Merge {i386,amd64}_linux_read_description
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "bfd.h"
25 #include "inferior.h"
26 #include "regcache.h"
27 #include "completer.h"
28 #include "osabi.h"
29 #include "gdb_assert.h"
30 #include "arch-utils.h"
31 /* For argument passing to the inferior. */
32 #include "symtab.h"
33 #include "dis-asm.h"
34 #include "trad-frame.h"
35 #include "frame-unwind.h"
36 #include "frame-base.h"
37
38 #include "gdbcore.h"
39 #include "gdbcmd.h"
40 #include "gdbtypes.h"
41 #include "objfiles.h"
42 #include "hppa-tdep.h"
43
44 static int hppa_debug = 0;
45
46 /* Some local constants. */
47 static const int hppa32_num_regs = 128;
48 static const int hppa64_num_regs = 96;
49
50 /* hppa-specific object data -- unwind and solib info.
51 TODO/maybe: think about splitting this into two parts; the unwind data is
52 common to all hppa targets, but is only used in this file; we can register
53 that separately and make this static. The solib data is probably hpux-
54 specific, so we can create a separate extern objfile_data that is registered
55 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
56 const struct objfile_data *hppa_objfile_priv_data = NULL;
57
58 /* Get at various relevent fields of an instruction word. */
59 #define MASK_5 0x1f
60 #define MASK_11 0x7ff
61 #define MASK_14 0x3fff
62 #define MASK_21 0x1fffff
63
64 /* Sizes (in bytes) of the native unwind entries. */
65 #define UNWIND_ENTRY_SIZE 16
66 #define STUB_UNWIND_ENTRY_SIZE 8
67
68 /* Routines to extract various sized constants out of hppa
69 instructions. */
70
71 /* This assumes that no garbage lies outside of the lower bits of
72 value. */
73
74 static int
75 hppa_sign_extend (unsigned val, unsigned bits)
76 {
77 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
78 }
79
80 /* For many immediate values the sign bit is the low bit! */
81
82 static int
83 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
84 {
85 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
86 }
87
88 /* Extract the bits at positions between FROM and TO, using HP's numbering
89 (MSB = 0). */
90
91 int
92 hppa_get_field (unsigned word, int from, int to)
93 {
94 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
95 }
96
97 /* Extract the immediate field from a ld{bhw}s instruction. */
98
99 int
100 hppa_extract_5_load (unsigned word)
101 {
102 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
103 }
104
105 /* Extract the immediate field from a break instruction. */
106
107 unsigned
108 hppa_extract_5r_store (unsigned word)
109 {
110 return (word & MASK_5);
111 }
112
113 /* Extract the immediate field from a {sr}sm instruction. */
114
115 unsigned
116 hppa_extract_5R_store (unsigned word)
117 {
118 return (word >> 16 & MASK_5);
119 }
120
121 /* Extract a 14 bit immediate field. */
122
123 int
124 hppa_extract_14 (unsigned word)
125 {
126 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
127 }
128
129 /* Extract a 21 bit constant. */
130
131 int
132 hppa_extract_21 (unsigned word)
133 {
134 int val;
135
136 word &= MASK_21;
137 word <<= 11;
138 val = hppa_get_field (word, 20, 20);
139 val <<= 11;
140 val |= hppa_get_field (word, 9, 19);
141 val <<= 2;
142 val |= hppa_get_field (word, 5, 6);
143 val <<= 5;
144 val |= hppa_get_field (word, 0, 4);
145 val <<= 2;
146 val |= hppa_get_field (word, 7, 8);
147 return hppa_sign_extend (val, 21) << 11;
148 }
149
150 /* extract a 17 bit constant from branch instructions, returning the
151 19 bit signed value. */
152
153 int
154 hppa_extract_17 (unsigned word)
155 {
156 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
157 hppa_get_field (word, 29, 29) << 10 |
158 hppa_get_field (word, 11, 15) << 11 |
159 (word & 0x1) << 16, 17) << 2;
160 }
161
162 CORE_ADDR
163 hppa_symbol_address(const char *sym)
164 {
165 struct bound_minimal_symbol minsym;
166
167 minsym = lookup_minimal_symbol (sym, NULL, NULL);
168 if (minsym.minsym)
169 return BMSYMBOL_VALUE_ADDRESS (minsym);
170 else
171 return (CORE_ADDR)-1;
172 }
173
174 struct hppa_objfile_private *
175 hppa_init_objfile_priv_data (struct objfile *objfile)
176 {
177 struct hppa_objfile_private *priv;
178
179 priv = (struct hppa_objfile_private *)
180 obstack_alloc (&objfile->objfile_obstack,
181 sizeof (struct hppa_objfile_private));
182 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
183 memset (priv, 0, sizeof (*priv));
184
185 return priv;
186 }
187 \f
188
189 /* Compare the start address for two unwind entries returning 1 if
190 the first address is larger than the second, -1 if the second is
191 larger than the first, and zero if they are equal. */
192
193 static int
194 compare_unwind_entries (const void *arg1, const void *arg2)
195 {
196 const struct unwind_table_entry *a = arg1;
197 const struct unwind_table_entry *b = arg2;
198
199 if (a->region_start > b->region_start)
200 return 1;
201 else if (a->region_start < b->region_start)
202 return -1;
203 else
204 return 0;
205 }
206
207 static void
208 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
209 {
210 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
211 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
212 {
213 bfd_vma value = section->vma - section->filepos;
214 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
215
216 if (value < *low_text_segment_address)
217 *low_text_segment_address = value;
218 }
219 }
220
221 static void
222 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
223 asection *section, unsigned int entries,
224 unsigned int size, CORE_ADDR text_offset)
225 {
226 /* We will read the unwind entries into temporary memory, then
227 fill in the actual unwind table. */
228
229 if (size > 0)
230 {
231 struct gdbarch *gdbarch = get_objfile_arch (objfile);
232 unsigned long tmp;
233 unsigned i;
234 char *buf = alloca (size);
235 CORE_ADDR low_text_segment_address;
236
237 /* For ELF targets, then unwinds are supposed to
238 be segment relative offsets instead of absolute addresses.
239
240 Note that when loading a shared library (text_offset != 0) the
241 unwinds are already relative to the text_offset that will be
242 passed in. */
243 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
244 {
245 low_text_segment_address = -1;
246
247 bfd_map_over_sections (objfile->obfd,
248 record_text_segment_lowaddr,
249 &low_text_segment_address);
250
251 text_offset = low_text_segment_address;
252 }
253 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
254 {
255 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
256 }
257
258 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
259
260 /* Now internalize the information being careful to handle host/target
261 endian issues. */
262 for (i = 0; i < entries; i++)
263 {
264 table[i].region_start = bfd_get_32 (objfile->obfd,
265 (bfd_byte *) buf);
266 table[i].region_start += text_offset;
267 buf += 4;
268 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
269 table[i].region_end += text_offset;
270 buf += 4;
271 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
272 buf += 4;
273 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
274 table[i].Millicode = (tmp >> 30) & 0x1;
275 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
276 table[i].Region_description = (tmp >> 27) & 0x3;
277 table[i].reserved = (tmp >> 26) & 0x1;
278 table[i].Entry_SR = (tmp >> 25) & 0x1;
279 table[i].Entry_FR = (tmp >> 21) & 0xf;
280 table[i].Entry_GR = (tmp >> 16) & 0x1f;
281 table[i].Args_stored = (tmp >> 15) & 0x1;
282 table[i].Variable_Frame = (tmp >> 14) & 0x1;
283 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
284 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
285 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
286 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
287 table[i].sr4export = (tmp >> 9) & 0x1;
288 table[i].cxx_info = (tmp >> 8) & 0x1;
289 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
290 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
291 table[i].reserved1 = (tmp >> 5) & 0x1;
292 table[i].Save_SP = (tmp >> 4) & 0x1;
293 table[i].Save_RP = (tmp >> 3) & 0x1;
294 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
295 table[i].save_r19 = (tmp >> 1) & 0x1;
296 table[i].Cleanup_defined = tmp & 0x1;
297 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
298 buf += 4;
299 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
300 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
301 table[i].Large_frame = (tmp >> 29) & 0x1;
302 table[i].alloca_frame = (tmp >> 28) & 0x1;
303 table[i].reserved2 = (tmp >> 27) & 0x1;
304 table[i].Total_frame_size = tmp & 0x7ffffff;
305
306 /* Stub unwinds are handled elsewhere. */
307 table[i].stub_unwind.stub_type = 0;
308 table[i].stub_unwind.padding = 0;
309 }
310 }
311 }
312
313 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
314 the object file. This info is used mainly by find_unwind_entry() to find
315 out the stack frame size and frame pointer used by procedures. We put
316 everything on the psymbol obstack in the objfile so that it automatically
317 gets freed when the objfile is destroyed. */
318
319 static void
320 read_unwind_info (struct objfile *objfile)
321 {
322 asection *unwind_sec, *stub_unwind_sec;
323 unsigned unwind_size, stub_unwind_size, total_size;
324 unsigned index, unwind_entries;
325 unsigned stub_entries, total_entries;
326 CORE_ADDR text_offset;
327 struct hppa_unwind_info *ui;
328 struct hppa_objfile_private *obj_private;
329
330 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
331 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
332 sizeof (struct hppa_unwind_info));
333
334 ui->table = NULL;
335 ui->cache = NULL;
336 ui->last = -1;
337
338 /* For reasons unknown the HP PA64 tools generate multiple unwinder
339 sections in a single executable. So we just iterate over every
340 section in the BFD looking for unwinder sections intead of trying
341 to do a lookup with bfd_get_section_by_name.
342
343 First determine the total size of the unwind tables so that we
344 can allocate memory in a nice big hunk. */
345 total_entries = 0;
346 for (unwind_sec = objfile->obfd->sections;
347 unwind_sec;
348 unwind_sec = unwind_sec->next)
349 {
350 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
351 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
352 {
353 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
354 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
355
356 total_entries += unwind_entries;
357 }
358 }
359
360 /* Now compute the size of the stub unwinds. Note the ELF tools do not
361 use stub unwinds at the current time. */
362 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
363
364 if (stub_unwind_sec)
365 {
366 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
367 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
368 }
369 else
370 {
371 stub_unwind_size = 0;
372 stub_entries = 0;
373 }
374
375 /* Compute total number of unwind entries and their total size. */
376 total_entries += stub_entries;
377 total_size = total_entries * sizeof (struct unwind_table_entry);
378
379 /* Allocate memory for the unwind table. */
380 ui->table = (struct unwind_table_entry *)
381 obstack_alloc (&objfile->objfile_obstack, total_size);
382 ui->last = total_entries - 1;
383
384 /* Now read in each unwind section and internalize the standard unwind
385 entries. */
386 index = 0;
387 for (unwind_sec = objfile->obfd->sections;
388 unwind_sec;
389 unwind_sec = unwind_sec->next)
390 {
391 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
392 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
393 {
394 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
395 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
396
397 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
398 unwind_entries, unwind_size, text_offset);
399 index += unwind_entries;
400 }
401 }
402
403 /* Now read in and internalize the stub unwind entries. */
404 if (stub_unwind_size > 0)
405 {
406 unsigned int i;
407 char *buf = alloca (stub_unwind_size);
408
409 /* Read in the stub unwind entries. */
410 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
411 0, stub_unwind_size);
412
413 /* Now convert them into regular unwind entries. */
414 for (i = 0; i < stub_entries; i++, index++)
415 {
416 /* Clear out the next unwind entry. */
417 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
418
419 /* Convert offset & size into region_start and region_end.
