db8d510554202160aaf5c437b2e6a39ce380c292
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "value.h"
31 #include "regcache.h"
32 #include "completer.h"
33 #include "language.h"
34 #include "osabi.h"
35 #include "gdb_assert.h"
36 #include "infttrace.h"
37 /* For argument passing to the inferior */
38 #include "symtab.h"
39 #include "infcall.h"
40
41 #ifdef USG
42 #include <sys/types.h>
43 #endif
44
45 #include <dl.h>
46 #include <sys/param.h>
47 #include <signal.h>
48
49 #include <sys/ptrace.h>
50 #include <machine/save_state.h>
51
52 #ifdef COFF_ENCAPSULATE
53 #include "a.out.encap.h"
54 #else
55 #endif
56
57 /*#include <sys/user.h> After a.out.h */
58 #include <sys/file.h>
59 #include "gdb_stat.h"
60 #include "gdb_wait.h"
61
62 #include "gdbcore.h"
63 #include "gdbcmd.h"
64 #include "target.h"
65 #include "symfile.h"
66 #include "objfiles.h"
67
68 /* Some local constants. */
69 static const int hppa_num_regs = 128;
70
71 /* To support detection of the pseudo-initial frame
72 that threads have. */
73 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
74 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
75
76 static int extract_5_load (unsigned int);
77
78 static unsigned extract_5R_store (unsigned int);
79
80 static unsigned extract_5r_store (unsigned int);
81
82 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
83
84 static int find_proc_framesize (CORE_ADDR);
85
86 static int find_return_regnum (CORE_ADDR);
87
88 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
89
90 static int extract_17 (unsigned int);
91
92 static unsigned deposit_21 (unsigned int, unsigned int);
93
94 static int extract_21 (unsigned);
95
96 static unsigned deposit_14 (int, unsigned int);
97
98 static int extract_14 (unsigned);
99
100 static void unwind_command (char *, int);
101
102 static int low_sign_extend (unsigned int, unsigned int);
103
104 static int sign_extend (unsigned int, unsigned int);
105
106 static int restore_pc_queue (CORE_ADDR *);
107
108 static int hppa_alignof (struct type *);
109
110 /* To support multi-threading and stepping. */
111 int hppa_prepare_to_proceed ();
112
113 static int prologue_inst_adjust_sp (unsigned long);
114
115 static int is_branch (unsigned long);
116
117 static int inst_saves_gr (unsigned long);
118
119 static int inst_saves_fr (unsigned long);
120
121 static int pc_in_interrupt_handler (CORE_ADDR);
122
123 static int pc_in_linker_stub (CORE_ADDR);
124
125 static int compare_unwind_entries (const void *, const void *);
126
127 static void read_unwind_info (struct objfile *);
128
129 static void internalize_unwinds (struct objfile *,
130 struct unwind_table_entry *,
131 asection *, unsigned int,
132 unsigned int, CORE_ADDR);
133 static void pa_print_registers (char *, int, int);
134 static void pa_strcat_registers (char *, int, int, struct ui_file *);
135 static void pa_register_look_aside (char *, int, long *);
136 static void pa_print_fp_reg (int);
137 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
138 static void record_text_segment_lowaddr (bfd *, asection *, void *);
139 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
140 following functions static, once we hppa is partially multiarched. */
141 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
142 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
143 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
144 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
145 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
146 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
147 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
148 CORE_ADDR hppa_stack_align (CORE_ADDR sp);
149 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
150 int hppa_instruction_nullified (void);
151 int hppa_register_raw_size (int reg_nr);
152 int hppa_register_byte (int reg_nr);
153 struct type * hppa_register_virtual_type (int reg_nr);
154 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
155 void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
156 int hppa_use_struct_convention (int gcc_p, struct type *type);
157 void hppa_store_return_value (struct type *type, char *valbuf);
158 CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
159 int hppa_cannot_store_register (int regnum);
160 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
161 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
162 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
163 int hppa_frameless_function_invocation (struct frame_info *frame);
164 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
165 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
166 CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
167 int hppa_frame_num_args (struct frame_info *frame);
168 void hppa_push_dummy_frame (void);
169 void hppa_pop_frame (void);
170 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
171 int nargs, struct value **args,
172 struct type *type, int gcc_p);
173 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
174 int struct_return, CORE_ADDR struct_addr);
175 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
176 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
177 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
178 CORE_ADDR hppa_target_read_fp (void);
179
180 typedef struct
181 {
182 struct minimal_symbol *msym;
183 CORE_ADDR solib_handle;
184 CORE_ADDR return_val;
185 }
186 args_for_find_stub;
187
188 static int cover_find_stub_with_shl_get (void *);
189
190 static int is_pa_2 = 0; /* False */
191
192 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
193 extern int hp_som_som_object_present;
194
195 /* In breakpoint.c */
196 extern int exception_catchpoints_are_fragile;
197
198 /* Should call_function allocate stack space for a struct return? */
199
200 int
201 hppa_use_struct_convention (int gcc_p, struct type *type)
202 {
203 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
204 }
205 \f
206
207 /* Routines to extract various sized constants out of hppa
208 instructions. */
209
210 /* This assumes that no garbage lies outside of the lower bits of
211 value. */
212
213 static int
214 sign_extend (unsigned val, unsigned bits)
215 {
216 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
217 }
218
219 /* For many immediate values the sign bit is the low bit! */
220
221 static int
222 low_sign_extend (unsigned val, unsigned bits)
223 {
224 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
225 }
226
227 /* extract the immediate field from a ld{bhw}s instruction */
228
229 static int
230 extract_5_load (unsigned word)
231 {
232 return low_sign_extend (word >> 16 & MASK_5, 5);
233 }
234
235 /* extract the immediate field from a break instruction */
236
237 static unsigned
238 extract_5r_store (unsigned word)
239 {
240 return (word & MASK_5);
241 }
242
243 /* extract the immediate field from a {sr}sm instruction */
244
245 static unsigned
246 extract_5R_store (unsigned word)
247 {
248 return (word >> 16 & MASK_5);
249 }
250
251 /* extract a 14 bit immediate field */
252
253 static int
254 extract_14 (unsigned word)
255 {
256 return low_sign_extend (word & MASK_14, 14);
257 }
258
259 /* deposit a 14 bit constant in a word */
260
261 static unsigned
262 deposit_14 (int opnd, unsigned word)
263 {
264 unsigned sign = (opnd < 0 ? 1 : 0);
265
266 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
267 }
268
269 /* extract a 21 bit constant */
270
271 static int
272 extract_21 (unsigned word)
273 {
274 int val;
275
276 word &= MASK_21;
277 word <<= 11;
278 val = GET_FIELD (word, 20, 20);
279 val <<= 11;
280 val |= GET_FIELD (word, 9, 19);
281 val <<= 2;
282 val |= GET_FIELD (word, 5, 6);
283 val <<= 5;
284 val |= GET_FIELD (word, 0, 4);
285 val <<= 2;
286 val |= GET_FIELD (word, 7, 8);
287 return sign_extend (val, 21) << 11;
288 }
289
290 /* deposit a 21 bit constant in a word. Although 21 bit constants are
291 usually the top 21 bits of a 32 bit constant, we assume that only
292 the low 21 bits of opnd are relevant */
293
294 static unsigned
295 deposit_21 (unsigned opnd, unsigned word)
296 {
297 unsigned val = 0;
298
299 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
300 val <<= 2;
301 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
302 val <<= 2;
303 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
304 val <<= 11;
305 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
306 val <<= 1;
307 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
308 return word | val;
309 }
310
311 /* extract a 17 bit constant from branch instructions, returning the
312 19 bit signed value. */
313
314 static int
315 extract_17 (unsigned word)
316 {
317 return sign_extend (GET_FIELD (word, 19, 28) |
318 GET_FIELD (word, 29, 29) << 10 |
319 GET_FIELD (word, 11, 15) << 11 |
320 (word & 0x1) << 16, 17) << 2;
321 }
322 \f
323
324 /* Compare the start address for two unwind entries returning 1 if
325 the first address is larger than the second, -1 if the second is
326 larger than the first, and zero if they are equal. */
327
328 static int
329 compare_unwind_entries (const void *arg1, const void *arg2)
330 {
331 const struct unwind_table_entry *a = arg1;
332 const struct unwind_table_entry *b = arg2;
333
334 if (a->region_start > b->region_start)
335 return 1;
336 else if (a->region_start < b->region_start)
337 return -1;
338 else
339 return 0;
340 }
341
342 static CORE_ADDR low_text_segment_address;
343
344 static void
345 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
346 {
347 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
348 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
349 && section->vma < low_text_segment_address)
350 low_text_segment_address = section->vma;
351 }
352
353 static void
354 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
355 asection *section, unsigned int entries, unsigned int size,
356 CORE_ADDR text_offset)
357 {
358 /* We will read the unwind entries into temporary memory, then
359 fill in the actual unwind table. */
360 if (size > 0)
361 {
362 unsigned long tmp;
363 unsigned i;
364 char *buf = alloca (size);
365
366 low_text_segment_address = -1;
367
368 /* If addresses are 64 bits wide, then unwinds are supposed to
369 be segment relative offsets instead of absolute addresses.
370
371 Note that when loading a shared library (text_offset != 0) the
372 unwinds are already relative to the text_offset that will be
373 passed in. */
374 if (TARGET_PTR_BIT == 64 && text_offset == 0)
375 {
376 bfd_map_over_sections (objfile->obfd,
377 record_text_segment_lowaddr, NULL);
378
379 /* ?!? Mask off some low bits. Should this instead subtract
380 out the lowest section's filepos or something like that?
381 This looks very hokey to me. */
382 low_text_segment_address &= ~0xfff;
383 text_offset += low_text_segment_address;
384 }
385
386 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
387
388 /* Now internalize the information being careful to handle host/target
389 endian issues. */
390 for (i = 0; i < entries; i++)
391 {
392 table[i].region_start = bfd_get_32 (objfile->obfd,
393 (bfd_byte *) buf);
394 table[i].region_start += text_offset;
395 buf += 4;
396 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
397 table[i].region_end += text_offset;
398 buf += 4;
399 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
400 buf += 4;
401 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
402 table[i].Millicode = (tmp >> 30) & 0x1;
403 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
404 table[i].Region_description = (tmp >> 27) & 0x3;
405 table[i].reserved1 = (tmp >> 26) & 0x1;
406 table[i].Entry_SR = (tmp >> 25) & 0x1;
407 table[i].Entry_FR = (tmp >> 21) & 0xf;
408 table[i].Entry_GR = (tmp >> 16) & 0x1f;
409 table[i].Args_stored = (tmp >> 15) & 0x1;
410 table[i].Variable_Frame = (tmp >> 14) & 0x1;
411 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
412 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
413 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
414 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
415 table[i].Ada_Region = (tmp >> 9) & 0x1;
416 table[i].cxx_info = (tmp >> 8) & 0x1;
417 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
418 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
419 table[i].reserved2 = (tmp >> 5) & 0x1;
420 table[i].Save_SP = (tmp >> 4) & 0x1;
421 table[i].Save_RP = (tmp >> 3) & 0x1;
422 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
423 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
424 table[i].Cleanup_defined = tmp & 0x1;
425 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
426 buf += 4;
427 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
428 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
429 table[i].Large_frame = (tmp >> 29) & 0x1;
430 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
431 table[i].reserved4 = (tmp >> 27) & 0x1;
432 table[i].Total_frame_size = tmp & 0x7ffffff;
433
434 /* Stub unwinds are handled elsewhere. */
435 table[i].stub_unwind.stub_type = 0;
436 table[i].stub_unwind.padding = 0;
437 }
438 }
439 }
440
441 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
442 the object file. This info is used mainly by find_unwind_entry() to find
443 out the stack frame size and frame pointer used by procedures. We put
444 everything on the psymbol obstack in the objfile so that it automatically
445 gets freed when the objfile is destroyed. */
446
447 static void
448 read_unwind_info (struct objfile *objfile)
449 {
450 asection *unwind_sec, *stub_unwind_sec;
451 unsigned unwind_size, stub_unwind_size, total_size;
452 unsigned index, unwind_entries;
453 unsigned stub_entries, total_entries;
454 CORE_ADDR text_offset;
455 struct obj_unwind_info *ui;
456 obj_private_data_t *obj_private;
457
458 text_offset = ANOFFSET (objfile->section_offsets, 0);
459 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
460 sizeof (struct obj_unwind_info));
461
462 ui->table = NULL;
463 ui->cache = NULL;
464 ui->last = -1;
465
466 /* For reasons unknown the HP PA64 tools generate multiple unwinder
467 sections in a single executable. So we just iterate over every
468 section in the BFD looking for unwinder sections intead of trying
469 to do a lookup with bfd_get_section_by_name.
470
471 First determine the total size of the unwind tables so that we
472 can allocate memory in a nice big hunk. */
473 total_entries = 0;
474 for (unwind_sec = objfile->obfd->sections;
475 unwind_sec;
476 unwind_sec = unwind_sec->next)
477 {
478 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
479 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
480 {
481 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
482 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
483
484 total_entries += unwind_entries;
485 }
486 }
487
488 /* Now compute the size of the stub unwinds. Note the ELF tools do not
489 use stub unwinds at the curren time. */
490 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
491
492 if (stub_unwind_sec)
493 {
494 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
495 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
496 }
497 else
498 {
499 stub_unwind_size = 0;
500 stub_entries = 0;
501 }
502
503 /* Compute total number of unwind entries and their total size. */
504 total_entries += stub_entries;
505 total_size = total_entries * sizeof (struct unwind_table_entry);
506
507 /* Allocate memory for the unwind table. */
508 ui->table = (struct unwind_table_entry *)
509 obstack_alloc (&objfile->psymbol_obstack, total_size);
510 ui->last = total_entries - 1;
511
512 /* Now read in each unwind section and internalize the standard unwind
513 entries. */
514 index = 0;
515 for (unwind_sec = objfile->obfd->sections;
516 unwind_sec;
517 unwind_sec = unwind_sec->next)
518 {
519 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
520 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
521 {
522 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
523 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
524
525 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
526 unwind_entries, unwind_size, text_offset);
527 index += unwind_entries;
528 }
529 }
530
531 /* Now read in and internalize the stub unwind entries. */
532 if (stub_unwind_size > 0)
533 {
534 unsigned int i;
535 char *buf = alloca (stub_unwind_size);
536
537 /* Read in the stub unwind entries. */
538 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
539 0, stub_unwind_size);
540
541 /* Now convert them into regular unwind entries. */
542 for (i = 0; i < stub_entries; i++, index++)
543 {
544 /* Clear out the next unwind entry. */
545 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
546
547 /* Convert offset & size into region_start and region_end.
548 Stuff away the stub type into "reserved" fields. */
549 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
550 (bfd_byte *) buf);
551 ui->table[index].region_start += text_offset;
552 buf += 4;
553 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
554 (bfd_byte *) buf);
555 buf += 2;
556 ui->table[index].region_end
557 = ui->table[index].region_start + 4 *
558 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
559 buf += 2;
560 }
561
562 }
563
564 /* Unwind table needs to be kept sorted. */
565 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
566 compare_unwind_entries);
567
568 /* Keep a pointer to the unwind information. */
569 if (objfile->obj_private == NULL)
570 {
571 obj_private = (obj_private_data_t *)
572 obstack_alloc (&objfile->psymbol_obstack,
573 sizeof (obj_private_data_t));
574 obj_private->unwind_info = NULL;
575 obj_private->so_info = NULL;
576 obj_private->dp = 0;
577
578 objfile->obj_private = obj_private;
579 }
580 obj_private = (obj_private_data_t *) objfile->obj_private;
581 obj_private->unwind_info = ui;
582 }
583
584 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
585 of the objfiles seeking the unwind table entry for this PC. Each objfile
586 contains a sorted list of struct unwind_table_entry. Since we do a binary
587 search of the unwind tables, we depend upon them to be sorted. */
588
589 struct unwind_table_entry *
590 find_unwind_entry (CORE_ADDR pc)
591 {
592 int first, middle, last;
593 struct objfile *objfile;
594
595 /* A function at address 0? Not in HP-UX! */
596 if (pc == (CORE_ADDR) 0)
597 return NULL;
598
599 ALL_OBJFILES (objfile)
600 {
601 struct obj_unwind_info *ui;
602 ui = NULL;
603 if (objfile->obj_private)
604 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
605
606 if (!ui)
607 {
608 read_unwind_info (objfile);
609 if (objfile->obj_private == NULL)
610 error ("Internal error reading unwind information.");
611 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
612 }
613
614 /* First, check the cache */
615
616 if (ui->cache
617 && pc >= ui->cache->region_start
618 && pc <= ui->cache->region_end)
619 return ui->cache;
620
621 /* Not in the cache, do a binary search */
622
623 first = 0;
624 last = ui->last;
625
626 while (first <= last)
627 {
628 middle = (first + last) / 2;
629 if (pc >= ui->table[middle].region_start
630 && pc <= ui->table[middle].region_end)
631 {
632 ui->cache = &ui->table[middle];
633 return &ui->table[middle];
634 }
635
636 if (pc < ui->table[middle].region_start)
637 last = middle - 1;
638 else
639 first = middle + 1;
640 }
641 } /* ALL_OBJFILES() */
642 return NULL;
643 }
644
645 /* Return the adjustment necessary to make for addresses on the stack
646 as presented by hpread.c.
647
648 This is necessary because of the stack direction on the PA and the
649 bizarre way in which someone (?) decided they wanted to handle
650 frame pointerless code in GDB. */
651 int
652 hpread_adjust_stack_address (CORE_ADDR func_addr)
653 {
654 struct unwind_table_entry *u;
655
656 u = find_unwind_entry (func_addr);
657 if (!u)
658 return 0;
659 else
660 return u->Total_frame_size << 3;
661 }
662
663 /* Called to determine if PC is in an interrupt handler of some
664 kind. */
665
666 static int
667 pc_in_interrupt_handler (CORE_ADDR pc)
668 {
669 struct unwind_table_entry *u;
670 struct minimal_symbol *msym_us;
671
672 u = find_unwind_entry (pc);
673 if (!u)
674 return 0;
675
676 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
677 its frame isn't a pure interrupt frame. Deal with this. */
678 msym_us = lookup_minimal_symbol_by_pc (pc);
679
680 return (u->HP_UX_interrupt_marker
681 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
682 }
683
684 /* Called when no unwind descriptor was found for PC. Returns 1 if it
685 appears that PC is in a linker stub.
