum_bytes_aligned
, REG_PARM_STACK_SPACE
);
2144 /* Now write each of the args at the proper offset down the stack.
2145 ?!? We need to promote values to a full register instead of skipping
2146 words in the stack. */
2147 for (i
= 0; i
< nargs
; i
++)
2148 write_memory (sp
- offset
[i
], VALUE_CONTENTS (args
[i
]), lengths
[i
]);
2150 /* If a structure has to be returned, set up register 28 to hold its
2153 write_register (28, struct_addr
);
2155 /* The stack will have 32 bytes of additional space for a frame marker. */
2161 /* This function pushes a stack frame with arguments as part of the
2162 inferior function calling mechanism.
2164 This is the version of the function for the 32-bit PA machines, in
2165 which later arguments appear at lower addresses. (The stack always
2166 grows towards higher addresses.)
2168 We simply allocate the appropriate amount of stack space and put
2169 arguments into their proper slots. */
2172 hppa32_push_dummy_call (struct gdbarch
*gdbarch
, CORE_ADDR func_addr
,
2173 struct regcache
*regcache
, CORE_ADDR bp_addr
,
2174 int nargs
, struct value
**args
, CORE_ADDR sp
,
2175 int struct_return
, CORE_ADDR struct_addr
)
2177 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
2178 reverse engineering testsuite failures. */
2180 /* Stack base address at which any pass-by-reference parameters are
2182 CORE_ADDR struct_end
= 0;
2183 /* Stack base address at which the first parameter is stored. */
2184 CORE_ADDR param_end
= 0;
2186 /* The inner most end of the stack after all the parameters have
2188 CORE_ADDR new_sp
= 0;
2190 /* Two passes. First pass computes the location of everything,
2191 second pass writes the bytes out. */
2193 for (write_pass
= 0; write_pass
< 2; write_pass
++)
2195 CORE_ADDR struct_ptr
= 0;
2196 CORE_ADDR param_ptr
= 0;
2197 int reg
= 27; /* NOTE: Registers go down. */
2199 for (i
= 0; i
< nargs
; i
++)
2201 struct value
*arg
= args
[i
];
2202 struct type
*type
= check_typedef (VALUE_TYPE (arg
));
2203 /* The corresponding parameter that is pushed onto the
2204 stack, and [possibly] passed in a register. */
2207 memset (param_val
, 0, sizeof param_val
);
2208 if (TYPE_LENGTH (type
) > 8)
2210 /* Large parameter, pass by reference. Store the value
2211 in "struct" area and then pass its address. */
2213 struct_ptr
+= align_up (TYPE_LENGTH (type
), 8);
2215 write_memory (struct_end
- struct_ptr
, VALUE_CONTENTS (arg
),
2216 TYPE_LENGTH (type
));
2217 store_unsigned_integer (param_val
, 4, struct_end
- struct_ptr
);
2219 else if (TYPE_CODE (type
) == TYPE_CODE_INT
2220 || TYPE_CODE (type
) == TYPE_CODE_ENUM
)
2222 /* Integer value store, right aligned. "unpack_long"
2223 takes care of any sign-extension problems. */
2224 param_len
= align_up (TYPE_LENGTH (type
), 4);
2225 store_unsigned_integer (param_val
, param_len
,
2227 VALUE_CONTENTS (arg
)));
2231 /* Small struct value, store right aligned? */
2232 param_len
= align_up (TYPE_LENGTH (type
), 4);
2233 memcpy (param_val
+ param_len
- TYPE_LENGTH (type
),
2234 VALUE_CONTENTS (arg
), TYPE_LENGTH (type
));
2236 param_ptr
+= param_len
;
2237 reg
-= param_len
/ 4;
2240 write_memory (param_end
- param_ptr
, param_val
, param_len
);
2243 regcache_cooked_write (regcache
, reg
, param_val
);
2245 regcache_cooked_write (regcache
, reg
+ 1, param_val
+ 4);
2250 /* Update the various stack pointers. */
2253 struct_end
= sp
+ struct_ptr
;
2254 /* PARAM_PTR already accounts for all the arguments passed
2255 by the user. However, the ABI mandates minimum stack
2256 space allocations for outgoing arguments. The ABI also
2257 mandates minimum stack alignments which we must
2259 param_end
= struct_end
+ max (align_up (param_ptr
, 8),
2260 REG_PARM_STACK_SPACE
);
2264 /* If a structure has to be returned, set up register 28 to hold its
2267 write_register (28, struct_addr
);
2269 /* Set the return address. */
2270 regcache_cooked_write_unsigned (regcache
, RP_REGNUM
, bp_addr
);
2272 /* The stack will have 32 bytes of additional space for a frame marker. */
2273 return param_end
+ 32;
2276 /* This function pushes a stack frame with arguments as part of the
2277 inferior function calling mechanism.
2279 This is the version for the PA64, in which later arguments appear
2280 at higher addresses. (The stack always grows towards higher
2283 We simply allocate the appropriate amount of stack space and put
2284 arguments into their proper slots.
2286 This ABI also requires that the caller provide an argument pointer
2287 to the callee, so we do that too. */
2290 hppa64_push_dummy_call (struct gdbarch
*gdbarch
, CORE_ADDR func_addr
,
2291 struct regcache
*regcache
, CORE_ADDR bp_addr
,
2292 int nargs
, struct value
**args
, CORE_ADDR sp
,
2293 int struct_return
, CORE_ADDR struct_addr
)
2295 /* Array of arguments' offsets. */
2296 int *offset
= (int *) alloca (nargs
* sizeof (int));
2298 /* Array of arguments' lengths: real lengths in bytes, not aligned
2300 int *lengths
= (int *) alloca (nargs
* sizeof (int));
2302 /* The value of SP as it was passed into this function. */
2303 CORE_ADDR orig_sp
= sp
;
2305 /* The number of stack bytes occupied by the current argument. */
2308 /* The total number of bytes reserved for the arguments. */
2309 int cum_bytes_reserved
= 0;
2311 /* Similarly, but aligned. */
2312 int cum_bytes_aligned
= 0;
2315 /* Iterate over each argument provided by the user. */
2316 for (i
= 0; i
< nargs
; i
++)
2318 struct type
*arg_type
= VALUE_TYPE (args
[i
]);
2320 /* Integral scalar values smaller than a register are padded on
2321 the left. We do this by promoting them to full-width,
2322 although the ABI says to pad them with garbage. */
2323 if (is_integral_type (arg_type
)
2324 && TYPE_LENGTH (arg_type
) < DEPRECATED_REGISTER_SIZE
)
2326 args
[i
] = value_cast ((TYPE_UNSIGNED (arg_type
)
2327 ? builtin_type_unsigned_long
2328 : builtin_type_long
),
2330 arg_type
= VALUE_TYPE (args
[i
]);
2333 lengths
[i
] = TYPE_LENGTH (arg_type
);
2335 /* Align the size of the argument to the word size for this
2337 bytes_reserved
= (lengths
[i
] + DEPRECATED_REGISTER_SIZE
- 1) & -DEPRECATED_REGISTER_SIZE
;
2339 offset
[i
] = cum_bytes_reserved
;
2341 /* Aggregates larger than eight bytes (the only types larger
2342 than eight bytes we have) are aligned on a 16-byte boundary,
2343 possibly padded on the right with garbage. This may leave an
2344 empty word on the stack, and thus an unused register, as per
2346 if (bytes_reserved
> 8)
2348 /* Round up the offset to a multiple of two slots. */
2349 int new_offset
= ((offset
[i
] + 2*DEPRECATED_REGISTER_SIZE
-1)
2350 & -(2*DEPRECATED_REGISTER_SIZE
));
2352 /* Note the space we've wasted, if any. */
2353 bytes_reserved
+= new_offset
- offset
[i
];
2354 offset
[i
] = new_offset
;
2357 cum_bytes_reserved
+= bytes_reserved
;
2360 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2361 by the user. However, the ABIs mandate minimum stack space
2362 allocations for outgoing arguments.
2364 The ABIs also mandate minimum stack alignments which we must
2366 cum_bytes_aligned
= align_up (cum_bytes_reserved
, 16);
2367 sp
+= max (cum_bytes_aligned
, REG_PARM_STACK_SPACE
);
2369 /* Now write each of the args at the proper offset down the
2371 for (i
= 0; i
< nargs
; i
++)
2372 write_memory (orig_sp
+ offset
[i
], VALUE_CONTENTS (args
[i
]), lengths
[i
]);
2374 /* If a structure has to be returned, set up register 28 to hold its
2377 write_register (28, struct_addr
);
2379 /* For the PA64 we must pass a pointer to the outgoing argument
2380 list. The ABI mandates that the pointer should point to the
2381 first byte of storage beyond the register flushback area.
2383 However, the call dummy expects the outgoing argument pointer to
2384 be passed in register %r4. */
2385 write_register (4, orig_sp
+ REG_PARM_STACK_SPACE
);
2387 /* ?!? This needs further work. We need to set up the global data
2388 pointer for this procedure. This assumes the same global pointer
2389 for every procedure. The call dummy expects the dp value to be
2390 passed in register %r6. */
2391 write_register (6, read_register (27));
2393 /* Set the return address. */
2394 regcache_cooked_write_unsigned (regcache
, RP_REGNUM
, bp_addr
);
2396 /* The stack will have 64 bytes of additional space for a frame
2403 hppa32_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
2405 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
2407 return align_up (addr
, 64);
2410 /* Force all frames to 16-byte alignment. Better safe than sorry. */
2413 hppa64_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
2415 /* Just always 16-byte align. */
2416 return align_up (addr
, 16);
2420 /* elz: Used to lookup a symbol in the shared libraries.
2421 This function calls shl_findsym, indirectly through a
2422 call to __d_shl_get. __d_shl_get is in end.c, which is always
2423 linked in by the hp compilers/linkers.
2424 The call to shl_findsym cannot be made directly because it needs
2425 to be active in target address space.
2426 inputs: - minimal symbol pointer for the function we want to look up
2427 - address in target space of the descriptor for the library
2428 where we want to look the symbol up.
2429 This address is retrieved using the
2430 som_solib_get_solib_by_pc function (somsolib.c).
2431 output: - real address in the library of the function.
2432 note: the handle can be null, in which case shl_findsym will look for
2433 the symbol in all the loaded shared libraries.
2434 files to look at if you need reference on this stuff:
2435 dld.c, dld_shl_findsym.c
2437 man entry for shl_findsym */
2440 find_stub_with_shl_get (struct minimal_symbol
*function
, CORE_ADDR handle
)
2442 struct symbol
*get_sym
, *symbol2
;
2443 struct minimal_symbol
*buff_minsym
, *msymbol
;
2445 struct value
**args
;
2446 struct value
*funcval
;
2449 int x
, namelen
, err_value
, tmp
= -1;
2450 CORE_ADDR endo_buff_addr
, value_return_addr
, errno_return_addr
;
2451 CORE_ADDR stub_addr
;
2454 args
= alloca (sizeof (struct value
*) * 8); /* 6 for the arguments and one null one??? */
2455 funcval
= find_function_in_inferior ("__d_shl_get");
2456 get_sym
= lookup_symbol ("__d_shl_get", NULL
, VAR_DOMAIN
, NULL
, NULL
);
2457 buff_minsym
= lookup_minimal_symbol ("__buffer", NULL
, NULL
);
2458 msymbol
= lookup_minimal_symbol ("__shldp", NULL
, NULL
);
2459 symbol2
= lookup_symbol ("__shldp", NULL
, VAR_DOMAIN
, NULL
, NULL
);
2460 endo_buff_addr
= SYMBOL_VALUE_ADDRESS (buff_minsym
);
2461 namelen
= strlen (DEPRECATED_SYMBOL_NAME (function
));
2462 value_return_addr
= endo_buff_addr
+ namelen
;
2463 ftype
= check_typedef (SYMBOL_TYPE (get_sym
));
2466 if ((x
= value_return_addr
% 64) != 0)
2467 value_return_addr
= value_return_addr
+ 64 - x
;
2469 errno_return_addr
= value_return_addr
+ 64;
2472 /* set up stuff needed by __d_shl_get in buffer in end.o */
2474 target_write_memory (endo_buff_addr
, DEPRECATED_SYMBOL_NAME (function
), namelen
);
2476 target_write_memory (value_return_addr
, (char *) &tmp
, 4);
2478 target_write_memory (errno_return_addr
, (char *) &tmp
, 4);
2480 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol
),
2481 (char *) &handle
, 4);
2483 /* now prepare the arguments for the call */
2485 args
[0] = value_from_longest (TYPE_FIELD_TYPE (ftype
, 0), 12);
2486 args
[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 1), SYMBOL_VALUE_ADDRESS (msymbol
));
2487 args
[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 2), endo_buff_addr
);
2488 args
[3] = value_from_longest (TYPE_FIELD_TYPE (ftype
, 3), TYPE_PROCEDURE
);
2489 args
[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 4), value_return_addr
);
2490 args
[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 5), errno_return_addr
);
2492 /* now call the function */
2494 val
= call_function_by_hand (funcval
, 6, args
);
2496 /* now get the results */
2498 target_read_memory (errno_return_addr
, (char *) &err_value
, sizeof (err_value
));
2500 target_read_memory (value_return_addr
, (char *) &stub_addr
, sizeof (stub_addr
));
2502 error ("call to __d_shl_get failed, error code is %d", err_value
);
2507 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2509 cover_find_stub_with_shl_get (void *args_untyped
)
2511 args_for_find_stub
*args
= args_untyped
;
2512 args
->return_val
= find_stub_with_shl_get (args
->msym
, args
->solib_handle
);
2516 /* Insert the specified number of args and function address
2517 into a call sequence of the above form stored at DUMMYNAME.
2519 On the hppa we need to call the stack dummy through $$dyncall.
2520 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2521 argument, real_pc, which is the location where gdb should start up
2522 the inferior to do the function call.
2524 This has to work across several versions of hpux, bsd, osf1. It has to
2525 work regardless of what compiler was used to build the inferior program.
2526 It should work regardless of whether or not end.o is available. It has
2527 to work even if gdb can not call into the dynamic loader in the inferior
2528 to query it for symbol names and addresses.
2530 Yes, all those cases should work. Luckily code exists to handle most
2531 of them. The complexity is in selecting exactly what scheme should
2532 be used to perform the inferior call.
2534 At the current time this routine is known not to handle cases where
2535 the program was linked with HP's compiler without including end.o.
2537 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2540 hppa_fix_call_dummy (char *dummy
, CORE_ADDR pc
, CORE_ADDR fun
, int nargs
,
2541 struct value
**args
, struct type
*type
, int gcc_p
)
2543 CORE_ADDR dyncall_addr
;
2544 struct minimal_symbol
*msymbol
;
2545 struct minimal_symbol
*trampoline
;
2546 int flags
= read_register (FLAGS_REGNUM
);
2547 struct unwind_table_entry
*u
= NULL
;
2548 CORE_ADDR new_stub
= 0;
2549 CORE_ADDR solib_handle
= 0;
2551 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2552 passed an import stub, not a PLABEL. It is also necessary to set %r19
2553 (the PIC register) before performing the call.