420 Stuff away the stub type into "reserved" fields. */
421 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
422 (bfd_byte *) buf);
423 ui->table[index].region_start += text_offset;
424 buf += 4;
425 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
426 (bfd_byte *) buf);
427 buf += 2;
428 ui->table[index].region_end
429 = ui->table[index].region_start + 4 *
430 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
431 buf += 2;
432 }
433
434 }
435
436 /* Unwind table needs to be kept sorted. */
437 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
438 compare_unwind_entries);
439
440 /* Keep a pointer to the unwind information. */
441 obj_private = (struct hppa_objfile_private *)
442 objfile_data (objfile, hppa_objfile_priv_data);
443 if (obj_private == NULL)
444 obj_private = hppa_init_objfile_priv_data (objfile);
445
446 obj_private->unwind_info = ui;
447 }
448
449 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
450 of the objfiles seeking the unwind table entry for this PC. Each objfile
451 contains a sorted list of struct unwind_table_entry. Since we do a binary
452 search of the unwind tables, we depend upon them to be sorted. */
453
454 struct unwind_table_entry *
455 find_unwind_entry (CORE_ADDR pc)
456 {
457 int first, middle, last;
458 struct objfile *objfile;
459 struct hppa_objfile_private *priv;
460
461 if (hppa_debug)
462 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
463 hex_string (pc));
464
465 /* A function at address 0? Not in HP-UX! */
466 if (pc == (CORE_ADDR) 0)
467 {
468 if (hppa_debug)
469 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
470 return NULL;
471 }
472
473 ALL_OBJFILES (objfile)
474 {
475 struct hppa_unwind_info *ui;
476 ui = NULL;
477 priv = objfile_data (objfile, hppa_objfile_priv_data);
478 if (priv)
479 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
480
481 if (!ui)
482 {
483 read_unwind_info (objfile);
484 priv = objfile_data (objfile, hppa_objfile_priv_data);
485 if (priv == NULL)
486 error (_("Internal error reading unwind information."));
487 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
488 }
489
490 /* First, check the cache. */
491
492 if (ui->cache
493 && pc >= ui->cache->region_start
494 && pc <= ui->cache->region_end)
495 {
496 if (hppa_debug)
497 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
498 hex_string ((uintptr_t) ui->cache));
499 return ui->cache;
500 }
501
502 /* Not in the cache, do a binary search. */
503
504 first = 0;
505 last = ui->last;
506
507 while (first <= last)
508 {
509 middle = (first + last) / 2;
510 if (pc >= ui->table[middle].region_start
511 && pc <= ui->table[middle].region_end)
512 {
513 ui->cache = &ui->table[middle];
514 if (hppa_debug)
515 fprintf_unfiltered (gdb_stdlog, "%s }\n",
516 hex_string ((uintptr_t) ui->cache));
517 return &ui->table[middle];
518 }
519
520 if (pc < ui->table[middle].region_start)
521 last = middle - 1;
522 else
523 first = middle + 1;
524 }
525 } /* ALL_OBJFILES() */
526
527 if (hppa_debug)
528 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
529
530 return NULL;
531 }
532
533 /* The epilogue is defined here as the area either on the `bv' instruction
534 itself or an instruction which destroys the function's stack frame.
535
536 We do not assume that the epilogue is at the end of a function as we can
537 also have return sequences in the middle of a function. */
538 static int
539 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
540 {
541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
542 unsigned long status;
543 unsigned int inst;
544 gdb_byte buf[4];
545
546 status = target_read_memory (pc, buf, 4);
547 if (status != 0)
548 return 0;
549
550 inst = extract_unsigned_integer (buf, 4, byte_order);
551
552 /* The most common way to perform a stack adjustment ldo X(sp),sp
553 We are destroying a stack frame if the offset is negative. */
554 if ((inst & 0xffffc000) == 0x37de0000
555 && hppa_extract_14 (inst) < 0)
556 return 1;
557
558 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
559 if (((inst & 0x0fc010e0) == 0x0fc010e0
560 || (inst & 0x0fc010e0) == 0x0fc010e0)
561 && hppa_extract_14 (inst) < 0)
562 return 1;
563
564 /* bv %r0(%rp) or bv,n %r0(%rp) */
565 if (inst == 0xe840c000 || inst == 0xe840c002)
566 return 1;
567
568 return 0;
569 }
570
571 static const unsigned char *
572 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
573 {
574 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
575 (*len) = sizeof (breakpoint);
576 return breakpoint;
577 }
578
579 /* Return the name of a register. */
580
581 static const char *
582 hppa32_register_name (struct gdbarch *gdbarch, int i)
583 {
584 static char *names[] = {
585 "flags", "r1", "rp", "r3",
586 "r4", "r5", "r6", "r7",
587 "r8", "r9", "r10", "r11",
588 "r12", "r13", "r14", "r15",
589 "r16", "r17", "r18", "r19",
590 "r20", "r21", "r22", "r23",
591 "r24", "r25", "r26", "dp",
592 "ret0", "ret1", "sp", "r31",
593 "sar", "pcoqh", "pcsqh", "pcoqt",
594 "pcsqt", "eiem", "iir", "isr",
595 "ior", "ipsw", "goto", "sr4",
596 "sr0", "sr1", "sr2", "sr3",
597 "sr5", "sr6", "sr7", "cr0",
598 "cr8", "cr9", "ccr", "cr12",
599 "cr13", "cr24", "cr25", "cr26",
600 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
601 "fpsr", "fpe1", "fpe2", "fpe3",
602 "fpe4", "fpe5", "fpe6", "fpe7",
603 "fr4", "fr4R", "fr5", "fr5R",
604 "fr6", "fr6R", "fr7", "fr7R",
605 "fr8", "fr8R", "fr9", "fr9R",
606 "fr10", "fr10R", "fr11", "fr11R",
607 "fr12", "fr12R", "fr13", "fr13R",
608 "fr14", "fr14R", "fr15", "fr15R",
609 "fr16", "fr16R", "fr17", "fr17R",
610 "fr18", "fr18R", "fr19", "fr19R",
611 "fr20", "fr20R", "fr21", "fr21R",
612 "fr22", "fr22R", "fr23", "fr23R",
613 "fr24", "fr24R", "fr25", "fr25R",
614 "fr26", "fr26R", "fr27", "fr27R",
615 "fr28", "fr28R", "fr29", "fr29R",
616 "fr30", "fr30R", "fr31", "fr31R"
617 };
618 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
619 return NULL;
620 else
621 return names[i];
622 }
623
624 static const char *
625 hppa64_register_name (struct gdbarch *gdbarch, int i)
626 {
627 static char *names[] = {
628 "flags", "r1", "rp", "r3",
629 "r4", "r5", "r6", "r7",
630 "r8", "r9", "r10", "r11",
631 "r12", "r13", "r14", "r15",
632 "r16", "r17", "r18", "r19",
633 "r20", "r21", "r22", "r23",
634 "r24", "r25", "r26", "dp",
635 "ret0", "ret1", "sp", "r31",
636 "sar", "pcoqh", "pcsqh", "pcoqt",
637 "pcsqt", "eiem", "iir", "isr",
638 "ior", "ipsw", "goto", "sr4",
639 "sr0", "sr1", "sr2", "sr3",
640 "sr5", "sr6", "sr7", "cr0",
641 "cr8", "cr9", "ccr", "cr12",
642 "cr13", "cr24", "cr25", "cr26",
643 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
644 "fpsr", "fpe1", "fpe2", "fpe3",
645 "fr4", "fr5", "fr6", "fr7",
646 "fr8", "fr9", "fr10", "fr11",
647 "fr12", "fr13", "fr14", "fr15",
648 "fr16", "fr17", "fr18", "fr19",
649 "fr20", "fr21", "fr22", "fr23",
650 "fr24", "fr25", "fr26", "fr27",
651 "fr28", "fr29", "fr30", "fr31"
652 };
653 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
654 return NULL;
655 else
656 return names[i];
657 }
658
659 /* Map dwarf DBX register numbers to GDB register numbers. */
660 static int
661 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
662 {
663 /* The general registers and the sar are the same in both sets. */
664 if (reg <= 32)
665 return reg;
666
667 /* fr4-fr31 are mapped from 72 in steps of 2. */
668 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
669 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
670
671 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
672 return -1;
673 }
674
675 /* This function pushes a stack frame with arguments as part of the
676 inferior function calling mechanism.
677
678 This is the version of the function for the 32-bit PA machines, in
679 which later arguments appear at lower addresses. (The stack always
680 grows towards higher addresses.)
681
682 We simply allocate the appropriate amount of stack space and put
683 arguments into their proper slots. */
684
685 static CORE_ADDR
686 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
687 struct regcache *regcache, CORE_ADDR bp_addr,
688 int nargs, struct value **args, CORE_ADDR sp,
689 int struct_return, CORE_ADDR struct_addr)
690 {
691 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
692
693 /* Stack base address at which any pass-by-reference parameters are
694 stored. */
695 CORE_ADDR struct_end = 0;
696 /* Stack base address at which the first parameter is stored. */
697 CORE_ADDR param_end = 0;
698
699 /* The inner most end of the stack after all the parameters have
700 been pushed. */
701 CORE_ADDR new_sp = 0;
702
703 /* Two passes. First pass computes the location of everything,
704 second pass writes the bytes out. */
705 int write_pass;
706
707 /* Global pointer (r19) of the function we are trying to call. */
708 CORE_ADDR gp;
709
710 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
711
712 for (write_pass = 0; write_pass < 2; write_pass++)
713 {
714 CORE_ADDR struct_ptr = 0;
715 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
716 struct_ptr is adjusted for each argument below, so the first
717 argument will end up at sp-36. */
718 CORE_ADDR param_ptr = 32;
719 int i;
720 int small_struct = 0;
721
722 for (i = 0; i < nargs; i++)
723 {
724 struct value *arg = args[i];
725 struct type *type = check_typedef (value_type (arg));
726 /* The corresponding parameter that is pushed onto the
727 stack, and [possibly] passed in a register. */
728 gdb_byte param_val[8];
729 int param_len;
730 memset (param_val, 0, sizeof param_val);
731 if (TYPE_LENGTH (type) > 8)
732 {
733 /* Large parameter, pass by reference. Store the value
734 in "struct" area and then pass its address. */
735 param_len = 4;
736 struct_ptr += align_up (TYPE_LENGTH (type), 8);
737 if (write_pass)
738 write_memory (struct_end - struct_ptr, value_contents (arg),
739 TYPE_LENGTH (type));
740 store_unsigned_integer (param_val, 4, byte_order,
741 struct_end - struct_ptr);
742 }
743 else if (TYPE_CODE (type) == TYPE_CODE_INT
744 || TYPE_CODE (type) == TYPE_CODE_ENUM)
745 {
746 /* Integer value store, right aligned. "unpack_long"
747 takes care of any sign-extension problems. */
748 param_len = align_up (TYPE_LENGTH (type), 4);
749 store_unsigned_integer (param_val, param_len, byte_order,
750 unpack_long (type,
751 value_contents (arg)));
752 }
753 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
754 {
755 /* Floating point value store, right aligned. */
756 param_len = align_up (TYPE_LENGTH (type), 4);
757 memcpy (param_val, value_contents (arg), param_len);
758 }
759 else
760 {
761 param_len = align_up (TYPE_LENGTH (type), 4);
762
763 /* Small struct value are stored right-aligned. */
764 memcpy (param_val + param_len - TYPE_LENGTH (type),
765 value_contents (arg), TYPE_LENGTH (type));
766
767 /* Structures of size 5, 6 and 7 bytes are special in that
768 the higher-ordered word is stored in the lower-ordered
769 argument, and even though it is a 8-byte quantity the
770 registers need not be 8-byte aligned. */
771 if (param_len > 4 && param_len < 8)
772 small_struct = 1;
773 }
774
775 param_ptr += param_len;
776 if (param_len == 8 && !small_struct)
777 param_ptr = align_up (param_ptr, 8);
778
779 /* First 4 non-FP arguments are passed in gr26-gr23.