686
687 ?!? Need to handle stubs which appear in PA64 code. */
688
689 static int
690 pc_in_linker_stub (CORE_ADDR pc)
691 {
692 int found_magic_instruction = 0;
693 int i;
694 char buf[4];
695
696 /* If unable to read memory, assume pc is not in a linker stub. */
697 if (target_read_memory (pc, buf, 4) != 0)
698 return 0;
699
700 /* We are looking for something like
701
702 ; $$dyncall jams RP into this special spot in the frame (RP')
703 ; before calling the "call stub"
704 ldw -18(sp),rp
705
706 ldsid (rp),r1 ; Get space associated with RP into r1
707 mtsp r1,sp ; Move it into space register 0
708 be,n 0(sr0),rp) ; back to your regularly scheduled program */
709
710 /* Maximum known linker stub size is 4 instructions. Search forward
711 from the given PC, then backward. */
712 for (i = 0; i < 4; i++)
713 {
714 /* If we hit something with an unwind, stop searching this direction. */
715
716 if (find_unwind_entry (pc + i * 4) != 0)
717 break;
718
719 /* Check for ldsid (rp),r1 which is the magic instruction for a
720 return from a cross-space function call. */
721 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
722 {
723 found_magic_instruction = 1;
724 break;
725 }
726 /* Add code to handle long call/branch and argument relocation stubs
727 here. */
728 }
729
730 if (found_magic_instruction != 0)
731 return 1;
732
733 /* Now look backward. */
734 for (i = 0; i < 4; i++)
735 {
736 /* If we hit something with an unwind, stop searching this direction. */
737
738 if (find_unwind_entry (pc - i * 4) != 0)
739 break;
740
741 /* Check for ldsid (rp),r1 which is the magic instruction for a
742 return from a cross-space function call. */
743 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
744 {
745 found_magic_instruction = 1;
746 break;
747 }
748 /* Add code to handle long call/branch and argument relocation stubs
749 here. */
750 }
751 return found_magic_instruction;
752 }
753
754 static int
755 find_return_regnum (CORE_ADDR pc)
756 {
757 struct unwind_table_entry *u;
758
759 u = find_unwind_entry (pc);
760
761 if (!u)
762 return RP_REGNUM;
763
764 if (u->Millicode)
765 return 31;
766
767 return RP_REGNUM;
768 }
769
770 /* Return size of frame, or -1 if we should use a frame pointer. */
771 static int
772 find_proc_framesize (CORE_ADDR pc)
773 {
774 struct unwind_table_entry *u;
775 struct minimal_symbol *msym_us;
776
777 /* This may indicate a bug in our callers... */
778 if (pc == (CORE_ADDR) 0)
779 return -1;
780
781 u = find_unwind_entry (pc);
782
783 if (!u)
784 {
785 if (pc_in_linker_stub (pc))
786 /* Linker stubs have a zero size frame. */
787 return 0;
788 else
789 return -1;
790 }
791
792 msym_us = lookup_minimal_symbol_by_pc (pc);
793
794 /* If Save_SP is set, and we're not in an interrupt or signal caller,
795 then we have a frame pointer. Use it. */
796 if (u->Save_SP
797 && !pc_in_interrupt_handler (pc)
798 && msym_us
799 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
800 return -1;
801
802 return u->Total_frame_size << 3;
803 }
804
805 /* Return offset from sp at which rp is saved, or 0 if not saved. */
806 static int rp_saved (CORE_ADDR);
807
808 static int
809 rp_saved (CORE_ADDR pc)
810 {
811 struct unwind_table_entry *u;
812
813 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
814 if (pc == (CORE_ADDR) 0)
815 return 0;
816
817 u = find_unwind_entry (pc);
818
819 if (!u)
820 {
821 if (pc_in_linker_stub (pc))
822 /* This is the so-called RP'. */
823 return -24;
824 else
825 return 0;
826 }
827
828 if (u->Save_RP)
829 return (TARGET_PTR_BIT == 64 ? -16 : -20);
830 else if (u->stub_unwind.stub_type != 0)
831 {
832 switch (u->stub_unwind.stub_type)
833 {
834 case EXPORT:
835 case IMPORT:
836 return -24;
837 case PARAMETER_RELOCATION:
838 return -8;
839 default:
840 return 0;
841 }
842 }
843 else
844 return 0;
845 }
846 \f
847 int
848 hppa_frameless_function_invocation (struct frame_info *frame)
849 {
850 struct unwind_table_entry *u;
851
852 u = find_unwind_entry (get_frame_pc (frame));
853
854 if (u == 0)
855 return 0;
856
857 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
858 }
859
860 /* Immediately after a function call, return the saved pc.
861 Can't go through the frames for this because on some machines
862 the new frame is not set up until the new function executes
863 some instructions. */
864
865 CORE_ADDR
866 hppa_saved_pc_after_call (struct frame_info *frame)
867 {
868 int ret_regnum;
869 CORE_ADDR pc;
870 struct unwind_table_entry *u;
871
872 ret_regnum = find_return_regnum (get_frame_pc (frame));
873 pc = read_register (ret_regnum) & ~0x3;
874
875 /* If PC is in a linker stub, then we need to dig the address
876 the stub will return to out of the stack. */
877 u = find_unwind_entry (pc);
878 if (u && u->stub_unwind.stub_type != 0)
879 return DEPRECATED_FRAME_SAVED_PC (frame);
880 else
881 return pc;
882 }
883 \f
884 CORE_ADDR
885 hppa_frame_saved_pc (struct frame_info *frame)
886 {
887 CORE_ADDR pc = get_frame_pc (frame);
888 struct unwind_table_entry *u;
889 CORE_ADDR old_pc = 0;
890 int spun_around_loop = 0;
891 int rp_offset = 0;
892
893 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
894 at the base of the frame in an interrupt handler. Registers within
895 are saved in the exact same order as GDB numbers registers. How
896 convienent. */
897 if (pc_in_interrupt_handler (pc))
898 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
899 TARGET_PTR_BIT / 8) & ~0x3;
900
901 if ((get_frame_pc (frame) >= get_frame_base (frame)
902 && (get_frame_pc (frame)
903 <= (get_frame_base (frame)
904 /* A call dummy is sized in words, but it is actually a
905 series of instructions. Account for that scaling
906 factor. */
907 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
908 * DEPRECATED_CALL_DUMMY_LENGTH)
909 /* Similarly we have to account for 64bit wide register
910 saves. */
911 + (32 * DEPRECATED_REGISTER_SIZE)
912 /* We always consider FP regs 8 bytes long. */
913 + (NUM_REGS - FP0_REGNUM) * 8
914 /* Similarly we have to account for 64bit wide register
915 saves. */
916 + (6 * DEPRECATED_REGISTER_SIZE)))))
917 {
918 return read_memory_integer ((get_frame_base (frame)
919 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
920 TARGET_PTR_BIT / 8) & ~0x3;
921 }
922
923 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
924 /* Deal with signal handler caller frames too. */
925 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
926 {
927 CORE_ADDR rp;
928 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
929 return rp & ~0x3;
930 }
931 #endif
932
933 if (hppa_frameless_function_invocation (frame))
934 {
935 int ret_regnum;
936
937 ret_regnum = find_return_regnum (pc);
938
939 /* If the next frame is an interrupt frame or a signal
940 handler caller, then we need to look in the saved
941 register area to get the return pointer (the values
942 in the registers may not correspond to anything useful). */
943 if (get_next_frame (frame)
944 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
945 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
946 {
947 CORE_ADDR *saved_regs;
948 hppa_frame_init_saved_regs (get_next_frame (frame));
949 saved_regs = get_frame_saved_regs (get_next_frame (frame));
950 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
951 TARGET_PTR_BIT / 8) & 0x2)
952 {
953 pc = read_memory_integer (saved_regs[31],
954 TARGET_PTR_BIT / 8) & ~0x3;
955
956 /* Syscalls are really two frames. The syscall stub itself
957 with a return pointer in %rp and the kernel call with
958 a return pointer in %r31. We return the %rp variant
959 if %r31 is the same as frame->pc. */
960 if (pc == get_frame_pc (frame))
961 pc = read_memory_integer (saved_regs[RP_REGNUM],
962 TARGET_PTR_BIT / 8) & ~0x3;
963 }
964 else
965 pc = read_memory_integer (saved_regs[RP_REGNUM],
966 TARGET_PTR_BIT / 8) & ~0x3;
967 }
968 else
969 pc = read_register (ret_regnum) & ~0x3;
970 }
971 else
972 {
973 spun_around_loop = 0;
974 old_pc = pc;
975
976 restart:
977 rp_offset = rp_saved (pc);
978
979 /* Similar to code in frameless function case. If the next
980 frame is a signal or interrupt handler, then dig the right
981 information out of the saved register info. */
982 if (rp_offset == 0
983 && get_next_frame (frame)
984 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
985 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
986 {
987 CORE_ADDR *saved_regs;
988 hppa_frame_init_saved_regs (get_next_frame (frame));
989 saved_regs = get_frame_saved_regs (get_next_frame (frame));
990 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
991 TARGET_PTR_BIT / 8) & 0x2)
992 {
993 pc = read_memory_integer (saved_regs[31],
994 TARGET_PTR_BIT / 8) & ~0x3;
995
996 /* Syscalls are really two frames. The syscall stub itself
997 with a return pointer in %rp and the kernel call with
998 a return pointer in %r31. We return the %rp variant
999 if %r31 is the same as frame->pc. */
1000 if (pc == get_frame_pc (frame))
1001 pc = read_memory_integer (saved_regs[RP_REGNUM],
1002 TARGET_PTR_BIT / 8) & ~0x3;
1003 }
1004 else
1005 pc = read_memory_integer (saved_regs[RP_REGNUM],
1006 TARGET_PTR_BIT / 8) & ~0x3;
1007 }
1008 else if (rp_offset == 0)
1009 {
1010 old_pc = pc;
1011 pc = read_register (RP_REGNUM) & ~0x3;
1012 }
1013 else
1014 {
1015 old_pc = pc;
1016 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1017 TARGET_PTR_BIT / 8) & ~0x3;
1018 }
1019 }
1020
1021 /* If PC is inside a linker stub, then dig out the address the stub
1022 will return to.
1023
1024 Don't do this for long branch stubs. Why? For some unknown reason
1025 _start is marked as a long branch stub in hpux10. */
1026 u = find_unwind_entry (pc);
1027 if (u && u->stub_unwind.stub_type != 0
1028 && u->stub_unwind.stub_type != LONG_BRANCH)
1029 {
1030 unsigned int insn;
1031
1032 /* If this is a dynamic executable, and we're in a signal handler,
1033 then the call chain will eventually point us into the stub for
1034 _sigreturn. Unlike most cases, we'll be pointed to the branch
1035 to the real sigreturn rather than the code after the real branch!.
1036
1037 Else, try to dig the address the stub will return to in the normal
1038 fashion. */
1039 insn = read_memory_integer (pc, 4);
1040 if ((insn & 0xfc00e000) == 0xe8000000)
1041 return (pc + extract_17 (insn) + 8) & ~0x3;
1042 else
1043 {
1044 if (old_pc == pc)
1045 spun_around_loop++;
1046
1047 if (spun_around_loop > 1)
1048 {
1049 /* We're just about to go around the loop again with
1050 no more hope of success. Die. */
1051 error ("Unable to find return pc for this frame");
1052 }
1053 else
1054 goto restart;
1055 }
1056 }
1057
1058 return pc;
1059 }
1060 \f
1061 /* We need to correct the PC and the FP for the outermost frame when we are
1062 in a system call. */
1063
1064 void
1065 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1066 {
1067 int flags;
1068 int framesize;
1069
1070 if (get_next_frame (frame) && !fromleaf)
1071 return;
1072
1073 /* If the next frame represents a frameless function invocation then
1074 we have to do some adjustments that are normally done by
1075 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1076 this case.) */
1077 if (fromleaf)
1078 {
1079 /* Find the framesize of *this* frame without peeking at the PC
1080 in the current frame structure (it isn't set yet). */
1081 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1082
1083 /* Now adjust our base frame accordingly. If we have a frame pointer
1084 use it, else subtract the size of this frame from the current
1085 frame. (we always want frame->frame to point at the lowest address
1086 in the frame). */
1087 if (framesize == -1)
1088 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1089 else
1090 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1091 return;
1092 }
1093
1094 flags = read_register (FLAGS_REGNUM);
1095 if (flags & 2) /* In system call? */
1096 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1097
1098 /* The outermost frame is always derived from PC-framesize
1099
1100 One might think frameless innermost frames should have
1101 a frame->frame that is the same as the parent's frame->frame.
1102 That is wrong; frame->frame in that case should be the *high*
1103 address of the parent's frame. It's complicated as hell to
1104 explain, but the parent *always* creates some stack space for
1105 the child. So the child actually does have a frame of some
1106 sorts, and its base is the high address in its parent's frame. */
1107 framesize = find_proc_framesize (get_frame_pc (frame));
1108 if (framesize == -1)
1109 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1110 else
1111 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1112 }
1113 \f
1114 /* Given a GDB frame, determine the address of the calling function's
1115 frame. This will be used to create a new GDB frame struct, and
1116 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1117 will be called for the new frame.
1118
1119 This may involve searching through prologues for several functions
1120 at boundaries where GCC calls HP C code, or where code which has
1121 a frame pointer calls code without a frame pointer. */
1122
1123 CORE_ADDR
1124 hppa_frame_chain (struct frame_info *frame)
1125 {
1126 int my_framesize, caller_framesize;
1127 struct unwind_table_entry *u;
1128 CORE_ADDR frame_base;
1129 struct frame_info *tmp_frame;
1130
1131 /* A frame in the current frame list, or zero. */
1132 struct frame_info *saved_regs_frame = 0;
1133 /* Where the registers were saved in saved_regs_frame. If
1134 saved_regs_frame is zero, this is garbage. */
1135 CORE_ADDR *saved_regs = NULL;
1136
1137 CORE_ADDR caller_pc;
1138
1139 struct minimal_symbol *min_frame_symbol;
1140 struct symbol *frame_symbol;
1141 char *frame_symbol_name;
1142
1143 /* If this is a threaded application, and we see the
1144 routine "__pthread_exit", treat it as the stack root
1145 for this thread. */
1146 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1147 frame_symbol = find_pc_function (get_frame_pc (frame));
1148
1149 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1150 {
1151 /* The test above for "no user function name" would defend
1152 against the slim likelihood that a user might define a
1153 routine named "__pthread_exit" and then try to debug it.
1154
1155 If it weren't commented out, and you tried to debug the
1156 pthread library itself, you'd get errors.
1157
1158 So for today, we don't make that check. */
1159 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1160 if (frame_symbol_name != 0)
1161 {
1162 if (0 == strncmp (frame_symbol_name,
1163 THREAD_INITIAL_FRAME_SYMBOL,
1164 THREAD_INITIAL_FRAME_SYM_LEN))
1165 {
1166 /* Pretend we've reached the bottom of the stack. */
1167 return (CORE_ADDR) 0;
1168 }
1169 }
1170 } /* End of hacky code for threads. */
1171
1172 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1173 are easy; at *sp we have a full save state strucutre which we can
1174 pull the old stack pointer from. Also see frame_saved_pc for
1175 code to dig a saved PC out of the save state structure. */
1176 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1177 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1178 TARGET_PTR_BIT / 8);
1179 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1180 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1181 {
1182 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1183 }
1184 #endif
1185 else
1186 frame_base = get_frame_base (frame);
1187
1188 /* Get frame sizes for the current frame and the frame of the
1189 caller. */
1190 my_framesize = find_proc_framesize (get_frame_pc (frame));
1191 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1192
1193 /* If we can't determine the caller's PC, then it's not likely we can
1194 really determine anything meaningful about its frame. We'll consider
1195 this to be stack bottom. */
1196 if (caller_pc == (CORE_ADDR) 0)
1197 return (CORE_ADDR) 0;
1198
1199 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1200
1201 /* If caller does not have a frame pointer, then its frame
1202 can be found at current_frame - caller_framesize. */
1203 if (caller_framesize != -1)
1204 {
1205 return frame_base - caller_framesize;
1206 }
1207 /* Both caller and callee have frame pointers and are GCC compiled
1208 (SAVE_SP bit in unwind descriptor is on for both functions.
1209 The previous frame pointer is found at the top of the current frame. */
1210 if (caller_framesize == -1 && my_framesize == -1)
1211 {
1212 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1213 }
1214 /* Caller has a frame pointer, but callee does not. This is a little
1215 more difficult as GCC and HP C lay out locals and callee register save
1216 areas very differently.
1217
1218 The previous frame pointer could be in a register, or in one of
1219 several areas on the stack.
1220
1221 Walk from the current frame to the innermost frame examining
1222 unwind descriptors to determine if %r3 ever gets saved into the
1223 stack. If so return whatever value got saved into the stack.
1224 If it was never saved in the stack, then the value in %r3 is still
1225 valid, so use it.
1226
1227 We use information from unwind descriptors to determine if %r3
1228 is saved into the stack (Entry_GR field has this information). */
1229
1230 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1231 {
1232 u = find_unwind_entry (get_frame_pc (tmp_frame));
1233
1234 if (!u)
1235 {
1236 /* We could find this information by examining prologues. I don't
1237 think anyone has actually written any tools (not even "strip")
1238 which leave them out of an executable, so maybe this is a moot
1239 point. */
1240 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1241 code that doesn't have unwind entries. For example, stepping into
1242 the dynamic linker will give you a PC that has none. Thus, I've
1243 disabled this warning. */
1244 #if 0
1245 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1246 #endif
1247 return (CORE_ADDR) 0;
1248 }
1249
1250 if (u->Save_SP
1251 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1252 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1253 break;
1254
1255 /* Entry_GR specifies the number of callee-saved general registers
1256 saved in the stack. It starts at %r3, so %r3 would be 1. */
1257 if (u->Entry_GR >= 1)
1258 {
1259 /* The unwind entry claims that r3 is saved here. However,
1260 in optimized code, GCC often doesn't actually save r3.
1261 We'll discover this if we look at the prologue. */
1262 hppa_frame_init_saved_regs (tmp_frame);
1263 saved_regs = get_frame_saved_regs (tmp_frame);
1264 saved_regs_frame = tmp_frame;
1265
1266 /* If we have an address for r3, that's good. */
1267 if (saved_regs[DEPRECATED_FP_REGNUM])
1268 break;
1269 }
1270 }
1271
1272 if (tmp_frame)
1273 {
1274 /* We may have walked down the chain into a function with a frame
1275 pointer. */
1276 if (u->Save_SP
1277 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1278 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1279 {
1280 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1281 }
1282 /* %r3 was saved somewhere in the stack. Dig it out. */
1283 else
1284 {
1285 /* Sick.
1286
1287 For optimization purposes many kernels don't have the
1288 callee saved registers into the save_state structure upon
1289 entry into the kernel for a syscall; the optimization
1290 is usually turned off if the process is being traced so
1291 that the debugger can get full register state for the
1292 process.
1293
1294 This scheme works well except for two cases:
1295
1296 * Attaching to a process when the process is in the
1297 kernel performing a system call (debugger can't get
1298 full register state for the inferior process since
1299 the process wasn't being traced when it entered the
1300 system call).
1301
1302 * Register state is not complete if the system call
1303 causes the process to core dump.