2555 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2556 are calling the target directly. When using __d_plt_call we want to
2557 use a PLABEL instead of an import stub. */
2558 int using_gcc_plt_call
= 1;
2560 #ifdef GDB_TARGET_IS_HPPA_20W
2561 /* We currently use completely different code for the PA2.0W inferior
2562 function call sequences. This needs to be cleaned up. */
2564 CORE_ADDR pcsqh
, pcsqt
, pcoqh
, pcoqt
, sr5
;
2565 struct target_waitstatus w
;
2569 struct objfile
*objfile
;
2571 /* We can not modify the PC space queues directly, so we start
2572 up the inferior and execute a couple instructions to set the
2573 space queues so that they point to the call dummy in the stack. */
2574 pcsqh
= read_register (PCSQ_HEAD_REGNUM
);
2575 sr5
= read_register (SR5_REGNUM
);
2578 pcoqh
= read_register (PCOQ_HEAD_REGNUM
);
2579 pcoqt
= read_register (PCOQ_TAIL_REGNUM
);
2580 if (target_read_memory (pcoqh
, buf
, 4) != 0)
2581 error ("Couldn't modify space queue\n");
2582 inst1
= extract_unsigned_integer (buf
, 4);
2584 if (target_read_memory (pcoqt
, buf
, 4) != 0)
2585 error ("Couldn't modify space queue\n");
2586 inst2
= extract_unsigned_integer (buf
, 4);
2589 *((int *) buf
) = 0xe820d000;
2590 if (target_write_memory (pcoqh
, buf
, 4) != 0)
2591 error ("Couldn't modify space queue\n");
2594 *((int *) buf
) = 0x08000240;
2595 if (target_write_memory (pcoqt
, buf
, 4) != 0)
2597 *((int *) buf
) = inst1
;
2598 target_write_memory (pcoqh
, buf
, 4);
2599 error ("Couldn't modify space queue\n");
2602 write_register (1, pc
);
2604 /* Single step twice, the BVE instruction will set the space queue
2605 such that it points to the PC value written immediately above
2606 (ie the call dummy). */
2608 target_wait (inferior_ptid
, &w
);
2610 target_wait (inferior_ptid
, &w
);
2612 /* Restore the two instructions at the old PC locations. */
2613 *((int *) buf
) = inst1
;
2614 target_write_memory (pcoqh
, buf
, 4);
2615 *((int *) buf
) = inst2
;
2616 target_write_memory (pcoqt
, buf
, 4);
2619 /* The call dummy wants the ultimate destination address initially
2621 write_register (5, fun
);
2623 /* We need to see if this objfile has a different DP value than our
2624 own (it could be a shared library for example). */
2625 ALL_OBJFILES (objfile
)
2627 struct obj_section
*s
;
2628 obj_private_data_t
*obj_private
;
2630 /* See if FUN is in any section within this shared library. */
2631 for (s
= objfile
->sections
; s
< objfile
->sections_end
; s
++)
2632 if (s
->addr
<= fun
&& fun
< s
->endaddr
)
2635 if (s
>= objfile
->sections_end
)
2638 obj_private
= (obj_private_data_t
*) objfile
->obj_private
;
2640 /* The DP value may be different for each objfile. But within an
2641 objfile each function uses the same dp value. Thus we do not need
2642 to grope around the opd section looking for dp values.
2644 ?!? This is not strictly correct since we may be in a shared library
2645 and want to call back into the main program. To make that case
2646 work correctly we need to set obj_private->dp for the main program's
2647 objfile, then remove this conditional. */
2648 if (obj_private
->dp
)
2649 write_register (27, obj_private
->dp
);
2656 #ifndef GDB_TARGET_IS_HPPA_20W
2657 /* Prefer __gcc_plt_call over the HP supplied routine because
2658 __gcc_plt_call works for any number of arguments. */
2660 if (lookup_minimal_symbol ("__gcc_plt_call", NULL
, NULL
) == NULL
)
2661 using_gcc_plt_call
= 0;
2663 msymbol
= lookup_minimal_symbol ("$$dyncall", NULL
, NULL
);
2664 if (msymbol
== NULL
)
2665 error ("Can't find an address for $$dyncall trampoline");
2667 dyncall_addr
= SYMBOL_VALUE_ADDRESS (msymbol
);
2669 /* FUN could be a procedure label, in which case we have to get
2670 its real address and the value of its GOT/DP if we plan to
2671 call the routine via gcc_plt_call. */
2672 if ((fun
& 0x2) && using_gcc_plt_call
)
2674 /* Get the GOT/DP value for the target function. It's
2675 at *(fun+4). Note the call dummy is *NOT* allowed to
2676 trash %r19 before calling the target function. */
2677 write_register (19, read_memory_integer ((fun
& ~0x3) + 4,
2678 DEPRECATED_REGISTER_SIZE
));
2680 /* Now get the real address for the function we are calling, it's
2682 fun
= (CORE_ADDR
) read_memory_integer (fun
& ~0x3,
2683 TARGET_PTR_BIT
/ 8);
2688 #ifndef GDB_TARGET_IS_PA_ELF
2689 /* FUN could be an export stub, the real address of a function, or
2690 a PLABEL. When using gcc's PLT call routine we must call an import
2691 stub rather than the export stub or real function for lazy binding
2694 If we are using the gcc PLT call routine, then we need to
2695 get the import stub for the target function. */
2696 if (using_gcc_plt_call
&& som_solib_get_got_by_pc (fun
))
2698 struct objfile
*objfile
;
2699 struct minimal_symbol
*funsymbol
, *stub_symbol
;
2700 CORE_ADDR newfun
= 0;
2702 funsymbol
= lookup_minimal_symbol_by_pc (fun
);
2704 error ("Unable to find minimal symbol for target function.\n");
2706 /* Search all the object files for an import symbol with the
2708 ALL_OBJFILES (objfile
)
2711 = lookup_minimal_symbol_solib_trampoline
2712 (DEPRECATED_SYMBOL_NAME (funsymbol
), objfile
);
2715 stub_symbol
= lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol
),
2718 /* Found a symbol with the right name. */
2721 struct unwind_table_entry
*u
;
2722 /* It must be a shared library trampoline. */
2723 if (MSYMBOL_TYPE (stub_symbol
) != mst_solib_trampoline
)
2726 /* It must also be an import stub. */
2727 u
= find_unwind_entry (SYMBOL_VALUE (stub_symbol
));
2729 || (u
->stub_unwind
.stub_type
!= IMPORT
2730 #ifdef GDB_NATIVE_HPUX_11
2731 /* Sigh. The hpux 10.20 dynamic linker will blow
2732 chunks if we perform a call to an unbound function
2733 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2734 linker will blow chunks if we do not call the
2735 unbound function via the IMPORT_SHLIB stub.
2737 We currently have no way to select bevahior on just
2738 the target. However, we only support HPUX/SOM in
2739 native mode. So we conditinalize on a native
2740 #ifdef. Ugly. Ugly. Ugly */
2741 && u
->stub_unwind
.stub_type
!= IMPORT_SHLIB
2746 /* OK. Looks like the correct import stub. */
2747 newfun
= SYMBOL_VALUE (stub_symbol
);
2750 /* If we found an IMPORT stub, then we want to stop
2751 searching now. If we found an IMPORT_SHLIB, we want
2752 to continue the search in the hopes that we will find
2754 if (u
->stub_unwind
.stub_type
== IMPORT
)
2759 /* Ouch. We did not find an import stub. Make an attempt to
2760 do the right thing instead of just croaking. Most of the
2761 time this will actually work. */
2763 write_register (19, som_solib_get_got_by_pc (fun
));
2765 u
= find_unwind_entry (fun
);
2767 && (u
->stub_unwind
.stub_type
== IMPORT
2768 || u
->stub_unwind
.stub_type
== IMPORT_SHLIB
))
2769 trampoline
= lookup_minimal_symbol ("__gcc_plt_call", NULL
, NULL
);
2771 /* If we found the import stub in the shared library, then we have
2772 to set %r19 before we call the stub. */
2773 if (u
&& u
->stub_unwind
.stub_type
== IMPORT_SHLIB
)
2774 write_register (19, som_solib_get_got_by_pc (fun
));
2779 /* If we are calling into another load module then have sr4export call the
2780 magic __d_plt_call routine which is linked in from end.o.
2782 You can't use _sr4export to make the call as the value in sp-24 will get
2783 fried and you end up returning to the wrong location. You can't call the
2784 target as the code to bind the PLT entry to a function can't return to a
2787 Also, query the dynamic linker in the inferior to provide a suitable
2788 PLABEL for the target function. */
2789 if (!using_gcc_plt_call
)
2793 /* Get a handle for the shared library containing FUN. Given the
2794 handle we can query the shared library for a PLABEL. */
2795 solib_handle
= som_solib_get_solib_by_pc (fun
);
2799 struct minimal_symbol
*fmsymbol
= lookup_minimal_symbol_by_pc (fun
);
2801 trampoline
= lookup_minimal_symbol ("__d_plt_call", NULL
, NULL
);
2803 if (trampoline
== NULL
)
2805 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2808 /* This is where sr4export will jump to. */
2809 new_fun
= SYMBOL_VALUE_ADDRESS (trampoline
);
2811 /* If the function is in a shared library, then call __d_shl_get to
2812 get a PLABEL for the target function. */
2813 new_stub
= find_stub_with_shl_get (fmsymbol
, solib_handle
);
2816 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol
));
2818 /* We have to store the address of the stub in __shlib_funcptr. */
2819 msymbol
= lookup_minimal_symbol ("__shlib_funcptr", NULL
,
2820 (struct objfile
*) NULL
);
2822 if (msymbol
== NULL
)
2823 error ("Can't find an address for __shlib_funcptr");
2824 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol
),
2825 (char *) &new_stub
, 4);
2827 /* We want sr4export to call __d_plt_call, so we claim it is
2828 the final target. Clear trampoline. */
2834 /* Store upper 21 bits of function address into ldil. fun will either be
2835 the final target (most cases) or __d_plt_call when calling into a shared
2836 library and __gcc_plt_call is not available. */
2837 store_unsigned_integer
2838 (&dummy
[FUNC_LDIL_OFFSET
],
2840 deposit_21 (fun
>> 11,
2841 extract_unsigned_integer (&dummy
[FUNC_LDIL_OFFSET
],
2842 INSTRUCTION_SIZE
)));
2844 /* Store lower 11 bits of function address into ldo */
2845 store_unsigned_integer
2846 (&dummy
[FUNC_LDO_OFFSET
],
2848 deposit_14 (fun
& MASK_11
,
2849 extract_unsigned_integer (&dummy
[FUNC_LDO_OFFSET
],
2850 INSTRUCTION_SIZE
)));
2851 #ifdef SR4EXPORT_LDIL_OFFSET
2854 CORE_ADDR trampoline_addr
;
2856 /* We may still need sr4export's address too. */
2858 if (trampoline
== NULL
)
2860 msymbol
= lookup_minimal_symbol ("_sr4export", NULL
, NULL
);
2861 if (msymbol
== NULL
)
2862 error ("Can't find an address for _sr4export trampoline");
2864 trampoline_addr
= SYMBOL_VALUE_ADDRESS (msymbol
);
2867 trampoline_addr
= SYMBOL_VALUE_ADDRESS (trampoline
);
2870 /* Store upper 21 bits of trampoline's address into ldil */
2871 store_unsigned_integer
2872 (&dummy
[SR4EXPORT_LDIL_OFFSET
],
2874 deposit_21 (trampoline_addr
>> 11,
2875 extract_unsigned_integer (&dummy
[SR4EXPORT_LDIL_OFFSET
],
2876 INSTRUCTION_SIZE
)));
2878 /* Store lower 11 bits of trampoline's address into ldo */
2879 store_unsigned_integer
2880 (&dummy
[SR4EXPORT_LDO_OFFSET
],
2882 deposit_14 (trampoline_addr
& MASK_11
,
2883 extract_unsigned_integer (&dummy
[SR4EXPORT_LDO_OFFSET
],
2884 INSTRUCTION_SIZE
)));
2888 write_register (22, pc
);
2890 /* If we are in a syscall, then we should call the stack dummy
2891 directly. $$dyncall is not needed as the kernel sets up the
2892 space id registers properly based on the value in %r31. In
2893 fact calling $$dyncall will not work because the value in %r22
2894 will be clobbered on the syscall exit path.
2896 Similarly if the current PC is in a shared library. Note however,
2897 this scheme won't work if the shared library isn't mapped into
2898 the same space as the stack. */
2901 #ifndef GDB_TARGET_IS_PA_ELF
2902 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid
)))
2906 return dyncall_addr
;
2910 /* If the pid is in a syscall, then the FP register is not readable.
2911 We'll return zero in that case, rather than attempting to read it
2912 and cause a warning. */
2915 hppa_read_fp (int pid
)
2917 int flags
= read_register (FLAGS_REGNUM
);
2921 return (CORE_ADDR
) 0;
2924 /* This is the only site that may directly read_register () the FP
2925 register. All others must use deprecated_read_fp (). */
2926 return read_register (DEPRECATED_FP_REGNUM
);
2930 hppa_target_read_fp (void)
2932 return hppa_read_fp (PIDGET (inferior_ptid
));
2935 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2939 hppa_target_read_pc (ptid_t ptid
)
2941 int flags
= read_register_pid (FLAGS_REGNUM
, ptid
);
2943 /* The following test does not belong here. It is OS-specific, and belongs
2945 /* Test SS_INSYSCALL */
2947 return read_register_pid (31, ptid
) & ~0x3;
2949 return read_register_pid (PC_REGNUM
, ptid
) & ~0x3;
2952 /* Write out the PC. If currently in a syscall, then also write the new
2953 PC value into %r31. */
2956 hppa_target_write_pc (CORE_ADDR v
, ptid_t ptid
)
2958 int flags
= read_register_pid (FLAGS_REGNUM
, ptid
);
2960 /* The following test does not belong here. It is OS-specific, and belongs
2962 /* If in a syscall, then set %r31. Also make sure to get the
2963 privilege bits set correctly. */
2964 /* Test SS_INSYSCALL */
2966 write_register_pid (31, v
| 0x3, ptid
);
2968 write_register_pid (PC_REGNUM
, v
, ptid
);
2969 write_register_pid (PCOQ_TAIL_REGNUM
, v
+ 4, ptid
);
2972 /* return the alignment of a type in bytes. Structures have the maximum
2973 alignment required by their fields. */
2976 hppa_alignof (struct type
*type
)
2978 int max_align
, align
, i
;
2979 CHECK_TYPEDEF (type
);
2980 switch (TYPE_CODE (type
))
2985 return TYPE_LENGTH (type
);
2986 case TYPE_CODE_ARRAY
:
2987 return hppa_alignof (TYPE_FIELD_TYPE (type
, 0));
2988 case TYPE_CODE_STRUCT
:
2989 case TYPE_CODE_UNION
:
2991 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
2993 /* Bit fields have no real alignment. */
2994 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2995 if (!TYPE_FIELD_BITSIZE (type
, i
)) /* elz: this should be bitsize */
2997 align
= hppa_alignof (TYPE_FIELD_TYPE (type
, i
));
2998 max_align
= max (max_align
, align
);
3007 /* Print the register regnum, or all registers if regnum is -1 */
3010 pa_do_registers_info (int regnum
, int fpregs
)
3012 char *raw_regs
= alloca (DEPRECATED_REGISTER_BYTES
);
3015 /* Make a copy of gdb's save area (may cause actual
3016 reads from the target). */
3017 for (i
= 0; i
< NUM_REGS
; i
++)
3018 frame_register_read (deprecated_selected_frame
, i
,
3019 raw_regs
+ DEPRECATED_REGISTER_BYTE (i
));
3022 pa_print_registers (raw_regs
, regnum
, fpregs
);
3023 else if (regnum
< FP4_REGNUM
)
3027 /* Why is the value not passed through "extract_signed_integer"
3028 as in "pa_print_registers" below? */
3029 pa_register_look_aside (raw_regs
, regnum
, ®_val
[0]);
3033 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum
), reg_val
[1]);
3037 /* Fancy % formats to prevent leading zeros. */
3038 if (reg_val
[0] == 0)
3039 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum
), reg_val
[1]);
3041 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum
),
3042 reg_val
[0], reg_val
[1]);
3046 /* Note that real floating point values only start at
3047 FP4_REGNUM. FP0 and up are just status and error
3048 registers, which have integral (bit) values. */
3049 pa_print_fp_reg (regnum
);
3052 /********** new function ********************/
3054 pa_do_strcat_registers_info (int regnum
, int fpregs
, struct ui_file
*stream
,
3055 enum precision_type precision
)
3057 char *raw_regs
= alloca (DEPRECATED_REGISTER_BYTES
);
3060 /* Make a copy of gdb's save area (may cause actual
3061 reads from the target). */
3062 for (i
= 0; i
< NUM_REGS
; i
++)
3063 frame_register_read (deprecated_selected_frame
, i
,
3064 raw_regs
+ DEPRECATED_REGISTER_BYTE (i
));
3067 pa_strcat_registers (raw_regs
, regnum
, fpregs
, stream
);
3069 else if (regnum
< FP4_REGNUM
)
3073 /* Why is the value not passed through "extract_signed_integer"
3074 as in "pa_print_registers" below? */
3075 pa_register_look_aside (raw_regs
, regnum
, ®_val
[0]);
3079 fprintf_unfiltered (stream
, "%s %lx", REGISTER_NAME (regnum
), reg_val
[1]);
3083 /* Fancy % formats to prevent leading zeros. */
3084 if (reg_val
[0] == 0)
3085 fprintf_unfiltered (stream
, "%s %lx", REGISTER_NAME (regnum
),
3088 fprintf_unfiltered (stream
, "%s %lx%8.8lx", REGISTER_NAME (regnum
),
3089 reg_val
[0], reg_val
[1]);
3093 /* Note that real floating point values only start at
3094 FP4_REGNUM. FP0 and up are just status and error
3095 registers, which have integral (bit) values. */
3096 pa_strcat_fp_reg (regnum
, stream
, precision
);
3099 /* If this is a PA2.0 machine, fetch the real 64-bit register
3100 value. Otherwise use the info from gdb's saved register area.