780 First 4 32-bit FP arguments are passed in fr4L-fr7L.
781 First 2 64-bit FP arguments are passed in fr5 and fr7.
782
783 The rest go on the stack, starting at sp-36, towards lower
784 addresses. 8-byte arguments must be aligned to a 8-byte
785 stack boundary. */
786 if (write_pass)
787 {
788 write_memory (param_end - param_ptr, param_val, param_len);
789
790 /* There are some cases when we don't know the type
791 expected by the callee (e.g. for variadic functions), so
792 pass the parameters in both general and fp regs. */
793 if (param_ptr <= 48)
794 {
795 int grreg = 26 - (param_ptr - 36) / 4;
796 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
797 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
798
799 regcache_cooked_write (regcache, grreg, param_val);
800 regcache_cooked_write (regcache, fpLreg, param_val);
801
802 if (param_len > 4)
803 {
804 regcache_cooked_write (regcache, grreg + 1,
805 param_val + 4);
806
807 regcache_cooked_write (regcache, fpreg, param_val);
808 regcache_cooked_write (regcache, fpreg + 1,
809 param_val + 4);
810 }
811 }
812 }
813 }
814
815 /* Update the various stack pointers. */
816 if (!write_pass)
817 {
818 struct_end = sp + align_up (struct_ptr, 64);
819 /* PARAM_PTR already accounts for all the arguments passed
820 by the user. However, the ABI mandates minimum stack
821 space allocations for outgoing arguments. The ABI also
822 mandates minimum stack alignments which we must
823 preserve. */
824 param_end = struct_end + align_up (param_ptr, 64);
825 }
826 }
827
828 /* If a structure has to be returned, set up register 28 to hold its
829 address. */
830 if (struct_return)
831 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
832
833 gp = tdep->find_global_pointer (gdbarch, function);
834
835 if (gp != 0)
836 regcache_cooked_write_unsigned (regcache, 19, gp);
837
838 /* Set the return address. */
839 if (!gdbarch_push_dummy_code_p (gdbarch))
840 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
841
842 /* Update the Stack Pointer. */
843 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
844
845 return param_end;
846 }
847
848 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
849 Runtime Architecture for PA-RISC 2.0", which is distributed as part
850 as of the HP-UX Software Transition Kit (STK). This implementation
851 is based on version 3.3, dated October 6, 1997. */
852
853 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
854
855 static int
856 hppa64_integral_or_pointer_p (const struct type *type)
857 {
858 switch (TYPE_CODE (type))
859 {
860 case TYPE_CODE_INT:
861 case TYPE_CODE_BOOL:
862 case TYPE_CODE_CHAR:
863 case TYPE_CODE_ENUM:
864 case TYPE_CODE_RANGE:
865 {
866 int len = TYPE_LENGTH (type);
867 return (len == 1 || len == 2 || len == 4 || len == 8);
868 }
869 case TYPE_CODE_PTR:
870 case TYPE_CODE_REF:
871 return (TYPE_LENGTH (type) == 8);
872 default:
873 break;
874 }
875
876 return 0;
877 }
878
879 /* Check whether TYPE is a "Floating Scalar Type". */
880
881 static int
882 hppa64_floating_p (const struct type *type)
883 {
884 switch (TYPE_CODE (type))
885 {
886 case TYPE_CODE_FLT:
887 {
888 int len = TYPE_LENGTH (type);
889 return (len == 4 || len == 8 || len == 16);
890 }
891 default:
892 break;
893 }
894
895 return 0;
896 }
897
898 /* If CODE points to a function entry address, try to look up the corresponding
899 function descriptor and return its address instead. If CODE is not a
900 function entry address, then just return it unchanged. */
901 static CORE_ADDR
902 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
903 {
904 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
905 struct obj_section *sec, *opd;
906
907 sec = find_pc_section (code);
908
909 if (!sec)
910 return code;
911
912 /* If CODE is in a data section, assume it's already a fptr. */
913 if (!(sec->the_bfd_section->flags & SEC_CODE))
914 return code;
915
916 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
917 {
918 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
919 break;
920 }
921
922 if (opd < sec->objfile->sections_end)
923 {
924 CORE_ADDR addr;
925
926 for (addr = obj_section_addr (opd);
927 addr < obj_section_endaddr (opd);
928 addr += 2 * 8)
929 {
930 ULONGEST opdaddr;
931 gdb_byte tmp[8];
932
933 if (target_read_memory (addr, tmp, sizeof (tmp)))
934 break;
935 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
936
937 if (opdaddr == code)
938 return addr - 16;
939 }
940 }
941
942 return code;
943 }
944
945 static CORE_ADDR
946 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
947 struct regcache *regcache, CORE_ADDR bp_addr,
948 int nargs, struct value **args, CORE_ADDR sp,
949 int struct_return, CORE_ADDR struct_addr)
950 {
951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
952 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
953 int i, offset = 0;
954 CORE_ADDR gp;
955
956 /* "The outgoing parameter area [...] must be aligned at a 16-byte
957 boundary." */
958 sp = align_up (sp, 16);
959
960 for (i = 0; i < nargs; i++)
961 {
962 struct value *arg = args[i];
963 struct type *type = value_type (arg);
964 int len = TYPE_LENGTH (type);
965 const bfd_byte *valbuf;
966 bfd_byte fptrbuf[8];
967 int regnum;
968
969 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
970 offset = align_up (offset, 8);
971
972 if (hppa64_integral_or_pointer_p (type))
973 {
974 /* "Integral scalar parameters smaller than 64 bits are
975 padded on the left (i.e., the value is in the
976 least-significant bits of the 64-bit storage unit, and
977 the high-order bits are undefined)." Therefore we can
978 safely sign-extend them. */
979 if (len < 8)
980 {
981 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
982 len = 8;
983 }
984 }
985 else if (hppa64_floating_p (type))
986 {
987 if (len > 8)
988 {
989 /* "Quad-precision (128-bit) floating-point scalar
990 parameters are aligned on a 16-byte boundary." */
991 offset = align_up (offset, 16);
992
993 /* "Double-extended- and quad-precision floating-point
994 parameters within the first 64 bytes of the parameter
995 list are always passed in general registers." */
996 }
997 else
998 {
999 if (len == 4)
1000 {
1001 /* "Single-precision (32-bit) floating-point scalar
1002 parameters are padded on the left with 32 bits of
1003 garbage (i.e., the floating-point value is in the
1004 least-significant 32 bits of a 64-bit storage
1005 unit)." */
1006 offset += 4;
1007 }
1008
1009 /* "Single- and double-precision floating-point
1010 parameters in this area are passed according to the
1011 available formal parameter information in a function
1012 prototype. [...] If no prototype is in scope,
1013 floating-point parameters must be passed both in the
1014 corresponding general registers and in the
1015 corresponding floating-point registers." */
1016 regnum = HPPA64_FP4_REGNUM + offset / 8;
1017
1018 if (regnum < HPPA64_FP4_REGNUM + 8)
1019 {
1020 /* "Single-precision floating-point parameters, when
1021 passed in floating-point registers, are passed in
1022 the right halves of the floating point registers;
1023 the left halves are unused." */
1024 regcache_cooked_write_part (regcache, regnum, offset % 8,
1025 len, value_contents (arg));
1026 }
1027 }
1028 }
1029 else
1030 {
1031 if (len > 8)
1032 {
1033 /* "Aggregates larger than 8 bytes are aligned on a
1034 16-byte boundary, possibly leaving an unused argument
1035 slot, which is filled with garbage. If necessary,
1036 they are padded on the right (with garbage), to a
1037 multiple of 8 bytes." */
1038 offset = align_up (offset, 16);
1039 }
1040 }
1041
1042 /* If we are passing a function pointer, make sure we pass a function
1043 descriptor instead of the function entry address. */
1044 if (TYPE_CODE (type) == TYPE_CODE_PTR
1045 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1046 {
1047 ULONGEST codeptr, fptr;
1048
1049 codeptr = unpack_long (type, value_contents (arg));
1050 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1051 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1052 fptr);
1053 valbuf = fptrbuf;
1054 }
1055 else
1056 {
1057 valbuf = value_contents (arg);
1058 }
1059
1060 /* Always store the argument in memory. */
1061 write_memory (sp + offset, valbuf, len);
1062
1063 regnum = HPPA_ARG0_REGNUM - offset / 8;
1064 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1065 {
1066 regcache_cooked_write_part (regcache, regnum,
1067 offset % 8, min (len, 8), valbuf);
1068 offset += min (len, 8);
1069 valbuf += min (len, 8);
1070 len -= min (len, 8);
1071 regnum--;
1072 }
1073
1074 offset += len;
1075 }
1076
1077 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1078 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1079
1080 /* Allocate the outgoing parameter area. Make sure the outgoing
1081 parameter area is multiple of 16 bytes in length. */
1082 sp += max (align_up (offset, 16), 64);
1083
1084 /* Allocate 32-bytes of scratch space. The documentation doesn't
1085 mention this, but it seems to be needed. */
1086 sp += 32;
1087
1088 /* Allocate the frame marker area. */
1089 sp += 16;
1090
1091 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1092 its address. */
1093 if (struct_return)
1094 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1095
1096 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1097 gp = tdep->find_global_pointer (gdbarch, function);
1098 if (gp != 0)
1099 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1100
1101 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1102 if (!gdbarch_push_dummy_code_p (gdbarch))
1103 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1104
1105 /* Set up GR30 to hold the stack pointer (sp). */
1106 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1107
1108 return sp;
1109 }
1110 \f
1111
1112 /* Handle 32/64-bit struct return conventions. */
1113
1114 static enum return_value_convention
1115 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1116 struct type *type, struct regcache *regcache,
1117 gdb_byte *readbuf, const gdb_byte *writebuf)
1118 {
1119 if (TYPE_LENGTH (type) <= 2 * 4)
1120 {
1121 /* The value always lives in the right hand end of the register
1122 (or register pair)? */
1123 int b;
1124 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1125 int part = TYPE_LENGTH (type) % 4;
1126 /* The left hand register contains only part of the value,
1127 transfer that first so that the rest can be xfered as entire
1128 4-byte registers. */
1129 if (part > 0)
1130 {
1131 if (readbuf != NULL)
1132 regcache_cooked_read_part (regcache, reg, 4 - part,
1133 part, readbuf);
1134 if (writebuf != NULL)
1135 regcache_cooked_write_part (regcache, reg, 4 - part,
1136 part, writebuf);
1137 reg++;
1138 }
1139 /* Now transfer the remaining register values. */
1140 for (b = part; b < TYPE_LENGTH (type); b += 4)
1141 {
1142 if (readbuf != NULL)
1143 regcache_cooked_read (regcache, reg, readbuf + b);
1144 if (writebuf != NULL)
1145 regcache_cooked_write (regcache, reg, writebuf + b);
1146 reg++;
1147 }
1148 return RETURN_VALUE_REGISTER_CONVENTION;
1149 }
1150 else
1151 return RETURN_VALUE_STRUCT_CONVENTION;
1152 }
1153
1154 static enum return_value_convention
1155 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1156 struct type *type, struct regcache *regcache,
1157 gdb_byte *readbuf, const gdb_byte *writebuf)
1158 {
1159 int len = TYPE_LENGTH (type);
1160 int regnum, offset;
1161
1162 if (len > 16)
1163 {
1164 /* All return values larget than 128 bits must be aggregate
1165 return values. */
1166 gdb_assert (!hppa64_integral_or_pointer_p (type));
1167 gdb_assert (!hppa64_floating_p (type));
1168
1169 /* "Aggregate return values larger than 128 bits are returned in
1170 a buffer allocated by the caller. The address of the buffer
1171 must be passed in GR 28." */
1172 return RETURN_VALUE_STRUCT_CONVENTION;
1173 }
1174
1175 if (hppa64_integral_or_pointer_p (type))
1176 {
1177 /* "Integral return values are returned in GR 28. Values
1178 smaller than 64 bits are padded on the left (with garbage)." */
1179 regnum = HPPA_RET0_REGNUM;
1180 offset = 8 - len;
1181 }
1182 else if (hppa64_floating_p (type))
1183 {
1184 if (len > 8)
1185 {
1186 /* "Double-extended- and quad-precision floating-point
1187 values are returned in GRs 28 and 29. The sign,
1188 exponent, and most-significant bits of the mantissa are
1189 returned in GR 28; the least-significant bits of the
1190 mantissa are passed in GR 29. For double-extended
1191 precision values, GR 29 is padded on the right with 48
1192 bits of garbage." */
1193 regnum = HPPA_RET0_REGNUM;
1194 offset = 0;
1195 }
1196 else
1197 {
1198 /* "Single-precision and double-precision floating-point
1199 return values are returned in FR 4R (single precision) or
1200 FR 4 (double-precision)." */
1201 regnum = HPPA64_FP4_REGNUM;
1202 offset = 8 - len;
1203 }
1204 }
1205 else
1206 {
1207 /* "Aggregate return values up to 64 bits in size are returned
1208 in GR 28. Aggregates smaller than 64 bits are left aligned
1209 in the register; the pad bits on the right are undefined."