1304
1305
1306 The following heinous code is an attempt to deal with
1307 the lack of register state in a core dump. It will
1308 fail miserably if the function which performs the
1309 system call has a variable sized stack frame. */
1310
1311 if (tmp_frame != saved_regs_frame)
1312 {
1313 hppa_frame_init_saved_regs (tmp_frame);
1314 saved_regs = get_frame_saved_regs (tmp_frame);
1315 }
1316
1317 /* Abominable hack. */
1318 if (current_target.to_has_execution == 0
1319 && ((saved_regs[FLAGS_REGNUM]
1320 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1321 TARGET_PTR_BIT / 8)
1322 & 0x2))
1323 || (saved_regs[FLAGS_REGNUM] == 0
1324 && read_register (FLAGS_REGNUM) & 0x2)))
1325 {
1326 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1327 if (!u)
1328 {
1329 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1330 TARGET_PTR_BIT / 8);
1331 }
1332 else
1333 {
1334 return frame_base - (u->Total_frame_size << 3);
1335 }
1336 }
1337
1338 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1339 TARGET_PTR_BIT / 8);
1340 }
1341 }
1342 else
1343 {
1344 /* Get the innermost frame. */
1345 tmp_frame = frame;
1346 while (get_next_frame (tmp_frame) != NULL)
1347 tmp_frame = get_next_frame (tmp_frame);
1348
1349 if (tmp_frame != saved_regs_frame)
1350 {
1351 hppa_frame_init_saved_regs (tmp_frame);
1352 saved_regs = get_frame_saved_regs (tmp_frame);
1353 }
1354
1355 /* Abominable hack. See above. */
1356 if (current_target.to_has_execution == 0
1357 && ((saved_regs[FLAGS_REGNUM]
1358 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1359 TARGET_PTR_BIT / 8)
1360 & 0x2))
1361 || (saved_regs[FLAGS_REGNUM] == 0
1362 && read_register (FLAGS_REGNUM) & 0x2)))
1363 {
1364 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1365 if (!u)
1366 {
1367 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1368 TARGET_PTR_BIT / 8);
1369 }
1370 else
1371 {
1372 return frame_base - (u->Total_frame_size << 3);
1373 }
1374 }
1375
1376 /* The value in %r3 was never saved into the stack (thus %r3 still
1377 holds the value of the previous frame pointer). */
1378 return deprecated_read_fp ();
1379 }
1380 }
1381 \f
1382
1383 /* To see if a frame chain is valid, see if the caller looks like it
1384 was compiled with gcc. */
1385
1386 int
1387 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1388 {
1389 struct minimal_symbol *msym_us;
1390 struct minimal_symbol *msym_start;
1391 struct unwind_table_entry *u, *next_u = NULL;
1392 struct frame_info *next;
1393
1394 u = find_unwind_entry (get_frame_pc (thisframe));
1395
1396 if (u == NULL)
1397 return 1;
1398
1399 /* We can't just check that the same of msym_us is "_start", because
1400 someone idiotically decided that they were going to make a Ltext_end
1401 symbol with the same address. This Ltext_end symbol is totally
1402 indistinguishable (as nearly as I can tell) from the symbol for a function
1403 which is (legitimately, since it is in the user's namespace)
1404 named Ltext_end, so we can't just ignore it. */
1405 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1406 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1407 if (msym_us
1408 && msym_start
1409 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1410 return 0;
1411
1412 /* Grrrr. Some new idiot decided that they don't want _start for the
1413 PRO configurations; $START$ calls main directly.... Deal with it. */
1414 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1415 if (msym_us
1416 && msym_start
1417 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1418 return 0;
1419
1420 next = get_next_frame (thisframe);
1421 if (next)
1422 next_u = find_unwind_entry (get_frame_pc (next));
1423
1424 /* If this frame does not save SP, has no stack, isn't a stub,
1425 and doesn't "call" an interrupt routine or signal handler caller,
1426 then its not valid. */
1427 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1428 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1429 || (next_u && next_u->HP_UX_interrupt_marker))
1430 return 1;
1431
1432 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1433 return 1;
1434
1435 return 0;
1436 }
1437
1438 /* These functions deal with saving and restoring register state
1439 around a function call in the inferior. They keep the stack
1440 double-word aligned; eventually, on an hp700, the stack will have
1441 to be aligned to a 64-byte boundary. */
1442
1443 void
1444 hppa_push_dummy_frame (void)
1445 {
1446 CORE_ADDR sp, pc, pcspace;
1447 register int regnum;
1448 CORE_ADDR int_buffer;
1449 double freg_buffer;
1450
1451 pc = hppa_target_read_pc (inferior_ptid);
1452 int_buffer = read_register (FLAGS_REGNUM);
1453 if (int_buffer & 0x2)
1454 {
1455 const unsigned int sid = (pc >> 30) & 0x3;
1456 if (sid == 0)
1457 pcspace = read_register (SR4_REGNUM);
1458 else
1459 pcspace = read_register (SR4_REGNUM + 4 + sid);
1460 }
1461 else
1462 pcspace = read_register (PCSQ_HEAD_REGNUM);
1463
1464 /* Space for "arguments"; the RP goes in here. */
1465 sp = read_register (SP_REGNUM) + 48;
1466 int_buffer = read_register (RP_REGNUM) | 0x3;
1467
1468 /* The 32bit and 64bit ABIs save the return pointer into different
1469 stack slots. */
1470 if (DEPRECATED_REGISTER_SIZE == 8)
1471 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1472 else
1473 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1474
1475 int_buffer = deprecated_read_fp ();
1476 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1477
1478 write_register (DEPRECATED_FP_REGNUM, sp);
1479
1480 sp += 2 * DEPRECATED_REGISTER_SIZE;
1481
1482 for (regnum = 1; regnum < 32; regnum++)
1483 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1484 sp = push_word (sp, read_register (regnum));
1485
1486 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1487 if (DEPRECATED_REGISTER_SIZE != 8)
1488 sp += 4;
1489
1490 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1491 {
1492 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1493 (char *) &freg_buffer, 8);
1494 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1495 }
1496 sp = push_word (sp, read_register (IPSW_REGNUM));
1497 sp = push_word (sp, read_register (SAR_REGNUM));
1498 sp = push_word (sp, pc);
1499 sp = push_word (sp, pcspace);
1500 sp = push_word (sp, pc + 4);
1501 sp = push_word (sp, pcspace);
1502 write_register (SP_REGNUM, sp);
1503 }
1504
1505 static void
1506 find_dummy_frame_regs (struct frame_info *frame,
1507 CORE_ADDR frame_saved_regs[])
1508 {
1509 CORE_ADDR fp = get_frame_base (frame);
1510 int i;
1511
1512 /* The 32bit and 64bit ABIs save RP into different locations. */
1513 if (DEPRECATED_REGISTER_SIZE == 8)
1514 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1515 else
1516 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1517
1518 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1519
1520 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1521
1522 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1523 {
1524 if (i != DEPRECATED_FP_REGNUM)
1525 {
1526 frame_saved_regs[i] = fp;
1527 fp += DEPRECATED_REGISTER_SIZE;
1528 }
1529 }
1530
1531 /* This is not necessary or desirable for the 64bit ABI. */
1532 if (DEPRECATED_REGISTER_SIZE != 8)
1533 fp += 4;
1534
1535 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1536 frame_saved_regs[i] = fp;
1537
1538 frame_saved_regs[IPSW_REGNUM] = fp;
1539 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1540 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1541 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1542 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1543 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1544 }
1545
1546 void
1547 hppa_pop_frame (void)
1548 {
1549 register struct frame_info *frame = get_current_frame ();
1550 register CORE_ADDR fp, npc, target_pc;
1551 register int regnum;
1552 CORE_ADDR *fsr;
1553 double freg_buffer;
1554
1555 fp = get_frame_base (frame);
1556 hppa_frame_init_saved_regs (frame);
1557 fsr = get_frame_saved_regs (frame);
1558
1559 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1560 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1561 restore_pc_queue (fsr);
1562 #endif
1563
1564 for (regnum = 31; regnum > 0; regnum--)
1565 if (fsr[regnum])
1566 write_register (regnum, read_memory_integer (fsr[regnum],
1567 DEPRECATED_REGISTER_SIZE));
1568
1569 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1570 if (fsr[regnum])
1571 {
1572 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1573 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1574 (char *) &freg_buffer, 8);
1575 }
1576
1577 if (fsr[IPSW_REGNUM])
1578 write_register (IPSW_REGNUM,
1579 read_memory_integer (fsr[IPSW_REGNUM],
1580 DEPRECATED_REGISTER_SIZE));
1581
1582 if (fsr[SAR_REGNUM])
1583 write_register (SAR_REGNUM,
1584 read_memory_integer (fsr[SAR_REGNUM],
1585 DEPRECATED_REGISTER_SIZE));
1586
1587 /* If the PC was explicitly saved, then just restore it. */
1588 if (fsr[PCOQ_TAIL_REGNUM])
1589 {
1590 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1591 DEPRECATED_REGISTER_SIZE);
1592 write_register (PCOQ_TAIL_REGNUM, npc);
1593 }
1594 /* Else use the value in %rp to set the new PC. */
1595 else
1596 {
1597 npc = read_register (RP_REGNUM);
1598 write_pc (npc);
1599 }
1600
1601 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1602
1603 if (fsr[IPSW_REGNUM]) /* call dummy */
1604 write_register (SP_REGNUM, fp - 48);
1605 else
1606 write_register (SP_REGNUM, fp);
1607
1608 /* The PC we just restored may be inside a return trampoline. If so
1609 we want to restart the inferior and run it through the trampoline.
1610
1611 Do this by setting a momentary breakpoint at the location the
1612 trampoline returns to.
1613
1614 Don't skip through the trampoline if we're popping a dummy frame. */
1615 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1616 if (target_pc && !fsr[IPSW_REGNUM])
1617 {
1618 struct symtab_and_line sal;
1619 struct breakpoint *breakpoint;
1620 struct cleanup *old_chain;
1621
1622 /* Set up our breakpoint. Set it to be silent as the MI code
1623 for "return_command" will print the frame we returned to. */
1624 sal = find_pc_line (target_pc, 0);
1625 sal.pc = target_pc;
1626 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1627 breakpoint->silent = 1;
1628
1629 /* So we can clean things up. */
1630 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1631
1632 /* Start up the inferior. */
1633 clear_proceed_status ();
1634 proceed_to_finish = 1;
1635 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1636
1637 /* Perform our cleanups. */
1638 do_cleanups (old_chain);
1639 }
1640 flush_cached_frames ();
1641 }
1642
1643 /* After returning to a dummy on the stack, restore the instruction
1644 queue space registers. */
1645
1646 static int
1647 restore_pc_queue (CORE_ADDR *fsr)
1648 {
1649 CORE_ADDR pc = read_pc ();
1650 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1651 TARGET_PTR_BIT / 8);
1652 struct target_waitstatus w;
1653 int insn_count;
1654
1655 /* Advance past break instruction in the call dummy. */
1656 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1657 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1658
1659 /* HPUX doesn't let us set the space registers or the space
1660 registers of the PC queue through ptrace. Boo, hiss.
1661 Conveniently, the call dummy has this sequence of instructions
1662 after the break:
1663 mtsp r21, sr0
1664 ble,n 0(sr0, r22)
1665
1666 So, load up the registers and single step until we are in the
1667 right place. */
1668
1669 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1670 DEPRECATED_REGISTER_SIZE));
1671 write_register (22, new_pc);
1672
1673 for (insn_count = 0; insn_count < 3; insn_count++)
1674 {
1675 /* FIXME: What if the inferior gets a signal right now? Want to
1676 merge this into wait_for_inferior (as a special kind of
1677 watchpoint? By setting a breakpoint at the end? Is there
1678 any other choice? Is there *any* way to do this stuff with
1679 ptrace() or some equivalent?). */
1680 resume (1, 0);
1681 target_wait (inferior_ptid, &w);
1682
1683 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1684 {
1685 stop_signal = w.value.sig;
1686 terminal_ours_for_output ();
1687 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1688 target_signal_to_name (stop_signal),
1689 target_signal_to_string (stop_signal));
1690 gdb_flush (gdb_stdout);
1691 return 0;
1692 }
1693 }
1694 target_terminal_ours ();
1695 target_fetch_registers (-1);
1696 return 1;
1697 }
1698
1699
1700 #ifdef PA20W_CALLING_CONVENTIONS
1701
1702 /* This function pushes a stack frame with arguments as part of the
1703 inferior function calling mechanism.
1704
1705 This is the version for the PA64, in which later arguments appear
1706 at higher addresses. (The stack always grows towards higher
1707 addresses.)
1708
1709 We simply allocate the appropriate amount of stack space and put
1710 arguments into their proper slots. The call dummy code will copy
1711 arguments into registers as needed by the ABI.
1712
1713 This ABI also requires that the caller provide an argument pointer
1714 to the callee, so we do that too. */
1715
1716 CORE_ADDR
1717 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1718 int struct_return, CORE_ADDR struct_addr)
1719 {
1720 /* array of arguments' offsets */
1721 int *offset = (int *) alloca (nargs * sizeof (int));
1722
1723 /* array of arguments' lengths: real lengths in bytes, not aligned to
1724 word size */
1725 int *lengths = (int *) alloca (nargs * sizeof (int));
1726
1727 /* The value of SP as it was passed into this function after
1728 aligning. */
1729 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1730
1731 /* The number of stack bytes occupied by the current argument. */
1732 int bytes_reserved;
1733
1734 /* The total number of bytes reserved for the arguments. */
1735 int cum_bytes_reserved = 0;
1736
1737 /* Similarly, but aligned. */
1738 int cum_bytes_aligned = 0;
1739 int i;
1740
1741 /* Iterate over each argument provided by the user. */
1742 for (i = 0; i < nargs; i++)
1743 {
1744 struct type *arg_type = VALUE_TYPE (args[i]);
1745
1746 /* Integral scalar values smaller than a register are padded on
1747 the left. We do this by promoting them to full-width,
1748 although the ABI says to pad them with garbage. */
1749 if (is_integral_type (arg_type)
1750 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1751 {
1752 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1753 ? builtin_type_unsigned_long
1754 : builtin_type_long),
1755 args[i]);
1756 arg_type = VALUE_TYPE (args[i]);
1757 }
1758
1759 lengths[i] = TYPE_LENGTH (arg_type);
1760
1761 /* Align the size of the argument to the word size for this
1762 target. */
1763 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1764
1765 offset[i] = cum_bytes_reserved;
1766
1767 /* Aggregates larger than eight bytes (the only types larger
1768 than eight bytes we have) are aligned on a 16-byte boundary,
1769 possibly padded on the right with garbage. This may leave an
1770 empty word on the stack, and thus an unused register, as per
1771 the ABI. */
1772 if (bytes_reserved > 8)
1773 {
1774 /* Round up the offset to a multiple of two slots. */
1775 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1776 & -(2*DEPRECATED_REGISTER_SIZE));
1777
1778 /* Note the space we've wasted, if any. */
1779 bytes_reserved += new_offset - offset[i];
1780 offset[i] = new_offset;
1781 }
1782
1783 cum_bytes_reserved += bytes_reserved;
1784 }
1785
1786 /* CUM_BYTES_RESERVED already accounts for all the arguments
1787 passed by the user. However, the ABIs mandate minimum stack space
1788 allocations for outgoing arguments.
1789
1790 The ABIs also mandate minimum stack alignments which we must
1791 preserve. */
1792 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1793 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1794
1795 /* Now write each of the args at the proper offset down the stack. */
1796 for (i = 0; i < nargs; i++)
1797 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1798
1799 /* If a structure has to be returned, set up register 28 to hold its
1800 address */
1801 if (struct_return)
1802 write_register (28, struct_addr);
1803
1804 /* For the PA64 we must pass a pointer to the outgoing argument list.
1805 The ABI mandates that the pointer should point to the first byte of
1806 storage beyond the register flushback area.
1807
1808 However, the call dummy expects the outgoing argument pointer to
1809 be passed in register %r4. */
1810 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1811
1812 /* ?!? This needs further work. We need to set up the global data
1813 pointer for this procedure. This assumes the same global pointer
1814 for every procedure. The call dummy expects the dp value to
1815 be passed in register %r6. */
1816 write_register (6, read_register (27));
1817
1818 /* The stack will have 64 bytes of additional space for a frame marker. */
1819 return sp + 64;
1820 }
1821
1822 #else
1823
1824 /* This function pushes a stack frame with arguments as part of the
1825 inferior function calling mechanism.
1826
1827 This is the version of the function for the 32-bit PA machines, in
1828 which later arguments appear at lower addresses. (The stack always
1829 grows towards higher addresses.)
1830
1831 We simply allocate the appropriate amount of stack space and put
1832 arguments into their proper slots. The call dummy code will copy
1833 arguments into registers as needed by the ABI. */
1834
1835 CORE_ADDR
1836 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1837 int struct_return, CORE_ADDR struct_addr)
1838 {
1839 /* array of arguments' offsets */
1840 int *offset = (int *) alloca (nargs * sizeof (int));
1841
1842 /* array of arguments' lengths: real lengths in bytes, not aligned to
1843 word size */
1844 int *lengths = (int *) alloca (nargs * sizeof (int));
1845
1846 /* The number of stack bytes occupied by the current argument. */
1847 int bytes_reserved;
1848
1849 /* The total number of bytes reserved for the arguments. */
1850 int cum_bytes_reserved = 0;
1851
1852 /* Similarly, but aligned. */
1853 int cum_bytes_aligned = 0;
1854 int i;
1855
1856 /* Iterate over each argument provided by the user. */
1857 for (i = 0; i < nargs; i++)
1858 {
1859 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1860
1861 /* Align the size of the argument to the word size for this
1862 target. */
1863 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1864
1865 offset[i] = (cum_bytes_reserved
1866 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
1867
1868 /* If the argument is a double word argument, then it needs to be
1869 double word aligned. */
1870 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
1871 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
1872 {
1873 int new_offset = 0;
1874 /* BYTES_RESERVED is already aligned to the word, so we put
1875 the argument at one word more down the stack.
1876
1877 This will leave one empty word on the stack, and one unused
1878 register as mandated by the ABI. */
1879 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
1880 & -(2 * DEPRECATED_REGISTER_SIZE));
1881
1882 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
1883 {
1884 bytes_reserved += DEPRECATED_REGISTER_SIZE;
1885 offset[i] += DEPRECATED_REGISTER_SIZE;
1886 }
1887 }
1888
1889 cum_bytes_reserved += bytes_reserved;
1890
1891 }
1892
1893 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1894 by the user. However, the ABI mandates minimum stack space
1895 allocations for outgoing arguments.
1896
1897 The ABI also mandates minimum stack alignments which we must
1898 preserve. */
1899 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1900 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1901
1902 /* Now write each of the args at the proper offset down the stack.
1903 ?!? We need to promote values to a full register instead of skipping
1904 words in the stack. */
1905 for (i = 0; i < nargs; i++)
1906 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1907
1908 /* If a structure has to be returned, set up register 28 to hold its
1909 address */
1910 if (struct_return)
1911 write_register (28, struct_addr);
1912
1913 /* The stack will have 32 bytes of additional space for a frame marker. */
1914 return sp + 32;
1915 }
1916
1917 #endif
1918
1919 /* elz: this function returns a value which is built looking at the given address.
1920 It is called from call_function_by_hand, in case we need to return a
1921 value which is larger than 64 bits, and it is stored in the stack rather than
1922 in the registers r28 and r29 or fr4.
1923 This function does the same stuff as value_being_returned in values.c, but
1924 gets the value from the stack rather than from the buffer where all the
1925 registers were saved when the function called completed. */
1926 struct value *
1927 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
1928 {
1929 register struct value *val;
1930
1931 val = allocate_value (valtype);
1932 CHECK_TYPEDEF (valtype);
1933 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1934
1935 return val;
1936 }
1937
1938
1939
1940 /* elz: Used to lookup a symbol in the shared libraries.
1941 This function calls shl_findsym, indirectly through a
1942 call to __d_shl_get. __d_shl_get is in end.c, which is always
1943 linked in by the hp compilers/linkers.
1944 The call to shl_findsym cannot be made directly because it needs
1945 to be active in target address space.
1946 inputs: - minimal symbol pointer for the function we want to look up
1947 - address in target space of the descriptor for the library
1948 where we want to look the symbol up.
1949 This address is retrieved using the
1950 som_solib_get_solib_by_pc function (somsolib.c).
1951 output: - real address in the library of the function.
1952 note: the handle can be null, in which case shl_findsym will look for
1953 the symbol in all the loaded shared libraries.