3102 Note that reg_val is really expected to be an array of longs,
3103 with two elements. */
3105 pa_register_look_aside (char *raw_regs
, int regnum
, long *raw_val
)
3107 static int know_which
= 0; /* False */
3110 unsigned int offset
;
3115 char buf
[MAX_REGISTER_SIZE
];
3120 if (CPU_PA_RISC2_0
== sysconf (_SC_CPU_VERSION
))
3125 know_which
= 1; /* True */
3133 raw_val
[1] = *(long *) (raw_regs
+ DEPRECATED_REGISTER_BYTE (regnum
));
3137 /* Code below copied from hppah-nat.c, with fixes for wide
3138 registers, using different area of save_state, etc. */
3139 if (regnum
== FLAGS_REGNUM
|| regnum
>= FP0_REGNUM
||
3140 !HAVE_STRUCT_SAVE_STATE_T
|| !HAVE_STRUCT_MEMBER_SS_WIDE
)
3142 /* Use narrow regs area of save_state and default macro. */
3143 offset
= U_REGS_OFFSET
;
3144 regaddr
= register_addr (regnum
, offset
);
3149 /* Use wide regs area, and calculate registers as 8 bytes wide.
3151 We'd like to do this, but current version of "C" doesn't
3154 offset = offsetof(save_state_t, ss_wide);
3156 Note that to avoid "C" doing typed pointer arithmetic, we
3157 have to cast away the type in our offset calculation:
3158 otherwise we get an offset of 1! */
3160 /* NB: save_state_t is not available before HPUX 9.
3161 The ss_wide field is not available previous to HPUX 10.20,
3162 so to avoid compile-time warnings, we only compile this for
3163 PA 2.0 processors. This control path should only be followed
3164 if we're debugging a PA 2.0 processor, so this should not cause
3167 /* #if the following code out so that this file can still be
3168 compiled on older HPUX boxes (< 10.20) which don't have
3169 this structure/structure member. */
3170 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
3173 offset
= ((int) &temp
.ss_wide
) - ((int) &temp
);
3174 regaddr
= offset
+ regnum
* 8;
3179 for (i
= start
; i
< 2; i
++)
3182 raw_val
[i
] = call_ptrace (PT_RUREGS
, PIDGET (inferior_ptid
),
3183 (PTRACE_ARG3_TYPE
) regaddr
, 0);
3186 /* Warning, not error, in case we are attached; sometimes the
3187 kernel doesn't let us at the registers. */
3188 char *err
= safe_strerror (errno
);
3189 char *msg
= alloca (strlen (err
) + 128);
3190 sprintf (msg
, "reading register %s: %s", REGISTER_NAME (regnum
), err
);
3195 regaddr
+= sizeof (long);
3198 if (regnum
== PCOQ_HEAD_REGNUM
|| regnum
== PCOQ_TAIL_REGNUM
)
3199 raw_val
[1] &= ~0x3; /* I think we're masking out space bits */
3205 /* "Info all-reg" command */
3208 pa_print_registers (char *raw_regs
, int regnum
, int fpregs
)
3211 /* Alas, we are compiled so that "long long" is 32 bits */
3214 int rows
= 48, columns
= 2;
3216 for (i
= 0; i
< rows
; i
++)
3218 for (j
= 0; j
< columns
; j
++)
3220 /* We display registers in column-major order. */
3221 int regnum
= i
+ j
* rows
;
3223 /* Q: Why is the value passed through "extract_signed_integer",
3224 while above, in "pa_do_registers_info" it isn't?
3226 pa_register_look_aside (raw_regs
, regnum
, &raw_val
[0]);
3228 /* Even fancier % formats to prevent leading zeros
3229 and still maintain the output in columns. */
3232 /* Being big-endian, on this machine the low bits
3233 (the ones we want to look at) are in the second longword. */
3234 long_val
= extract_signed_integer (&raw_val
[1], 4);
3235 printf_filtered ("%10.10s: %8lx ",
3236 REGISTER_NAME (regnum
), long_val
);
3240 /* raw_val = extract_signed_integer(&raw_val, 8); */
3241 if (raw_val
[0] == 0)
3242 printf_filtered ("%10.10s: %8lx ",
3243 REGISTER_NAME (regnum
), raw_val
[1]);
3245 printf_filtered ("%10.10s: %8lx%8.8lx ",
3246 REGISTER_NAME (regnum
),
3247 raw_val
[0], raw_val
[1]);
3250 printf_unfiltered ("\n");
3254 for (i
= FP4_REGNUM
; i
< NUM_REGS
; i
++) /* FP4_REGNUM == 72 */
3255 pa_print_fp_reg (i
);
3258 /************* new function ******************/
3260 pa_strcat_registers (char *raw_regs
, int regnum
, int fpregs
,
3261 struct ui_file
*stream
)
3264 long raw_val
[2]; /* Alas, we are compiled so that "long long" is 32 bits */
3266 enum precision_type precision
;
3268 precision
= unspecified_precision
;
3270 for (i
= 0; i
< 18; i
++)
3272 for (j
= 0; j
< 4; j
++)
3274 /* Q: Why is the value passed through "extract_signed_integer",
3275 while above, in "pa_do_registers_info" it isn't?
3277 pa_register_look_aside (raw_regs
, i
+ (j
* 18), &raw_val
[0]);
3279 /* Even fancier % formats to prevent leading zeros
3280 and still maintain the output in columns. */
3283 /* Being big-endian, on this machine the low bits
3284 (the ones we want to look at) are in the second longword. */
3285 long_val
= extract_signed_integer (&raw_val
[1], 4);
3286 fprintf_filtered (stream
, "%8.8s: %8lx ",
3287 REGISTER_NAME (i
+ (j
* 18)), long_val
);
3291 /* raw_val = extract_signed_integer(&raw_val, 8); */
3292 if (raw_val
[0] == 0)
3293 fprintf_filtered (stream
, "%8.8s: %8lx ",
3294 REGISTER_NAME (i
+ (j
* 18)), raw_val
[1]);
3296 fprintf_filtered (stream
, "%8.8s: %8lx%8.8lx ",
3297 REGISTER_NAME (i
+ (j
* 18)), raw_val
[0],
3301 fprintf_unfiltered (stream
, "\n");
3305 for (i
= FP4_REGNUM
; i
< NUM_REGS
; i
++) /* FP4_REGNUM == 72 */
3306 pa_strcat_fp_reg (i
, stream
, precision
);
3310 pa_print_fp_reg (int i
)
3312 char raw_buffer
[MAX_REGISTER_SIZE
];
3313 char virtual_buffer
[MAX_REGISTER_SIZE
];
3315 /* Get 32bits of data. */
3316 frame_register_read (deprecated_selected_frame
, i
, raw_buffer
);
3318 /* Put it in the buffer. No conversions are ever necessary. */
3319 memcpy (virtual_buffer
, raw_buffer
, DEPRECATED_REGISTER_RAW_SIZE (i
));
3321 fputs_filtered (REGISTER_NAME (i
), gdb_stdout
);
3322 print_spaces_filtered (8 - strlen (REGISTER_NAME (i
)), gdb_stdout
);
3323 fputs_filtered ("(single precision) ", gdb_stdout
);
3325 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i
), virtual_buffer
, 0, 0, gdb_stdout
, 0,
3326 1, 0, Val_pretty_default
);
3327 printf_filtered ("\n");
3329 /* If "i" is even, then this register can also be a double-precision
3330 FP register. Dump it out as such. */
3333 /* Get the data in raw format for the 2nd half. */
3334 frame_register_read (deprecated_selected_frame
, i
+ 1, raw_buffer
);
3336 /* Copy it into the appropriate part of the virtual buffer. */
3337 memcpy (virtual_buffer
+ DEPRECATED_REGISTER_RAW_SIZE (i
), raw_buffer
,
3338 DEPRECATED_REGISTER_RAW_SIZE (i
));
3340 /* Dump it as a double. */
3341 fputs_filtered (REGISTER_NAME (i
), gdb_stdout
);
3342 print_spaces_filtered (8 - strlen (REGISTER_NAME (i
)), gdb_stdout
);
3343 fputs_filtered ("(double precision) ", gdb_stdout
);
3345 val_print (builtin_type_double
, virtual_buffer
, 0, 0, gdb_stdout
, 0,
3346 1, 0, Val_pretty_default
);
3347 printf_filtered ("\n");
3351 /*************** new function ***********************/
3353 pa_strcat_fp_reg (int i
, struct ui_file
*stream
, enum precision_type precision
)
3355 char raw_buffer
[MAX_REGISTER_SIZE
];
3356 char virtual_buffer
[MAX_REGISTER_SIZE
];
3358 fputs_filtered (REGISTER_NAME (i
), stream
);
3359 print_spaces_filtered (8 - strlen (REGISTER_NAME (i
)), stream
);
3361 /* Get 32bits of data. */
3362 frame_register_read (deprecated_selected_frame
, i
, raw_buffer
);
3364 /* Put it in the buffer. No conversions are ever necessary. */
3365 memcpy (virtual_buffer
, raw_buffer
, DEPRECATED_REGISTER_RAW_SIZE (i
));
3367 if (precision
== double_precision
&& (i
% 2) == 0)
3370 char raw_buf
[MAX_REGISTER_SIZE
];
3372 /* Get the data in raw format for the 2nd half. */
3373 frame_register_read (deprecated_selected_frame
, i
+ 1, raw_buf
);
3375 /* Copy it into the appropriate part of the virtual buffer. */
3376 memcpy (virtual_buffer
+ DEPRECATED_REGISTER_RAW_SIZE (i
), raw_buf
,
3377 DEPRECATED_REGISTER_RAW_SIZE (i
));
3379 val_print (builtin_type_double
, virtual_buffer
, 0, 0, stream
, 0,
3380 1, 0, Val_pretty_default
);
3385 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i
), virtual_buffer
, 0, 0, stream
, 0,
3386 1, 0, Val_pretty_default
);
3391 /* Return one if PC is in the call path of a trampoline, else return zero.
3393 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3394 just shared library trampolines (import, export). */
3397 hppa_in_solib_call_trampoline (CORE_ADDR pc
, char *name
)
3399 struct minimal_symbol
*minsym
;
3400 struct unwind_table_entry
*u
;
3401 static CORE_ADDR dyncall
= 0;
3402 static CORE_ADDR sr4export
= 0;
3404 #ifdef GDB_TARGET_IS_HPPA_20W
3405 /* PA64 has a completely different stub/trampoline scheme. Is it
3406 better? Maybe. It's certainly harder to determine with any
3407 certainty that we are in a stub because we can not refer to the
3410 The heuristic is simple. Try to lookup the current PC value in th
3411 minimal symbol table. If that fails, then assume we are not in a
3414 Then see if the PC value falls within the section bounds for the
3415 section containing the minimal symbol we found in the first
3416 step. If it does, then assume we are not in a stub and return.
3418 Finally peek at the instructions to see if they look like a stub. */
3420 struct minimal_symbol
*minsym
;
3425 minsym
= lookup_minimal_symbol_by_pc (pc
);
3429 sec
= SYMBOL_BFD_SECTION (minsym
);
3431 if (bfd_get_section_vma (sec
->owner
, sec
) <= pc
3432 && pc
< (bfd_get_section_vma (sec
->owner
, sec
)
3433 + bfd_section_size (sec
->owner
, sec
)))
3436 /* We might be in a stub. Peek at the instructions. Stubs are 3
3437 instructions long. */
3438 insn
= read_memory_integer (pc
, 4);
3440 /* Find out where we think we are within the stub. */
3441 if ((insn
& 0xffffc00e) == 0x53610000)
3443 else if ((insn
& 0xffffffff) == 0xe820d000)
3445 else if ((insn
& 0xffffc00e) == 0x537b0000)
3450 /* Now verify each insn in the range looks like a stub instruction. */
3451 insn
= read_memory_integer (addr
, 4);
3452 if ((insn
& 0xffffc00e) != 0x53610000)
3455 /* Now verify each insn in the range looks like a stub instruction. */
3456 insn
= read_memory_integer (addr
+ 4, 4);
3457 if ((insn
& 0xffffffff) != 0xe820d000)
3460 /* Now verify each insn in the range looks like a stub instruction. */
3461 insn
= read_memory_integer (addr
+ 8, 4);
3462 if ((insn
& 0xffffc00e) != 0x537b0000)
3465 /* Looks like a stub. */
3470 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3473 /* First see if PC is in one of the two C-library trampolines. */
3476 minsym
= lookup_minimal_symbol ("$$dyncall", NULL
, NULL
);
3478 dyncall
= SYMBOL_VALUE_ADDRESS (minsym
);
3485 minsym
= lookup_minimal_symbol ("_sr4export", NULL
, NULL
);
3487 sr4export
= SYMBOL_VALUE_ADDRESS (minsym
);
3492 if (pc
== dyncall
|| pc
== sr4export
)
3495 minsym
= lookup_minimal_symbol_by_pc (pc
);
3496 if (minsym
&& strcmp (DEPRECATED_SYMBOL_NAME (minsym
), ".stub") == 0)
3499 /* Get the unwind descriptor corresponding to PC, return zero
3500 if no unwind was found. */
3501 u
= find_unwind_entry (pc
);
3505 /* If this isn't a linker stub, then return now. */
3506 if (u
->stub_unwind
.stub_type
== 0)
3509 /* By definition a long-branch stub is a call stub. */
3510 if (u
->stub_unwind
.stub_type
== LONG_BRANCH
)
3513 /* The call and return path execute the same instructions within
3514 an IMPORT stub! So an IMPORT stub is both a call and return
3516 if (u
->stub_unwind
.stub_type
== IMPORT
)
3519 /* Parameter relocation stubs always have a call path and may have a
3521 if (u
->stub_unwind
.stub_type
== PARAMETER_RELOCATION
3522 || u
->stub_unwind
.stub_type
== EXPORT
)
3526 /* Search forward from the current PC until we hit a branch
3527 or the end of the stub. */
3528 for (addr
= pc
; addr
<= u
->region_end
; addr
+= 4)
3532 insn
= read_memory_integer (addr
, 4);
3534 /* Does it look like a bl? If so then it's the call path, if
3535 we find a bv or be first, then we're on the return path. */
3536 if ((insn
& 0xfc00e000) == 0xe8000000)
3538 else if ((insn
& 0xfc00e001) == 0xe800c000
3539 || (insn
& 0xfc000000) == 0xe0000000)
3543 /* Should never happen. */
3544 warning ("Unable to find branch in parameter relocation stub.\n");
3548 /* Unknown stub type. For now, just return zero. */
3552 /* Return one if PC is in the return path of a trampoline, else return zero.