1210
1211 "Aggregate return values between 65 and 128 bits are returned
1212 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1213 the remaining bits are placed, left aligned, in GR 29. The
1214 pad bits on the right of GR 29 (if any) are undefined." */
1215 regnum = HPPA_RET0_REGNUM;
1216 offset = 0;
1217 }
1218
1219 if (readbuf)
1220 {
1221 while (len > 0)
1222 {
1223 regcache_cooked_read_part (regcache, regnum, offset,
1224 min (len, 8), readbuf);
1225 readbuf += min (len, 8);
1226 len -= min (len, 8);
1227 regnum++;
1228 }
1229 }
1230
1231 if (writebuf)
1232 {
1233 while (len > 0)
1234 {
1235 regcache_cooked_write_part (regcache, regnum, offset,
1236 min (len, 8), writebuf);
1237 writebuf += min (len, 8);
1238 len -= min (len, 8);
1239 regnum++;
1240 }
1241 }
1242
1243 return RETURN_VALUE_REGISTER_CONVENTION;
1244 }
1245 \f
1246
1247 static CORE_ADDR
1248 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1249 struct target_ops *targ)
1250 {
1251 if (addr & 2)
1252 {
1253 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1254 CORE_ADDR plabel = addr & ~3;
1255 return read_memory_typed_address (plabel, func_ptr_type);
1256 }
1257
1258 return addr;
1259 }
1260
1261 static CORE_ADDR
1262 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1263 {
1264 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1265 and not _bit_)! */
1266 return align_up (addr, 64);
1267 }
1268
1269 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1270
1271 static CORE_ADDR
1272 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1273 {
1274 /* Just always 16-byte align. */
1275 return align_up (addr, 16);
1276 }
1277
1278 CORE_ADDR
1279 hppa_read_pc (struct regcache *regcache)
1280 {
1281 ULONGEST ipsw;
1282 ULONGEST pc;
1283
1284 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1285 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1286
1287 /* If the current instruction is nullified, then we are effectively
1288 still executing the previous instruction. Pretend we are still
1289 there. This is needed when single stepping; if the nullified
1290 instruction is on a different line, we don't want GDB to think
1291 we've stepped onto that line. */
1292 if (ipsw & 0x00200000)
1293 pc -= 4;
1294
1295 return pc & ~0x3;
1296 }
1297
1298 void
1299 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1300 {
1301 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1302 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1303 }
1304
1305 /* For the given instruction (INST), return any adjustment it makes
1306 to the stack pointer or zero for no adjustment.
1307
1308 This only handles instructions commonly found in prologues. */
1309
1310 static int
1311 prologue_inst_adjust_sp (unsigned long inst)
1312 {
1313 /* This must persist across calls. */
1314 static int save_high21;
1315
1316 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1317 if ((inst & 0xffffc000) == 0x37de0000)
1318 return hppa_extract_14 (inst);
1319
1320 /* stwm X,D(sp) */
1321 if ((inst & 0xffe00000) == 0x6fc00000)
1322 return hppa_extract_14 (inst);
1323
1324 /* std,ma X,D(sp) */
1325 if ((inst & 0xffe00008) == 0x73c00008)
1326 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1327
1328 /* addil high21,%r30; ldo low11,(%r1),%r30)
1329 save high bits in save_high21 for later use. */
1330 if ((inst & 0xffe00000) == 0x2bc00000)
1331 {
1332 save_high21 = hppa_extract_21 (inst);
1333 return 0;
1334 }
1335
1336 if ((inst & 0xffff0000) == 0x343e0000)
1337 return save_high21 + hppa_extract_14 (inst);
1338
1339 /* fstws as used by the HP compilers. */
1340 if ((inst & 0xffffffe0) == 0x2fd01220)
1341 return hppa_extract_5_load (inst);
1342
1343 /* No adjustment. */
1344 return 0;
1345 }
1346
1347 /* Return nonzero if INST is a branch of some kind, else return zero. */
1348
1349 static int
1350 is_branch (unsigned long inst)
1351 {
1352 switch (inst >> 26)
1353 {
1354 case 0x20:
1355 case 0x21:
1356 case 0x22:
1357 case 0x23:
1358 case 0x27:
1359 case 0x28:
1360 case 0x29:
1361 case 0x2a:
1362 case 0x2b:
1363 case 0x2f:
1364 case 0x30:
1365 case 0x31:
1366 case 0x32:
1367 case 0x33:
1368 case 0x38:
1369 case 0x39:
1370 case 0x3a:
1371 case 0x3b:
1372 return 1;
1373
1374 default:
1375 return 0;
1376 }
1377 }
1378
1379 /* Return the register number for a GR which is saved by INST or
1380 zero it INST does not save a GR. */
1381
1382 static int
1383 inst_saves_gr (unsigned long inst)
1384 {
1385 /* Does it look like a stw? */
1386 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1387 || (inst >> 26) == 0x1f
1388 || ((inst >> 26) == 0x1f
1389 && ((inst >> 6) == 0xa)))
1390 return hppa_extract_5R_store (inst);
1391
1392 /* Does it look like a std? */
1393 if ((inst >> 26) == 0x1c
1394 || ((inst >> 26) == 0x03
1395 && ((inst >> 6) & 0xf) == 0xb))
1396 return hppa_extract_5R_store (inst);
1397
1398 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1399 if ((inst >> 26) == 0x1b)
1400 return hppa_extract_5R_store (inst);
1401
1402 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1403 too. */
1404 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1405 || ((inst >> 26) == 0x3
1406 && (((inst >> 6) & 0xf) == 0x8
1407 || (inst >> 6) & 0xf) == 0x9))
1408 return hppa_extract_5R_store (inst);
1409
1410 return 0;
1411 }
1412
1413 /* Return the register number for a FR which is saved by INST or
1414 zero it INST does not save a FR.
1415
1416 Note we only care about full 64bit register stores (that's the only
1417 kind of stores the prologue will use).
1418
1419 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1420
1421 static int
1422 inst_saves_fr (unsigned long inst)
1423 {
1424 /* Is this an FSTD? */
1425 if ((inst & 0xfc00dfc0) == 0x2c001200)
1426 return hppa_extract_5r_store (inst);
1427 if ((inst & 0xfc000002) == 0x70000002)
1428 return hppa_extract_5R_store (inst);
1429 /* Is this an FSTW? */
1430 if ((inst & 0xfc00df80) == 0x24001200)
1431 return hppa_extract_5r_store (inst);
1432 if ((inst & 0xfc000002) == 0x7c000000)
1433 return hppa_extract_5R_store (inst);
1434 return 0;
1435 }
1436
1437 /* Advance PC across any function entry prologue instructions
1438 to reach some "real" code.
1439
1440 Use information in the unwind table to determine what exactly should
1441 be in the prologue. */
1442
1443
1444 static CORE_ADDR
1445 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1446 int stop_before_branch)
1447 {
1448 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1449 gdb_byte buf[4];
1450 CORE_ADDR orig_pc = pc;
1451 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1452 unsigned long args_stored, status, i, restart_gr, restart_fr;
1453 struct unwind_table_entry *u;
1454 int final_iteration;
1455
1456 restart_gr = 0;
1457 restart_fr = 0;
1458
1459 restart:
1460 u = find_unwind_entry (pc);
1461 if (!u)
1462 return pc;
1463
1464 /* If we are not at the beginning of a function, then return now. */
1465 if ((pc & ~0x3) != u->region_start)
1466 return pc;
1467
1468 /* This is how much of a frame adjustment we need to account for. */
1469 stack_remaining = u->Total_frame_size << 3;
1470
1471 /* Magic register saves we want to know about. */
1472 save_rp = u->Save_RP;
1473 save_sp = u->Save_SP;
1474
1475 /* An indication that args may be stored into the stack. Unfortunately
1476 the HPUX compilers tend to set this in cases where no args were
1477 stored too!. */
1478 args_stored = 1;
1479
1480 /* Turn the Entry_GR field into a bitmask. */
1481 save_gr = 0;
1482 for (i = 3; i < u->Entry_GR + 3; i++)
1483 {
1484 /* Frame pointer gets saved into a special location. */
1485 if (u->Save_SP && i == HPPA_FP_REGNUM)
1486 continue;
1487
1488 save_gr |= (1 << i);
1489 }
1490 save_gr &= ~restart_gr;
1491
1492 /* Turn the Entry_FR field into a bitmask too. */
1493 save_fr = 0;
1494 for (i = 12; i < u->Entry_FR + 12; i++)
1495 save_fr |= (1 << i);
1496 save_fr &= ~restart_fr;
1497
1498 final_iteration = 0;
1499
1500 /* Loop until we find everything of interest or hit a branch.
1501
1502 For unoptimized GCC code and for any HP CC code this will never ever
1503 examine any user instructions.
1504
1505 For optimzied GCC code we're faced with problems. GCC will schedule
1506 its prologue and make prologue instructions available for delay slot
1507 filling. The end result is user code gets mixed in with the prologue
1508 and a prologue instruction may be in the delay slot of the first branch
1509 or call.
1510
1511 Some unexpected things are expected with debugging optimized code, so
1512 we allow this routine to walk past user instructions in optimized
1513 GCC code. */
1514 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1515 || args_stored)
1516 {
1517 unsigned int reg_num;
1518 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1519 unsigned long old_save_rp, old_save_sp, next_inst;
1520
1521 /* Save copies of all the triggers so we can compare them later
1522 (only for HPC). */
1523 old_save_gr = save_gr;
1524 old_save_fr = save_fr;
1525 old_save_rp = save_rp;
1526 old_save_sp = save_sp;
1527 old_stack_remaining = stack_remaining;
1528
1529 status = target_read_memory (pc, buf, 4);
1530 inst = extract_unsigned_integer (buf, 4, byte_order);
1531
1532 /* Yow! */
1533 if (status != 0)
1534 return pc;
1535
1536 /* Note the interesting effects of this instruction. */
1537 stack_remaining -= prologue_inst_adjust_sp (inst);
1538
1539 /* There are limited ways to store the return pointer into the
1540 stack. */
1541 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1542 save_rp = 0;
1543
1544 /* These are the only ways we save SP into the stack. At this time
1545 the HP compilers never bother to save SP into the stack. */
1546 if ((inst & 0xffffc000) == 0x6fc10000
1547 || (inst & 0xffffc00c) == 0x73c10008)
1548 save_sp = 0;
1549
1550 /* Are we loading some register with an offset from the argument
1551 pointer? */
1552 if ((inst & 0xffe00000) == 0x37a00000
1553 || (inst & 0xffffffe0) == 0x081d0240)
1554 {
1555 pc += 4;
1556 continue;
1557 }
1558
1559 /* Account for general and floating-point register saves. */
1560 reg_num = inst_saves_gr (inst);
1561 save_gr &= ~(1 << reg_num);
1562
1563 /* Ugh. Also account for argument stores into the stack.