1954 files to look at if you need reference on this stuff:
1955 dld.c, dld_shl_findsym.c
1956 end.c
1957 man entry for shl_findsym */
1958
1959 CORE_ADDR
1960 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
1961 {
1962 struct symbol *get_sym, *symbol2;
1963 struct minimal_symbol *buff_minsym, *msymbol;
1964 struct type *ftype;
1965 struct value **args;
1966 struct value *funcval;
1967 struct value *val;
1968
1969 int x, namelen, err_value, tmp = -1;
1970 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1971 CORE_ADDR stub_addr;
1972
1973
1974 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
1975 funcval = find_function_in_inferior ("__d_shl_get");
1976 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1977 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1978 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1979 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1980 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1981 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
1982 value_return_addr = endo_buff_addr + namelen;
1983 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1984
1985 /* do alignment */
1986 if ((x = value_return_addr % 64) != 0)
1987 value_return_addr = value_return_addr + 64 - x;
1988
1989 errno_return_addr = value_return_addr + 64;
1990
1991
1992 /* set up stuff needed by __d_shl_get in buffer in end.o */
1993
1994 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
1995
1996 target_write_memory (value_return_addr, (char *) &tmp, 4);
1997
1998 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1999
2000 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2001 (char *) &handle, 4);
2002
2003 /* now prepare the arguments for the call */
2004
2005 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2006 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2007 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2008 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2009 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2010 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2011
2012 /* now call the function */
2013
2014 val = call_function_by_hand (funcval, 6, args);
2015
2016 /* now get the results */
2017
2018 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2019
2020 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2021 if (stub_addr <= 0)
2022 error ("call to __d_shl_get failed, error code is %d", err_value);
2023
2024 return (stub_addr);
2025 }
2026
2027 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2028 static int
2029 cover_find_stub_with_shl_get (void *args_untyped)
2030 {
2031 args_for_find_stub *args = args_untyped;
2032 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2033 return 0;
2034 }
2035
2036 /* Insert the specified number of args and function address
2037 into a call sequence of the above form stored at DUMMYNAME.
2038
2039 On the hppa we need to call the stack dummy through $$dyncall.
2040 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2041 argument, real_pc, which is the location where gdb should start up
2042 the inferior to do the function call.
2043
2044 This has to work across several versions of hpux, bsd, osf1. It has to
2045 work regardless of what compiler was used to build the inferior program.
2046 It should work regardless of whether or not end.o is available. It has
2047 to work even if gdb can not call into the dynamic loader in the inferior
2048 to query it for symbol names and addresses.
2049
2050 Yes, all those cases should work. Luckily code exists to handle most
2051 of them. The complexity is in selecting exactly what scheme should
2052 be used to perform the inferior call.
2053
2054 At the current time this routine is known not to handle cases where
2055 the program was linked with HP's compiler without including end.o.
2056
2057 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2058
2059 CORE_ADDR
2060 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2061 struct value **args, struct type *type, int gcc_p)
2062 {
2063 CORE_ADDR dyncall_addr;
2064 struct minimal_symbol *msymbol;
2065 struct minimal_symbol *trampoline;
2066 int flags = read_register (FLAGS_REGNUM);
2067 struct unwind_table_entry *u = NULL;
2068 CORE_ADDR new_stub = 0;
2069 CORE_ADDR solib_handle = 0;
2070
2071 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2072 passed an import stub, not a PLABEL. It is also necessary to set %r19
2073 (the PIC register) before performing the call.
2074
2075 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2076 are calling the target directly. When using __d_plt_call we want to
2077 use a PLABEL instead of an import stub. */
2078 int using_gcc_plt_call = 1;
2079
2080 #ifdef GDB_TARGET_IS_HPPA_20W
2081 /* We currently use completely different code for the PA2.0W inferior
2082 function call sequences. This needs to be cleaned up. */
2083 {
2084 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2085 struct target_waitstatus w;
2086 int inst1, inst2;
2087 char buf[4];
2088 int status;
2089 struct objfile *objfile;
2090
2091 /* We can not modify the PC space queues directly, so we start
2092 up the inferior and execute a couple instructions to set the
2093 space queues so that they point to the call dummy in the stack. */
2094 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2095 sr5 = read_register (SR5_REGNUM);
2096 if (1)
2097 {
2098 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2099 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2100 if (target_read_memory (pcoqh, buf, 4) != 0)
2101 error ("Couldn't modify space queue\n");
2102 inst1 = extract_unsigned_integer (buf, 4);
2103
2104 if (target_read_memory (pcoqt, buf, 4) != 0)
2105 error ("Couldn't modify space queue\n");
2106 inst2 = extract_unsigned_integer (buf, 4);
2107
2108 /* BVE (r1) */
2109 *((int *) buf) = 0xe820d000;
2110 if (target_write_memory (pcoqh, buf, 4) != 0)
2111 error ("Couldn't modify space queue\n");
2112
2113 /* NOP */
2114 *((int *) buf) = 0x08000240;
2115 if (target_write_memory (pcoqt, buf, 4) != 0)
2116 {
2117 *((int *) buf) = inst1;
2118 target_write_memory (pcoqh, buf, 4);
2119 error ("Couldn't modify space queue\n");
2120 }
2121
2122 write_register (1, pc);
2123
2124 /* Single step twice, the BVE instruction will set the space queue
2125 such that it points to the PC value written immediately above
2126 (ie the call dummy). */
2127 resume (1, 0);
2128 target_wait (inferior_ptid, &w);
2129 resume (1, 0);
2130 target_wait (inferior_ptid, &w);
2131
2132 /* Restore the two instructions at the old PC locations. */
2133 *((int *) buf) = inst1;
2134 target_write_memory (pcoqh, buf, 4);
2135 *((int *) buf) = inst2;
2136 target_write_memory (pcoqt, buf, 4);
2137 }
2138
2139 /* The call dummy wants the ultimate destination address initially
2140 in register %r5. */
2141 write_register (5, fun);
2142
2143 /* We need to see if this objfile has a different DP value than our
2144 own (it could be a shared library for example). */
2145 ALL_OBJFILES (objfile)
2146 {
2147 struct obj_section *s;
2148 obj_private_data_t *obj_private;
2149
2150 /* See if FUN is in any section within this shared library. */
2151 for (s = objfile->sections; s < objfile->sections_end; s++)
2152 if (s->addr <= fun && fun < s->endaddr)
2153 break;
2154
2155 if (s >= objfile->sections_end)
2156 continue;
2157
2158 obj_private = (obj_private_data_t *) objfile->obj_private;
2159
2160 /* The DP value may be different for each objfile. But within an
2161 objfile each function uses the same dp value. Thus we do not need
2162 to grope around the opd section looking for dp values.
2163
2164 ?!? This is not strictly correct since we may be in a shared library
2165 and want to call back into the main program. To make that case
2166 work correctly we need to set obj_private->dp for the main program's
2167 objfile, then remove this conditional. */
2168 if (obj_private->dp)
2169 write_register (27, obj_private->dp);
2170 break;
2171 }
2172 return pc;
2173 }
2174 #endif
2175
2176 #ifndef GDB_TARGET_IS_HPPA_20W
2177 /* Prefer __gcc_plt_call over the HP supplied routine because
2178 __gcc_plt_call works for any number of arguments. */
2179 trampoline = NULL;
2180 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2181 using_gcc_plt_call = 0;
2182
2183 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2184 if (msymbol == NULL)
2185 error ("Can't find an address for $$dyncall trampoline");
2186
2187 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2188
2189 /* FUN could be a procedure label, in which case we have to get
2190 its real address and the value of its GOT/DP if we plan to
2191 call the routine via gcc_plt_call. */
2192 if ((fun & 0x2) && using_gcc_plt_call)
2193 {
2194 /* Get the GOT/DP value for the target function. It's
2195 at *(fun+4). Note the call dummy is *NOT* allowed to
2196 trash %r19 before calling the target function. */
2197 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2198 DEPRECATED_REGISTER_SIZE));
2199
2200 /* Now get the real address for the function we are calling, it's
2201 at *fun. */
2202 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2203 TARGET_PTR_BIT / 8);
2204 }
2205 else
2206 {
2207
2208 #ifndef GDB_TARGET_IS_PA_ELF
2209 /* FUN could be an export stub, the real address of a function, or
2210 a PLABEL. When using gcc's PLT call routine we must call an import
2211 stub rather than the export stub or real function for lazy binding
2212 to work correctly
2213
2214 If we are using the gcc PLT call routine, then we need to
2215 get the import stub for the target function. */
2216 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2217 {
2218 struct objfile *objfile;
2219 struct minimal_symbol *funsymbol, *stub_symbol;
2220 CORE_ADDR newfun = 0;
2221
2222 funsymbol = lookup_minimal_symbol_by_pc (fun);
2223 if (!funsymbol)
2224 error ("Unable to find minimal symbol for target function.\n");
2225
2226 /* Search all the object files for an import symbol with the
2227 right name. */
2228 ALL_OBJFILES (objfile)
2229 {
2230 stub_symbol
2231 = lookup_minimal_symbol_solib_trampoline
2232 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
2233
2234 if (!stub_symbol)
2235 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2236 NULL, objfile);
2237
2238 /* Found a symbol with the right name. */
2239 if (stub_symbol)
2240 {
2241 struct unwind_table_entry *u;
2242 /* It must be a shared library trampoline. */
2243 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2244 continue;
2245
2246 /* It must also be an import stub. */
2247 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2248 if (u == NULL
2249 || (u->stub_unwind.stub_type != IMPORT
2250 #ifdef GDB_NATIVE_HPUX_11
2251 /* Sigh. The hpux 10.20 dynamic linker will blow
2252 chunks if we perform a call to an unbound function
2253 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2254 linker will blow chunks if we do not call the
2255 unbound function via the IMPORT_SHLIB stub.
2256
2257 We currently have no way to select bevahior on just
2258 the target. However, we only support HPUX/SOM in
2259 native mode. So we conditinalize on a native
2260 #ifdef. Ugly. Ugly. Ugly */
2261 && u->stub_unwind.stub_type != IMPORT_SHLIB
2262 #endif
2263 ))
2264 continue;
2265
2266 /* OK. Looks like the correct import stub. */
2267 newfun = SYMBOL_VALUE (stub_symbol);
2268 fun = newfun;
2269
2270 /* If we found an IMPORT stub, then we want to stop
2271 searching now. If we found an IMPORT_SHLIB, we want
2272 to continue the search in the hopes that we will find
2273 an IMPORT stub. */
2274 if (u->stub_unwind.stub_type == IMPORT)
2275 break;
2276 }
2277 }
2278
2279 /* Ouch. We did not find an import stub. Make an attempt to
2280 do the right thing instead of just croaking. Most of the
2281 time this will actually work. */
2282 if (newfun == 0)
2283 write_register (19, som_solib_get_got_by_pc (fun));
2284
2285 u = find_unwind_entry (fun);
2286 if (u
2287 && (u->stub_unwind.stub_type == IMPORT
2288 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2289 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2290
2291 /* If we found the import stub in the shared library, then we have
2292 to set %r19 before we call the stub. */
2293 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2294 write_register (19, som_solib_get_got_by_pc (fun));
2295 }
2296 #endif
2297 }
2298
2299 /* If we are calling into another load module then have sr4export call the
2300 magic __d_plt_call routine which is linked in from end.o.
2301
2302 You can't use _sr4export to make the call as the value in sp-24 will get
2303 fried and you end up returning to the wrong location. You can't call the
2304 target as the code to bind the PLT entry to a function can't return to a
2305 stack address.
2306
2307 Also, query the dynamic linker in the inferior to provide a suitable
2308 PLABEL for the target function. */
2309 if (!using_gcc_plt_call)
2310 {
2311 CORE_ADDR new_fun;
2312
2313 /* Get a handle for the shared library containing FUN. Given the
2314 handle we can query the shared library for a PLABEL. */
2315 solib_handle = som_solib_get_solib_by_pc (fun);
2316
2317 if (solib_handle)
2318 {
2319 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2320
2321 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2322
2323 if (trampoline == NULL)
2324 {
2325 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2326 }
2327
2328 /* This is where sr4export will jump to. */
2329 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2330
2331 /* If the function is in a shared library, then call __d_shl_get to
2332 get a PLABEL for the target function. */
2333 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2334
2335 if (new_stub == 0)
2336 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2337
2338 /* We have to store the address of the stub in __shlib_funcptr. */
2339 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2340 (struct objfile *) NULL);
2341
2342 if (msymbol == NULL)
2343 error ("Can't find an address for __shlib_funcptr");
2344 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2345 (char *) &new_stub, 4);
2346
2347 /* We want sr4export to call __d_plt_call, so we claim it is
2348 the final target. Clear trampoline. */
2349 fun = new_fun;
2350 trampoline = NULL;
2351 }
2352 }
2353
2354 /* Store upper 21 bits of function address into ldil. fun will either be
2355 the final target (most cases) or __d_plt_call when calling into a shared
2356 library and __gcc_plt_call is not available. */
2357 store_unsigned_integer
2358 (&dummy[FUNC_LDIL_OFFSET],
2359 INSTRUCTION_SIZE,
2360 deposit_21 (fun >> 11,
2361 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2362 INSTRUCTION_SIZE)));
2363
2364 /* Store lower 11 bits of function address into ldo */
2365 store_unsigned_integer
2366 (&dummy[FUNC_LDO_OFFSET],
2367 INSTRUCTION_SIZE,
2368 deposit_14 (fun & MASK_11,
2369 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2370 INSTRUCTION_SIZE)));
2371 #ifdef SR4EXPORT_LDIL_OFFSET
2372
2373 {
2374 CORE_ADDR trampoline_addr;
2375
2376 /* We may still need sr4export's address too. */
2377
2378 if (trampoline == NULL)
2379 {
2380 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2381 if (msymbol == NULL)
2382 error ("Can't find an address for _sr4export trampoline");
2383
2384 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2385 }
2386 else
2387 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2388
2389
2390 /* Store upper 21 bits of trampoline's address into ldil */
2391 store_unsigned_integer
2392 (&dummy[SR4EXPORT_LDIL_OFFSET],
2393 INSTRUCTION_SIZE,
2394 deposit_21 (trampoline_addr >> 11,
2395 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2396 INSTRUCTION_SIZE)));
2397
2398 /* Store lower 11 bits of trampoline's address into ldo */
2399 store_unsigned_integer
2400 (&dummy[SR4EXPORT_LDO_OFFSET],
2401 INSTRUCTION_SIZE,
2402 deposit_14 (trampoline_addr & MASK_11,
2403 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2404 INSTRUCTION_SIZE)));
2405 }
2406 #endif
2407
2408 write_register (22, pc);
2409
2410 /* If we are in a syscall, then we should call the stack dummy
2411 directly. $$dyncall is not needed as the kernel sets up the
2412 space id registers properly based on the value in %r31. In
2413 fact calling $$dyncall will not work because the value in %r22
2414 will be clobbered on the syscall exit path.
2415
2416 Similarly if the current PC is in a shared library. Note however,
2417 this scheme won't work if the shared library isn't mapped into
2418 the same space as the stack. */
2419 if (flags & 2)
2420 return pc;
2421 #ifndef GDB_TARGET_IS_PA_ELF
2422 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2423 return pc;
2424 #endif
2425 else
2426 return dyncall_addr;
2427 #endif
2428 }
2429
2430 /* If the pid is in a syscall, then the FP register is not readable.
2431 We'll return zero in that case, rather than attempting to read it
2432 and cause a warning. */
2433
2434 CORE_ADDR
2435 hppa_read_fp (int pid)
2436 {
2437 int flags = read_register (FLAGS_REGNUM);
2438
2439 if (flags & 2)
2440 {
2441 return (CORE_ADDR) 0;
2442 }
2443
2444 /* This is the only site that may directly read_register () the FP
2445 register. All others must use deprecated_read_fp (). */
2446 return read_register (DEPRECATED_FP_REGNUM);
2447 }
2448
2449 CORE_ADDR
2450 hppa_target_read_fp (void)
2451 {
2452 return hppa_read_fp (PIDGET (inferior_ptid));
2453 }
2454
2455 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2456 bits. */
2457
2458 CORE_ADDR
2459 hppa_target_read_pc (ptid_t ptid)
2460 {
2461 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2462
2463 /* The following test does not belong here. It is OS-specific, and belongs
2464 in native code. */
2465 /* Test SS_INSYSCALL */
2466 if (flags & 2)
2467 return read_register_pid (31, ptid) & ~0x3;
2468
2469 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2470 }
2471
2472 /* Write out the PC. If currently in a syscall, then also write the new
2473 PC value into %r31. */
2474
2475 void
2476 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2477 {
2478 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2479
2480 /* The following test does not belong here. It is OS-specific, and belongs
2481 in native code. */
2482 /* If in a syscall, then set %r31. Also make sure to get the
2483 privilege bits set correctly. */
2484 /* Test SS_INSYSCALL */
2485 if (flags & 2)
2486 write_register_pid (31, v | 0x3, ptid);
2487
2488 write_register_pid (PC_REGNUM, v, ptid);
2489 write_register_pid (NPC_REGNUM, v + 4, ptid);
2490 }
2491
2492 /* return the alignment of a type in bytes. Structures have the maximum
2493 alignment required by their fields. */
2494
2495 static int
2496 hppa_alignof (struct type *type)
2497 {
2498 int max_align, align, i;
2499 CHECK_TYPEDEF (type);
2500 switch (TYPE_CODE (type))
2501 {
2502 case TYPE_CODE_PTR:
2503 case TYPE_CODE_INT:
2504 case TYPE_CODE_FLT:
2505 return TYPE_LENGTH (type);
2506 case TYPE_CODE_ARRAY:
2507 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2508 case TYPE_CODE_STRUCT:
2509 case TYPE_CODE_UNION:
2510 max_align = 1;
2511 for (i = 0; i < TYPE_NFIELDS (type); i++)
2512 {
2513 /* Bit fields have no real alignment. */
2514 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2515 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2516 {
2517 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2518 max_align = max (max_align, align);
2519 }
2520 }
2521 return max_align;
2522 default:
2523 return 4;
2524 }
2525 }
2526
2527 /* Print the register regnum, or all registers if regnum is -1 */
2528
2529 void
2530 pa_do_registers_info (int regnum, int fpregs)
2531 {
2532 char raw_regs[REGISTER_BYTES];
2533 int i;
2534
2535 /* Make a copy of gdb's save area (may cause actual
2536 reads from the target). */
2537 for (i = 0; i < NUM_REGS; i++)
2538 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2539
2540 if (regnum == -1)
2541 pa_print_registers (raw_regs, regnum, fpregs);
2542 else if (regnum < FP4_REGNUM)
2543 {
2544 long reg_val[2];
2545
2546 /* Why is the value not passed through "extract_signed_integer"
2547 as in "pa_print_registers" below? */
2548 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2549
2550 if (!is_pa_2)
2551 {
2552 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2553 }
2554 else
2555 {
2556 /* Fancy % formats to prevent leading zeros. */
2557 if (reg_val[0] == 0)
2558 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2559 else
2560 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2561 reg_val[0], reg_val[1]);
2562 }
2563 }
2564 else
2565 /* Note that real floating point values only start at
2566 FP4_REGNUM. FP0 and up are just status and error
2567 registers, which have integral (bit) values. */
2568 pa_print_fp_reg (regnum);
2569 }
2570
2571 /********** new function ********************/
2572 void
2573 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2574 enum precision_type precision)
2575 {
2576 char raw_regs[REGISTER_BYTES];
2577 int i;
2578
2579 /* Make a copy of gdb's save area (may cause actual
2580 reads from the target). */
2581 for (i = 0; i < NUM_REGS; i++)
2582 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2583
2584 if (regnum == -1)
2585 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2586
2587 else if (regnum < FP4_REGNUM)
2588 {
2589 long reg_val[2];
2590
2591 /* Why is the value not passed through "extract_signed_integer"
2592 as in "pa_print_registers" below? */
2593 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2594
2595 if (!is_pa_2)
2596 {
2597 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2598 }
2599 else
2600 {
2601 /* Fancy % formats to prevent leading zeros. */
2602 if (reg_val[0] == 0)
2603 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2604 reg_val[1]);
2605 else
2606 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2607 reg_val[0], reg_val[1]);
2608 }
2609 }
2610 else
2611 /* Note that real floating point values only start at
2612 FP4_REGNUM. FP0 and up are just status and error
2613 registers, which have integral (bit) values. */
2614 pa_strcat_fp_reg (regnum, stream, precision);
2615 }
2616
2617 /* If this is a PA2.0 machine, fetch the real 64-bit register
2618 value. Otherwise use the info from gdb's saved register area.