3554 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3555 just shared library trampolines (import, export). */
3558 hppa_in_solib_return_trampoline (CORE_ADDR pc
, char *name
)
3560 struct unwind_table_entry
*u
;
3562 /* Get the unwind descriptor corresponding to PC, return zero
3563 if no unwind was found. */
3564 u
= find_unwind_entry (pc
);
3568 /* If this isn't a linker stub or it's just a long branch stub, then
3570 if (u
->stub_unwind
.stub_type
== 0 || u
->stub_unwind
.stub_type
== LONG_BRANCH
)
3573 /* The call and return path execute the same instructions within
3574 an IMPORT stub! So an IMPORT stub is both a call and return
3576 if (u
->stub_unwind
.stub_type
== IMPORT
)
3579 /* Parameter relocation stubs always have a call path and may have a
3581 if (u
->stub_unwind
.stub_type
== PARAMETER_RELOCATION
3582 || u
->stub_unwind
.stub_type
== EXPORT
)
3586 /* Search forward from the current PC until we hit a branch
3587 or the end of the stub. */
3588 for (addr
= pc
; addr
<= u
->region_end
; addr
+= 4)
3592 insn
= read_memory_integer (addr
, 4);
3594 /* Does it look like a bl? If so then it's the call path, if
3595 we find a bv or be first, then we're on the return path. */
3596 if ((insn
& 0xfc00e000) == 0xe8000000)
3598 else if ((insn
& 0xfc00e001) == 0xe800c000
3599 || (insn
& 0xfc000000) == 0xe0000000)
3603 /* Should never happen. */
3604 warning ("Unable to find branch in parameter relocation stub.\n");
3608 /* Unknown stub type. For now, just return zero. */
3613 /* Figure out if PC is in a trampoline, and if so find out where
3614 the trampoline will jump to. If not in a trampoline, return zero.
3616 Simple code examination probably is not a good idea since the code
3617 sequences in trampolines can also appear in user code.
3619 We use unwinds and information from the minimal symbol table to
3620 determine when we're in a trampoline. This won't work for ELF
3621 (yet) since it doesn't create stub unwind entries. Whether or
3622 not ELF will create stub unwinds or normal unwinds for linker
3623 stubs is still being debated.
3625 This should handle simple calls through dyncall or sr4export,
3626 long calls, argument relocation stubs, and dyncall/sr4export
3627 calling an argument relocation stub. It even handles some stubs
3628 used in dynamic executables. */
3631 hppa_skip_trampoline_code (CORE_ADDR pc
)
3634 long prev_inst
, curr_inst
, loc
;
3635 static CORE_ADDR dyncall
= 0;
3636 static CORE_ADDR dyncall_external
= 0;
3637 static CORE_ADDR sr4export
= 0;
3638 struct minimal_symbol
*msym
;
3639 struct unwind_table_entry
*u
;
3641 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3646 msym
= lookup_minimal_symbol ("$$dyncall", NULL
, NULL
);
3648 dyncall
= SYMBOL_VALUE_ADDRESS (msym
);
3653 if (!dyncall_external
)
3655 msym
= lookup_minimal_symbol ("$$dyncall_external", NULL
, NULL
);
3657 dyncall_external
= SYMBOL_VALUE_ADDRESS (msym
);
3659 dyncall_external
= -1;
3664 msym
= lookup_minimal_symbol ("_sr4export", NULL
, NULL
);
3666 sr4export
= SYMBOL_VALUE_ADDRESS (msym
);
3671 /* Addresses passed to dyncall may *NOT* be the actual address
3672 of the function. So we may have to do something special. */
3675 pc
= (CORE_ADDR
) read_register (22);
3677 /* If bit 30 (counting from the left) is on, then pc is the address of
3678 the PLT entry for this function, not the address of the function
3679 itself. Bit 31 has meaning too, but only for MPE. */
3681 pc
= (CORE_ADDR
) read_memory_integer (pc
& ~0x3, TARGET_PTR_BIT
/ 8);
3683 if (pc
== dyncall_external
)
3685 pc
= (CORE_ADDR
) read_register (22);
3686 pc
= (CORE_ADDR
) read_memory_integer (pc
& ~0x3, TARGET_PTR_BIT
/ 8);
3688 else if (pc
== sr4export
)
3689 pc
= (CORE_ADDR
) (read_register (22));
3691 /* Get the unwind descriptor corresponding to PC, return zero
3692 if no unwind was found. */
3693 u
= find_unwind_entry (pc
);
3697 /* If this isn't a linker stub, then return now. */
3698 /* elz: attention here! (FIXME) because of a compiler/linker
3699 error, some stubs which should have a non zero stub_unwind.stub_type
3700 have unfortunately a value of zero. So this function would return here
3701 as if we were not in a trampoline. To fix this, we go look at the partial
3702 symbol information, which reports this guy as a stub.
3703 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3704 partial symbol information is also wrong sometimes. This is because
3705 when it is entered (somread.c::som_symtab_read()) it can happen that
3706 if the type of the symbol (from the som) is Entry, and the symbol is
3707 in a shared library, then it can also be a trampoline. This would
3708 be OK, except that I believe the way they decide if we are ina shared library
3709 does not work. SOOOO..., even if we have a regular function w/o trampolines
3710 its minimal symbol can be assigned type mst_solib_trampoline.
3711 Also, if we find that the symbol is a real stub, then we fix the unwind
3712 descriptor, and define the stub type to be EXPORT.
3713 Hopefully this is correct most of the times. */
3714 if (u
->stub_unwind
.stub_type
== 0)
3717 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3718 we can delete all the code which appears between the lines */
3719 /*--------------------------------------------------------------------------*/
3720 msym
= lookup_minimal_symbol_by_pc (pc
);
3722 if (msym
== NULL
|| MSYMBOL_TYPE (msym
) != mst_solib_trampoline
)
3723 return orig_pc
== pc
? 0 : pc
& ~0x3;
3725 else if (msym
!= NULL
&& MSYMBOL_TYPE (msym
) == mst_solib_trampoline
)
3727 struct objfile
*objfile
;
3728 struct minimal_symbol
*msymbol
;
3729 int function_found
= 0;
3731 /* go look if there is another minimal symbol with the same name as
3732 this one, but with type mst_text. This would happen if the msym
3733 is an actual trampoline, in which case there would be another
3734 symbol with the same name corresponding to the real function */
3736 ALL_MSYMBOLS (objfile
, msymbol
)
3738 if (MSYMBOL_TYPE (msymbol
) == mst_text
3739 && DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol
), DEPRECATED_SYMBOL_NAME (msym
)))
3747 /* the type of msym is correct (mst_solib_trampoline), but
3748 the unwind info is wrong, so set it to the correct value */
3749 u
->stub_unwind
.stub_type
= EXPORT
;
3751 /* the stub type info in the unwind is correct (this is not a
3752 trampoline), but the msym type information is wrong, it
3753 should be mst_text. So we need to fix the msym, and also
3754 get out of this function */
3756 MSYMBOL_TYPE (msym
) = mst_text
;
3757 return orig_pc
== pc
? 0 : pc
& ~0x3;
3761 /*--------------------------------------------------------------------------*/
3764 /* It's a stub. Search for a branch and figure out where it goes.
3765 Note we have to handle multi insn branch sequences like ldil;ble.
3766 Most (all?) other branches can be determined by examining the contents
3767 of certain registers and the stack. */
3774 /* Make sure we haven't walked outside the range of this stub. */
3775 if (u
!= find_unwind_entry (loc
))
3777 warning ("Unable to find branch in linker stub");
3778 return orig_pc
== pc
? 0 : pc
& ~0x3;
3781 prev_inst
= curr_inst
;
3782 curr_inst
= read_memory_integer (loc
, 4);
3784 /* Does it look like a branch external using %r1? Then it's the
3785 branch from the stub to the actual function. */
3786 if ((curr_inst
& 0xffe0e000) == 0xe0202000)
3788 /* Yup. See if the previous instruction loaded
3789 a value into %r1. If so compute and return the jump address. */
3790 if ((prev_inst
& 0xffe00000) == 0x20200000)
3791 return (extract_21 (prev_inst
) + extract_17 (curr_inst
)) & ~0x3;
3794 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3795 return orig_pc
== pc
? 0 : pc
& ~0x3;
3799 /* Does it look like a be 0(sr0,%r21)? OR
3800 Does it look like a be, n 0(sr0,%r21)? OR
3801 Does it look like a bve (r21)? (this is on PA2.0)
3802 Does it look like a bve, n(r21)? (this is also on PA2.0)
3803 That's the branch from an
3804 import stub to an export stub.
3806 It is impossible to determine the target of the branch via
3807 simple examination of instructions and/or data (consider
3808 that the address in the plabel may be the address of the
3809 bind-on-reference routine in the dynamic loader).
3811 So we have try an alternative approach.
3813 Get the name of the symbol at our current location; it should
3814 be a stub symbol with the same name as the symbol in the
3817 Then lookup a minimal symbol with the same name; we should
3818 get the minimal symbol for the target routine in the shared
3819 library as those take precedence of import/export stubs. */
3820 if ((curr_inst
== 0xe2a00000) ||
3821 (curr_inst
== 0xe2a00002) ||
3822 (curr_inst
== 0xeaa0d000) ||
3823 (curr_inst
== 0xeaa0d002))
3825 struct minimal_symbol
*stubsym
, *libsym
;
3827 stubsym
= lookup_minimal_symbol_by_pc (loc
);
3828 if (stubsym
== NULL
)
3830 warning ("Unable to find symbol for 0x%lx", loc
);
3831 return orig_pc
== pc
? 0 : pc
& ~0x3;
3834 libsym
= lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym
), NULL
, NULL
);
3837 warning ("Unable to find library symbol for %s\n",
3838 DEPRECATED_SYMBOL_NAME (stubsym
));
3839 return orig_pc
== pc
? 0 : pc
& ~0x3;
3842 return SYMBOL_VALUE (libsym
);
3845 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3846 branch from the stub to the actual function. */
3848 else if ((curr_inst
& 0xffe0e000) == 0xe8400000
3849 || (curr_inst
& 0xffe0e000) == 0xe8000000
3850 || (curr_inst
& 0xffe0e000) == 0xe800A000)
3851 return (loc
+ extract_17 (curr_inst
) + 8) & ~0x3;
3853 /* Does it look like bv (rp)? Note this depends on the
3854 current stack pointer being the same as the stack
3855 pointer in the stub itself! This is a branch on from the
3856 stub back to the original caller. */
3857 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3858 else if ((curr_inst
& 0xffe0f000) == 0xe840c000)
3860 /* Yup. See if the previous instruction loaded
3862 if (prev_inst
== 0x4bc23ff1)
3863 return (read_memory_integer
3864 (read_register (SP_REGNUM
) - 8, 4)) & ~0x3;
3867 warning ("Unable to find restore of %%rp before bv (%%rp).");
3868 return orig_pc
== pc
? 0 : pc
& ~0x3;
3872 /* elz: added this case to capture the new instruction
3873 at the end of the return part of an export stub used by
3874 the PA2.0: BVE, n (rp) */
3875 else if ((curr_inst
& 0xffe0f000) == 0xe840d000)
3877 return (read_memory_integer
3878 (read_register (SP_REGNUM
) - 24, TARGET_PTR_BIT
/ 8)) & ~0x3;
3881 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3882 the original caller from the stub. Used in dynamic executables. */
3883 else if (curr_inst
== 0xe0400002)
3885 /* The value we jump to is sitting in sp - 24. But that's
3886 loaded several instructions before the be instruction.
3887 I guess we could check for the previous instruction being
3888 mtsp %r1,%sr0 if we want to do sanity checking. */
3889 return (read_memory_integer
3890 (read_register (SP_REGNUM
) - 24, TARGET_PTR_BIT
/ 8)) & ~0x3;
3893 /* Haven't found the branch yet, but we're still in the stub.
3900 /* For the given instruction (INST), return any adjustment it makes
3901 to the stack pointer or zero for no adjustment.
3903 This only handles instructions commonly found in prologues. */
3906 prologue_inst_adjust_sp (unsigned long inst
)
3908 /* This must persist across calls. */
3909 static int save_high21
;
3911 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3912 if ((inst
& 0xffffc000) == 0x37de0000)
3913 return extract_14 (inst
);
3916 if ((inst
& 0xffe00000) == 0x6fc00000)
3917 return extract_14 (inst
);
3919 /* std,ma X,D(sp) */
3920 if ((inst
& 0xffe00008) == 0x73c00008)
3921 return (inst
& 0x1 ? -1 << 13 : 0) | (((inst
>> 4) & 0x3ff) << 3);
3923 /* addil high21,%r1; ldo low11,(%r1),%r30)
3924 save high bits in save_high21 for later use. */
3925 if ((inst
& 0xffe00000) == 0x28200000)
3927 save_high21
= extract_21 (inst
);
3931 if ((inst
& 0xffff0000) == 0x343e0000)
3932 return save_high21
+ extract_14 (inst
);
3934 /* fstws as used by the HP compilers. */
3935 if ((inst
& 0xffffffe0) == 0x2fd01220)
3936 return extract_5_load (inst
);
3938 /* No adjustment. */
3942 /* Return nonzero if INST is a branch of some kind, else return zero. */
3945 is_branch (unsigned long inst
)
3974 /* Return the register number for a GR which is saved by INST or
3975 zero it INST does not save a GR. */
3978 inst_saves_gr (unsigned long inst
)
3980 /* Does it look like a stw? */
3981 if ((inst
>> 26) == 0x1a || (inst
>> 26) == 0x1b
3982 || (inst
>> 26) == 0x1f
3983 || ((inst
>> 26) == 0x1f
3984 && ((inst
>> 6) == 0xa)))
3985 return extract_5R_store (inst
);
3987 /* Does it look like a std? */
3988 if ((inst
>> 26) == 0x1c
3989 || ((inst
>> 26) == 0x03
3990 && ((inst
>> 6) & 0xf) == 0xb))
3991 return extract_5R_store (inst
);
3993 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3994 if ((inst
>> 26) == 0x1b)
3995 return extract_5R_store (inst
);
3997 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3999 if ((inst
>> 26) == 0x19 || (inst
>> 26) == 0x18
4000 || ((inst
>> 26) == 0x3
4001 && (((inst
>> 6) & 0xf) == 0x8
4002 || (inst
>> 6) & 0xf) == 0x9))
4003 return extract_5R_store (inst
);
4008 /* Return the register number for a FR which is saved by INST or
4009 zero it INST does not save a FR.
4011 Note we only care about full 64bit register stores (that's the only
4012 kind of stores the prologue will use).
4014 FIXME: What about argument stores with the HP compiler in ANSI mode? */
4017 inst_saves_fr (unsigned long inst
)
4019 /* is this an FSTD ? */
4020 if ((inst
& 0xfc00dfc0) == 0x2c001200)
4021 return extract_5r_store (inst
);
4022 if ((inst
& 0xfc000002) == 0x70000002)
4023 return extract_5R_store (inst
);
4024 /* is this an FSTW ? */
4025 if ((inst
& 0xfc00df80) == 0x24001200)
4026 return extract_5r_store (inst
);
4027 if ((inst
& 0xfc000002) == 0x7c000000)
4028 return extract_5R_store (inst
);
4032 /* Advance PC across any function entry prologue instructions
4033 to reach some "real" code.
4035 Use information in the unwind table to determine what exactly should
4036 be in the prologue. */
4040 skip_prologue_hard_way (CORE_ADDR pc
)
4043 CORE_ADDR orig_pc
= pc
;
4044 unsigned long inst
, stack_remaining
, save_gr
, save_fr
, save_rp
, save_sp
;
4045 unsigned long args_stored
, status
, i
, restart_gr
, restart_fr
;
4046 struct unwind_table_entry
*u
;
4052 u
= find_unwind_entry (pc
);
4056 /* If we are not at the beginning of a function, then return now. */
4057 if ((pc
& ~0x3) != u
->region_start
)
4060 /* This is how much of a frame adjustment we need to account for. */
4061 stack_remaining
= u
->Total_frame_size
<< 3;
4063 /* Magic register saves we want to know about. */
4064 save_rp
= u
->Save_RP
;
4065 save_sp
= u
->Save_SP
;
4067 /* An indication that args may be stored into the stack. Unfortunately
4068 the HPUX compilers tend to set this in cases where no args were
4072 /* Turn the Entry_GR field into a bitmask. */
4074 for (i
= 3; i
< u
->Entry_GR
+ 3; i
++)
4076 /* Frame pointer gets saved into a special location. */
4077 if (u
->Save_SP
&& i
== DEPRECATED_FP_REGNUM
)
4080 save_gr
|= (1 << i
);
4082 save_gr
&= ~restart_gr
;
4084 /* Turn the Entry_FR field into a bitmask too. */
4086 for (i
= 12; i
< u
->Entry_FR
+ 12; i
++)
4087 save_fr
|= (1 << i
);
4088 save_fr
&= ~restart_fr
;
4090 /* Loop until we find everything of interest or hit a branch.