1564 Unfortunately args_stored only tells us that some arguments
1565 where stored into the stack. Not how many or what kind!
1566
1567 This is a kludge as on the HP compiler sets this bit and it
1568 never does prologue scheduling. So once we see one, skip past
1569 all of them. We have similar code for the fp arg stores below.
1570
1571 FIXME. Can still die if we have a mix of GR and FR argument
1572 stores! */
1573 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1574 && reg_num <= 26)
1575 {
1576 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1577 && reg_num <= 26)
1578 {
1579 pc += 4;
1580 status = target_read_memory (pc, buf, 4);
1581 inst = extract_unsigned_integer (buf, 4, byte_order);
1582 if (status != 0)
1583 return pc;
1584 reg_num = inst_saves_gr (inst);
1585 }
1586 args_stored = 0;
1587 continue;
1588 }
1589
1590 reg_num = inst_saves_fr (inst);
1591 save_fr &= ~(1 << reg_num);
1592
1593 status = target_read_memory (pc + 4, buf, 4);
1594 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1595
1596 /* Yow! */
1597 if (status != 0)
1598 return pc;
1599
1600 /* We've got to be read to handle the ldo before the fp register
1601 save. */
1602 if ((inst & 0xfc000000) == 0x34000000
1603 && inst_saves_fr (next_inst) >= 4
1604 && inst_saves_fr (next_inst)
1605 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1606 {
1607 /* So we drop into the code below in a reasonable state. */
1608 reg_num = inst_saves_fr (next_inst);
1609 pc -= 4;
1610 }
1611
1612 /* Ugh. Also account for argument stores into the stack.
1613 This is a kludge as on the HP compiler sets this bit and it
1614 never does prologue scheduling. So once we see one, skip past
1615 all of them. */
1616 if (reg_num >= 4
1617 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1618 {
1619 while (reg_num >= 4
1620 && reg_num
1621 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1622 {
1623 pc += 8;
1624 status = target_read_memory (pc, buf, 4);
1625 inst = extract_unsigned_integer (buf, 4, byte_order);
1626 if (status != 0)
1627 return pc;
1628 if ((inst & 0xfc000000) != 0x34000000)
1629 break;
1630 status = target_read_memory (pc + 4, buf, 4);
1631 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1632 if (status != 0)
1633 return pc;
1634 reg_num = inst_saves_fr (next_inst);
1635 }
1636 args_stored = 0;
1637 continue;
1638 }
1639
1640 /* Quit if we hit any kind of branch. This can happen if a prologue
1641 instruction is in the delay slot of the first call/branch. */
1642 if (is_branch (inst) && stop_before_branch)
1643 break;
1644
1645 /* What a crock. The HP compilers set args_stored even if no
1646 arguments were stored into the stack (boo hiss). This could
1647 cause this code to then skip a bunch of user insns (up to the
1648 first branch).
1649
1650 To combat this we try to identify when args_stored was bogusly
1651 set and clear it. We only do this when args_stored is nonzero,
1652 all other resources are accounted for, and nothing changed on
1653 this pass. */
1654 if (args_stored
1655 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1656 && old_save_gr == save_gr && old_save_fr == save_fr
1657 && old_save_rp == save_rp && old_save_sp == save_sp
1658 && old_stack_remaining == stack_remaining)
1659 break;
1660
1661 /* Bump the PC. */
1662 pc += 4;
1663
1664 /* !stop_before_branch, so also look at the insn in the delay slot
1665 of the branch. */
1666 if (final_iteration)
1667 break;
1668 if (is_branch (inst))
1669 final_iteration = 1;
1670 }
1671
1672 /* We've got a tenative location for the end of the prologue. However
1673 because of limitations in the unwind descriptor mechanism we may
1674 have went too far into user code looking for the save of a register
1675 that does not exist. So, if there registers we expected to be saved
1676 but never were, mask them out and restart.
1677
1678 This should only happen in optimized code, and should be very rare. */
1679 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1680 {
1681 pc = orig_pc;
1682 restart_gr = save_gr;
1683 restart_fr = save_fr;
1684 goto restart;
1685 }
1686
1687 return pc;
1688 }
1689
1690
1691 /* Return the address of the PC after the last prologue instruction if
1692 we can determine it from the debug symbols. Else return zero. */
1693
1694 static CORE_ADDR
1695 after_prologue (CORE_ADDR pc)
1696 {
1697 struct symtab_and_line sal;
1698 CORE_ADDR func_addr, func_end;
1699
1700 /* If we can not find the symbol in the partial symbol table, then
1701 there is no hope we can determine the function's start address
1702 with this code. */
1703 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1704 return 0;
1705
1706 /* Get the line associated with FUNC_ADDR. */
1707 sal = find_pc_line (func_addr, 0);
1708
1709 /* There are only two cases to consider. First, the end of the source line
1710 is within the function bounds. In that case we return the end of the
1711 source line. Second is the end of the source line extends beyond the
1712 bounds of the current function. We need to use the slow code to
1713 examine instructions in that case.
1714
1715 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1716 the wrong thing to do. In fact, it should be entirely possible for this
1717 function to always return zero since the slow instruction scanning code
1718 is supposed to *always* work. If it does not, then it is a bug. */
1719 if (sal.end < func_end)
1720 return sal.end;
1721 else
1722 return 0;
1723 }
1724
1725 /* To skip prologues, I use this predicate. Returns either PC itself
1726 if the code at PC does not look like a function prologue; otherwise
1727 returns an address that (if we're lucky) follows the prologue.
1728
1729 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1730 It doesn't necessarily skips all the insns in the prologue. In fact
1731 we might not want to skip all the insns because a prologue insn may
1732 appear in the delay slot of the first branch, and we don't want to
1733 skip over the branch in that case. */
1734
1735 static CORE_ADDR
1736 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1737 {
1738 CORE_ADDR post_prologue_pc;
1739
1740 /* See if we can determine the end of the prologue via the symbol table.
1741 If so, then return either PC, or the PC after the prologue, whichever
1742 is greater. */
1743
1744 post_prologue_pc = after_prologue (pc);
1745
1746 /* If after_prologue returned a useful address, then use it. Else
1747 fall back on the instruction skipping code.
1748
1749 Some folks have claimed this causes problems because the breakpoint
1750 may be the first instruction of the prologue. If that happens, then
1751 the instruction skipping code has a bug that needs to be fixed. */
1752 if (post_prologue_pc != 0)
1753 return max (pc, post_prologue_pc);
1754 else
1755 return (skip_prologue_hard_way (gdbarch, pc, 1));
1756 }
1757
1758 /* Return an unwind entry that falls within the frame's code block. */
1759
1760 static struct unwind_table_entry *
1761 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1762 {
1763 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1764
1765 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1766 result of get_frame_address_in_block implies a problem.
1767 The bits should have been removed earlier, before the return
1768 value of gdbarch_unwind_pc. That might be happening already;
1769 if it isn't, it should be fixed. Then this call can be
1770 removed. */
1771 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1772 return find_unwind_entry (pc);
1773 }
1774
1775 struct hppa_frame_cache
1776 {
1777 CORE_ADDR base;
1778 struct trad_frame_saved_reg *saved_regs;
1779 };
1780
1781 static struct hppa_frame_cache *
1782 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1783 {
1784 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1785 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1786 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1787 struct hppa_frame_cache *cache;
1788 long saved_gr_mask;
1789 long saved_fr_mask;
1790 long frame_size;
1791 struct unwind_table_entry *u;
1792 CORE_ADDR prologue_end;
1793 int fp_in_r1 = 0;
1794 int i;
1795
1796 if (hppa_debug)
1797 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1798 frame_relative_level(this_frame));
1799
1800 if ((*this_cache) != NULL)
1801 {
1802 if (hppa_debug)
1803 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1804 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1805 return (*this_cache);
1806 }
1807 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1808 (*this_cache) = cache;
1809 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1810
1811 /* Yow! */
1812 u = hppa_find_unwind_entry_in_block (this_frame);
1813 if (!u)
1814 {
1815 if (hppa_debug)
1816 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1817 return (*this_cache);
1818 }
1819
1820 /* Turn the Entry_GR field into a bitmask. */
1821 saved_gr_mask = 0;
1822 for (i = 3; i < u->Entry_GR + 3; i++)
1823 {
1824 /* Frame pointer gets saved into a special location. */
1825 if (u->Save_SP && i == HPPA_FP_REGNUM)
1826 continue;
1827
1828 saved_gr_mask |= (1 << i);
1829 }
1830
1831 /* Turn the Entry_FR field into a bitmask too. */
1832 saved_fr_mask = 0;
1833 for (i = 12; i < u->Entry_FR + 12; i++)
1834 saved_fr_mask |= (1 << i);
1835
1836 /* Loop until we find everything of interest or hit a branch.
1837
1838 For unoptimized GCC code and for any HP CC code this will never ever
1839 examine any user instructions.
1840
1841 For optimized GCC code we're faced with problems. GCC will schedule
1842 its prologue and make prologue instructions available for delay slot
1843 filling. The end result is user code gets mixed in with the prologue
1844 and a prologue instruction may be in the delay slot of the first branch
1845 or call.
1846
1847 Some unexpected things are expected with debugging optimized code, so
1848 we allow this routine to walk past user instructions in optimized
1849 GCC code. */
1850 {
1851 int final_iteration = 0;
1852 CORE_ADDR pc, start_pc, end_pc;
1853 int looking_for_sp = u->Save_SP;
1854 int looking_for_rp = u->Save_RP;
1855 int fp_loc = -1;
1856
1857 /* We have to use skip_prologue_hard_way instead of just
1858 skip_prologue_using_sal, in case we stepped into a function without
1859 symbol information. hppa_skip_prologue also bounds the returned
1860 pc by the passed in pc, so it will not return a pc in the next
1861 function.
1862
1863 We used to call hppa_skip_prologue to find the end of the prologue,
1864 but if some non-prologue instructions get scheduled into the prologue,
1865 and the program is compiled with debug information, the "easy" way
1866 in hppa_skip_prologue will return a prologue end that is too early
1867 for us to notice any potential frame adjustments. */
1868
1869 /* We used to use get_frame_func to locate the beginning of the
1870 function to pass to skip_prologue. However, when objects are
1871 compiled without debug symbols, get_frame_func can return the wrong
1872 function (or 0). We can do better than that by using unwind records.
1873 This only works if the Region_description of the unwind record
1874 indicates that it includes the entry point of the function.