2619
2620 Note that reg_val is really expected to be an array of longs,
2621 with two elements. */
2622 static void
2623 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2624 {
2625 static int know_which = 0; /* False */
2626
2627 int regaddr;
2628 unsigned int offset;
2629 register int i;
2630 int start;
2631
2632
2633 char *buf = alloca (max_register_size (current_gdbarch));
2634 long long reg_val;
2635
2636 if (!know_which)
2637 {
2638 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2639 {
2640 is_pa_2 = (1 == 1);
2641 }
2642
2643 know_which = 1; /* True */
2644 }
2645
2646 raw_val[0] = 0;
2647 raw_val[1] = 0;
2648
2649 if (!is_pa_2)
2650 {
2651 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2652 return;
2653 }
2654
2655 /* Code below copied from hppah-nat.c, with fixes for wide
2656 registers, using different area of save_state, etc. */
2657 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2658 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2659 {
2660 /* Use narrow regs area of save_state and default macro. */
2661 offset = U_REGS_OFFSET;
2662 regaddr = register_addr (regnum, offset);
2663 start = 1;
2664 }
2665 else
2666 {
2667 /* Use wide regs area, and calculate registers as 8 bytes wide.
2668
2669 We'd like to do this, but current version of "C" doesn't
2670 permit "offsetof":
2671
2672 offset = offsetof(save_state_t, ss_wide);
2673
2674 Note that to avoid "C" doing typed pointer arithmetic, we
2675 have to cast away the type in our offset calculation:
2676 otherwise we get an offset of 1! */
2677
2678 /* NB: save_state_t is not available before HPUX 9.
2679 The ss_wide field is not available previous to HPUX 10.20,
2680 so to avoid compile-time warnings, we only compile this for
2681 PA 2.0 processors. This control path should only be followed
2682 if we're debugging a PA 2.0 processor, so this should not cause
2683 problems. */
2684
2685 /* #if the following code out so that this file can still be
2686 compiled on older HPUX boxes (< 10.20) which don't have
2687 this structure/structure member. */
2688 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2689 save_state_t temp;
2690
2691 offset = ((int) &temp.ss_wide) - ((int) &temp);
2692 regaddr = offset + regnum * 8;
2693 start = 0;
2694 #endif
2695 }
2696
2697 for (i = start; i < 2; i++)
2698 {
2699 errno = 0;
2700 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2701 (PTRACE_ARG3_TYPE) regaddr, 0);
2702 if (errno != 0)
2703 {
2704 /* Warning, not error, in case we are attached; sometimes the
2705 kernel doesn't let us at the registers. */
2706 char *err = safe_strerror (errno);
2707 char *msg = alloca (strlen (err) + 128);
2708 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2709 warning (msg);
2710 goto error_exit;
2711 }
2712
2713 regaddr += sizeof (long);
2714 }
2715
2716 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2717 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2718
2719 error_exit:
2720 ;
2721 }
2722
2723 /* "Info all-reg" command */
2724
2725 static void
2726 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2727 {
2728 int i, j;
2729 /* Alas, we are compiled so that "long long" is 32 bits */
2730 long raw_val[2];
2731 long long_val;
2732 int rows = 48, columns = 2;
2733
2734 for (i = 0; i < rows; i++)
2735 {
2736 for (j = 0; j < columns; j++)
2737 {
2738 /* We display registers in column-major order. */
2739 int regnum = i + j * rows;
2740
2741 /* Q: Why is the value passed through "extract_signed_integer",
2742 while above, in "pa_do_registers_info" it isn't?
2743 A: ? */
2744 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2745
2746 /* Even fancier % formats to prevent leading zeros
2747 and still maintain the output in columns. */
2748 if (!is_pa_2)
2749 {
2750 /* Being big-endian, on this machine the low bits
2751 (the ones we want to look at) are in the second longword. */
2752 long_val = extract_signed_integer (&raw_val[1], 4);
2753 printf_filtered ("%10.10s: %8lx ",
2754 REGISTER_NAME (regnum), long_val);
2755 }
2756 else
2757 {
2758 /* raw_val = extract_signed_integer(&raw_val, 8); */
2759 if (raw_val[0] == 0)
2760 printf_filtered ("%10.10s: %8lx ",
2761 REGISTER_NAME (regnum), raw_val[1]);
2762 else
2763 printf_filtered ("%10.10s: %8lx%8.8lx ",
2764 REGISTER_NAME (regnum),
2765 raw_val[0], raw_val[1]);
2766 }
2767 }
2768 printf_unfiltered ("\n");
2769 }
2770
2771 if (fpregs)
2772 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2773 pa_print_fp_reg (i);
2774 }
2775
2776 /************* new function ******************/
2777 static void
2778 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2779 struct ui_file *stream)
2780 {
2781 int i, j;
2782 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2783 long long_val;
2784 enum precision_type precision;
2785
2786 precision = unspecified_precision;
2787
2788 for (i = 0; i < 18; i++)
2789 {
2790 for (j = 0; j < 4; j++)
2791 {
2792 /* Q: Why is the value passed through "extract_signed_integer",
2793 while above, in "pa_do_registers_info" it isn't?
2794 A: ? */
2795 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2796
2797 /* Even fancier % formats to prevent leading zeros
2798 and still maintain the output in columns. */
2799 if (!is_pa_2)
2800 {
2801 /* Being big-endian, on this machine the low bits
2802 (the ones we want to look at) are in the second longword. */
2803 long_val = extract_signed_integer (&raw_val[1], 4);
2804 fprintf_filtered (stream, "%8.8s: %8lx ",
2805 REGISTER_NAME (i + (j * 18)), long_val);
2806 }
2807 else
2808 {
2809 /* raw_val = extract_signed_integer(&raw_val, 8); */
2810 if (raw_val[0] == 0)
2811 fprintf_filtered (stream, "%8.8s: %8lx ",
2812 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2813 else
2814 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2815 REGISTER_NAME (i + (j * 18)), raw_val[0],
2816 raw_val[1]);
2817 }
2818 }
2819 fprintf_unfiltered (stream, "\n");
2820 }
2821
2822 if (fpregs)
2823 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2824 pa_strcat_fp_reg (i, stream, precision);
2825 }
2826
2827 static void
2828 pa_print_fp_reg (int i)
2829 {
2830 char *raw_buffer = alloca (max_register_size (current_gdbarch));
2831 char *virtual_buffer = alloca (max_register_size (current_gdbarch));
2832
2833 /* Get 32bits of data. */
2834 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2835
2836 /* Put it in the buffer. No conversions are ever necessary. */
2837 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2838
2839 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2840 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2841 fputs_filtered ("(single precision) ", gdb_stdout);
2842
2843 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2844 1, 0, Val_pretty_default);
2845 printf_filtered ("\n");
2846
2847 /* If "i" is even, then this register can also be a double-precision
2848 FP register. Dump it out as such. */
2849 if ((i % 2) == 0)
2850 {
2851 /* Get the data in raw format for the 2nd half. */
2852 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
2853
2854 /* Copy it into the appropriate part of the virtual buffer. */
2855 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2856 REGISTER_RAW_SIZE (i));
2857
2858 /* Dump it as a double. */
2859 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2860 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2861 fputs_filtered ("(double precision) ", gdb_stdout);
2862
2863 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2864 1, 0, Val_pretty_default);
2865 printf_filtered ("\n");
2866 }
2867 }
2868
2869 /*************** new function ***********************/
2870 static void
2871 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2872 {
2873 char *raw_buffer = alloca (max_register_size (current_gdbarch));
2874 char *virtual_buffer = alloca (max_register_size (current_gdbarch));
2875
2876 fputs_filtered (REGISTER_NAME (i), stream);
2877 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2878
2879 /* Get 32bits of data. */
2880 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2881
2882 /* Put it in the buffer. No conversions are ever necessary. */
2883 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2884
2885 if (precision == double_precision && (i % 2) == 0)
2886 {
2887
2888 char *raw_buf = alloca (max_register_size (current_gdbarch));
2889
2890 /* Get the data in raw format for the 2nd half. */
2891 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
2892
2893 /* Copy it into the appropriate part of the virtual buffer. */
2894 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2895
2896 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2897 1, 0, Val_pretty_default);
2898
2899 }
2900 else
2901 {
2902 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2903 1, 0, Val_pretty_default);
2904 }
2905
2906 }
2907
2908 /* Return one if PC is in the call path of a trampoline, else return zero.
2909
2910 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2911 just shared library trampolines (import, export). */
2912
2913 int
2914 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2915 {
2916 struct minimal_symbol *minsym;
2917 struct unwind_table_entry *u;
2918 static CORE_ADDR dyncall = 0;
2919 static CORE_ADDR sr4export = 0;
2920
2921 #ifdef GDB_TARGET_IS_HPPA_20W
2922 /* PA64 has a completely different stub/trampoline scheme. Is it
2923 better? Maybe. It's certainly harder to determine with any
2924 certainty that we are in a stub because we can not refer to the
2925 unwinders to help.
2926
2927 The heuristic is simple. Try to lookup the current PC value in th
2928 minimal symbol table. If that fails, then assume we are not in a
2929 stub and return.
2930
2931 Then see if the PC value falls within the section bounds for the
2932 section containing the minimal symbol we found in the first
2933 step. If it does, then assume we are not in a stub and return.
2934
2935 Finally peek at the instructions to see if they look like a stub. */
2936 {
2937 struct minimal_symbol *minsym;
2938 asection *sec;
2939 CORE_ADDR addr;
2940 int insn, i;
2941
2942 minsym = lookup_minimal_symbol_by_pc (pc);
2943 if (! minsym)
2944 return 0;
2945
2946 sec = SYMBOL_BFD_SECTION (minsym);
2947
2948 if (sec->vma <= pc
2949 && sec->vma + sec->_cooked_size < pc)
2950 return 0;
2951
2952 /* We might be in a stub. Peek at the instructions. Stubs are 3
2953 instructions long. */
2954 insn = read_memory_integer (pc, 4);
2955
2956 /* Find out where we think we are within the stub. */
2957 if ((insn & 0xffffc00e) == 0x53610000)
2958 addr = pc;
2959 else if ((insn & 0xffffffff) == 0xe820d000)
2960 addr = pc - 4;
2961 else if ((insn & 0xffffc00e) == 0x537b0000)
2962 addr = pc - 8;
2963 else
2964 return 0;
2965
2966 /* Now verify each insn in the range looks like a stub instruction. */
2967 insn = read_memory_integer (addr, 4);
2968 if ((insn & 0xffffc00e) != 0x53610000)
2969 return 0;
2970
2971 /* Now verify each insn in the range looks like a stub instruction. */
2972 insn = read_memory_integer (addr + 4, 4);
2973 if ((insn & 0xffffffff) != 0xe820d000)
2974 return 0;
2975
2976 /* Now verify each insn in the range looks like a stub instruction. */
2977 insn = read_memory_integer (addr + 8, 4);
2978 if ((insn & 0xffffc00e) != 0x537b0000)
2979 return 0;
2980
2981 /* Looks like a stub. */
2982 return 1;
2983 }
2984 #endif
2985
2986 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2987 new exec file */
2988
2989 /* First see if PC is in one of the two C-library trampolines. */
2990 if (!dyncall)
2991 {
2992 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2993 if (minsym)
2994 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2995 else
2996 dyncall = -1;
2997 }
2998
2999 if (!sr4export)
3000 {
3001 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3002 if (minsym)
3003 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3004 else
3005 sr4export = -1;
3006 }
3007
3008 if (pc == dyncall || pc == sr4export)
3009 return 1;
3010
3011 minsym = lookup_minimal_symbol_by_pc (pc);
3012 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3013 return 1;
3014
3015 /* Get the unwind descriptor corresponding to PC, return zero
3016 if no unwind was found. */
3017 u = find_unwind_entry (pc);
3018 if (!u)
3019 return 0;
3020
3021 /* If this isn't a linker stub, then return now. */
3022 if (u->stub_unwind.stub_type == 0)
3023 return 0;
3024
3025 /* By definition a long-branch stub is a call stub. */
3026 if (u->stub_unwind.stub_type == LONG_BRANCH)
3027 return 1;
3028
3029 /* The call and return path execute the same instructions within
3030 an IMPORT stub! So an IMPORT stub is both a call and return
3031 trampoline. */
3032 if (u->stub_unwind.stub_type == IMPORT)
3033 return 1;
3034
3035 /* Parameter relocation stubs always have a call path and may have a
3036 return path. */
3037 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3038 || u->stub_unwind.stub_type == EXPORT)
3039 {
3040 CORE_ADDR addr;
3041
3042 /* Search forward from the current PC until we hit a branch
3043 or the end of the stub. */
3044 for (addr = pc; addr <= u->region_end; addr += 4)
3045 {
3046 unsigned long insn;
3047
3048 insn = read_memory_integer (addr, 4);
3049
3050 /* Does it look like a bl? If so then it's the call path, if
3051 we find a bv or be first, then we're on the return path. */
3052 if ((insn & 0xfc00e000) == 0xe8000000)
3053 return 1;
3054 else if ((insn & 0xfc00e001) == 0xe800c000
3055 || (insn & 0xfc000000) == 0xe0000000)
3056 return 0;
3057 }
3058
3059 /* Should never happen. */
3060 warning ("Unable to find branch in parameter relocation stub.\n");
3061 return 0;
3062 }
3063
3064 /* Unknown stub type. For now, just return zero. */
3065 return 0;
3066 }
3067
3068 /* Return one if PC is in the return path of a trampoline, else return zero.
3069
3070 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3071 just shared library trampolines (import, export). */
3072
3073 int
3074 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3075 {
3076 struct unwind_table_entry *u;
3077
3078 /* Get the unwind descriptor corresponding to PC, return zero
3079 if no unwind was found. */
3080 u = find_unwind_entry (pc);
3081 if (!u)
3082 return 0;
3083
3084 /* If this isn't a linker stub or it's just a long branch stub, then
3085 return zero. */
3086 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3087 return 0;
3088
3089 /* The call and return path execute the same instructions within
3090 an IMPORT stub! So an IMPORT stub is both a call and return
3091 trampoline. */
3092 if (u->stub_unwind.stub_type == IMPORT)
3093 return 1;
3094
3095 /* Parameter relocation stubs always have a call path and may have a
3096 return path. */
3097 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3098 || u->stub_unwind.stub_type == EXPORT)
3099 {
3100 CORE_ADDR addr;
3101
3102 /* Search forward from the current PC until we hit a branch
3103 or the end of the stub. */
3104 for (addr = pc; addr <= u->region_end; addr += 4)
3105 {
3106 unsigned long insn;
3107
3108 insn = read_memory_integer (addr, 4);
3109
3110 /* Does it look like a bl? If so then it's the call path, if
3111 we find a bv or be first, then we're on the return path. */
3112 if ((insn & 0xfc00e000) == 0xe8000000)
3113 return 0;
3114 else if ((insn & 0xfc00e001) == 0xe800c000
3115 || (insn & 0xfc000000) == 0xe0000000)
3116 return 1;
3117 }
3118
3119 /* Should never happen. */
3120 warning ("Unable to find branch in parameter relocation stub.\n");
3121 return 0;
3122 }
3123
3124 /* Unknown stub type. For now, just return zero. */
3125 return 0;
3126
3127 }
3128
3129 /* Figure out if PC is in a trampoline, and if so find out where
3130 the trampoline will jump to. If not in a trampoline, return zero.
3131
3132 Simple code examination probably is not a good idea since the code
3133 sequences in trampolines can also appear in user code.
3134
3135 We use unwinds and information from the minimal symbol table to
3136 determine when we're in a trampoline. This won't work for ELF
3137 (yet) since it doesn't create stub unwind entries. Whether or
3138 not ELF will create stub unwinds or normal unwinds for linker
3139 stubs is still being debated.
3140
3141 This should handle simple calls through dyncall or sr4export,
3142 long calls, argument relocation stubs, and dyncall/sr4export
3143 calling an argument relocation stub. It even handles some stubs
3144 used in dynamic executables. */
3145
3146 CORE_ADDR
3147 hppa_skip_trampoline_code (CORE_ADDR pc)
3148 {
3149 long orig_pc = pc;
3150 long prev_inst, curr_inst, loc;
3151 static CORE_ADDR dyncall = 0;
3152 static CORE_ADDR dyncall_external = 0;
3153 static CORE_ADDR sr4export = 0;
3154 struct minimal_symbol *msym;
3155 struct unwind_table_entry *u;
3156
3157 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3158 new exec file */
3159
3160 if (!dyncall)
3161 {
3162 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3163 if (msym)
3164 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3165 else
3166 dyncall = -1;
3167 }
3168
3169 if (!dyncall_external)
3170 {
3171 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3172 if (msym)
3173 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3174 else
3175 dyncall_external = -1;
3176 }
3177
3178 if (!sr4export)
3179 {
3180 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3181 if (msym)
3182 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3183 else
3184 sr4export = -1;
3185 }
3186
3187 /* Addresses passed to dyncall may *NOT* be the actual address
3188 of the function. So we may have to do something special. */
3189 if (pc == dyncall)
3190 {
3191 pc = (CORE_ADDR) read_register (22);
3192
3193 /* If bit 30 (counting from the left) is on, then pc is the address of
3194 the PLT entry for this function, not the address of the function
3195 itself. Bit 31 has meaning too, but only for MPE. */
3196 if (pc & 0x2)
3197 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3198 }
3199 if (pc == dyncall_external)
3200 {
3201 pc = (CORE_ADDR) read_register (22);
3202 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3203 }
3204 else if (pc == sr4export)
3205 pc = (CORE_ADDR) (read_register (22));
3206
3207 /* Get the unwind descriptor corresponding to PC, return zero
3208 if no unwind was found. */
3209 u = find_unwind_entry (pc);
3210 if (!u)
3211 return 0;
3212
3213 /* If this isn't a linker stub, then return now. */
3214 /* elz: attention here! (FIXME) because of a compiler/linker
3215 error, some stubs which should have a non zero stub_unwind.stub_type
3216 have unfortunately a value of zero. So this function would return here
3217 as if we were not in a trampoline. To fix this, we go look at the partial
3218 symbol information, which reports this guy as a stub.
3219 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3220 partial symbol information is also wrong sometimes. This is because
3221 when it is entered (somread.c::som_symtab_read()) it can happen that
3222 if the type of the symbol (from the som) is Entry, and the symbol is
3223 in a shared library, then it can also be a trampoline. This would
3224 be OK, except that I believe the way they decide if we are ina shared library
3225 does not work. SOOOO..., even if we have a regular function w/o trampolines
3226 its minimal symbol can be assigned type mst_solib_trampoline.
3227 Also, if we find that the symbol is a real stub, then we fix the unwind
3228 descriptor, and define the stub type to be EXPORT.
3229 Hopefully this is correct most of the times. */
3230 if (u->stub_unwind.stub_type == 0)
3231 {
3232
3233 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3234 we can delete all the code which appears between the lines */
3235 /*--------------------------------------------------------------------------*/
3236 msym = lookup_minimal_symbol_by_pc (pc);
3237
3238 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3239 return orig_pc == pc ? 0 : pc & ~0x3;
3240
3241 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3242 {
3243 struct objfile *objfile;
3244 struct minimal_symbol *msymbol;
3245 int function_found = 0;
3246
3247 /* go look if there is another minimal symbol with the same name as
3248 this one, but with type mst_text. This would happen if the msym
3249 is an actual trampoline, in which case there would be another
3250 symbol with the same name corresponding to the real function */
3251
3252 ALL_MSYMBOLS (objfile, msymbol)
3253 {
3254 if (MSYMBOL_TYPE (msymbol) == mst_text
3255 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3256 {
3257 function_found = 1;
3258 break;
3259 }
3260 }
3261
3262 if (function_found)
3263 /* the type of msym is correct (mst_solib_trampoline), but
3264 the unwind info is wrong, so set it to the correct value */
3265 u->stub_unwind.stub_type = EXPORT;
3266 else
3267 /* the stub type info in the unwind is correct (this is not a
3268 trampoline), but the msym type information is wrong, it
3269 should be mst_text. So we need to fix the msym, and also
3270 get out of this function */
3271 {
3272 MSYMBOL_TYPE (msym) = mst_text;
3273 return orig_pc == pc ? 0 : pc & ~0x3;
3274 }
3275 }
3276
3277 /*--------------------------------------------------------------------------*/
3278 }
3279
3280 /* It's a stub. Search for a branch and figure out where it goes.