4092 For unoptimized GCC code and for any HP CC code this will never ever
4093 examine any user instructions.
4095 For optimzied GCC code we're faced with problems. GCC will schedule
4096 its prologue and make prologue instructions available for delay slot
4097 filling. The end result is user code gets mixed in with the prologue
4098 and a prologue instruction may be in the delay slot of the first branch
4101 Some unexpected things are expected with debugging optimized code, so
4102 we allow this routine to walk past user instructions in optimized
4104 while (save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0
4107 unsigned int reg_num
;
4108 unsigned long old_stack_remaining
, old_save_gr
, old_save_fr
;
4109 unsigned long old_save_rp
, old_save_sp
, next_inst
;
4111 /* Save copies of all the triggers so we can compare them later
4113 old_save_gr
= save_gr
;
4114 old_save_fr
= save_fr
;
4115 old_save_rp
= save_rp
;
4116 old_save_sp
= save_sp
;
4117 old_stack_remaining
= stack_remaining
;
4119 status
= target_read_memory (pc
, buf
, 4);
4120 inst
= extract_unsigned_integer (buf
, 4);
4126 /* Note the interesting effects of this instruction. */
4127 stack_remaining
-= prologue_inst_adjust_sp (inst
);
4129 /* There are limited ways to store the return pointer into the
4131 if (inst
== 0x6bc23fd9 || inst
== 0x0fc212c1)
4134 /* These are the only ways we save SP into the stack. At this time
4135 the HP compilers never bother to save SP into the stack. */
4136 if ((inst
& 0xffffc000) == 0x6fc10000
4137 || (inst
& 0xffffc00c) == 0x73c10008)
4140 /* Are we loading some register with an offset from the argument
4142 if ((inst
& 0xffe00000) == 0x37a00000
4143 || (inst
& 0xffffffe0) == 0x081d0240)
4149 /* Account for general and floating-point register saves. */
4150 reg_num
= inst_saves_gr (inst
);
4151 save_gr
&= ~(1 << reg_num
);
4153 /* Ugh. Also account for argument stores into the stack.
4154 Unfortunately args_stored only tells us that some arguments
4155 where stored into the stack. Not how many or what kind!
4157 This is a kludge as on the HP compiler sets this bit and it
4158 never does prologue scheduling. So once we see one, skip past
4159 all of them. We have similar code for the fp arg stores below.
4161 FIXME. Can still die if we have a mix of GR and FR argument
4163 if (reg_num
>= (TARGET_PTR_BIT
== 64 ? 19 : 23) && reg_num
<= 26)
4165 while (reg_num
>= (TARGET_PTR_BIT
== 64 ? 19 : 23) && reg_num
<= 26)
4168 status
= target_read_memory (pc
, buf
, 4);
4169 inst
= extract_unsigned_integer (buf
, 4);
4172 reg_num
= inst_saves_gr (inst
);
4178 reg_num
= inst_saves_fr (inst
);
4179 save_fr
&= ~(1 << reg_num
);
4181 status
= target_read_memory (pc
+ 4, buf
, 4);
4182 next_inst
= extract_unsigned_integer (buf
, 4);
4188 /* We've got to be read to handle the ldo before the fp register
4190 if ((inst
& 0xfc000000) == 0x34000000
4191 && inst_saves_fr (next_inst
) >= 4
4192 && inst_saves_fr (next_inst
) <= (TARGET_PTR_BIT
== 64 ? 11 : 7))
4194 /* So we drop into the code below in a reasonable state. */
4195 reg_num
= inst_saves_fr (next_inst
);
4199 /* Ugh. Also account for argument stores into the stack.
4200 This is a kludge as on the HP compiler sets this bit and it
4201 never does prologue scheduling. So once we see one, skip past
4203 if (reg_num
>= 4 && reg_num
<= (TARGET_PTR_BIT
== 64 ? 11 : 7))
4205 while (reg_num
>= 4 && reg_num
<= (TARGET_PTR_BIT
== 64 ? 11 : 7))
4208 status
= target_read_memory (pc
, buf
, 4);
4209 inst
= extract_unsigned_integer (buf
, 4);
4212 if ((inst
& 0xfc000000) != 0x34000000)
4214 status
= target_read_memory (pc
+ 4, buf
, 4);
4215 next_inst
= extract_unsigned_integer (buf
, 4);
4218 reg_num
= inst_saves_fr (next_inst
);
4224 /* Quit if we hit any kind of branch. This can happen if a prologue
4225 instruction is in the delay slot of the first call/branch. */
4226 if (is_branch (inst
))
4229 /* What a crock. The HP compilers set args_stored even if no
4230 arguments were stored into the stack (boo hiss). This could
4231 cause this code to then skip a bunch of user insns (up to the
4234 To combat this we try to identify when args_stored was bogusly
4235 set and clear it. We only do this when args_stored is nonzero,
4236 all other resources are accounted for, and nothing changed on
4239 && !(save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0)
4240 && old_save_gr
== save_gr
&& old_save_fr
== save_fr
4241 && old_save_rp
== save_rp
&& old_save_sp
== save_sp
4242 && old_stack_remaining
== stack_remaining
)
4249 /* We've got a tenative location for the end of the prologue. However
4250 because of limitations in the unwind descriptor mechanism we may
4251 have went too far into user code looking for the save of a register
4252 that does not exist. So, if there registers we expected to be saved
4253 but never were, mask them out and restart.
4255 This should only happen in optimized code, and should be very rare. */
4256 if (save_gr
|| (save_fr
&& !(restart_fr
|| restart_gr
)))
4259 restart_gr
= save_gr
;
4260 restart_fr
= save_fr
;
4268 /* Return the address of the PC after the last prologue instruction if
4269 we can determine it from the debug symbols. Else return zero. */
4272 after_prologue (CORE_ADDR pc
)
4274 struct symtab_and_line sal
;
4275 CORE_ADDR func_addr
, func_end
;
4278 /* If we can not find the symbol in the partial symbol table, then
4279 there is no hope we can determine the function's start address
4281 if (!find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
4284 /* Get the line associated with FUNC_ADDR. */
4285 sal
= find_pc_line (func_addr
, 0);
4287 /* There are only two cases to consider. First, the end of the source line
4288 is within the function bounds. In that case we return the end of the
4289 source line. Second is the end of the source line extends beyond the
4290 bounds of the current function. We need to use the slow code to
4291 examine instructions in that case.
4293 Anything else is simply a bug elsewhere. Fixing it here is absolutely
4294 the wrong thing to do. In fact, it should be entirely possible for this
4295 function to always return zero since the slow instruction scanning code
4296 is supposed to *always* work. If it does not, then it is a bug. */
4297 if (sal
.end
< func_end
)
4303 /* To skip prologues, I use this predicate. Returns either PC itself
4304 if the code at PC does not look like a function prologue; otherwise
4305 returns an address that (if we're lucky) follows the prologue. If
4306 LENIENT, then we must skip everything which is involved in setting
4307 up the frame (it's OK to skip more, just so long as we don't skip
4308 anything which might clobber the registers which are being saved.
4309 Currently we must not skip more on the alpha, but we might the lenient
4313 hppa_skip_prologue (CORE_ADDR pc
)
4317 CORE_ADDR post_prologue_pc
;
4320 /* See if we can determine the end of the prologue via the symbol table.
4321 If so, then return either PC, or the PC after the prologue, whichever
4324 post_prologue_pc
= after_prologue (pc
);
4326 /* If after_prologue returned a useful address, then use it. Else
4327 fall back on the instruction skipping code.
4329 Some folks have claimed this causes problems because the breakpoint
4330 may be the first instruction of the prologue. If that happens, then
4331 the instruction skipping code has a bug that needs to be fixed. */
4332 if (post_prologue_pc
!= 0)
4333 return max (pc
, post_prologue_pc
);
4335 return (skip_prologue_hard_way (pc
));
4338 /* Put here the code to store, into the SAVED_REGS, the addresses of
4339 the saved registers of frame described by FRAME_INFO. This
4340 includes special registers such as pc and fp saved in special ways
4341 in the stack frame. sp is even more special: the address we return
4342 for it IS the sp for the next frame. */
4345 hppa_frame_find_saved_regs (struct frame_info
*frame_info
,
4346 CORE_ADDR frame_saved_regs
[])
4349 struct unwind_table_entry
*u
;
4350 unsigned long inst
, stack_remaining
, save_gr
, save_fr
, save_rp
, save_sp
;
4354 int final_iteration
;
4356 /* Zero out everything. */
4357 memset (frame_saved_regs
, '\0', SIZEOF_FRAME_SAVED_REGS
);
4359 /* Call dummy frames always look the same, so there's no need to
4360 examine the dummy code to determine locations of saved registers;
4361 instead, let find_dummy_frame_regs fill in the correct offsets
4362 for the saved registers. */
4363 if ((get_frame_pc (frame_info
) >= get_frame_base (frame_info
)
4364 && (get_frame_pc (frame_info
)
4365 <= (get_frame_base (frame_info
)
4366 /* A call dummy is sized in words, but it is actually a
4367 series of instructions. Account for that scaling
4369 + ((DEPRECATED_REGISTER_SIZE
/ INSTRUCTION_SIZE
)
4370 * DEPRECATED_CALL_DUMMY_LENGTH
)
4371 /* Similarly we have to account for 64bit wide register
4373 + (32 * DEPRECATED_REGISTER_SIZE
)
4374 /* We always consider FP regs 8 bytes long. */
4375 + (NUM_REGS
- FP0_REGNUM
) * 8
4376 /* Similarly we have to account for 64bit wide register
4378 + (6 * DEPRECATED_REGISTER_SIZE
)))))
4379 find_dummy_frame_regs (frame_info
, frame_saved_regs
);
4381 /* Interrupt handlers are special too. They lay out the register
4382 state in the exact same order as the register numbers in GDB. */
4383 if (pc_in_interrupt_handler (get_frame_pc (frame_info
)))
4385 for (i
= 0; i
< NUM_REGS
; i
++)
4387 /* SP is a little special. */
4389 frame_saved_regs
[SP_REGNUM
]
4390 = read_memory_integer (get_frame_base (frame_info
) + SP_REGNUM
* 4,
4391 TARGET_PTR_BIT
/ 8);
4393 frame_saved_regs
[i
] = get_frame_base (frame_info
) + i
* 4;
4398 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4399 /* Handle signal handler callers. */
4400 if ((get_frame_type (frame_info
) == SIGTRAMP_FRAME
))
4402 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info
, frame_saved_regs
);
4407 /* Get the starting address of the function referred to by the PC
4409 pc
= get_frame_func (frame_info
);
4412 u
= find_unwind_entry (pc
);
4416 /* This is how much of a frame adjustment we need to account for. */
4417 stack_remaining
= u
->Total_frame_size
<< 3;
4419 /* Magic register saves we want to know about. */
4420 save_rp
= u
->Save_RP
;
4421 save_sp
= u
->Save_SP
;
4423 /* Turn the Entry_GR field into a bitmask. */
4425 for (i
= 3; i
< u
->Entry_GR
+ 3; i
++)
4427 /* Frame pointer gets saved into a special location. */
4428 if (u
->Save_SP
&& i
== DEPRECATED_FP_REGNUM
)
4431 save_gr
|= (1 << i
);
4434 /* Turn the Entry_FR field into a bitmask too. */
4436 for (i
= 12; i
< u
->Entry_FR
+ 12; i
++)
4437 save_fr
|= (1 << i
);
4439 /* The frame always represents the value of %sp at entry to the
4440 current function (and is thus equivalent to the "saved" stack
4442 frame_saved_regs
[SP_REGNUM
] = get_frame_base (frame_info
);
4444 /* Loop until we find everything of interest or hit a branch.
4446 For unoptimized GCC code and for any HP CC code this will never ever
4447 examine any user instructions.
4449 For optimized GCC code we're faced with problems. GCC will schedule
4450 its prologue and make prologue instructions available for delay slot
4451 filling. The end result is user code gets mixed in with the prologue
4452 and a prologue instruction may be in the delay slot of the first branch
4455 Some unexpected things are expected with debugging optimized code, so
4456 we allow this routine to walk past user instructions in optimized
4458 final_iteration
= 0;
4459 while ((save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0)
4460 && pc
<= get_frame_pc (frame_info
))
4462 status
= target_read_memory (pc
, buf
, 4);
4463 inst
= extract_unsigned_integer (buf
, 4);
4469 /* Note the interesting effects of this instruction. */
4470 stack_remaining
-= prologue_inst_adjust_sp (inst
);
4472 /* There are limited ways to store the return pointer into the
4474 if (inst
== 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4477 frame_saved_regs
[RP_REGNUM
] = get_frame_base (frame_info
) - 20;
4479 else if (inst
== 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4482 frame_saved_regs
[RP_REGNUM
] = get_frame_base (frame_info
) - 16;
4485 /* Note if we saved SP into the stack. This also happens to indicate
4486 the location of the saved frame pointer. */
4487 if ( (inst
& 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4488 || (inst
& 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4490 frame_saved_regs
[DEPRECATED_FP_REGNUM
] = get_frame_base (frame_info
);
4494 /* Account for general and floating-point register saves. */
4495 reg
= inst_saves_gr (inst
);
4496 if (reg
>= 3 && reg
<= 18
4497 && (!u
->Save_SP
|| reg
!= DEPRECATED_FP_REGNUM
))
4499 save_gr
&= ~(1 << reg
);
4501 /* stwm with a positive displacement is a *post modify*. */
4502 if ((inst
>> 26) == 0x1b
4503 && extract_14 (inst
) >= 0)
4504 frame_saved_regs
[reg
] = get_frame_base (frame_info
);
4505 /* A std has explicit post_modify forms. */
4506 else if ((inst
& 0xfc00000c) == 0x70000008)
4507 frame_saved_regs
[reg
] = get_frame_base (frame_info
);
4512 if ((inst
>> 26) == 0x1c)
4513 offset
= (inst
& 0x1 ? -1 << 13 : 0) | (((inst
>> 4) & 0x3ff) << 3);
4514 else if ((inst
>> 26) == 0x03)
4515 offset
= low_sign_extend (inst
& 0x1f, 5);
4517 offset
= extract_14 (inst
);
4519 /* Handle code with and without frame pointers. */
4521 frame_saved_regs
[reg
]
4522 = get_frame_base (frame_info
) + offset
;
4524 frame_saved_regs
[reg
]
4525 = (get_frame_base (frame_info
) + (u
->Total_frame_size
<< 3)
4531 /* GCC handles callee saved FP regs a little differently.
4533 It emits an instruction to put the value of the start of
4534 the FP store area into %r1. It then uses fstds,ma with
4535 a basereg of %r1 for the stores.