1875 HP compilers sometimes generate unwind records for regions that
1876 do not include the entry or exit point of a function. GNU tools
1877 do not do this. */
1878
1879 if ((u->Region_description & 0x2) == 0)
1880 start_pc = u->region_start;
1881 else
1882 start_pc = get_frame_func (this_frame);
1883
1884 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1885 end_pc = get_frame_pc (this_frame);
1886
1887 if (prologue_end != 0 && end_pc > prologue_end)
1888 end_pc = prologue_end;
1889
1890 frame_size = 0;
1891
1892 for (pc = start_pc;
1893 ((saved_gr_mask || saved_fr_mask
1894 || looking_for_sp || looking_for_rp
1895 || frame_size < (u->Total_frame_size << 3))
1896 && pc < end_pc);
1897 pc += 4)
1898 {
1899 int reg;
1900 gdb_byte buf4[4];
1901 long inst;
1902
1903 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1904 {
1905 error (_("Cannot read instruction at %s."),
1906 paddress (gdbarch, pc));
1907 return (*this_cache);
1908 }
1909
1910 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
1911
1912 /* Note the interesting effects of this instruction. */
1913 frame_size += prologue_inst_adjust_sp (inst);
1914
1915 /* There are limited ways to store the return pointer into the
1916 stack. */
1917 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1918 {
1919 looking_for_rp = 0;
1920 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1921 }
1922 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1923 {
1924 looking_for_rp = 0;
1925 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1926 }
1927 else if (inst == 0x0fc212c1
1928 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1929 {
1930 looking_for_rp = 0;
1931 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1932 }
1933
1934 /* Check to see if we saved SP into the stack. This also
1935 happens to indicate the location of the saved frame
1936 pointer. */
1937 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1938 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1939 {
1940 looking_for_sp = 0;
1941 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1942 }
1943 else if (inst == 0x08030241) /* copy %r3, %r1 */
1944 {
1945 fp_in_r1 = 1;
1946 }
1947
1948 /* Account for general and floating-point register saves. */
1949 reg = inst_saves_gr (inst);
1950 if (reg >= 3 && reg <= 18
1951 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1952 {
1953 saved_gr_mask &= ~(1 << reg);
1954 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1955 /* stwm with a positive displacement is a _post_
1956 _modify_. */
1957 cache->saved_regs[reg].addr = 0;
1958 else if ((inst & 0xfc00000c) == 0x70000008)
1959 /* A std has explicit post_modify forms. */
1960 cache->saved_regs[reg].addr = 0;
1961 else
1962 {
1963 CORE_ADDR offset;
1964
1965 if ((inst >> 26) == 0x1c)
1966 offset = (inst & 0x1 ? -1 << 13 : 0)
1967 | (((inst >> 4) & 0x3ff) << 3);
1968 else if ((inst >> 26) == 0x03)
1969 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1970 else
1971 offset = hppa_extract_14 (inst);
1972
1973 /* Handle code with and without frame pointers. */
1974 if (u->Save_SP)
1975 cache->saved_regs[reg].addr = offset;
1976 else
1977 cache->saved_regs[reg].addr
1978 = (u->Total_frame_size << 3) + offset;
1979 }
1980 }
1981
1982 /* GCC handles callee saved FP regs a little differently.
1983
1984 It emits an instruction to put the value of the start of
1985 the FP store area into %r1. It then uses fstds,ma with a
1986 basereg of %r1 for the stores.
1987
1988 HP CC emits them at the current stack pointer modifying the
1989 stack pointer as it stores each register. */
1990
1991 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1992 if ((inst & 0xffffc000) == 0x34610000
1993 || (inst & 0xffffc000) == 0x37c10000)
1994 fp_loc = hppa_extract_14 (inst);
1995
1996 reg = inst_saves_fr (inst);
1997 if (reg >= 12 && reg <= 21)
1998 {
1999 /* Note +4 braindamage below is necessary because the FP
2000 status registers are internally 8 registers rather than
2001 the expected 4 registers. */
2002 saved_fr_mask &= ~(1 << reg);
2003 if (fp_loc == -1)
2004 {
2005 /* 1st HP CC FP register store. After this
2006 instruction we've set enough state that the GCC and
2007 HPCC code are both handled in the same manner. */
2008 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2009 fp_loc = 8;
2010 }
2011 else
2012 {
2013 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2014 fp_loc += 8;
2015 }
2016 }
2017
2018 /* Quit if we hit any kind of branch the previous iteration. */
2019 if (final_iteration)
2020 break;
2021 /* We want to look precisely one instruction beyond the branch
2022 if we have not found everything yet. */
2023 if (is_branch (inst))
2024 final_iteration = 1;
2025 }
2026 }
2027
2028 {
2029 /* The frame base always represents the value of %sp at entry to
2030 the current function (and is thus equivalent to the "saved"
2031 stack pointer. */
2032 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2033 HPPA_SP_REGNUM);
2034 CORE_ADDR fp;
2035
2036 if (hppa_debug)
2037 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2038 "prologue_end=%s) ",
2039 paddress (gdbarch, this_sp),
2040 paddress (gdbarch, get_frame_pc (this_frame)),
2041 paddress (gdbarch, prologue_end));
2042
2043 /* Check to see if a frame pointer is available, and use it for
2044 frame unwinding if it is.
2045
2046 There are some situations where we need to rely on the frame
2047 pointer to do stack unwinding. For example, if a function calls
2048 alloca (), the stack pointer can get adjusted inside the body of
2049 the function. In this case, the ABI requires that the compiler
2050 maintain a frame pointer for the function.
2051
2052 The unwind record has a flag (alloca_frame) that indicates that
2053 a function has a variable frame; unfortunately, gcc/binutils
2054 does not set this flag. Instead, whenever a frame pointer is used
2055 and saved on the stack, the Save_SP flag is set. We use this to
2056 decide whether to use the frame pointer for unwinding.
2057
2058 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2059 instead of Save_SP. */
2060
2061 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2062
2063 if (u->alloca_frame)
2064 fp -= u->Total_frame_size << 3;
2065
2066 if (get_frame_pc (this_frame) >= prologue_end
2067 && (u->Save_SP || u->alloca_frame) && fp != 0)
2068 {
2069 cache->base = fp;
2070
2071 if (hppa_debug)
2072 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2073 paddress (gdbarch, cache->base));
2074 }
2075 else if (u->Save_SP
2076 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2077 {
2078 /* Both we're expecting the SP to be saved and the SP has been
2079 saved. The entry SP value is saved at this frame's SP
2080 address. */
2081 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2082
2083 if (hppa_debug)
2084 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2085 paddress (gdbarch, cache->base));
2086 }
2087 else
2088 {
2089 /* The prologue has been slowly allocating stack space. Adjust
2090 the SP back. */
2091 cache->base = this_sp - frame_size;
2092 if (hppa_debug)
2093 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2094 paddress (gdbarch, cache->base));
2095
2096 }
2097 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2098 }
2099
2100 /* The PC is found in the "return register", "Millicode" uses "r31"
2101 as the return register while normal code uses "rp". */
2102 if (u->Millicode)
2103 {
2104 if (trad_frame_addr_p (cache->saved_regs, 31))
2105 {
2106 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2107 if (hppa_debug)
2108 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2109 }
2110 else
2111 {
2112 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2113 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2114 if (hppa_debug)
2115 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2116 }
2117 }
2118 else
2119 {
2120 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2121 {
2122 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2123 cache->saved_regs[HPPA_RP_REGNUM];
2124 if (hppa_debug)
2125 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2126 }
2127 else
2128 {
2129 ULONGEST rp = get_frame_register_unsigned (this_frame,
2130 HPPA_RP_REGNUM);
2131 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2132 if (hppa_debug)
2133 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2134 }
2135 }
2136
2137 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2138 frame. However, there is a one-insn window where we haven't saved it
2139 yet, but we've already clobbered it. Detect this case and fix it up.
2140
2141 The prologue sequence for frame-pointer functions is:
2142 0: stw %rp, -20(%sp)
2143 4: copy %r3, %r1
2144 8: copy %sp, %r3
2145 c: stw,ma %r1, XX(%sp)
2146
2147 So if we are at offset c, the r3 value that we want is not yet saved
2148 on the stack, but it's been overwritten. The prologue analyzer will
2149 set fp_in_r1 when it sees the copy insn so we know to get the value
2150 from r1 instead. */
2151 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2152 && fp_in_r1)
2153 {
2154 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2155 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2156 }
2157
2158 {
2159 /* Convert all the offsets into addresses. */
2160 int reg;
2161 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2162 {
2163 if (trad_frame_addr_p (cache->saved_regs, reg))
2164 cache->saved_regs[reg].addr += cache->base;
2165 }
2166 }
2167
2168 {
2169 struct gdbarch_tdep *tdep;
2170
2171 tdep = gdbarch_tdep (gdbarch);
2172
2173 if (tdep->unwind_adjust_stub)
2174 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2175 }
2176
2177 if (hppa_debug)
2178 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2179 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2180 return (*this_cache);
2181 }
2182
2183 static void
2184 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2185 struct frame_id *this_id)
2186 {
2187 struct hppa_frame_cache *info;
2188 CORE_ADDR pc = get_frame_pc (this_frame);
2189 struct unwind_table_entry *u;
2190
2191 info = hppa_frame_cache (this_frame, this_cache);
2192 u = hppa_find_unwind_entry_in_block (this_frame);
2193
2194 (*this_id) = frame_id_build (info->base, u->region_start);
2195 }
2196
2197 static struct value *
2198 hppa_frame_prev_register (struct frame_info *this_frame,
2199 void **this_cache, int regnum)
2200 {
2201 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2202
2203 return hppa_frame_prev_register_helper (this_frame,
2204 info->saved_regs, regnum);
2205 }
2206
2207 static int
2208 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2209 struct frame_info *this_frame, void **this_cache)
2210 {
2211 if (hppa_find_unwind_entry_in_block (this_frame))
2212 return 1;
2213
2214 return 0;
2215 }
2216
2217 static const struct frame_unwind hppa_frame_unwind =
2218 {
2219 NORMAL_FRAME,
2220 default_frame_unwind_stop_reason,
2221 hppa_frame_this_id,
2222 hppa_frame_prev_register,
2223 NULL,
2224 hppa_frame_unwind_sniffer
2225 };
2226
2227 /* This is a generic fallback frame unwinder that kicks in if we fail all
2228 the other ones. Normally we would expect the stub and regular unwinder
2229 to work, but in some cases we might hit a function that just doesn't
2230 have any unwind information available. In this case we try to do
2231 unwinding solely based on code reading. This is obviously going to be
2232 slow, so only use this as a last resort. Currently this will only
2233 identify the stack and pc for the frame. */
2234
2235 static struct hppa_frame_cache *
2236 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2237 {
2238 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2239 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2240 struct hppa_frame_cache *cache;
2241 unsigned int frame_size = 0;
2242 int found_rp = 0;
2243 CORE_ADDR start_pc;
2244
2245 if (hppa_debug)
2246 fprintf_unfiltered (gdb_stdlog,
2247 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2248 frame_relative_level (this_frame));
2249
2250 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2251 (*this_cache) = cache;
2252 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2253
2254 start_pc = get_frame_func (this_frame);
2255 if (start_pc)
2256 {
2257 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2258 CORE_ADDR pc;
2259
2260 for (pc = start_pc; pc < cur_pc; pc += 4)
2261 {
2262 unsigned int insn;
2263
2264 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2265 frame_size += prologue_inst_adjust_sp (insn);
2266
2267 /* There are limited ways to store the return pointer into the
2268 stack. */
2269 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2270 {