3281 Note we have to handle multi insn branch sequences like ldil;ble.
3282 Most (all?) other branches can be determined by examining the contents
3283 of certain registers and the stack. */
3284
3285 loc = pc;
3286 curr_inst = 0;
3287 prev_inst = 0;
3288 while (1)
3289 {
3290 /* Make sure we haven't walked outside the range of this stub. */
3291 if (u != find_unwind_entry (loc))
3292 {
3293 warning ("Unable to find branch in linker stub");
3294 return orig_pc == pc ? 0 : pc & ~0x3;
3295 }
3296
3297 prev_inst = curr_inst;
3298 curr_inst = read_memory_integer (loc, 4);
3299
3300 /* Does it look like a branch external using %r1? Then it's the
3301 branch from the stub to the actual function. */
3302 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3303 {
3304 /* Yup. See if the previous instruction loaded
3305 a value into %r1. If so compute and return the jump address. */
3306 if ((prev_inst & 0xffe00000) == 0x20200000)
3307 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3308 else
3309 {
3310 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3311 return orig_pc == pc ? 0 : pc & ~0x3;
3312 }
3313 }
3314
3315 /* Does it look like a be 0(sr0,%r21)? OR
3316 Does it look like a be, n 0(sr0,%r21)? OR
3317 Does it look like a bve (r21)? (this is on PA2.0)
3318 Does it look like a bve, n(r21)? (this is also on PA2.0)
3319 That's the branch from an
3320 import stub to an export stub.
3321
3322 It is impossible to determine the target of the branch via
3323 simple examination of instructions and/or data (consider
3324 that the address in the plabel may be the address of the
3325 bind-on-reference routine in the dynamic loader).
3326
3327 So we have try an alternative approach.
3328
3329 Get the name of the symbol at our current location; it should
3330 be a stub symbol with the same name as the symbol in the
3331 shared library.
3332
3333 Then lookup a minimal symbol with the same name; we should
3334 get the minimal symbol for the target routine in the shared
3335 library as those take precedence of import/export stubs. */
3336 if ((curr_inst == 0xe2a00000) ||
3337 (curr_inst == 0xe2a00002) ||
3338 (curr_inst == 0xeaa0d000) ||
3339 (curr_inst == 0xeaa0d002))
3340 {
3341 struct minimal_symbol *stubsym, *libsym;
3342
3343 stubsym = lookup_minimal_symbol_by_pc (loc);
3344 if (stubsym == NULL)
3345 {
3346 warning ("Unable to find symbol for 0x%lx", loc);
3347 return orig_pc == pc ? 0 : pc & ~0x3;
3348 }
3349
3350 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3351 if (libsym == NULL)
3352 {
3353 warning ("Unable to find library symbol for %s\n",
3354 DEPRECATED_SYMBOL_NAME (stubsym));
3355 return orig_pc == pc ? 0 : pc & ~0x3;
3356 }
3357
3358 return SYMBOL_VALUE (libsym);
3359 }
3360
3361 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3362 branch from the stub to the actual function. */
3363 /*elz */
3364 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3365 || (curr_inst & 0xffe0e000) == 0xe8000000
3366 || (curr_inst & 0xffe0e000) == 0xe800A000)
3367 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3368
3369 /* Does it look like bv (rp)? Note this depends on the
3370 current stack pointer being the same as the stack
3371 pointer in the stub itself! This is a branch on from the
3372 stub back to the original caller. */
3373 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3374 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3375 {
3376 /* Yup. See if the previous instruction loaded
3377 rp from sp - 8. */
3378 if (prev_inst == 0x4bc23ff1)
3379 return (read_memory_integer
3380 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3381 else
3382 {
3383 warning ("Unable to find restore of %%rp before bv (%%rp).");
3384 return orig_pc == pc ? 0 : pc & ~0x3;
3385 }
3386 }
3387
3388 /* elz: added this case to capture the new instruction
3389 at the end of the return part of an export stub used by
3390 the PA2.0: BVE, n (rp) */
3391 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3392 {
3393 return (read_memory_integer
3394 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3395 }
3396
3397 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3398 the original caller from the stub. Used in dynamic executables. */
3399 else if (curr_inst == 0xe0400002)
3400 {
3401 /* The value we jump to is sitting in sp - 24. But that's
3402 loaded several instructions before the be instruction.
3403 I guess we could check for the previous instruction being
3404 mtsp %r1,%sr0 if we want to do sanity checking. */
3405 return (read_memory_integer
3406 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3407 }
3408
3409 /* Haven't found the branch yet, but we're still in the stub.
3410 Keep looking. */
3411 loc += 4;
3412 }
3413 }
3414
3415
3416 /* For the given instruction (INST), return any adjustment it makes
3417 to the stack pointer or zero for no adjustment.
3418
3419 This only handles instructions commonly found in prologues. */
3420
3421 static int
3422 prologue_inst_adjust_sp (unsigned long inst)
3423 {
3424 /* This must persist across calls. */
3425 static int save_high21;
3426
3427 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3428 if ((inst & 0xffffc000) == 0x37de0000)
3429 return extract_14 (inst);
3430
3431 /* stwm X,D(sp) */
3432 if ((inst & 0xffe00000) == 0x6fc00000)
3433 return extract_14 (inst);
3434
3435 /* std,ma X,D(sp) */
3436 if ((inst & 0xffe00008) == 0x73c00008)
3437 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3438
3439 /* addil high21,%r1; ldo low11,(%r1),%r30)
3440 save high bits in save_high21 for later use. */
3441 if ((inst & 0xffe00000) == 0x28200000)
3442 {
3443 save_high21 = extract_21 (inst);
3444 return 0;
3445 }
3446
3447 if ((inst & 0xffff0000) == 0x343e0000)
3448 return save_high21 + extract_14 (inst);
3449
3450 /* fstws as used by the HP compilers. */
3451 if ((inst & 0xffffffe0) == 0x2fd01220)
3452 return extract_5_load (inst);
3453
3454 /* No adjustment. */
3455 return 0;
3456 }
3457
3458 /* Return nonzero if INST is a branch of some kind, else return zero. */
3459
3460 static int
3461 is_branch (unsigned long inst)
3462 {
3463 switch (inst >> 26)
3464 {
3465 case 0x20:
3466 case 0x21:
3467 case 0x22:
3468 case 0x23:
3469 case 0x27:
3470 case 0x28:
3471 case 0x29:
3472 case 0x2a:
3473 case 0x2b:
3474 case 0x2f:
3475 case 0x30:
3476 case 0x31:
3477 case 0x32:
3478 case 0x33:
3479 case 0x38:
3480 case 0x39:
3481 case 0x3a:
3482 case 0x3b:
3483 return 1;
3484
3485 default:
3486 return 0;
3487 }
3488 }
3489
3490 /* Return the register number for a GR which is saved by INST or
3491 zero it INST does not save a GR. */
3492
3493 static int
3494 inst_saves_gr (unsigned long inst)
3495 {
3496 /* Does it look like a stw? */
3497 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3498 || (inst >> 26) == 0x1f
3499 || ((inst >> 26) == 0x1f
3500 && ((inst >> 6) == 0xa)))
3501 return extract_5R_store (inst);
3502
3503 /* Does it look like a std? */
3504 if ((inst >> 26) == 0x1c
3505 || ((inst >> 26) == 0x03
3506 && ((inst >> 6) & 0xf) == 0xb))
3507 return extract_5R_store (inst);
3508
3509 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3510 if ((inst >> 26) == 0x1b)
3511 return extract_5R_store (inst);
3512
3513 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3514 too. */
3515 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3516 || ((inst >> 26) == 0x3
3517 && (((inst >> 6) & 0xf) == 0x8
3518 || (inst >> 6) & 0xf) == 0x9))
3519 return extract_5R_store (inst);
3520
3521 return 0;
3522 }
3523
3524 /* Return the register number for a FR which is saved by INST or
3525 zero it INST does not save a FR.
3526
3527 Note we only care about full 64bit register stores (that's the only
3528 kind of stores the prologue will use).
3529
3530 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3531
3532 static int
3533 inst_saves_fr (unsigned long inst)
3534 {
3535 /* is this an FSTD ? */
3536 if ((inst & 0xfc00dfc0) == 0x2c001200)
3537 return extract_5r_store (inst);
3538 if ((inst & 0xfc000002) == 0x70000002)
3539 return extract_5R_store (inst);
3540 /* is this an FSTW ? */
3541 if ((inst & 0xfc00df80) == 0x24001200)
3542 return extract_5r_store (inst);
3543 if ((inst & 0xfc000002) == 0x7c000000)
3544 return extract_5R_store (inst);
3545 return 0;
3546 }
3547
3548 /* Advance PC across any function entry prologue instructions
3549 to reach some "real" code.
3550
3551 Use information in the unwind table to determine what exactly should
3552 be in the prologue. */
3553
3554
3555 CORE_ADDR
3556 skip_prologue_hard_way (CORE_ADDR pc)
3557 {
3558 char buf[4];
3559 CORE_ADDR orig_pc = pc;
3560 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3561 unsigned long args_stored, status, i, restart_gr, restart_fr;
3562 struct unwind_table_entry *u;
3563
3564 restart_gr = 0;
3565 restart_fr = 0;
3566
3567 restart:
3568 u = find_unwind_entry (pc);
3569 if (!u)
3570 return pc;
3571
3572 /* If we are not at the beginning of a function, then return now. */
3573 if ((pc & ~0x3) != u->region_start)
3574 return pc;
3575
3576 /* This is how much of a frame adjustment we need to account for. */
3577 stack_remaining = u->Total_frame_size << 3;
3578
3579 /* Magic register saves we want to know about. */
3580 save_rp = u->Save_RP;
3581 save_sp = u->Save_SP;
3582
3583 /* An indication that args may be stored into the stack. Unfortunately
3584 the HPUX compilers tend to set this in cases where no args were
3585 stored too!. */
3586 args_stored = 1;
3587
3588 /* Turn the Entry_GR field into a bitmask. */
3589 save_gr = 0;
3590 for (i = 3; i < u->Entry_GR + 3; i++)
3591 {
3592 /* Frame pointer gets saved into a special location. */
3593 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3594 continue;
3595
3596 save_gr |= (1 << i);
3597 }
3598 save_gr &= ~restart_gr;
3599
3600 /* Turn the Entry_FR field into a bitmask too. */
3601 save_fr = 0;
3602 for (i = 12; i < u->Entry_FR + 12; i++)
3603 save_fr |= (1 << i);
3604 save_fr &= ~restart_fr;
3605
3606 /* Loop until we find everything of interest or hit a branch.
3607
3608 For unoptimized GCC code and for any HP CC code this will never ever
3609 examine any user instructions.
3610
3611 For optimzied GCC code we're faced with problems. GCC will schedule
3612 its prologue and make prologue instructions available for delay slot
3613 filling. The end result is user code gets mixed in with the prologue
3614 and a prologue instruction may be in the delay slot of the first branch
3615 or call.
3616
3617 Some unexpected things are expected with debugging optimized code, so
3618 we allow this routine to walk past user instructions in optimized
3619 GCC code. */
3620 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3621 || args_stored)
3622 {
3623 unsigned int reg_num;
3624 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3625 unsigned long old_save_rp, old_save_sp, next_inst;
3626
3627 /* Save copies of all the triggers so we can compare them later
3628 (only for HPC). */
3629 old_save_gr = save_gr;
3630 old_save_fr = save_fr;
3631 old_save_rp = save_rp;
3632 old_save_sp = save_sp;
3633 old_stack_remaining = stack_remaining;
3634
3635 status = target_read_memory (pc, buf, 4);
3636 inst = extract_unsigned_integer (buf, 4);
3637
3638 /* Yow! */
3639 if (status != 0)
3640 return pc;
3641
3642 /* Note the interesting effects of this instruction. */
3643 stack_remaining -= prologue_inst_adjust_sp (inst);
3644
3645 /* There are limited ways to store the return pointer into the
3646 stack. */
3647 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3648 save_rp = 0;
3649
3650 /* These are the only ways we save SP into the stack. At this time
3651 the HP compilers never bother to save SP into the stack. */
3652 if ((inst & 0xffffc000) == 0x6fc10000
3653 || (inst & 0xffffc00c) == 0x73c10008)
3654 save_sp = 0;
3655
3656 /* Are we loading some register with an offset from the argument
3657 pointer? */
3658 if ((inst & 0xffe00000) == 0x37a00000
3659 || (inst & 0xffffffe0) == 0x081d0240)
3660 {
3661 pc += 4;
3662 continue;
3663 }
3664
3665 /* Account for general and floating-point register saves. */
3666 reg_num = inst_saves_gr (inst);
3667 save_gr &= ~(1 << reg_num);
3668
3669 /* Ugh. Also account for argument stores into the stack.
3670 Unfortunately args_stored only tells us that some arguments
3671 where stored into the stack. Not how many or what kind!
3672
3673 This is a kludge as on the HP compiler sets this bit and it
3674 never does prologue scheduling. So once we see one, skip past
3675 all of them. We have similar code for the fp arg stores below.
3676
3677 FIXME. Can still die if we have a mix of GR and FR argument
3678 stores! */
3679 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3680 {
3681 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3682 {
3683 pc += 4;
3684 status = target_read_memory (pc, buf, 4);
3685 inst = extract_unsigned_integer (buf, 4);
3686 if (status != 0)
3687 return pc;
3688 reg_num = inst_saves_gr (inst);
3689 }
3690 args_stored = 0;
3691 continue;
3692 }
3693
3694 reg_num = inst_saves_fr (inst);
3695 save_fr &= ~(1 << reg_num);
3696
3697 status = target_read_memory (pc + 4, buf, 4);
3698 next_inst = extract_unsigned_integer (buf, 4);
3699
3700 /* Yow! */
3701 if (status != 0)
3702 return pc;
3703
3704 /* We've got to be read to handle the ldo before the fp register
3705 save. */
3706 if ((inst & 0xfc000000) == 0x34000000
3707 && inst_saves_fr (next_inst) >= 4
3708 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3709 {
3710 /* So we drop into the code below in a reasonable state. */
3711 reg_num = inst_saves_fr (next_inst);
3712 pc -= 4;
3713 }
3714
3715 /* Ugh. Also account for argument stores into the stack.
3716 This is a kludge as on the HP compiler sets this bit and it
3717 never does prologue scheduling. So once we see one, skip past
3718 all of them. */
3719 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3720 {
3721 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3722 {
3723 pc += 8;
3724 status = target_read_memory (pc, buf, 4);
3725 inst = extract_unsigned_integer (buf, 4);
3726 if (status != 0)
3727 return pc;
3728 if ((inst & 0xfc000000) != 0x34000000)
3729 break;
3730 status = target_read_memory (pc + 4, buf, 4);
3731 next_inst = extract_unsigned_integer (buf, 4);
3732 if (status != 0)
3733 return pc;
3734 reg_num = inst_saves_fr (next_inst);
3735 }
3736 args_stored = 0;
3737 continue;
3738 }
3739
3740 /* Quit if we hit any kind of branch. This can happen if a prologue
3741 instruction is in the delay slot of the first call/branch. */
3742 if (is_branch (inst))
3743 break;
3744
3745 /* What a crock. The HP compilers set args_stored even if no
3746 arguments were stored into the stack (boo hiss). This could
3747 cause this code to then skip a bunch of user insns (up to the
3748 first branch).
3749
3750 To combat this we try to identify when args_stored was bogusly
3751 set and clear it. We only do this when args_stored is nonzero,
3752 all other resources are accounted for, and nothing changed on
3753 this pass. */
3754 if (args_stored
3755 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3756 && old_save_gr == save_gr && old_save_fr == save_fr
3757 && old_save_rp == save_rp && old_save_sp == save_sp
3758 && old_stack_remaining == stack_remaining)
3759 break;
3760
3761 /* Bump the PC. */
3762 pc += 4;
3763 }
3764
3765 /* We've got a tenative location for the end of the prologue. However
3766 because of limitations in the unwind descriptor mechanism we may
3767 have went too far into user code looking for the save of a register
3768 that does not exist. So, if there registers we expected to be saved
3769 but never were, mask them out and restart.
3770
3771 This should only happen in optimized code, and should be very rare. */
3772 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3773 {
3774 pc = orig_pc;
3775 restart_gr = save_gr;
3776 restart_fr = save_fr;
3777 goto restart;
3778 }
3779
3780 return pc;
3781 }
3782
3783
3784 /* Return the address of the PC after the last prologue instruction if
3785 we can determine it from the debug symbols. Else return zero. */
3786
3787 static CORE_ADDR
3788 after_prologue (CORE_ADDR pc)
3789 {
3790 struct symtab_and_line sal;
3791 CORE_ADDR func_addr, func_end;
3792 struct symbol *f;
3793
3794 /* If we can not find the symbol in the partial symbol table, then
3795 there is no hope we can determine the function's start address
3796 with this code. */
3797 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3798 return 0;
3799
3800 /* Get the line associated with FUNC_ADDR. */
3801 sal = find_pc_line (func_addr, 0);
3802
3803 /* There are only two cases to consider. First, the end of the source line
3804 is within the function bounds. In that case we return the end of the
3805 source line. Second is the end of the source line extends beyond the
3806 bounds of the current function. We need to use the slow code to
3807 examine instructions in that case.
3808
3809 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3810 the wrong thing to do. In fact, it should be entirely possible for this
3811 function to always return zero since the slow instruction scanning code
3812 is supposed to *always* work. If it does not, then it is a bug. */
3813 if (sal.end < func_end)
3814 return sal.end;
3815 else
3816 return 0;
3817 }
3818
3819 /* To skip prologues, I use this predicate. Returns either PC itself
3820 if the code at PC does not look like a function prologue; otherwise
3821 returns an address that (if we're lucky) follows the prologue. If
3822 LENIENT, then we must skip everything which is involved in setting
3823 up the frame (it's OK to skip more, just so long as we don't skip
3824 anything which might clobber the registers which are being saved.
3825 Currently we must not skip more on the alpha, but we might the lenient
3826 stuff some day. */
3827
3828 CORE_ADDR
3829 hppa_skip_prologue (CORE_ADDR pc)
3830 {
3831 unsigned long inst;
3832 int offset;
3833 CORE_ADDR post_prologue_pc;
3834 char buf[4];
3835
3836 /* See if we can determine the end of the prologue via the symbol table.
3837 If so, then return either PC, or the PC after the prologue, whichever
3838 is greater. */
3839
3840 post_prologue_pc = after_prologue (pc);
3841
3842 /* If after_prologue returned a useful address, then use it. Else
3843 fall back on the instruction skipping code.