4537 HP CC emits them at the current stack pointer modifying
4538 the stack pointer as it stores each register. */
4540 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4541 if ((inst
& 0xffffc000) == 0x34610000
4542 || (inst
& 0xffffc000) == 0x37c10000)
4543 fp_loc
= extract_14 (inst
);
4545 reg
= inst_saves_fr (inst
);
4546 if (reg
>= 12 && reg
<= 21)
4548 /* Note +4 braindamage below is necessary because the FP status
4549 registers are internally 8 registers rather than the expected
4551 save_fr
&= ~(1 << reg
);
4554 /* 1st HP CC FP register store. After this instruction
4555 we've set enough state that the GCC and HPCC code are
4556 both handled in the same manner. */
4557 frame_saved_regs
[reg
+ FP4_REGNUM
+ 4] = get_frame_base (frame_info
);
4562 frame_saved_regs
[reg
+ FP0_REGNUM
+ 4]
4563 = get_frame_base (frame_info
) + fp_loc
;
4568 /* Quit if we hit any kind of branch the previous iteration. */
4569 if (final_iteration
)
4572 /* We want to look precisely one instruction beyond the branch
4573 if we have not found everything yet. */
4574 if (is_branch (inst
))
4575 final_iteration
= 1;
4582 /* XXX - deprecated. This is a compatibility function for targets
4583 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4584 /* Find the addresses in which registers are saved in FRAME. */
4587 hppa_frame_init_saved_regs (struct frame_info
*frame
)
4589 if (deprecated_get_frame_saved_regs (frame
) == NULL
)
4590 frame_saved_regs_zalloc (frame
);
4591 hppa_frame_find_saved_regs (frame
, deprecated_get_frame_saved_regs (frame
));
4594 struct hppa_frame_cache
4597 struct trad_frame_saved_reg
*saved_regs
;
4600 static struct hppa_frame_cache
*
4601 hppa_frame_cache (struct frame_info
*next_frame
, void **this_cache
)
4603 struct hppa_frame_cache
*cache
;
4608 struct unwind_table_entry
*u
;
4611 if ((*this_cache
) != NULL
)
4612 return (*this_cache
);
4613 cache
= FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache
);
4614 (*this_cache
) = cache
;
4615 cache
->saved_regs
= trad_frame_alloc_saved_regs (next_frame
);
4618 u
= find_unwind_entry (frame_func_unwind (next_frame
));
4622 /* Turn the Entry_GR field into a bitmask. */
4624 for (i
= 3; i
< u
->Entry_GR
+ 3; i
++)
4626 /* Frame pointer gets saved into a special location. */
4627 if (u
->Save_SP
&& i
== DEPRECATED_FP_REGNUM
)
4630 saved_gr_mask
|= (1 << i
);
4633 /* Turn the Entry_FR field into a bitmask too. */
4635 for (i
= 12; i
< u
->Entry_FR
+ 12; i
++)
4636 saved_fr_mask
|= (1 << i
);
4638 /* Loop until we find everything of interest or hit a branch.
4640 For unoptimized GCC code and for any HP CC code this will never ever
4641 examine any user instructions.
4643 For optimized GCC code we're faced with problems. GCC will schedule
4644 its prologue and make prologue instructions available for delay slot
4645 filling. The end result is user code gets mixed in with the prologue
4646 and a prologue instruction may be in the delay slot of the first branch
4649 Some unexpected things are expected with debugging optimized code, so
4650 we allow this routine to walk past user instructions in optimized
4653 int final_iteration
= 0;
4655 CORE_ADDR end_pc
= skip_prologue_using_sal (pc
);
4656 int looking_for_sp
= u
->Save_SP
;
4657 int looking_for_rp
= u
->Save_RP
;
4660 end_pc
= frame_pc_unwind (next_frame
);
4662 for (pc
= frame_func_unwind (next_frame
);
4663 ((saved_gr_mask
|| saved_fr_mask
4664 || looking_for_sp
|| looking_for_rp
4665 || frame_size
< (u
->Total_frame_size
<< 3))
4671 long status
= target_read_memory (pc
, buf4
, sizeof buf4
);
4672 long inst
= extract_unsigned_integer (buf4
, sizeof buf4
);
4674 /* Note the interesting effects of this instruction. */
4675 frame_size
+= prologue_inst_adjust_sp (inst
);
4677 /* There are limited ways to store the return pointer into the
4679 if (inst
== 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4682 cache
->saved_regs
[RP_REGNUM
].addr
= -20;
4684 else if (inst
== 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4687 cache
->saved_regs
[RP_REGNUM
].addr
= -16;
4690 /* Check to see if we saved SP into the stack. This also
4691 happens to indicate the location of the saved frame
4693 if ((inst
& 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4694 || (inst
& 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4697 cache
->saved_regs
[DEPRECATED_FP_REGNUM
].addr
= 0;
4700 /* Account for general and floating-point register saves. */
4701 reg
= inst_saves_gr (inst
);
4702 if (reg
>= 3 && reg
<= 18
4703 && (!u
->Save_SP
|| reg
!= DEPRECATED_FP_REGNUM
))
4705 saved_gr_mask
&= ~(1 << reg
);
4706 if ((inst
>> 26) == 0x1b && extract_14 (inst
) >= 0)
4707 /* stwm with a positive displacement is a _post_
4709 cache
->saved_regs
[reg
].addr
= 0;
4710 else if ((inst
& 0xfc00000c) == 0x70000008)
4711 /* A std has explicit post_modify forms. */
4712 cache
->saved_regs
[reg
].addr
= 0;
4717 if ((inst
>> 26) == 0x1c)
4718 offset
= (inst
& 0x1 ? -1 << 13 : 0) | (((inst
>> 4) & 0x3ff) << 3);
4719 else if ((inst
>> 26) == 0x03)
4720 offset
= low_sign_extend (inst
& 0x1f, 5);
4722 offset
= extract_14 (inst
);
4724 /* Handle code with and without frame pointers. */
4726 cache
->saved_regs
[reg
].addr
= offset
;
4728 cache
->saved_regs
[reg
].addr
= (u
->Total_frame_size
<< 3) + offset
;
4732 /* GCC handles callee saved FP regs a little differently.
4734 It emits an instruction to put the value of the start of
4735 the FP store area into %r1. It then uses fstds,ma with a
4736 basereg of %r1 for the stores.
4738 HP CC emits them at the current stack pointer modifying the
4739 stack pointer as it stores each register. */
4741 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4742 if ((inst
& 0xffffc000) == 0x34610000
4743 || (inst
& 0xffffc000) == 0x37c10000)
4744 fp_loc
= extract_14 (inst
);
4746 reg
= inst_saves_fr (inst
);
4747 if (reg
>= 12 && reg
<= 21)
4749 /* Note +4 braindamage below is necessary because the FP
4750 status registers are internally 8 registers rather than
4751 the expected 4 registers. */
4752 saved_fr_mask
&= ~(1 << reg
);
4755 /* 1st HP CC FP register store. After this
4756 instruction we've set enough state that the GCC and
4757 HPCC code are both handled in the same manner. */
4758 cache
->saved_regs
[reg
+ FP4_REGNUM
+ 4].addr
= 0;
4763 cache
->saved_regs
[reg
+ FP0_REGNUM
+ 4].addr
= fp_loc
;
4768 /* Quit if we hit any kind of branch the previous iteration. */
4769 if (final_iteration
)
4771 /* We want to look precisely one instruction beyond the branch
4772 if we have not found everything yet. */
4773 if (is_branch (inst
))
4774 final_iteration
= 1;
4779 /* The frame base always represents the value of %sp at entry to
4780 the current function (and is thus equivalent to the "saved"
4782 CORE_ADDR this_sp
= frame_unwind_register_unsigned (next_frame
, SP_REGNUM
);
4783 /* FIXME: cagney/2004-02-22: This assumes that the frame has been
4784 created. If it hasn't everything will be out-of-wack. */
4785 if (u
->Save_SP
&& trad_frame_addr_p (cache
->saved_regs
, SP_REGNUM
))
4786 /* Both we're expecting the SP to be saved and the SP has been
4787 saved. The entry SP value is saved at this frame's SP
4789 cache
->base
= read_memory_integer (this_sp
, TARGET_PTR_BIT
/ 8);
4791 /* The prologue has been slowly allocating stack space. Adjust
4793 cache
->base
= this_sp
- frame_size
;
4794 trad_frame_set_value (cache
->saved_regs
, SP_REGNUM
, cache
->base
);
4797 /* The PC is found in the "return register", "Millicode" uses "r31"
4798 as the return register while normal code uses "rp". */
4800 cache
->saved_regs
[PCOQ_HEAD_REGNUM
] = cache
->saved_regs
[31];
4802 cache
->saved_regs
[PCOQ_HEAD_REGNUM
] = cache
->saved_regs
[RP_REGNUM
];
4805 /* Convert all the offsets into addresses. */
4807 for (reg
= 0; reg
< NUM_REGS
; reg
++)
4809 if (trad_frame_addr_p (cache
->saved_regs
, reg
))
4810 cache
->saved_regs
[reg
].addr
+= cache
->base
;
4814 return (*this_cache
);
4818 hppa_frame_this_id (struct frame_info
*next_frame
, void **this_cache
,
4819 struct frame_id
*this_id
)
4821 struct hppa_frame_cache
*info
= hppa_frame_cache (next_frame
, this_cache
);
4822 (*this_id
) = frame_id_build (info
->base
, frame_func_unwind (next_frame
));
4826 hppa_frame_prev_register (struct frame_info
*next_frame
,
4828 int regnum
, int *optimizedp
,
4829 enum lval_type
*lvalp
, CORE_ADDR
*addrp
,
4830 int *realnump
, void *valuep
)
4832 struct hppa_frame_cache
*info
= hppa_frame_cache (next_frame
, this_cache
);
4833 struct gdbarch
*gdbarch
= get_frame_arch (next_frame
);
4834 if (regnum
== PCOQ_TAIL_REGNUM
)
4836 /* The PCOQ TAIL, or NPC, needs to be computed from the unwound
4844 int regsize
= register_size (gdbarch
, PCOQ_HEAD_REGNUM
);
4847 enum lval_type lval
;
4850 bfd_byte value
[MAX_REGISTER_SIZE
];
4851 trad_frame_prev_register (next_frame
, info
->saved_regs
,
4852 PCOQ_HEAD_REGNUM
, &optimized
, &lval
, &addr
,
4854 pc
= extract_unsigned_integer (&value
, regsize
);
4855 store_unsigned_integer (valuep
, regsize
, pc
+ 4);
4860 trad_frame_prev_register (next_frame
, info
->saved_regs
, regnum
,
4861 optimizedp
, lvalp
, addrp
, realnump
, valuep
);
4865 static const struct frame_unwind hppa_frame_unwind
=
4869 hppa_frame_prev_register
4872 static const struct frame_unwind
*
4873 hppa_frame_unwind_sniffer (struct frame_info
*next_frame
)
4875 return &hppa_frame_unwind
;
4879 hppa_frame_base_address (struct frame_info
*next_frame
,
4882 struct hppa_frame_cache
*info
= hppa_frame_cache (next_frame
,
4887 static const struct frame_base hppa_frame_base
= {
4889 hppa_frame_base_address
,
4890 hppa_frame_base_address
,
4891 hppa_frame_base_address
4894 static const struct frame_base
*
4895 hppa_frame_base_sniffer (struct frame_info
*next_frame
)
4897 return &hppa_frame_base
;
4900 static struct frame_id
4901 hppa_unwind_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
4903 return frame_id_build (frame_unwind_register_unsigned (next_frame
,
4905 frame_pc_unwind (next_frame
));
4909 hppa_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
4911 return frame_unwind_register_signed (next_frame
, PC_REGNUM
) & ~3;
4914 /* Exception handling support for the HP-UX ANSI C++ compiler.
4915 The compiler (aCC) provides a callback for exception events;
4916 GDB can set a breakpoint on this callback and find out what
4917 exception event has occurred. */
4919 /* The name of the hook to be set to point to the callback function */
4920 static char HP_ACC_EH_notify_hook
[] = "__eh_notify_hook";
4921 /* The name of the function to be used to set the hook value */
4922 static char HP_ACC_EH_set_hook_value
[] = "__eh_set_hook_value";
4923 /* The name of the callback function in end.o */
4924 static char HP_ACC_EH_notify_callback
[] = "__d_eh_notify_callback";
4925 /* Name of function in end.o on which a break is set (called by above) */
4926 static char HP_ACC_EH_break
[] = "__d_eh_break";
4927 /* Name of flag (in end.o) that enables catching throws */
4928 static char HP_ACC_EH_catch_throw
[] = "__d_eh_catch_throw";
4929 /* Name of flag (in end.o) that enables catching catching */
4930 static char HP_ACC_EH_catch_catch
[] = "__d_eh_catch_catch";
4931 /* The enum used by aCC */
4939 /* Is exception-handling support available with this executable? */
4940 static int hp_cxx_exception_support
= 0;
4941 /* Has the initialize function been run? */
4942 int hp_cxx_exception_support_initialized
= 0;
4943 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4944 extern int exception_support_initialized
;
4945 /* Address of __eh_notify_hook */
4946 static CORE_ADDR eh_notify_hook_addr
= 0;
4947 /* Address of __d_eh_notify_callback */
4948 static CORE_ADDR eh_notify_callback_addr
= 0;
4949 /* Address of __d_eh_break */
4950 static CORE_ADDR eh_break_addr
= 0;
4951 /* Address of __d_eh_catch_catch */
4952 static CORE_ADDR eh_catch_catch_addr
= 0;
4953 /* Address of __d_eh_catch_throw */
4954 static CORE_ADDR eh_catch_throw_addr
= 0;
4955 /* Sal for __d_eh_break */
4956 static struct symtab_and_line
*break_callback_sal
= 0;
4958 /* Code in end.c expects __d_pid to be set in the inferior,
4959 otherwise __d_eh_notify_callback doesn't bother to call
4960 __d_eh_break! So we poke the pid into this symbol
4965 setup_d_pid_in_inferior (void)
4968 struct minimal_symbol
*msymbol
;
4969 char buf
[4]; /* FIXME 32x64? */
4971 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4972 msymbol
= lookup_minimal_symbol ("__d_pid", NULL
, symfile_objfile
);
4973 if (msymbol
== NULL
)
4975 warning ("Unable to find __d_pid symbol in object file.");
4976 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4980 anaddr
= SYMBOL_VALUE_ADDRESS (msymbol
);
4981 store_unsigned_integer (buf
, 4, PIDGET (inferior_ptid
)); /* FIXME 32x64? */
4982 if (target_write_memory (anaddr
, buf
, 4)) /* FIXME 32x64? */
4984 warning ("Unable to write __d_pid");
4985 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4991 /* Initialize exception catchpoint support by looking for the
4992 necessary hooks/callbacks in end.o, etc., and set the hook value to
4993 point to the required debug function
4999 initialize_hp_cxx_exception_support (void)
5001 struct symtabs_and_lines sals
;
5002 struct cleanup
*old_chain
;
5003 struct cleanup
*canonical_strings_chain
= NULL
;
5006 char *addr_end
= NULL
;
5007 char **canonical
= (char **) NULL
;
5009 struct symbol
*sym
= NULL
;
5010 struct minimal_symbol
*msym
= NULL
;
5011 struct objfile
*objfile
;
5012 asection
*shlib_info
;
5014 /* Detect and disallow recursion. On HP-UX with aCC, infinite
5015 recursion is a possibility because finding the hook for exception
5016 callbacks involves making a call in the inferior, which means
5017 re-inserting breakpoints which can re-invoke this code */
5019 static int recurse
= 0;
5022 hp_cxx_exception_support_initialized
= 0;
5023 exception_support_initialized
= 0;
5027 hp_cxx_exception_support
= 0;
5029 /* First check if we have seen any HP compiled objects; if not,
5030 it is very unlikely that HP's idiosyncratic callback mechanism
5031 for exception handling debug support will be available!
5032 This will percolate back up to breakpoint.c, where our callers
5033 will decide to try the g++ exception-handling support instead. */
5034 if (!hp_som_som_object_present
)
5037 /* We have a SOM executable with SOM debug info; find the hooks */
5039 /* First look for the notify hook provided by aCC runtime libs */
5040 /* If we find this symbol, we conclude that the executable must
5041 have HP aCC exception support built in. If this symbol is not
5042 found, even though we're a HP SOM-SOM file, we may have been
5043 built with some other compiler (not aCC). This results percolates
5044 back up to our callers in breakpoint.c which can decide to
5045 try the g++ style of exception support instead.
5046 If this symbol is found but the other symbols we require are
5047 not found, there is something weird going on, and g++ support
5048 should *not* be tried as an alternative.