2271 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2272 found_rp = 1;
2273 }
2274 else if (insn == 0x0fc212c1
2275 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2276 {
2277 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2278 found_rp = 1;
2279 }
2280 }
2281 }
2282
2283 if (hppa_debug)
2284 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2285 frame_size, found_rp);
2286
2287 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2288 cache->base -= frame_size;
2289 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2290
2291 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2292 {
2293 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2294 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2295 cache->saved_regs[HPPA_RP_REGNUM];
2296 }
2297 else
2298 {
2299 ULONGEST rp;
2300 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2301 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2302 }
2303
2304 return cache;
2305 }
2306
2307 static void
2308 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2309 struct frame_id *this_id)
2310 {
2311 struct hppa_frame_cache *info =
2312 hppa_fallback_frame_cache (this_frame, this_cache);
2313
2314 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2315 }
2316
2317 static struct value *
2318 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2319 void **this_cache, int regnum)
2320 {
2321 struct hppa_frame_cache *info
2322 = hppa_fallback_frame_cache (this_frame, this_cache);
2323
2324 return hppa_frame_prev_register_helper (this_frame,
2325 info->saved_regs, regnum);
2326 }
2327
2328 static const struct frame_unwind hppa_fallback_frame_unwind =
2329 {
2330 NORMAL_FRAME,
2331 default_frame_unwind_stop_reason,
2332 hppa_fallback_frame_this_id,
2333 hppa_fallback_frame_prev_register,
2334 NULL,
2335 default_frame_sniffer
2336 };
2337
2338 /* Stub frames, used for all kinds of call stubs. */
2339 struct hppa_stub_unwind_cache
2340 {
2341 CORE_ADDR base;
2342 struct trad_frame_saved_reg *saved_regs;
2343 };
2344
2345 static struct hppa_stub_unwind_cache *
2346 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2347 void **this_cache)
2348 {
2349 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2350 struct hppa_stub_unwind_cache *info;
2351 struct unwind_table_entry *u;
2352
2353 if (*this_cache)
2354 return *this_cache;
2355
2356 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2357 *this_cache = info;
2358 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2359
2360 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2361
2362 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2363 {
2364 /* HPUX uses export stubs in function calls; the export stub clobbers
2365 the return value of the caller, and, later restores it from the
2366 stack. */
2367 u = find_unwind_entry (get_frame_pc (this_frame));
2368
2369 if (u && u->stub_unwind.stub_type == EXPORT)
2370 {
2371 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2372
2373 return info;
2374 }
2375 }
2376
2377 /* By default we assume that stubs do not change the rp. */
2378 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2379
2380 return info;
2381 }
2382
2383 static void
2384 hppa_stub_frame_this_id (struct frame_info *this_frame,
2385 void **this_prologue_cache,
2386 struct frame_id *this_id)
2387 {
2388 struct hppa_stub_unwind_cache *info
2389 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2390
2391 if (info)
2392 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2393 }
2394
2395 static struct value *
2396 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2397 void **this_prologue_cache, int regnum)
2398 {
2399 struct hppa_stub_unwind_cache *info
2400 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2401
2402 if (info == NULL)
2403 error (_("Requesting registers from null frame."));
2404
2405 return hppa_frame_prev_register_helper (this_frame,
2406 info->saved_regs, regnum);
2407 }
2408
2409 static int
2410 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2411 struct frame_info *this_frame,
2412 void **this_cache)
2413 {
2414 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2415 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2417
2418 if (pc == 0
2419 || (tdep->in_solib_call_trampoline != NULL
2420 && tdep->in_solib_call_trampoline (gdbarch, pc))
2421 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2422 return 1;
2423 return 0;
2424 }
2425
2426 static const struct frame_unwind hppa_stub_frame_unwind = {
2427 NORMAL_FRAME,
2428 default_frame_unwind_stop_reason,
2429 hppa_stub_frame_this_id,
2430 hppa_stub_frame_prev_register,
2431 NULL,
2432 hppa_stub_unwind_sniffer
2433 };
2434
2435 static struct frame_id
2436 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2437 {
2438 return frame_id_build (get_frame_register_unsigned (this_frame,
2439 HPPA_SP_REGNUM),
2440 get_frame_pc (this_frame));
2441 }
2442
2443 CORE_ADDR
2444 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2445 {
2446 ULONGEST ipsw;
2447 CORE_ADDR pc;
2448
2449 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2450 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2451
2452 /* If the current instruction is nullified, then we are effectively
2453 still executing the previous instruction. Pretend we are still
2454 there. This is needed when single stepping; if the nullified
2455 instruction is on a different line, we don't want GDB to think
2456 we've stepped onto that line. */
2457 if (ipsw & 0x00200000)
2458 pc -= 4;
2459
2460 return pc & ~0x3;
2461 }
2462
2463 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2464 Return NULL if no such symbol was found. */
2465
2466 struct bound_minimal_symbol
2467 hppa_lookup_stub_minimal_symbol (const char *name,
2468 enum unwind_stub_types stub_type)
2469 {
2470 struct objfile *objfile;
2471 struct minimal_symbol *msym;
2472 struct bound_minimal_symbol result = { NULL, NULL };
2473
2474 ALL_MSYMBOLS (objfile, msym)
2475 {
2476 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2477 {
2478 struct unwind_table_entry *u;
2479
2480 u = find_unwind_entry (MSYMBOL_VALUE (msym));
2481 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2482 {
2483 result.objfile = objfile;
2484 result.minsym = msym;
2485 return result;
2486 }
2487 }
2488 }
2489
2490 return result;
2491 }
2492
2493 static void
2494 unwind_command (char *exp, int from_tty)
2495 {
2496 CORE_ADDR address;
2497 struct unwind_table_entry *u;
2498
2499 /* If we have an expression, evaluate it and use it as the address. */
2500
2501 if (exp != 0 && *exp != 0)
2502 address = parse_and_eval_address (exp);
2503 else
2504 return;
2505
2506 u = find_unwind_entry (address);
2507
2508 if (!u)
2509 {
2510 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2511 return;
2512 }
2513
2514 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2515
2516 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2517 gdb_flush (gdb_stdout);
2518
2519 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2520 gdb_flush (gdb_stdout);
2521
2522 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2523
2524 printf_unfiltered ("\n\tflags =");
2525 pif (Cannot_unwind);
2526 pif (Millicode);
2527 pif (Millicode_save_sr0);
2528 pif (Entry_SR);
2529 pif (Args_stored);
2530 pif (Variable_Frame);
2531 pif (Separate_Package_Body);
2532 pif (Frame_Extension_Millicode);
2533 pif (Stack_Overflow_Check);
2534 pif (Two_Instruction_SP_Increment);
2535 pif (sr4export);
2536 pif (cxx_info);
2537 pif (cxx_try_catch);
2538 pif (sched_entry_seq);
2539 pif (Save_SP);
2540 pif (Save_RP);
2541 pif (Save_MRP_in_frame);
2542 pif (save_r19);
2543 pif (Cleanup_defined);
2544 pif (MPE_XL_interrupt_marker);
2545 pif (HP_UX_interrupt_marker);
2546 pif (Large_frame);
2547 pif (alloca_frame);
2548
2549 putchar_unfiltered ('\n');
2550
2551 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2552
2553 pin (Region_description);
2554 pin (Entry_FR);
2555 pin (Entry_GR);
2556 pin (Total_frame_size);
2557
2558 if (u->stub_unwind.stub_type)
2559 {
2560 printf_unfiltered ("\tstub type = ");
2561 switch (u->stub_unwind.stub_type)
2562 {
2563 case LONG_BRANCH:
2564 printf_unfiltered ("long branch\n");
2565 break;
2566 case PARAMETER_RELOCATION:
2567 printf_unfiltered ("parameter relocation\n");
2568 break;
2569 case EXPORT:
2570 printf_unfiltered ("export\n");
2571 break;
2572 case IMPORT:
2573 printf_unfiltered ("import\n");
2574 break;
2575 case IMPORT_SHLIB:
2576 printf_unfiltered ("import shlib\n");
2577 break;
2578 default:
2579 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2580 }
2581 }
2582 }
2583
2584 /* Return the GDB type object for the "standard" data type of data in
2585 register REGNUM. */
2586
2587 static struct type *
2588 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2589 {
2590 if (regnum < HPPA_FP4_REGNUM)
2591 return builtin_type (gdbarch)->builtin_uint32;
2592 else
2593 return builtin_type (gdbarch)->builtin_float;
2594 }
2595
2596 static struct type *
2597 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2598 {
2599 if (regnum < HPPA64_FP4_REGNUM)
2600 return builtin_type (gdbarch)->builtin_uint64;
2601 else
2602 return builtin_type (gdbarch)->builtin_double;
2603 }
2604
2605 /* Return non-zero if REGNUM is not a register available to the user
2606 through ptrace/ttrace. */
2607
2608 static int
2609 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2610 {
2611 return (regnum == 0
2612 || regnum == HPPA_PCSQ_HEAD_REGNUM
2613 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2614 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2615 }
2616
2617 static int
2618 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2619 {
2620 /* cr26 and cr27 are readable (but not writable) from userspace. */
2621 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2622 return 0;
2623 else
2624 return hppa32_cannot_store_register (gdbarch, regnum);
2625 }
2626
2627 static int
2628 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2629 {
2630 return (regnum == 0
2631 || regnum == HPPA_PCSQ_HEAD_REGNUM
2632 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2633 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2634 }
2635
2636 static int
2637 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2638 {
2639 /* cr26 and cr27 are readable (but not writable) from userspace. */
2640 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2641 return 0;
2642 else
2643 return hppa64_cannot_store_register (gdbarch, regnum);
2644 }
2645
2646 static CORE_ADDR
2647 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2648 {
2649 /* The low two bits of the PC on the PA contain the privilege level.
2650 Some genius implementing a (non-GCC) compiler apparently decided
2651 this means that "addresses" in a text section therefore include a
2652 privilege level, and thus symbol tables should contain these bits.
2653 This seems like a bonehead thing to do--anyway, it seems to work
2654 for our purposes to just ignore those bits. */
2655
2656 return (addr &= ~0x3);
2657 }
2658
2659 /* Get the ARGIth function argument for the current function. */
2660
2661 static CORE_ADDR
2662 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2663 struct type *type)
2664 {
2665 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2666 }
2667
2668 static enum register_status
2669 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2670 int regnum, gdb_byte *buf)
2671 {
2672 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2673 ULONGEST tmp;
2674 enum register_status status;
2675
2676 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2677 if (status == REG_VALID)
2678 {
2679 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2680 tmp &= ~0x3;
2681 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2682 }
2683 return status;
2684 }
2685
2686 static CORE_ADDR
2687 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2688 {
2689 return 0;
2690 }
2691
2692 struct value *
2693 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2694 struct trad_frame_saved_reg saved_regs[],
2695 int regnum)
2696 {
2697 struct gdbarch *arch = get_frame_arch (this_frame);
2698 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2699
2700 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2701 {
2702 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2703 CORE_ADDR pc;
2704 struct value *pcoq_val =
2705 trad_frame_get_prev_register (this_frame, saved_regs,
2706 HPPA_PCOQ_HEAD_REGNUM);
2707
2708 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2709 size, byte_order);
2710 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2711 }
2712
2713 /* Make sure the "flags" register is zero in all unwound frames.