3844
3845 Some folks have claimed this causes problems because the breakpoint
3846 may be the first instruction of the prologue. If that happens, then
3847 the instruction skipping code has a bug that needs to be fixed. */
3848 if (post_prologue_pc != 0)
3849 return max (pc, post_prologue_pc);
3850 else
3851 return (skip_prologue_hard_way (pc));
3852 }
3853
3854 /* Put here the code to store, into the SAVED_REGS, the addresses of
3855 the saved registers of frame described by FRAME_INFO. This
3856 includes special registers such as pc and fp saved in special ways
3857 in the stack frame. sp is even more special: the address we return
3858 for it IS the sp for the next frame. */
3859
3860 void
3861 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3862 CORE_ADDR frame_saved_regs[])
3863 {
3864 CORE_ADDR pc;
3865 struct unwind_table_entry *u;
3866 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3867 int status, i, reg;
3868 char buf[4];
3869 int fp_loc = -1;
3870 int final_iteration;
3871
3872 /* Zero out everything. */
3873 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
3874
3875 /* Call dummy frames always look the same, so there's no need to
3876 examine the dummy code to determine locations of saved registers;
3877 instead, let find_dummy_frame_regs fill in the correct offsets
3878 for the saved registers. */
3879 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
3880 && (get_frame_pc (frame_info)
3881 <= (get_frame_base (frame_info)
3882 /* A call dummy is sized in words, but it is actually a
3883 series of instructions. Account for that scaling
3884 factor. */
3885 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
3886 * DEPRECATED_CALL_DUMMY_LENGTH)
3887 /* Similarly we have to account for 64bit wide register
3888 saves. */
3889 + (32 * DEPRECATED_REGISTER_SIZE)
3890 /* We always consider FP regs 8 bytes long. */
3891 + (NUM_REGS - FP0_REGNUM) * 8
3892 /* Similarly we have to account for 64bit wide register
3893 saves. */
3894 + (6 * DEPRECATED_REGISTER_SIZE)))))
3895 find_dummy_frame_regs (frame_info, frame_saved_regs);
3896
3897 /* Interrupt handlers are special too. They lay out the register
3898 state in the exact same order as the register numbers in GDB. */
3899 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
3900 {
3901 for (i = 0; i < NUM_REGS; i++)
3902 {
3903 /* SP is a little special. */
3904 if (i == SP_REGNUM)
3905 frame_saved_regs[SP_REGNUM]
3906 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
3907 TARGET_PTR_BIT / 8);
3908 else
3909 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
3910 }
3911 return;
3912 }
3913
3914 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3915 /* Handle signal handler callers. */
3916 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
3917 {
3918 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3919 return;
3920 }
3921 #endif
3922
3923 /* Get the starting address of the function referred to by the PC
3924 saved in frame. */
3925 pc = get_frame_func (frame_info);
3926
3927 /* Yow! */
3928 u = find_unwind_entry (pc);
3929 if (!u)
3930 return;
3931
3932 /* This is how much of a frame adjustment we need to account for. */
3933 stack_remaining = u->Total_frame_size << 3;
3934
3935 /* Magic register saves we want to know about. */
3936 save_rp = u->Save_RP;
3937 save_sp = u->Save_SP;
3938
3939 /* Turn the Entry_GR field into a bitmask. */
3940 save_gr = 0;
3941 for (i = 3; i < u->Entry_GR + 3; i++)
3942 {
3943 /* Frame pointer gets saved into a special location. */
3944 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3945 continue;
3946
3947 save_gr |= (1 << i);
3948 }
3949
3950 /* Turn the Entry_FR field into a bitmask too. */
3951 save_fr = 0;
3952 for (i = 12; i < u->Entry_FR + 12; i++)
3953 save_fr |= (1 << i);
3954
3955 /* The frame always represents the value of %sp at entry to the
3956 current function (and is thus equivalent to the "saved" stack
3957 pointer. */
3958 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
3959
3960 /* Loop until we find everything of interest or hit a branch.
3961
3962 For unoptimized GCC code and for any HP CC code this will never ever
3963 examine any user instructions.
3964
3965 For optimized GCC code we're faced with problems. GCC will schedule
3966 its prologue and make prologue instructions available for delay slot
3967 filling. The end result is user code gets mixed in with the prologue
3968 and a prologue instruction may be in the delay slot of the first branch
3969 or call.
3970
3971 Some unexpected things are expected with debugging optimized code, so
3972 we allow this routine to walk past user instructions in optimized
3973 GCC code. */
3974 final_iteration = 0;
3975 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3976 && pc <= get_frame_pc (frame_info))
3977 {
3978 status = target_read_memory (pc, buf, 4);
3979 inst = extract_unsigned_integer (buf, 4);
3980
3981 /* Yow! */
3982 if (status != 0)
3983 return;
3984
3985 /* Note the interesting effects of this instruction. */
3986 stack_remaining -= prologue_inst_adjust_sp (inst);
3987
3988 /* There are limited ways to store the return pointer into the
3989 stack. */
3990 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
3991 {
3992 save_rp = 0;
3993 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
3994 }
3995 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3996 {
3997 save_rp = 0;
3998 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
3999 }
4000
4001 /* Note if we saved SP into the stack. This also happens to indicate
4002 the location of the saved frame pointer. */
4003 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4004 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4005 {
4006 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4007 save_sp = 0;
4008 }
4009
4010 /* Account for general and floating-point register saves. */
4011 reg = inst_saves_gr (inst);
4012 if (reg >= 3 && reg <= 18
4013 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4014 {
4015 save_gr &= ~(1 << reg);
4016
4017 /* stwm with a positive displacement is a *post modify*. */
4018 if ((inst >> 26) == 0x1b
4019 && extract_14 (inst) >= 0)
4020 frame_saved_regs[reg] = get_frame_base (frame_info);
4021 /* A std has explicit post_modify forms. */
4022 else if ((inst & 0xfc00000c0) == 0x70000008)
4023 frame_saved_regs[reg] = get_frame_base (frame_info);
4024 else
4025 {
4026 CORE_ADDR offset;
4027
4028 if ((inst >> 26) == 0x1c)
4029 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4030 else if ((inst >> 26) == 0x03)
4031 offset = low_sign_extend (inst & 0x1f, 5);
4032 else
4033 offset = extract_14 (inst);
4034
4035 /* Handle code with and without frame pointers. */
4036 if (u->Save_SP)
4037 frame_saved_regs[reg]
4038 = get_frame_base (frame_info) + offset;
4039 else
4040 frame_saved_regs[reg]
4041 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4042 + offset);
4043 }
4044 }
4045
4046
4047 /* GCC handles callee saved FP regs a little differently.
4048
4049 It emits an instruction to put the value of the start of
4050 the FP store area into %r1. It then uses fstds,ma with
4051 a basereg of %r1 for the stores.
4052
4053 HP CC emits them at the current stack pointer modifying
4054 the stack pointer as it stores each register. */
4055
4056 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4057 if ((inst & 0xffffc000) == 0x34610000
4058 || (inst & 0xffffc000) == 0x37c10000)
4059 fp_loc = extract_14 (inst);
4060
4061 reg = inst_saves_fr (inst);
4062 if (reg >= 12 && reg <= 21)
4063 {
4064 /* Note +4 braindamage below is necessary because the FP status
4065 registers are internally 8 registers rather than the expected
4066 4 registers. */
4067 save_fr &= ~(1 << reg);
4068 if (fp_loc == -1)
4069 {
4070 /* 1st HP CC FP register store. After this instruction
4071 we've set enough state that the GCC and HPCC code are
4072 both handled in the same manner. */
4073 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4074 fp_loc = 8;
4075 }
4076 else
4077 {
4078 frame_saved_regs[reg + FP0_REGNUM + 4]
4079 = get_frame_base (frame_info) + fp_loc;
4080 fp_loc += 8;
4081 }
4082 }
4083
4084 /* Quit if we hit any kind of branch the previous iteration. */
4085 if (final_iteration)
4086 break;
4087
4088 /* We want to look precisely one instruction beyond the branch
4089 if we have not found everything yet. */
4090 if (is_branch (inst))
4091 final_iteration = 1;
4092
4093 /* Bump the PC. */
4094 pc += 4;
4095 }
4096 }
4097
4098 /* XXX - deprecated. This is a compatibility function for targets
4099 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4100 /* Find the addresses in which registers are saved in FRAME. */
4101
4102 void
4103 hppa_frame_init_saved_regs (struct frame_info *frame)
4104 {
4105 if (get_frame_saved_regs (frame) == NULL)
4106 frame_saved_regs_zalloc (frame);
4107 hppa_frame_find_saved_regs (frame, get_frame_saved_regs (frame));
4108 }
4109
4110 /* Exception handling support for the HP-UX ANSI C++ compiler.
4111 The compiler (aCC) provides a callback for exception events;
4112 GDB can set a breakpoint on this callback and find out what
4113 exception event has occurred. */
4114
4115 /* The name of the hook to be set to point to the callback function */
4116 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4117 /* The name of the function to be used to set the hook value */
4118 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4119 /* The name of the callback function in end.o */
4120 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4121 /* Name of function in end.o on which a break is set (called by above) */
4122 static char HP_ACC_EH_break[] = "__d_eh_break";
4123 /* Name of flag (in end.o) that enables catching throws */
4124 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4125 /* Name of flag (in end.o) that enables catching catching */
4126 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4127 /* The enum used by aCC */
4128 typedef enum
4129 {
4130 __EH_NOTIFY_THROW,
4131 __EH_NOTIFY_CATCH
4132 }
4133 __eh_notification;
4134
4135 /* Is exception-handling support available with this executable? */
4136 static int hp_cxx_exception_support = 0;
4137 /* Has the initialize function been run? */
4138 int hp_cxx_exception_support_initialized = 0;
4139 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4140 extern int exception_support_initialized;
4141 /* Address of __eh_notify_hook */
4142 static CORE_ADDR eh_notify_hook_addr = 0;
4143 /* Address of __d_eh_notify_callback */
4144 static CORE_ADDR eh_notify_callback_addr = 0;
4145 /* Address of __d_eh_break */
4146 static CORE_ADDR eh_break_addr = 0;
4147 /* Address of __d_eh_catch_catch */
4148 static CORE_ADDR eh_catch_catch_addr = 0;
4149 /* Address of __d_eh_catch_throw */
4150 static CORE_ADDR eh_catch_throw_addr = 0;
4151 /* Sal for __d_eh_break */
4152 static struct symtab_and_line *break_callback_sal = 0;
4153
4154 /* Code in end.c expects __d_pid to be set in the inferior,
4155 otherwise __d_eh_notify_callback doesn't bother to call
4156 __d_eh_break! So we poke the pid into this symbol
4157 ourselves.
4158 0 => success
4159 1 => failure */
4160 int
4161 setup_d_pid_in_inferior (void)
4162 {
4163 CORE_ADDR anaddr;
4164 struct minimal_symbol *msymbol;
4165 char buf[4]; /* FIXME 32x64? */
4166
4167 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4168 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4169 if (msymbol == NULL)
4170 {
4171 warning ("Unable to find __d_pid symbol in object file.");
4172 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4173 return 1;
4174 }
4175
4176 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4177 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4178 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4179 {
4180 warning ("Unable to write __d_pid");
4181 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4182 return 1;
4183 }
4184 return 0;
4185 }
4186
4187 /* Initialize exception catchpoint support by looking for the
4188 necessary hooks/callbacks in end.o, etc., and set the hook value to
4189 point to the required debug function
4190
4191 Return 0 => failure
4192 1 => success */
4193
4194 static int
4195 initialize_hp_cxx_exception_support (void)
4196 {
4197 struct symtabs_and_lines sals;
4198 struct cleanup *old_chain;
4199 struct cleanup *canonical_strings_chain = NULL;
4200 int i;
4201 char *addr_start;
4202 char *addr_end = NULL;
4203 char **canonical = (char **) NULL;
4204 int thread = -1;
4205 struct symbol *sym = NULL;
4206 struct minimal_symbol *msym = NULL;
4207 struct objfile *objfile;
4208 asection *shlib_info;
4209
4210 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4211 recursion is a possibility because finding the hook for exception
4212 callbacks involves making a call in the inferior, which means
4213 re-inserting breakpoints which can re-invoke this code */
4214
4215 static int recurse = 0;
4216 if (recurse > 0)
4217 {
4218 hp_cxx_exception_support_initialized = 0;
4219 exception_support_initialized = 0;
4220 return 0;
4221 }
4222
4223 hp_cxx_exception_support = 0;
4224
4225 /* First check if we have seen any HP compiled objects; if not,
4226 it is very unlikely that HP's idiosyncratic callback mechanism
4227 for exception handling debug support will be available!
4228 This will percolate back up to breakpoint.c, where our callers
4229 will decide to try the g++ exception-handling support instead. */
4230 if (!hp_som_som_object_present)
4231 return 0;
4232
4233 /* We have a SOM executable with SOM debug info; find the hooks */
4234
4235 /* First look for the notify hook provided by aCC runtime libs */
4236 /* If we find this symbol, we conclude that the executable must
4237 have HP aCC exception support built in. If this symbol is not
4238 found, even though we're a HP SOM-SOM file, we may have been
4239 built with some other compiler (not aCC). This results percolates
4240 back up to our callers in breakpoint.c which can decide to
4241 try the g++ style of exception support instead.
4242 If this symbol is found but the other symbols we require are
4243 not found, there is something weird going on, and g++ support
4244 should *not* be tried as an alternative.
4245
4246 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4247 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4248
4249 /* libCsup has this hook; it'll usually be non-debuggable */
4250 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4251 if (msym)
4252 {
4253 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4254 hp_cxx_exception_support = 1;
4255 }
4256 else
4257 {
4258 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4259 warning ("Executable may not have been compiled debuggable with HP aCC.");
4260 warning ("GDB will be unable to intercept exception events.");
4261 eh_notify_hook_addr = 0;
4262 hp_cxx_exception_support = 0;
4263 return 0;
4264 }
4265
4266 /* Next look for the notify callback routine in end.o */
4267 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4268 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4269 if (msym)
4270 {
4271 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4272 hp_cxx_exception_support = 1;
4273 }
4274 else
4275 {
4276 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4277 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4278 warning ("GDB will be unable to intercept exception events.");
4279 eh_notify_callback_addr = 0;
4280 return 0;
4281 }
4282
4283 #ifndef GDB_TARGET_IS_HPPA_20W
4284 /* Check whether the executable is dynamically linked or archive bound */
4285 /* With an archive-bound executable we can use the raw addresses we find
4286 for the callback function, etc. without modification. For an executable
4287 with shared libraries, we have to do more work to find the plabel, which
4288 can be the target of a call through $$dyncall from the aCC runtime support
4289 library (libCsup) which is linked shared by default by aCC. */
4290 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4291 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4292 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4293 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4294 {
4295 /* The minsym we have has the local code address, but that's not the
4296 plabel that can be used by an inter-load-module call. */
4297 /* Find solib handle for main image (which has end.o), and use that
4298 and the min sym as arguments to __d_shl_get() (which does the equivalent
4299 of shl_findsym()) to find the plabel. */
4300
4301 args_for_find_stub args;
4302 static char message[] = "Error while finding exception callback hook:\n";
4303
4304 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4305 args.msym = msym;
4306 args.return_val = 0;
4307
4308 recurse++;
4309 catch_errors (cover_find_stub_with_shl_get, &args, message,
4310 RETURN_MASK_ALL);
4311 eh_notify_callback_addr = args.return_val;
4312 recurse--;
4313
4314 exception_catchpoints_are_fragile = 1;
4315
4316 if (!eh_notify_callback_addr)
4317 {
4318 /* We can get here either if there is no plabel in the export list
4319 for the main image, or if something strange happened (?) */
4320 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4321 warning ("GDB will not be able to intercept exception events.");
4322 return 0;
4323 }
4324 }
4325 else
4326 exception_catchpoints_are_fragile = 0;
4327 #endif
4328
4329 /* Now, look for the breakpointable routine in end.o */
4330 /* This should also be available in the SOM symbol dict. if end.o linked in */
4331 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4332 if (msym)
4333 {
4334 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4335 hp_cxx_exception_support = 1;
4336 }
4337 else
4338 {
4339 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4340 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4341 warning ("GDB will be unable to intercept exception events.");
4342 eh_break_addr = 0;
4343 return 0;
4344 }
4345
4346 /* Next look for the catch enable flag provided in end.o */
4347 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4348 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4349 if (sym) /* sometimes present in debug info */
4350 {
4351 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4352 hp_cxx_exception_support = 1;
4353 }
4354 else
4355 /* otherwise look in SOM symbol dict. */
4356 {
4357 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4358 if (msym)
4359 {
4360 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4361 hp_cxx_exception_support = 1;
4362 }
4363 else
4364 {
4365 warning ("Unable to enable interception of exception catches.");
4366 warning ("Executable may not have been compiled debuggable with HP aCC.");
4367 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4368 return 0;
4369 }
4370 }
4371
4372 /* Next look for the catch enable flag provided end.o */
4373 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4374 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4375 if (sym) /* sometimes present in debug info */
4376 {
4377 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4378 hp_cxx_exception_support = 1;
4379 }
4380 else
4381 /* otherwise look in SOM symbol dict. */
4382 {
4383 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4384 if (msym)
4385 {
4386 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4387 hp_cxx_exception_support = 1;
4388 }
4389 else
4390 {
4391 warning ("Unable to enable interception of exception throws.");
4392 warning ("Executable may not have been compiled debuggable with HP aCC.");
4393 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4394 return 0;
4395 }
4396 }
4397
4398 /* Set the flags */
4399 hp_cxx_exception_support = 2; /* everything worked so far */
4400 hp_cxx_exception_support_initialized = 1;
4401 exception_support_initialized = 1;
4402
4403 return 1;
4404 }
4405
4406 /* Target operation for enabling or disabling interception of
4407 exception events.
4408 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4409 ENABLE is either 0 (disable) or 1 (enable).
4410 Return value is NULL if no support found;
4411 -1 if something went wrong,
4412 or a pointer to a symtab/line struct if the breakpointable
4413 address was found. */
4414
4415 struct symtab_and_line *
4416 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4417 {
4418 char buf[4];
4419
4420 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4421 if (!initialize_hp_cxx_exception_support ())
4422 return NULL;
4423
4424 switch (hp_cxx_exception_support)
4425 {
4426 case 0:
4427 /* Assuming no HP support at all */
4428 return NULL;
4429 case 1:
4430 /* HP support should be present, but something went wrong */
4431 return (struct symtab_and_line *) -1; /* yuck! */
4432 /* there may be other cases in the future */
4433 }
4434
4435 /* Set the EH hook to point to the callback routine */
4436 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4437 /* pai: (temp) FIXME should there be a pack operation first? */
4438 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4439 {
4440 warning ("Could not write to target memory for exception event callback.");
4441 warning ("Interception of exception events may not work.");
4442 return (struct symtab_and_line *) -1;
4443 }
4444 if (enable)
4445 {
4446 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4447 if (PIDGET (inferior_ptid) > 0)
4448 {
4449 if (setup_d_pid_in_inferior ())
4450 return (struct symtab_and_line *) -1;
4451 }
4452 else
4453 {
4454 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4455 return (struct symtab_and_line *) -1;
4456 }
4457 }
4458
4459 switch (kind)
4460 {
4461 case EX_EVENT_THROW:
4462 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4463 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4464 {
4465 warning ("Couldn't enable exception throw interception.");
4466 return (struct symtab_and_line *) -1;
4467 }
4468 break;
4469 case EX_EVENT_CATCH:
4470 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4471 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4472 {
4473 warning ("Couldn't enable exception catch interception.");
4474 return (struct symtab_and_line *) -1;
4475 }
4476 break;
4477 default:
4478 error ("Request to enable unknown or unsupported exception event.");
4479 }
4480
4481 /* Copy break address into new sal struct, malloc'ing if needed. */
4482 if (!break_callback_sal)
4483 {
4484 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4485 }
4486 init_sal (break_callback_sal);
4487 break_callback_sal->symtab = NULL;
4488 break_callback_sal->pc = eh_break_addr;
4489 break_callback_sal->line = 0;
4490 break_callback_sal->end = eh_break_addr;
4491
4492 return break_callback_sal;
4493 }
4494
4495 /* Record some information about the current exception event */
4496 static struct exception_event_record current_ex_event;
4497 /* Convenience struct */
4498 static struct symtab_and_line null_symtab_and_line =
4499 {NULL, 0, 0, 0};
4500
4501 /* Report current exception event. Returns a pointer to a record
4502 that describes the kind of the event, where it was thrown from,
4503 and where it will be caught. More information may be reported
4504 in the future */
4505 struct exception_event_record *
4506 child_get_current_exception_event (void)
4507 {
4508 CORE_ADDR event_kind;
4509 CORE_ADDR throw_addr;
4510 CORE_ADDR catch_addr;
4511 struct frame_info *fi, *curr_frame;
4512 int level = 1;
4513
4514 curr_frame = get_current_frame ();
4515 if (!curr_frame)
4516 return (struct exception_event_record *) NULL;
4517
4518 /* Go up one frame to __d_eh_notify_callback, because at the
4519 point when this code is executed, there's garbage in the
4520 arguments of __d_eh_break. */
4521 fi = find_relative_frame (curr_frame, &level);
4522 if (level != 0)
4523 return (struct exception_event_record *) NULL;
4524
4525 select_frame (fi);
4526
4527 /* Read in the arguments */
4528 /* __d_eh_notify_callback() is called with 3 arguments:
4529 1. event kind catch or throw
4530 2. the target address if known
4531 3. a flag -- not sure what this is. pai/1997-07-17 */
4532 event_kind = read_register (ARG0_REGNUM);
4533 catch_addr = read_register (ARG1_REGNUM);
4534
4535 /* Now go down to a user frame */
4536 /* For a throw, __d_eh_break is called by
4537 __d_eh_notify_callback which is called by
4538 __notify_throw which is called
4539 from user code.