5050 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
5051 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
5053 /* libCsup has this hook; it'll usually be non-debuggable */
5054 msym
= lookup_minimal_symbol (HP_ACC_EH_notify_hook
, NULL
, NULL
);
5057 eh_notify_hook_addr
= SYMBOL_VALUE_ADDRESS (msym
);
5058 hp_cxx_exception_support
= 1;
5062 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook
);
5063 warning ("Executable may not have been compiled debuggable with HP aCC.");
5064 warning ("GDB will be unable to intercept exception events.");
5065 eh_notify_hook_addr
= 0;
5066 hp_cxx_exception_support
= 0;
5070 /* Next look for the notify callback routine in end.o */
5071 /* This is always available in the SOM symbol dictionary if end.o is linked in */
5072 msym
= lookup_minimal_symbol (HP_ACC_EH_notify_callback
, NULL
, NULL
);
5075 eh_notify_callback_addr
= SYMBOL_VALUE_ADDRESS (msym
);
5076 hp_cxx_exception_support
= 1;
5080 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback
);
5081 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
5082 warning ("GDB will be unable to intercept exception events.");
5083 eh_notify_callback_addr
= 0;
5087 #ifndef GDB_TARGET_IS_HPPA_20W
5088 /* Check whether the executable is dynamically linked or archive bound */
5089 /* With an archive-bound executable we can use the raw addresses we find
5090 for the callback function, etc. without modification. For an executable
5091 with shared libraries, we have to do more work to find the plabel, which
5092 can be the target of a call through $$dyncall from the aCC runtime support
5093 library (libCsup) which is linked shared by default by aCC. */
5094 /* This test below was copied from somsolib.c/somread.c. It may not be a very
5095 reliable one to test that an executable is linked shared. pai/1997-07-18 */
5096 shlib_info
= bfd_get_section_by_name (symfile_objfile
->obfd
, "$SHLIB_INFO$");
5097 if (shlib_info
&& (bfd_section_size (symfile_objfile
->obfd
, shlib_info
) != 0))
5099 /* The minsym we have has the local code address, but that's not the
5100 plabel that can be used by an inter-load-module call. */
5101 /* Find solib handle for main image (which has end.o), and use that
5102 and the min sym as arguments to __d_shl_get() (which does the equivalent
5103 of shl_findsym()) to find the plabel. */
5105 args_for_find_stub args
;
5106 static char message
[] = "Error while finding exception callback hook:\n";
5108 args
.solib_handle
= som_solib_get_solib_by_pc (eh_notify_callback_addr
);
5110 args
.return_val
= 0;
5113 catch_errors (cover_find_stub_with_shl_get
, &args
, message
,
5115 eh_notify_callback_addr
= args
.return_val
;
5118 exception_catchpoints_are_fragile
= 1;
5120 if (!eh_notify_callback_addr
)
5122 /* We can get here either if there is no plabel in the export list
5123 for the main image, or if something strange happened (?) */
5124 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
5125 warning ("GDB will not be able to intercept exception events.");
5130 exception_catchpoints_are_fragile
= 0;
5133 /* Now, look for the breakpointable routine in end.o */
5134 /* This should also be available in the SOM symbol dict. if end.o linked in */
5135 msym
= lookup_minimal_symbol (HP_ACC_EH_break
, NULL
, NULL
);
5138 eh_break_addr
= SYMBOL_VALUE_ADDRESS (msym
);
5139 hp_cxx_exception_support
= 1;
5143 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break
);
5144 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
5145 warning ("GDB will be unable to intercept exception events.");
5150 /* Next look for the catch enable flag provided in end.o */
5151 sym
= lookup_symbol (HP_ACC_EH_catch_catch
, (struct block
*) NULL
,
5152 VAR_DOMAIN
, 0, (struct symtab
**) NULL
);
5153 if (sym
) /* sometimes present in debug info */
5155 eh_catch_catch_addr
= SYMBOL_VALUE_ADDRESS (sym
);
5156 hp_cxx_exception_support
= 1;
5159 /* otherwise look in SOM symbol dict. */
5161 msym
= lookup_minimal_symbol (HP_ACC_EH_catch_catch
, NULL
, NULL
);
5164 eh_catch_catch_addr
= SYMBOL_VALUE_ADDRESS (msym
);
5165 hp_cxx_exception_support
= 1;
5169 warning ("Unable to enable interception of exception catches.");
5170 warning ("Executable may not have been compiled debuggable with HP aCC.");
5171 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
5176 /* Next look for the catch enable flag provided end.o */
5177 sym
= lookup_symbol (HP_ACC_EH_catch_catch
, (struct block
*) NULL
,
5178 VAR_DOMAIN
, 0, (struct symtab
**) NULL
);
5179 if (sym
) /* sometimes present in debug info */
5181 eh_catch_throw_addr
= SYMBOL_VALUE_ADDRESS (sym
);
5182 hp_cxx_exception_support
= 1;
5185 /* otherwise look in SOM symbol dict. */
5187 msym
= lookup_minimal_symbol (HP_ACC_EH_catch_throw
, NULL
, NULL
);
5190 eh_catch_throw_addr
= SYMBOL_VALUE_ADDRESS (msym
);
5191 hp_cxx_exception_support
= 1;
5195 warning ("Unable to enable interception of exception throws.");
5196 warning ("Executable may not have been compiled debuggable with HP aCC.");
5197 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
5203 hp_cxx_exception_support
= 2; /* everything worked so far */
5204 hp_cxx_exception_support_initialized
= 1;
5205 exception_support_initialized
= 1;
5210 /* Target operation for enabling or disabling interception of
5212 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
5213 ENABLE is either 0 (disable) or 1 (enable).
5214 Return value is NULL if no support found;
5215 -1 if something went wrong,
5216 or a pointer to a symtab/line struct if the breakpointable
5217 address was found. */
5219 struct symtab_and_line
*
5220 child_enable_exception_callback (enum exception_event_kind kind
, int enable
)
5224 if (!exception_support_initialized
|| !hp_cxx_exception_support_initialized
)
5225 if (!initialize_hp_cxx_exception_support ())
5228 switch (hp_cxx_exception_support
)
5231 /* Assuming no HP support at all */
5234 /* HP support should be present, but something went wrong */
5235 return (struct symtab_and_line
*) -1; /* yuck! */
5236 /* there may be other cases in the future */
5239 /* Set the EH hook to point to the callback routine */
5240 store_unsigned_integer (buf
, 4, enable
? eh_notify_callback_addr
: 0); /* FIXME 32x64 problem */
5241 /* pai: (temp) FIXME should there be a pack operation first? */
5242 if (target_write_memory (eh_notify_hook_addr
, buf
, 4)) /* FIXME 32x64 problem */
5244 warning ("Could not write to target memory for exception event callback.");
5245 warning ("Interception of exception events may not work.");
5246 return (struct symtab_and_line
*) -1;
5250 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
5251 if (PIDGET (inferior_ptid
) > 0)
5253 if (setup_d_pid_in_inferior ())
5254 return (struct symtab_and_line
*) -1;
5258 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
5259 return (struct symtab_and_line
*) -1;
5265 case EX_EVENT_THROW
:
5266 store_unsigned_integer (buf
, 4, enable
? 1 : 0);
5267 if (target_write_memory (eh_catch_throw_addr
, buf
, 4)) /* FIXME 32x64? */
5269 warning ("Couldn't enable exception throw interception.");
5270 return (struct symtab_and_line
*) -1;
5273 case EX_EVENT_CATCH
:
5274 store_unsigned_integer (buf
, 4, enable
? 1 : 0);
5275 if (target_write_memory (eh_catch_catch_addr
, buf
, 4)) /* FIXME 32x64? */
5277 warning ("Couldn't enable exception catch interception.");
5278 return (struct symtab_and_line
*) -1;
5282 error ("Request to enable unknown or unsupported exception event.");
5285 /* Copy break address into new sal struct, malloc'ing if needed. */
5286 if (!break_callback_sal
)
5288 break_callback_sal
= (struct symtab_and_line
*) xmalloc (sizeof (struct symtab_and_line
));
5290 init_sal (break_callback_sal
);
5291 break_callback_sal
->symtab
= NULL
;
5292 break_callback_sal
->pc
= eh_break_addr
;
5293 break_callback_sal
->line
= 0;
5294 break_callback_sal
->end
= eh_break_addr
;
5296 return break_callback_sal
;
5299 /* Record some information about the current exception event */
5300 static struct exception_event_record current_ex_event
;
5301 /* Convenience struct */
5302 static struct symtab_and_line null_symtab_and_line
=
5305 /* Report current exception event. Returns a pointer to a record
5306 that describes the kind of the event, where it was thrown from,
5307 and where it will be caught. More information may be reported
5309 struct exception_event_record
*
5310 child_get_current_exception_event (void)
5312 CORE_ADDR event_kind
;
5313 CORE_ADDR throw_addr
;
5314 CORE_ADDR catch_addr
;
5315 struct frame_info
*fi
, *curr_frame
;
5318 curr_frame
= get_current_frame ();
5320 return (struct exception_event_record
*) NULL
;
5322 /* Go up one frame to __d_eh_notify_callback, because at the
5323 point when this code is executed, there's garbage in the
5324 arguments of __d_eh_break. */
5325 fi
= find_relative_frame (curr_frame
, &level
);
5327 return (struct exception_event_record
*) NULL
;
5331 /* Read in the arguments */
5332 /* __d_eh_notify_callback() is called with 3 arguments:
5333 1. event kind catch or throw
5334 2. the target address if known
5335 3. a flag -- not sure what this is. pai/1997-07-17 */
5336 event_kind
= read_register (ARG0_REGNUM
);
5337 catch_addr
= read_register (ARG1_REGNUM
);
5339 /* Now go down to a user frame */
5340 /* For a throw, __d_eh_break is called by
5341 __d_eh_notify_callback which is called by
5342 __notify_throw which is called
5344 For a catch, __d_eh_break is called by
5345 __d_eh_notify_callback which is called by
5346 <stackwalking stuff> which is called by
5347 __throw__<stuff> or __rethrow_<stuff> which is called
5349 /* FIXME: Don't use such magic numbers; search for the frames */
5350 level
= (event_kind
== EX_EVENT_THROW
) ? 3 : 4;
5351 fi
= find_relative_frame (curr_frame
, &level
);
5353 return (struct exception_event_record
*) NULL
;
5356 throw_addr
= get_frame_pc (fi
);
5358 /* Go back to original (top) frame */
5359 select_frame (curr_frame
);
5361 current_ex_event
.kind
= (enum exception_event_kind
) event_kind
;
5362 current_ex_event
.throw_sal
= find_pc_line (throw_addr
, 1);
5363 current_ex_event
.catch_sal
= find_pc_line (catch_addr
, 1);
5365 return ¤t_ex_event
;
5368 /* Instead of this nasty cast, add a method pvoid() that prints out a
5369 host VOID data type (remember %p isn't portable). */
5372 hppa_pointer_to_address_hack (void *ptr
)
5374 gdb_assert (sizeof (ptr
) == TYPE_LENGTH (builtin_type_void_data_ptr
));
5375 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr
, &ptr
);
5379 unwind_command (char *exp
, int from_tty
)
5382 struct unwind_table_entry
*u
;
5384 /* If we have an expression, evaluate it and use it as the address. */
5386 if (exp
!= 0 && *exp
!= 0)
5387 address
= parse_and_eval_address (exp
);
5391 u
= find_unwind_entry (address
);
5395 printf_unfiltered ("Can't find unwind table entry for %s\n", exp
);
5399 printf_unfiltered ("unwind_table_entry (0x%s):\n",
5400 paddr_nz (hppa_pointer_to_address_hack (u
)));
5402 printf_unfiltered ("\tregion_start = ");
5403 print_address (u
->region_start
, gdb_stdout
);
5405 printf_unfiltered ("\n\tregion_end = ");
5406 print_address (u
->region_end
, gdb_stdout
);
5408 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
5410 printf_unfiltered ("\n\tflags =");
5411 pif (Cannot_unwind
);
5413 pif (Millicode_save_sr0
);
5416 pif (Variable_Frame
);
5417 pif (Separate_Package_Body
);
5418 pif (Frame_Extension_Millicode
);
5419 pif (Stack_Overflow_Check
);
5420 pif (Two_Instruction_SP_Increment
);
5424 pif (Save_MRP_in_frame
);
5425 pif (extn_ptr_defined
);
5426 pif (Cleanup_defined
);
5427 pif (MPE_XL_interrupt_marker
);
5428 pif (HP_UX_interrupt_marker
);
5431 putchar_unfiltered ('\n');
5433 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
5435 pin (Region_description
);
5438 pin (Total_frame_size
);
5442 hppa_skip_permanent_breakpoint (void)
5444 /* To step over a breakpoint instruction on the PA takes some
5445 fiddling with the instruction address queue.
5447 When we stop at a breakpoint, the IA queue front (the instruction
5448 we're executing now) points at the breakpoint instruction, and
5449 the IA queue back (the next instruction to execute) points to
5450 whatever instruction we would execute after the breakpoint, if it
5451 were an ordinary instruction. This is the case even if the
5452 breakpoint is in the delay slot of a branch instruction.
5454 Clearly, to step past the breakpoint, we need to set the queue
5455 front to the back. But what do we put in the back? What
5456 instruction comes after that one? Because of the branch delay
5457 slot, the next insn is always at the back + 4. */
5458 write_register (PCOQ_HEAD_REGNUM
, read_register (PCOQ_TAIL_REGNUM
));
5459 write_register (PCSQ_HEAD_REGNUM
, read_register (PCSQ_TAIL_REGNUM
));
5461 write_register (PCOQ_TAIL_REGNUM
, read_register (PCOQ_TAIL_REGNUM
) + 4);
5462 /* We can leave the tail's space the same, since there's no jump. */
5465 /* Same as hppa32_store_return_value(), but for the PA64 ABI. */
5468 hppa64_store_return_value (struct type
*type
, char *valbuf
)
5470 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
5471 deprecated_write_register_bytes
5472 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM
)
5473 + DEPRECATED_REGISTER_SIZE
- TYPE_LENGTH (type
),
5474 valbuf
, TYPE_LENGTH (type
));
5475 else if (is_integral_type(type
))
5476 deprecated_write_register_bytes
5477 (DEPRECATED_REGISTER_BYTE (28)
5478 + DEPRECATED_REGISTER_SIZE
- TYPE_LENGTH (type
),
5479 valbuf
, TYPE_LENGTH (type
));
5480 else if (TYPE_LENGTH (type
) <= 8)
5481 deprecated_write_register_bytes
5482 (DEPRECATED_REGISTER_BYTE (28),valbuf
, TYPE_LENGTH (type
));
5483 else if (TYPE_LENGTH (type
) <= 16)
5485 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf
, 8);
5486 deprecated_write_register_bytes
5487 (DEPRECATED_REGISTER_BYTE (29), valbuf
+ 8, TYPE_LENGTH (type
) - 8);
5491 /* Same as hppa32_extract_return_value but for the PA64 ABI case. */
5494 hppa64_extract_return_value (struct type
*type
, char *regbuf
, char *valbuf
)
5496 /* RM: Floats are returned in FR4R, doubles in FR4.
5497 Integral values are in r28, padded on the left.
5498 Aggregates less that 65 bits are in r28, right padded.
5499 Aggregates upto 128 bits are in r28 and r29, right padded. */
5500 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
5502 regbuf
+ DEPRECATED_REGISTER_BYTE (FP4_REGNUM
)
5503 + DEPRECATED_REGISTER_SIZE
- TYPE_LENGTH (type
),
5504 TYPE_LENGTH (type
));
5505 else if (is_integral_type(type
))
5507 regbuf
+ DEPRECATED_REGISTER_BYTE (28)
5508 + DEPRECATED_REGISTER_SIZE
- TYPE_LENGTH (type
),
5509 TYPE_LENGTH (type
));
5510 else if (TYPE_LENGTH (type
) <= 8)
5511 memcpy (valbuf
, regbuf
+ DEPRECATED_REGISTER_BYTE (28),
5512 TYPE_LENGTH (type
));
5513 else if (TYPE_LENGTH (type
) <= 16)
5515 memcpy (valbuf
, regbuf
+ DEPRECATED_REGISTER_BYTE (28), 8);
5516 memcpy (valbuf
+ 8, regbuf
+ DEPRECATED_REGISTER_BYTE (29),
5517 TYPE_LENGTH (type
) - 8);
5522 hppa_reg_struct_has_addr (int gcc_p
, struct type
*type
)
5524 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
5525 via a pointer regardless of its type or the compiler used. */
5526 return (TYPE_LENGTH (type
) > 8);
5530 hppa_inner_than (CORE_ADDR lhs
, CORE_ADDR rhs
)
5532 /* Stack grows upward */
5537 hppa64_stack_align (CORE_ADDR sp
)
5539 /* The PA64 ABI mandates a 16 byte stack alignment. */
5540 return ((sp
% 16) ? (sp
+ 15) & -16 : sp
);
5544 hppa_pc_requires_run_before_use (CORE_ADDR pc
)
5546 /* Sometimes we may pluck out a minimal symbol that has a negative address.