2714 The "flags" registers is a HP-UX specific wart, and only the code
2715 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2716 with it here. This shouldn't affect other systems since those
2717 should provide zero for the "flags" register anyway. */
2718 if (regnum == HPPA_FLAGS_REGNUM)
2719 return frame_unwind_got_constant (this_frame, regnum, 0);
2720
2721 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2722 }
2723 \f
2724
2725 /* An instruction to match. */
2726 struct insn_pattern
2727 {
2728 unsigned int data; /* See if it matches this.... */
2729 unsigned int mask; /* ... with this mask. */
2730 };
2731
2732 /* See bfd/elf32-hppa.c */
2733 static struct insn_pattern hppa_long_branch_stub[] = {
2734 /* ldil LR'xxx,%r1 */
2735 { 0x20200000, 0xffe00000 },
2736 /* be,n RR'xxx(%sr4,%r1) */
2737 { 0xe0202002, 0xffe02002 },
2738 { 0, 0 }
2739 };
2740
2741 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2742 /* b,l .+8, %r1 */
2743 { 0xe8200000, 0xffe00000 },
2744 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2745 { 0x28200000, 0xffe00000 },
2746 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2747 { 0xe0202002, 0xffe02002 },
2748 { 0, 0 }
2749 };
2750
2751 static struct insn_pattern hppa_import_stub[] = {
2752 /* addil LR'xxx, %dp */
2753 { 0x2b600000, 0xffe00000 },
2754 /* ldw RR'xxx(%r1), %r21 */
2755 { 0x48350000, 0xffffb000 },
2756 /* bv %r0(%r21) */
2757 { 0xeaa0c000, 0xffffffff },
2758 /* ldw RR'xxx+4(%r1), %r19 */
2759 { 0x48330000, 0xffffb000 },
2760 { 0, 0 }
2761 };
2762
2763 static struct insn_pattern hppa_import_pic_stub[] = {
2764 /* addil LR'xxx,%r19 */
2765 { 0x2a600000, 0xffe00000 },
2766 /* ldw RR'xxx(%r1),%r21 */
2767 { 0x48350000, 0xffffb000 },
2768 /* bv %r0(%r21) */
2769 { 0xeaa0c000, 0xffffffff },
2770 /* ldw RR'xxx+4(%r1),%r19 */
2771 { 0x48330000, 0xffffb000 },
2772 { 0, 0 },
2773 };
2774
2775 static struct insn_pattern hppa_plt_stub[] = {
2776 /* b,l 1b, %r20 - 1b is 3 insns before here */
2777 { 0xea9f1fdd, 0xffffffff },
2778 /* depi 0,31,2,%r20 */
2779 { 0xd6801c1e, 0xffffffff },
2780 { 0, 0 }
2781 };
2782
2783 /* Maximum number of instructions on the patterns above. */
2784 #define HPPA_MAX_INSN_PATTERN_LEN 4
2785
2786 /* Return non-zero if the instructions at PC match the series
2787 described in PATTERN, or zero otherwise. PATTERN is an array of
2788 'struct insn_pattern' objects, terminated by an entry whose mask is
2789 zero.
2790
2791 When the match is successful, fill INSN[i] with what PATTERN[i]
2792 matched. */
2793
2794 static int
2795 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2796 struct insn_pattern *pattern, unsigned int *insn)
2797 {
2798 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2799 CORE_ADDR npc = pc;
2800 int i;
2801
2802 for (i = 0; pattern[i].mask; i++)
2803 {
2804 gdb_byte buf[HPPA_INSN_SIZE];
2805
2806 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2807 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2808 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2809 npc += 4;
2810 else
2811 return 0;
2812 }
2813
2814 return 1;
2815 }
2816
2817 /* This relaxed version of the insstruction matcher allows us to match
2818 from somewhere inside the pattern, by looking backwards in the
2819 instruction scheme. */
2820
2821 static int
2822 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2823 struct insn_pattern *pattern, unsigned int *insn)
2824 {
2825 int offset, len = 0;
2826
2827 while (pattern[len].mask)
2828 len++;
2829
2830 for (offset = 0; offset < len; offset++)
2831 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2832 pattern, insn))
2833 return 1;
2834
2835 return 0;
2836 }
2837
2838 static int
2839 hppa_in_dyncall (CORE_ADDR pc)
2840 {
2841 struct unwind_table_entry *u;
2842
2843 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2844 if (!u)
2845 return 0;
2846
2847 return (pc >= u->region_start && pc <= u->region_end);
2848 }
2849
2850 int
2851 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2852 {
2853 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2854 struct unwind_table_entry *u;
2855
2856 if (in_plt_section (pc) || hppa_in_dyncall (pc))
2857 return 1;
2858
2859 /* The GNU toolchain produces linker stubs without unwind
2860 information. Since the pattern matching for linker stubs can be
2861 quite slow, so bail out if we do have an unwind entry. */
2862
2863 u = find_unwind_entry (pc);
2864 if (u != NULL)
2865 return 0;
2866
2867 return
2868 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2869 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2870 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2871 || hppa_match_insns_relaxed (gdbarch, pc,
2872 hppa_long_branch_pic_stub, insn));
2873 }
2874
2875 /* This code skips several kind of "trampolines" used on PA-RISC
2876 systems: $$dyncall, import stubs and PLT stubs. */
2877
2878 CORE_ADDR
2879 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2880 {
2881 struct gdbarch *gdbarch = get_frame_arch (frame);
2882 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2883
2884 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2885 int dp_rel;
2886
2887 /* $$dyncall handles both PLABELs and direct addresses. */
2888 if (hppa_in_dyncall (pc))
2889 {
2890 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2891
2892 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2893 if (pc & 0x2)
2894 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2895
2896 return pc;
2897 }
2898
2899 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2900 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2901 {
2902 /* Extract the target address from the addil/ldw sequence. */
2903 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2904
2905 if (dp_rel)
2906 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2907 else
2908 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2909
2910 /* fallthrough */
2911 }
2912
2913 if (in_plt_section (pc))
2914 {
2915 pc = read_memory_typed_address (pc, func_ptr_type);
2916
2917 /* If the PLT slot has not yet been resolved, the target will be
2918 the PLT stub. */
2919 if (in_plt_section (pc))
2920 {
2921 /* Sanity check: are we pointing to the PLT stub? */
2922 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
2923 {
2924 warning (_("Cannot resolve PLT stub at %s."),
2925 paddress (gdbarch, pc));
2926 return 0;
2927 }
2928
2929 /* This should point to the fixup routine. */
2930 pc = read_memory_typed_address (pc + 8, func_ptr_type);
2931 }
2932 }
2933
2934 return pc;
2935 }
2936 \f
2937
2938 /* Here is a table of C type sizes on hppa with various compiles
2939 and options. I measured this on PA 9000/800 with HP-UX 11.11
2940 and these compilers:
2941
2942 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2943 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2944 /opt/aCC/bin/aCC B3910B A.03.45
2945 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2946
2947 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2948 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2949 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2950 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2951 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2952 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2953 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2954 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2955
2956 Each line is:
2957
2958 compiler and options
2959 char, short, int, long, long long
2960 float, double, long double
2961 char *, void (*)()
2962
2963 So all these compilers use either ILP32 or LP64 model.
2964 TODO: gcc has more options so it needs more investigation.
2965
2966 For floating point types, see:
2967
2968 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2969 HP-UX floating-point guide, hpux 11.00
2970
2971 -- chastain 2003-12-18 */
2972
2973 static struct gdbarch *
2974 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2975 {
2976 struct gdbarch_tdep *tdep;
2977 struct gdbarch *gdbarch;
2978
2979 /* Try to determine the ABI of the object we are loading. */
2980 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2981 {
2982 /* If it's a SOM file, assume it's HP/UX SOM. */
2983 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2984 info.osabi = GDB_OSABI_HPUX_SOM;
2985 }
2986
2987 /* find a candidate among the list of pre-declared architectures. */
2988 arches = gdbarch_list_lookup_by_info (arches, &info);
2989 if (arches != NULL)
2990 return (arches->gdbarch);
2991
2992 /* If none found, then allocate and initialize one. */
2993 tdep = XCNEW (struct gdbarch_tdep);
2994 gdbarch = gdbarch_alloc (&info, tdep);
2995
2996 /* Determine from the bfd_arch_info structure if we are dealing with
2997 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2998 then default to a 32bit machine. */
2999 if (info.bfd_arch_info != NULL)
3000 tdep->bytes_per_address =
3001 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3002 else
3003 tdep->bytes_per_address = 4;
3004
3005 tdep->find_global_pointer = hppa_find_global_pointer;
3006
3007 /* Some parts of the gdbarch vector depend on whether we are running
3008 on a 32 bits or 64 bits target. */
3009 switch (tdep->bytes_per_address)
3010 {
3011 case 4:
3012 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3013 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3014 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3015 set_gdbarch_cannot_store_register (gdbarch,
3016 hppa32_cannot_store_register);
3017 set_gdbarch_cannot_fetch_register (gdbarch,
3018 hppa32_cannot_fetch_register);
3019 break;
3020 case 8:
3021 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3022 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3023 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3024 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3025 set_gdbarch_cannot_store_register (gdbarch,
3026 hppa64_cannot_store_register);
3027 set_gdbarch_cannot_fetch_register (gdbarch,
3028 hppa64_cannot_fetch_register);
3029 break;
3030 default:
3031 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3032 tdep->bytes_per_address);
3033 }
3034
3035 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3036 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3037
3038 /* The following gdbarch vector elements are the same in both ILP32
3039 and LP64, but might show differences some day. */
3040 set_gdbarch_long_long_bit (gdbarch, 64);
3041 set_gdbarch_long_double_bit (gdbarch, 128);
3042 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3043
3044 /* The following gdbarch vector elements do not depend on the address
3045 size, or in any other gdbarch element previously set. */
3046 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3047 set_gdbarch_in_function_epilogue_p (gdbarch,
3048 hppa_in_function_epilogue_p);
3049 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3050 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3051 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3052 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3053 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3054 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3055 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3056
3057 /* Helper for function argument information. */
3058 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3059
3060 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3061
3062 /* When a hardware watchpoint triggers, we'll move the inferior past
3063 it by removing all eventpoints; stepping past the instruction
3064 that caused the trigger; reinserting eventpoints; and checking
3065 whether any watched location changed. */
3066 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3067
3068 /* Inferior function call methods. */
3069 switch (tdep->bytes_per_address)
3070 {
3071 case 4:
3072 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3073 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3074 set_gdbarch_convert_from_func_ptr_addr
3075 (gdbarch, hppa32_convert_from_func_ptr_addr);
3076 break;
3077 case 8:
3078 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3079 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3080 break;
3081 default:
3082 internal_error (__FILE__, __LINE__, _("bad switch"));
3083 }
3084
3085 /* Struct return methods. */
3086 switch (tdep->bytes_per_address)
3087 {
3088 case 4:
3089 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3090 break;
3091 case 8:
3092 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3093 break;
3094 default:
3095 internal_error (__FILE__, __LINE__, _("bad switch"));
3096 }
3097
3098 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3099 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3100
3101 /* Frame unwind methods. */
3102 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3103 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3104
3105 /* Hook in ABI-specific overrides, if they have been registered. */
3106 gdbarch_init_osabi (info, gdbarch);
3107
3108 /* Hook in the default unwinders. */
3109 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3110 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3111 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3112
3113 return gdbarch;
3114 }
3115
3116 static void
3117 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3118 {
3119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3120
3121 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3122 tdep->bytes_per_address);
3123 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3124 }
3125
3126 /* Provide a prototype to silence -Wmissing-prototypes. */
3127 extern initialize_file_ftype _initialize_hppa_tdep;
3128
3129 void
3130 _initialize_hppa_tdep (void)
3131 {
3132 struct cmd_list_element *c;
3133
3134 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3135
3136 hppa_objfile_priv_data = register_objfile_data ();
3137
3138 add_cmd ("unwind", class_maintenance, unwind_command,
3139 _("Print unwind table entry at given address."),
3140 &maintenanceprintlist);
3141
3142 /* Debug this files internals. */
3143 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3144 Set whether hppa target specific debugging information should be displayed."),
3145 _("\
3146 Show whether hppa target specific debugging information is displayed."), _("\
3147 This flag controls whether hppa target specific debugging information is\n\
3148 displayed. This information is particularly useful for debugging frame\n\
3149 unwinding problems."),
3150 NULL,
3151 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3152 &setdebuglist, &showdebuglist);
3153 }
This page took 0.138095 seconds and 4 git commands to generate.