4540 For a catch, __d_eh_break is called by
4541 __d_eh_notify_callback which is called by
4542 <stackwalking stuff> which is called by
4543 __throw__<stuff> or __rethrow_<stuff> which is called
4544 from user code. */
4545 /* FIXME: Don't use such magic numbers; search for the frames */
4546 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4547 fi = find_relative_frame (curr_frame, &level);
4548 if (level != 0)
4549 return (struct exception_event_record *) NULL;
4550
4551 select_frame (fi);
4552 throw_addr = get_frame_pc (fi);
4553
4554 /* Go back to original (top) frame */
4555 select_frame (curr_frame);
4556
4557 current_ex_event.kind = (enum exception_event_kind) event_kind;
4558 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4559 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4560
4561 return &current_ex_event;
4562 }
4563
4564 /* Instead of this nasty cast, add a method pvoid() that prints out a
4565 host VOID data type (remember %p isn't portable). */
4566
4567 static CORE_ADDR
4568 hppa_pointer_to_address_hack (void *ptr)
4569 {
4570 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4571 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4572 }
4573
4574 static void
4575 unwind_command (char *exp, int from_tty)
4576 {
4577 CORE_ADDR address;
4578 struct unwind_table_entry *u;
4579
4580 /* If we have an expression, evaluate it and use it as the address. */
4581
4582 if (exp != 0 && *exp != 0)
4583 address = parse_and_eval_address (exp);
4584 else
4585 return;
4586
4587 u = find_unwind_entry (address);
4588
4589 if (!u)
4590 {
4591 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4592 return;
4593 }
4594
4595 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4596 paddr_nz (hppa_pointer_to_address_hack (u)));
4597
4598 printf_unfiltered ("\tregion_start = ");
4599 print_address (u->region_start, gdb_stdout);
4600
4601 printf_unfiltered ("\n\tregion_end = ");
4602 print_address (u->region_end, gdb_stdout);
4603
4604 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4605
4606 printf_unfiltered ("\n\tflags =");
4607 pif (Cannot_unwind);
4608 pif (Millicode);
4609 pif (Millicode_save_sr0);
4610 pif (Entry_SR);
4611 pif (Args_stored);
4612 pif (Variable_Frame);
4613 pif (Separate_Package_Body);
4614 pif (Frame_Extension_Millicode);
4615 pif (Stack_Overflow_Check);
4616 pif (Two_Instruction_SP_Increment);
4617 pif (Ada_Region);
4618 pif (Save_SP);
4619 pif (Save_RP);
4620 pif (Save_MRP_in_frame);
4621 pif (extn_ptr_defined);
4622 pif (Cleanup_defined);
4623 pif (MPE_XL_interrupt_marker);
4624 pif (HP_UX_interrupt_marker);
4625 pif (Large_frame);
4626
4627 putchar_unfiltered ('\n');
4628
4629 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4630
4631 pin (Region_description);
4632 pin (Entry_FR);
4633 pin (Entry_GR);
4634 pin (Total_frame_size);
4635 }
4636
4637 #ifdef PREPARE_TO_PROCEED
4638
4639 /* If the user has switched threads, and there is a breakpoint
4640 at the old thread's pc location, then switch to that thread
4641 and return TRUE, else return FALSE and don't do a thread
4642 switch (or rather, don't seem to have done a thread switch).
4643
4644 Ptrace-based gdb will always return FALSE to the thread-switch
4645 query, and thus also to PREPARE_TO_PROCEED.
4646
4647 The important thing is whether there is a BPT instruction,
4648 not how many user breakpoints there are. So we have to worry
4649 about things like these:
4650
4651 o Non-bp stop -- NO
4652
4653 o User hits bp, no switch -- NO
4654
4655 o User hits bp, switches threads -- YES
4656
4657 o User hits bp, deletes bp, switches threads -- NO
4658
4659 o User hits bp, deletes one of two or more bps
4660 at that PC, user switches threads -- YES
4661
4662 o Plus, since we're buffering events, the user may have hit a
4663 breakpoint, deleted the breakpoint and then gotten another
4664 hit on that same breakpoint on another thread which
4665 actually hit before the delete. (FIXME in breakpoint.c
4666 so that "dead" breakpoints are ignored?) -- NO
4667
4668 For these reasons, we have to violate information hiding and
4669 call "breakpoint_here_p". If core gdb thinks there is a bpt
4670 here, that's what counts, as core gdb is the one which is
4671 putting the BPT instruction in and taking it out.
4672
4673 Note that this implementation is potentially redundant now that
4674 default_prepare_to_proceed() has been added.
4675
4676 FIXME This may not support switching threads after Ctrl-C
4677 correctly. The default implementation does support this. */
4678 int
4679 hppa_prepare_to_proceed (void)
4680 {
4681 pid_t old_thread;
4682 pid_t current_thread;
4683
4684 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
4685 if (old_thread != 0)
4686 {
4687 /* Switched over from "old_thread". Try to do
4688 as little work as possible, 'cause mostly
4689 we're going to switch back. */
4690 CORE_ADDR new_pc;
4691 CORE_ADDR old_pc = read_pc ();
4692
4693 /* Yuk, shouldn't use global to specify current
4694 thread. But that's how gdb does it. */
4695 current_thread = PIDGET (inferior_ptid);
4696 inferior_ptid = pid_to_ptid (old_thread);
4697
4698 new_pc = read_pc ();
4699 if (new_pc != old_pc /* If at same pc, no need */
4700 && breakpoint_here_p (new_pc))
4701 {
4702 /* User hasn't deleted the BP.
4703 Return TRUE, finishing switch to "old_thread". */
4704 flush_cached_frames ();
4705 registers_changed ();
4706 #if 0
4707 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4708 current_thread, PIDGET (inferior_ptid));
4709 #endif
4710
4711 return 1;
4712 }
4713
4714 /* Otherwise switch back to the user-chosen thread. */
4715 inferior_ptid = pid_to_ptid (current_thread);
4716 new_pc = read_pc (); /* Re-prime register cache */
4717 }
4718
4719 return 0;
4720 }
4721 #endif /* PREPARE_TO_PROCEED */
4722
4723 void
4724 hppa_skip_permanent_breakpoint (void)
4725 {
4726 /* To step over a breakpoint instruction on the PA takes some
4727 fiddling with the instruction address queue.
4728
4729 When we stop at a breakpoint, the IA queue front (the instruction
4730 we're executing now) points at the breakpoint instruction, and
4731 the IA queue back (the next instruction to execute) points to
4732 whatever instruction we would execute after the breakpoint, if it
4733 were an ordinary instruction. This is the case even if the
4734 breakpoint is in the delay slot of a branch instruction.
4735
4736 Clearly, to step past the breakpoint, we need to set the queue
4737 front to the back. But what do we put in the back? What
4738 instruction comes after that one? Because of the branch delay
4739 slot, the next insn is always at the back + 4. */
4740 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4741 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4742
4743 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4744 /* We can leave the tail's space the same, since there's no jump. */
4745 }
4746
4747 /* Copy the function value from VALBUF into the proper location
4748 for a function return.
4749
4750 Called only in the context of the "return" command. */
4751
4752 void
4753 hppa_store_return_value (struct type *type, char *valbuf)
4754 {
4755 /* For software floating point, the return value goes into the
4756 integer registers. But we do not have any flag to key this on,
4757 so we always store the value into the integer registers.
4758
4759 If its a float value, then we also store it into the floating
4760 point registers. */
4761 deprecated_write_register_bytes (REGISTER_BYTE (28)
4762 + (TYPE_LENGTH (type) > 4
4763 ? (8 - TYPE_LENGTH (type))
4764 : (4 - TYPE_LENGTH (type))),
4765 valbuf, TYPE_LENGTH (type));
4766 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4767 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4768 valbuf, TYPE_LENGTH (type));
4769 }
4770
4771 /* Copy the function's return value into VALBUF.
4772
4773 This function is called only in the context of "target function calls",
4774 ie. when the debugger forces a function to be called in the child, and
4775 when the debugger forces a fucntion to return prematurely via the
4776 "return" command. */
4777
4778 void
4779 hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4780 {
4781 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4782 memcpy (valbuf,
4783 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4784 TYPE_LENGTH (type));
4785 else
4786 memcpy (valbuf,
4787 ((char *)regbuf
4788 + REGISTER_BYTE (28)
4789 + (TYPE_LENGTH (type) > 4
4790 ? (8 - TYPE_LENGTH (type))
4791 : (4 - TYPE_LENGTH (type)))),
4792 TYPE_LENGTH (type));
4793 }
4794
4795 int
4796 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4797 {
4798 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4799 via a pointer regardless of its type or the compiler used. */
4800 return (TYPE_LENGTH (type) > 8);
4801 }
4802
4803 int
4804 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4805 {
4806 /* Stack grows upward */
4807 return (lhs > rhs);
4808 }
4809
4810 CORE_ADDR
4811 hppa_stack_align (CORE_ADDR sp)
4812 {
4813 /* elz: adjust the quantity to the next highest value which is
4814 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4815 On hppa the sp must always be kept 64-bit aligned */
4816 return ((sp % 8) ? (sp + 7) & -8 : sp);
4817 }
4818
4819 int
4820 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4821 {
4822 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4823
4824 An example of this occurs when an a.out is linked against a foo.sl.
4825 The foo.sl defines a global bar(), and the a.out declares a signature
4826 for bar(). However, the a.out doesn't directly call bar(), but passes
4827 its address in another call.
4828
4829 If you have this scenario and attempt to "break bar" before running,
4830 gdb will find a minimal symbol for bar() in the a.out. But that
4831 symbol's address will be negative. What this appears to denote is
4832 an index backwards from the base of the procedure linkage table (PLT)
4833 into the data linkage table (DLT), the end of which is contiguous
4834 with the start of the PLT. This is clearly not a valid address for
4835 us to set a breakpoint on.
4836
4837 Note that one must be careful in how one checks for a negative address.
4838 0xc0000000 is a legitimate address of something in a shared text
4839 segment, for example. Since I don't know what the possible range
4840 is of these "really, truly negative" addresses that come from the
4841 minimal symbols, I'm resorting to the gross hack of checking the
4842 top byte of the address for all 1's. Sigh. */
4843
4844 return (!target_has_stack && (pc & 0xFF000000));
4845 }
4846
4847 int
4848 hppa_instruction_nullified (void)
4849 {
4850 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4851 avoid the type cast. I'm leaving it as is for now as I'm doing
4852 semi-mechanical multiarching-related changes. */
4853 const int ipsw = (int) read_register (IPSW_REGNUM);
4854 const int flags = (int) read_register (FLAGS_REGNUM);
4855
4856 return ((ipsw & 0x00200000) && !(flags & 0x2));
4857 }
4858
4859 int
4860 hppa_register_raw_size (int reg_nr)
4861 {
4862 /* All registers have the same size. */
4863 return DEPRECATED_REGISTER_SIZE;
4864 }
4865
4866 /* Index within the register vector of the first byte of the space i
4867 used for register REG_NR. */
4868
4869 int
4870 hppa_register_byte (int reg_nr)
4871 {
4872 return reg_nr * 4;
4873 }
4874
4875 /* Return the GDB type object for the "standard" data type of data
4876 in register N. */
4877
4878 struct type *
4879 hppa_register_virtual_type (int reg_nr)
4880 {
4881 if (reg_nr < FP4_REGNUM)
4882 return builtin_type_int;
4883 else
4884 return builtin_type_float;
4885 }
4886
4887 /* Store the address of the place in which to copy the structure the
4888 subroutine will return. This is called from call_function. */
4889
4890 void
4891 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4892 {
4893 write_register (28, addr);
4894 }
4895
4896 CORE_ADDR
4897 hppa_extract_struct_value_address (char *regbuf)
4898 {
4899 /* Extract from an array REGBUF containing the (raw) register state
4900 the address in which a function should return its structure value,
4901 as a CORE_ADDR (or an expression that can be used as one). */
4902 /* FIXME: brobecker 2002-12-26.
4903 The current implementation is historical, but we should eventually
4904 implement it in a more robust manner as it relies on the fact that
4905 the address size is equal to the size of an int* _on the host_...
4906 One possible implementation that crossed my mind is to use
4907 extract_address. */
4908 return (*(int *)(regbuf + REGISTER_BYTE (28)));
4909 }
4910
4911 /* Return True if REGNUM is not a register available to the user
4912 through ptrace(). */
4913
4914 int
4915 hppa_cannot_store_register (int regnum)
4916 {
4917 return (regnum == 0
4918 || regnum == PCSQ_HEAD_REGNUM
4919 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
4920 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
4921
4922 }
4923
4924 CORE_ADDR
4925 hppa_frame_args_address (struct frame_info *fi)
4926 {
4927 return get_frame_base (fi);
4928 }
4929
4930 CORE_ADDR
4931 hppa_frame_locals_address (struct frame_info *fi)
4932 {
4933 return get_frame_base (fi);
4934 }
4935
4936 int
4937 hppa_frame_num_args (struct frame_info *frame)
4938 {
4939 /* We can't tell how many args there are now that the C compiler delays
4940 popping them. */
4941 return -1;
4942 }
4943
4944 CORE_ADDR
4945 hppa_smash_text_address (CORE_ADDR addr)
4946 {
4947 /* The low two bits of the PC on the PA contain the privilege level.
4948 Some genius implementing a (non-GCC) compiler apparently decided
4949 this means that "addresses" in a text section therefore include a
4950 privilege level, and thus symbol tables should contain these bits.
4951 This seems like a bonehead thing to do--anyway, it seems to work
4952 for our purposes to just ignore those bits. */
4953
4954 return (addr &= ~0x3);
4955 }
4956
4957 static struct gdbarch *
4958 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4959 {
4960 struct gdbarch *gdbarch;
4961
4962 /* Try to determine the ABI of the object we are loading. */
4963 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
4964 {
4965 /* If it's a SOM file, assume it's HP/UX SOM. */
4966 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
4967 info.osabi = GDB_OSABI_HPUX_SOM;
4968 }
4969
4970 /* find a candidate among the list of pre-declared architectures. */
4971 arches = gdbarch_list_lookup_by_info (arches, &info);
4972 if (arches != NULL)
4973 return (arches->gdbarch);
4974
4975 /* If none found, then allocate and initialize one. */
4976 gdbarch = gdbarch_alloc (&info, NULL);
4977
4978 /* Hook in ABI-specific overrides, if they have been registered. */
4979 gdbarch_init_osabi (info, gdbarch);
4980
4981 set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
4982 set_gdbarch_function_start_offset (gdbarch, 0);
4983 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
4984 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
4985 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
4986 set_gdbarch_in_solib_return_trampoline (gdbarch,
4987 hppa_in_solib_return_trampoline);
4988 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
4989 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
4990 set_gdbarch_stack_align (gdbarch, hppa_stack_align);
4991 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4992 set_gdbarch_deprecated_register_size (gdbarch, 4);
4993 set_gdbarch_num_regs (gdbarch, hppa_num_regs);
4994 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
4995 set_gdbarch_sp_regnum (gdbarch, 30);
4996 set_gdbarch_fp0_regnum (gdbarch, 64);
4997 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
4998 set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
4999 set_gdbarch_register_raw_size (gdbarch, hppa_register_raw_size);
5000 set_gdbarch_register_bytes (gdbarch, hppa_num_regs * 4);
5001 set_gdbarch_register_byte (gdbarch, hppa_register_byte);
5002 set_gdbarch_register_virtual_size (gdbarch, hppa_register_raw_size);
5003 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
5004 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5005 set_gdbarch_register_virtual_type (gdbarch, hppa_register_virtual_type);
5006 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5007 set_gdbarch_deprecated_extract_return_value (gdbarch,
5008 hppa_extract_return_value);
5009 set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention);
5010 set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value);
5011 set_gdbarch_deprecated_extract_struct_value_address
5012 (gdbarch, hppa_extract_struct_value_address);
5013 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5014 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5015 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5016 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5017 set_gdbarch_frameless_function_invocation
5018 (gdbarch, hppa_frameless_function_invocation);
5019 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5020 set_gdbarch_frame_args_address (gdbarch, hppa_frame_args_address);
5021 set_gdbarch_frame_locals_address (gdbarch, hppa_frame_locals_address);
5022 set_gdbarch_frame_num_args (gdbarch, hppa_frame_num_args);
5023 set_gdbarch_frame_args_skip (gdbarch, 0);
5024 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5025 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5026 set_gdbarch_deprecated_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28);
5027 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5028 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5029 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5030 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5031 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5032 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5033 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5034
5035 return gdbarch;
5036 }
5037
5038 static void
5039 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5040 {
5041 /* Nothing to print for the moment. */
5042 }
5043
5044 void
5045 _initialize_hppa_tdep (void)
5046 {
5047 struct cmd_list_element *c;
5048 void break_at_finish_command (char *arg, int from_tty);
5049 void tbreak_at_finish_command (char *arg, int from_tty);
5050 void break_at_finish_at_depth_command (char *arg, int from_tty);
5051
5052 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5053 deprecated_tm_print_insn = print_insn_hppa;
5054
5055 add_cmd ("unwind", class_maintenance, unwind_command,
5056 "Print unwind table entry at given address.",
5057 &maintenanceprintlist);
5058
5059 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5060 break_at_finish_command,
5061 concat ("Set breakpoint at procedure exit. \n\
5062 Argument may be function name, or \"*\" and an address.\n\
5063 If function is specified, break at end of code for that function.\n\
5064 If an address is specified, break at the end of the function that contains \n\
5065 that exact address.\n",
5066 "With no arg, uses current execution address of selected stack frame.\n\
5067 This is useful for breaking on return to a stack frame.\n\
5068 \n\
5069 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5070 \n\
5071 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5072 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5073 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5074 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5075 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5076
5077 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5078 tbreak_at_finish_command,
5079 "Set temporary breakpoint at procedure exit. Either there should\n\
5080 be no argument or the argument must be a depth.\n"), NULL);
5081 set_cmd_completer (c, location_completer);
5082
5083 if (xdb_commands)
5084 deprecate_cmd (add_com ("bx", class_breakpoint,
5085 break_at_finish_at_depth_command,
5086 "Set breakpoint at procedure exit. Either there should\n\
5087 be no argument or the argument must be a depth.\n"), NULL);
5088 }
5089
This page took 0.247752 seconds and 4 git commands to generate.