5548 An example of this occurs when an a.out is linked against a foo.sl.
5549 The foo.sl defines a global bar(), and the a.out declares a signature
5550 for bar(). However, the a.out doesn't directly call bar(), but passes
5551 its address in another call.
5553 If you have this scenario and attempt to "break bar" before running,
5554 gdb will find a minimal symbol for bar() in the a.out. But that
5555 symbol's address will be negative. What this appears to denote is
5556 an index backwards from the base of the procedure linkage table (PLT)
5557 into the data linkage table (DLT), the end of which is contiguous
5558 with the start of the PLT. This is clearly not a valid address for
5559 us to set a breakpoint on.
5561 Note that one must be careful in how one checks for a negative address.
5562 0xc0000000 is a legitimate address of something in a shared text
5563 segment, for example. Since I don't know what the possible range
5564 is of these "really, truly negative" addresses that come from the
5565 minimal symbols, I'm resorting to the gross hack of checking the
5566 top byte of the address for all 1's. Sigh. */
5568 return (!target_has_stack
&& (pc
& 0xFF000000));
5572 hppa_instruction_nullified (void)
5574 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
5575 avoid the type cast. I'm leaving it as is for now as I'm doing
5576 semi-mechanical multiarching-related changes. */
5577 const int ipsw
= (int) read_register (IPSW_REGNUM
);
5578 const int flags
= (int) read_register (FLAGS_REGNUM
);
5580 return ((ipsw
& 0x00200000) && !(flags
& 0x2));
5584 hppa_register_raw_size (int reg_nr
)
5586 /* All registers have the same size. */
5587 return DEPRECATED_REGISTER_SIZE
;
5590 /* Index within the register vector of the first byte of the space i
5591 used for register REG_NR. */
5594 hppa_register_byte (int reg_nr
)
5596 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
5598 return reg_nr
* tdep
->bytes_per_address
;
5601 /* Return the GDB type object for the "standard" data type of data
5605 hppa32_register_virtual_type (int reg_nr
)
5607 if (reg_nr
< FP4_REGNUM
)
5608 return builtin_type_int
;
5610 return builtin_type_float
;
5613 /* Return the GDB type object for the "standard" data type of data
5614 in register N. hppa64 version. */
5617 hppa64_register_virtual_type (int reg_nr
)
5619 if (reg_nr
< FP4_REGNUM
)
5620 return builtin_type_unsigned_long_long
;
5622 return builtin_type_double
;
5625 /* Store the address of the place in which to copy the structure the
5626 subroutine will return. This is called from call_function. */
5629 hppa_store_struct_return (CORE_ADDR addr
, CORE_ADDR sp
)
5631 write_register (28, addr
);
5633 /* Return True if REGNUM is not a register available to the user
5634 through ptrace(). */
5637 hppa_cannot_store_register (int regnum
)
5640 || regnum
== PCSQ_HEAD_REGNUM
5641 || (regnum
>= PCSQ_TAIL_REGNUM
&& regnum
< IPSW_REGNUM
)
5642 || (regnum
> IPSW_REGNUM
&& regnum
< FP4_REGNUM
));
5647 hppa_smash_text_address (CORE_ADDR addr
)
5649 /* The low two bits of the PC on the PA contain the privilege level.
5650 Some genius implementing a (non-GCC) compiler apparently decided
5651 this means that "addresses" in a text section therefore include a
5652 privilege level, and thus symbol tables should contain these bits.
5653 This seems like a bonehead thing to do--anyway, it seems to work
5654 for our purposes to just ignore those bits. */
5656 return (addr
&= ~0x3);
5659 /* Get the ith function argument for the current function. */
5661 hppa_fetch_pointer_argument (struct frame_info
*frame
, int argi
,
5665 get_frame_register (frame
, R0_REGNUM
+ 26 - argi
, &addr
);
5669 /* Here is a table of C type sizes on hppa with various compiles
5670 and options. I measured this on PA 9000/800 with HP-UX 11.11
5671 and these compilers:
5673 /usr/ccs/bin/cc HP92453-01 A.11.01.21
5674 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
5675 /opt/aCC/bin/aCC B3910B A.03.45
5676 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
5678 cc : 1 2 4 4 8 : 4 8 -- : 4 4
5679 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5680 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5681 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5682 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5683 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5684 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5685 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
5689 compiler and options
5690 char, short, int, long, long long
5691 float, double, long double
5694 So all these compilers use either ILP32 or LP64 model.
5695 TODO: gcc has more options so it needs more investigation.
5697 For floating point types, see:
5699 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
5700 HP-UX floating-point guide, hpux 11.00
5702 -- chastain 2003-12-18 */
5704 static struct gdbarch
*
5705 hppa_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
5707 struct gdbarch_tdep
*tdep
;
5708 struct gdbarch
*gdbarch
;
5710 /* Try to determine the ABI of the object we are loading. */
5711 if (info
.abfd
!= NULL
&& info
.osabi
== GDB_OSABI_UNKNOWN
)
5713 /* If it's a SOM file, assume it's HP/UX SOM. */
5714 if (bfd_get_flavour (info
.abfd
) == bfd_target_som_flavour
)
5715 info
.osabi
= GDB_OSABI_HPUX_SOM
;
5718 /* find a candidate among the list of pre-declared architectures. */
5719 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
5721 return (arches
->gdbarch
);
5723 /* If none found, then allocate and initialize one. */
5724 tdep
= XMALLOC (struct gdbarch_tdep
);
5725 gdbarch
= gdbarch_alloc (&info
, tdep
);
5727 /* Determine from the bfd_arch_info structure if we are dealing with
5728 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5729 then default to a 32bit machine. */
5730 if (info
.bfd_arch_info
!= NULL
)
5731 tdep
->bytes_per_address
=
5732 info
.bfd_arch_info
->bits_per_address
/ info
.bfd_arch_info
->bits_per_byte
;
5734 tdep
->bytes_per_address
= 4;
5736 /* Some parts of the gdbarch vector depend on whether we are running
5737 on a 32 bits or 64 bits target. */
5738 switch (tdep
->bytes_per_address
)
5741 set_gdbarch_num_regs (gdbarch
, hppa32_num_regs
);
5742 set_gdbarch_register_name (gdbarch
, hppa32_register_name
);
5743 set_gdbarch_deprecated_register_virtual_type
5744 (gdbarch
, hppa32_register_virtual_type
);
5747 set_gdbarch_num_regs (gdbarch
, hppa64_num_regs
);
5748 set_gdbarch_register_name (gdbarch
, hppa64_register_name
);
5749 set_gdbarch_deprecated_register_virtual_type
5750 (gdbarch
, hppa64_register_virtual_type
);
5753 internal_error (__FILE__
, __LINE__
, "Unsupported address size: %d",
5754 tdep
->bytes_per_address
);
5757 /* The following gdbarch vector elements depend on other parts of this
5758 vector which have been set above, depending on the ABI. */
5759 set_gdbarch_deprecated_register_bytes
5760 (gdbarch
, gdbarch_num_regs (gdbarch
) * tdep
->bytes_per_address
);
5761 set_gdbarch_long_bit (gdbarch
, tdep
->bytes_per_address
* TARGET_CHAR_BIT
);
5762 set_gdbarch_ptr_bit (gdbarch
, tdep
->bytes_per_address
* TARGET_CHAR_BIT
);
5764 /* The following gdbarch vector elements are the same in both ILP32
5765 and LP64, but might show differences some day. */
5766 set_gdbarch_long_long_bit (gdbarch
, 64);
5767 set_gdbarch_long_double_bit (gdbarch
, 128);
5768 set_gdbarch_long_double_format (gdbarch
, &floatformat_ia64_quad_big
);
5770 /* The following gdbarch vector elements do not depend on the address
5771 size, or in any other gdbarch element previously set. */
5772 set_gdbarch_skip_prologue (gdbarch
, hppa_skip_prologue
);
5773 set_gdbarch_skip_trampoline_code (gdbarch
, hppa_skip_trampoline_code
);
5774 set_gdbarch_in_solib_call_trampoline (gdbarch
, hppa_in_solib_call_trampoline
);
5775 set_gdbarch_in_solib_return_trampoline (gdbarch
,
5776 hppa_in_solib_return_trampoline
);
5777 set_gdbarch_inner_than (gdbarch
, hppa_inner_than
);
5778 set_gdbarch_deprecated_register_size (gdbarch
, tdep
->bytes_per_address
);
5779 set_gdbarch_deprecated_fp_regnum (gdbarch
, 3);
5780 set_gdbarch_sp_regnum (gdbarch
, 30);
5781 set_gdbarch_fp0_regnum (gdbarch
, 64);
5782 set_gdbarch_pc_regnum (gdbarch
, PCOQ_HEAD_REGNUM
);
5783 set_gdbarch_deprecated_register_raw_size (gdbarch
, hppa_register_raw_size
);
5784 set_gdbarch_deprecated_register_byte (gdbarch
, hppa_register_byte
);
5785 set_gdbarch_deprecated_register_virtual_size (gdbarch
, hppa_register_raw_size
);
5786 set_gdbarch_deprecated_max_register_raw_size (gdbarch
, tdep
->bytes_per_address
);
5787 set_gdbarch_deprecated_max_register_virtual_size (gdbarch
, 8);
5788 set_gdbarch_cannot_store_register (gdbarch
, hppa_cannot_store_register
);
5789 set_gdbarch_addr_bits_remove (gdbarch
, hppa_smash_text_address
);
5790 set_gdbarch_smash_text_address (gdbarch
, hppa_smash_text_address
);
5791 set_gdbarch_believe_pcc_promotion (gdbarch
, 1);
5792 set_gdbarch_read_pc (gdbarch
, hppa_target_read_pc
);
5793 set_gdbarch_write_pc (gdbarch
, hppa_target_write_pc
);
5794 set_gdbarch_deprecated_target_read_fp (gdbarch
, hppa_target_read_fp
);
5796 /* Helper for function argument information. */
5797 set_gdbarch_fetch_pointer_argument (gdbarch
, hppa_fetch_pointer_argument
);
5799 set_gdbarch_print_insn (gdbarch
, print_insn_hppa
);
5801 /* When a hardware watchpoint triggers, we'll move the inferior past
5802 it by removing all eventpoints; stepping past the instruction
5803 that caused the trigger; reinserting eventpoints; and checking
5804 whether any watched location changed. */
5805 set_gdbarch_have_nonsteppable_watchpoint (gdbarch
, 1);
5807 /* Inferior function call methods. */
5808 switch (tdep
->bytes_per_address
)
5811 set_gdbarch_push_dummy_call (gdbarch
, hppa32_push_dummy_call
);
5812 set_gdbarch_frame_align (gdbarch
, hppa32_frame_align
);
5817 set_gdbarch_push_dummy_call (gdbarch
, hppa64_push_dummy_call
);
5818 set_gdbarch_frame_align (gdbarch
, hppa64_frame_align
);
5823 set_gdbarch_deprecated_call_dummy_breakpoint_offset (gdbarch
, hppa64_call_dummy_breakpoint_offset
);
5824 set_gdbarch_deprecated_call_dummy_length (gdbarch
, hppa64_call_dummy_length
);
5825 set_gdbarch_deprecated_stack_align (gdbarch
, hppa64_stack_align
);
5827 set_gdbarch_deprecated_push_dummy_frame (gdbarch
, hppa_push_dummy_frame
);
5828 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5829 set_gdbarch_deprecated_push_arguments (gdbarch
, hppa_push_arguments
);
5830 set_gdbarch_deprecated_use_generic_dummy_frames (gdbarch
, 0);
5831 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch
, deprecated_pc_in_call_dummy_on_stack
);
5832 set_gdbarch_call_dummy_location (gdbarch
, ON_STACK
);
5837 /* Struct return methods. */
5838 switch (tdep
->bytes_per_address
)
5841 set_gdbarch_return_value (gdbarch
, hppa32_return_value
);
5845 set_gdbarch_return_value (gdbarch
, hppa64_return_value
);
5848 set_gdbarch_deprecated_extract_return_value (gdbarch
, hppa64_extract_return_value
);
5849 set_gdbarch_use_struct_convention (gdbarch
, hppa64_use_struct_convention
);
5850 set_gdbarch_deprecated_store_return_value (gdbarch
, hppa64_store_return_value
);
5851 set_gdbarch_deprecated_store_struct_return (gdbarch
, hppa_store_struct_return
);
5855 internal_error (__FILE__
, __LINE__
, "bad switch");
5858 /* Frame unwind methods. */
5859 switch (tdep
->bytes_per_address
)
5862 set_gdbarch_unwind_dummy_id (gdbarch
, hppa_unwind_dummy_id
);
5863 set_gdbarch_unwind_pc (gdbarch
, hppa_unwind_pc
);
5864 frame_unwind_append_sniffer (gdbarch
, hppa_frame_unwind_sniffer
);
5865 frame_base_append_sniffer (gdbarch
, hppa_frame_base_sniffer
);
5868 set_gdbarch_deprecated_saved_pc_after_call (gdbarch
, hppa_saved_pc_after_call
);
5869 set_gdbarch_deprecated_init_frame_pc (gdbarch
, deprecated_init_frame_pc_default
);
5870 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch
, hppa_frame_init_saved_regs
);
5871 set_gdbarch_deprecated_init_extra_frame_info (gdbarch
, hppa_init_extra_frame_info
);
5872 set_gdbarch_deprecated_frame_chain (gdbarch
, hppa_frame_chain
);
5873 set_gdbarch_deprecated_frame_chain_valid (gdbarch
, hppa_frame_chain_valid
);
5874 set_gdbarch_deprecated_frameless_function_invocation (gdbarch
, hppa_frameless_function_invocation
);
5875 set_gdbarch_deprecated_frame_saved_pc (gdbarch
, hppa_frame_saved_pc
);
5876 set_gdbarch_deprecated_pop_frame (gdbarch
, hppa_pop_frame
);
5879 internal_error (__FILE__
, __LINE__
, "bad switch");
5882 /* Hook in ABI-specific overrides, if they have been registered. */
5883 gdbarch_init_osabi (info
, gdbarch
);
5889 hppa_dump_tdep (struct gdbarch
*current_gdbarch
, struct ui_file
*file
)
5891 /* Nothing to print for the moment. */
5895 _initialize_hppa_tdep (void)
5897 struct cmd_list_element
*c
;
5898 void break_at_finish_command (char *arg
, int from_tty
);
5899 void tbreak_at_finish_command (char *arg
, int from_tty
);
5900 void break_at_finish_at_depth_command (char *arg
, int from_tty
);
5902 gdbarch_register (bfd_arch_hppa
, hppa_gdbarch_init
, hppa_dump_tdep
);
5904 add_cmd ("unwind", class_maintenance
, unwind_command
,
5905 "Print unwind table entry at given address.",
5906 &maintenanceprintlist
);
5908 deprecate_cmd (add_com ("xbreak", class_breakpoint
,
5909 break_at_finish_command
,
5910 concat ("Set breakpoint at procedure exit. \n\
5911 Argument may be function name, or \"*\" and an address.\n\
5912 If function is specified, break at end of code for that function.\n\
5913 If an address is specified, break at the end of the function that contains \n\
5914 that exact address.\n",
5915 "With no arg, uses current execution address of selected stack frame.\n\
5916 This is useful for breaking on return to a stack frame.\n\
5918 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5920 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL
)), NULL
);
5921 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint
, 1), NULL
);
5922 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint
, 1), NULL
);
5923 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint
, 1), NULL
);
5924 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint
, 1), NULL
);
5926 deprecate_cmd (c
= add_com ("txbreak", class_breakpoint
,
5927 tbreak_at_finish_command
,
5928 "Set temporary breakpoint at procedure exit. Either there should\n\
5929 be no argument or the argument must be a depth.\n"), NULL
);
5930 set_cmd_completer (c
, location_completer
);
5933 deprecate_cmd (add_com ("bx", class_breakpoint
,
5934 break_at_finish_at_depth_command
,
5935 "Set breakpoint at procedure exit. Either there should\n\
5936 be no argument or the argument must be a depth.\n"), NULL
);