* gdb.threads/Makefile.in (docdir): Removed.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include "gdb_stat.h"
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60 static int hppa_alignof PARAMS ((struct type *));
61
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
65
66 static int is_branch PARAMS ((unsigned long));
67
68 static int inst_saves_gr PARAMS ((unsigned long));
69
70 static int inst_saves_fr PARAMS ((unsigned long));
71
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
73
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
75
76 static int compare_unwind_entries PARAMS ((const void *, const void *));
77
78 static void read_unwind_info PARAMS ((struct objfile *));
79
80 static void internalize_unwinds PARAMS ((struct objfile *,
81 struct unwind_table_entry *,
82 asection *, unsigned int,
83 unsigned int, CORE_ADDR));
84 static void pa_print_registers PARAMS ((char *, int, int));
85 static void pa_print_fp_reg PARAMS ((int));
86
87 \f
88 /* Routines to extract various sized constants out of hppa
89 instructions. */
90
91 /* This assumes that no garbage lies outside of the lower bits of
92 value. */
93
94 int
95 sign_extend (val, bits)
96 unsigned val, bits;
97 {
98 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
99 }
100
101 /* For many immediate values the sign bit is the low bit! */
102
103 int
104 low_sign_extend (val, bits)
105 unsigned val, bits;
106 {
107 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
108 }
109 /* extract the immediate field from a ld{bhw}s instruction */
110
111 unsigned
112 get_field (val, from, to)
113 unsigned val, from, to;
114 {
115 val = val >> 31 - to;
116 return val & ((1 << 32 - from) - 1);
117 }
118
119 unsigned
120 set_field (val, from, to, new_val)
121 unsigned *val, from, to;
122 {
123 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
124 return *val = *val & mask | (new_val << (31 - from));
125 }
126
127 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
128
129 extract_3 (word)
130 unsigned word;
131 {
132 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
133 }
134
135 extract_5_load (word)
136 unsigned word;
137 {
138 return low_sign_extend (word >> 16 & MASK_5, 5);
139 }
140
141 /* extract the immediate field from a st{bhw}s instruction */
142
143 int
144 extract_5_store (word)
145 unsigned word;
146 {
147 return low_sign_extend (word & MASK_5, 5);
148 }
149
150 /* extract the immediate field from a break instruction */
151
152 unsigned
153 extract_5r_store (word)
154 unsigned word;
155 {
156 return (word & MASK_5);
157 }
158
159 /* extract the immediate field from a {sr}sm instruction */
160
161 unsigned
162 extract_5R_store (word)
163 unsigned word;
164 {
165 return (word >> 16 & MASK_5);
166 }
167
168 /* extract an 11 bit immediate field */
169
170 int
171 extract_11 (word)
172 unsigned word;
173 {
174 return low_sign_extend (word & MASK_11, 11);
175 }
176
177 /* extract a 14 bit immediate field */
178
179 int
180 extract_14 (word)
181 unsigned word;
182 {
183 return low_sign_extend (word & MASK_14, 14);
184 }
185
186 /* deposit a 14 bit constant in a word */
187
188 unsigned
189 deposit_14 (opnd, word)
190 int opnd;
191 unsigned word;
192 {
193 unsigned sign = (opnd < 0 ? 1 : 0);
194
195 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
196 }
197
198 /* extract a 21 bit constant */
199
200 int
201 extract_21 (word)
202 unsigned word;
203 {
204 int val;
205
206 word &= MASK_21;
207 word <<= 11;
208 val = GET_FIELD (word, 20, 20);
209 val <<= 11;
210 val |= GET_FIELD (word, 9, 19);
211 val <<= 2;
212 val |= GET_FIELD (word, 5, 6);
213 val <<= 5;
214 val |= GET_FIELD (word, 0, 4);
215 val <<= 2;
216 val |= GET_FIELD (word, 7, 8);
217 return sign_extend (val, 21) << 11;
218 }
219
220 /* deposit a 21 bit constant in a word. Although 21 bit constants are
221 usually the top 21 bits of a 32 bit constant, we assume that only
222 the low 21 bits of opnd are relevant */
223
224 unsigned
225 deposit_21 (opnd, word)
226 unsigned opnd, word;
227 {
228 unsigned val = 0;
229
230 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
231 val <<= 2;
232 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
233 val <<= 2;
234 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
235 val <<= 11;
236 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
237 val <<= 1;
238 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
239 return word | val;
240 }
241
242 /* extract a 12 bit constant from branch instructions */
243
244 int
245 extract_12 (word)
246 unsigned word;
247 {
248 return sign_extend (GET_FIELD (word, 19, 28) |
249 GET_FIELD (word, 29, 29) << 10 |
250 (word & 0x1) << 11, 12) << 2;
251 }
252
253 /* Deposit a 17 bit constant in an instruction (like bl). */
254
255 unsigned int
256 deposit_17 (opnd, word)
257 unsigned opnd, word;
258 {
259 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
260 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
261 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
262 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
263
264 return word;
265 }
266
267 /* extract a 17 bit constant from branch instructions, returning the
268 19 bit signed value. */
269
270 int
271 extract_17 (word)
272 unsigned word;
273 {
274 return sign_extend (GET_FIELD (word, 19, 28) |
275 GET_FIELD (word, 29, 29) << 10 |
276 GET_FIELD (word, 11, 15) << 11 |
277 (word & 0x1) << 16, 17) << 2;
278 }
279 \f
280
281 /* Compare the start address for two unwind entries returning 1 if
282 the first address is larger than the second, -1 if the second is
283 larger than the first, and zero if they are equal. */
284
285 static int
286 compare_unwind_entries (arg1, arg2)
287 const void *arg1;
288 const void *arg2;
289 {
290 const struct unwind_table_entry *a = arg1;
291 const struct unwind_table_entry *b = arg2;
292
293 if (a->region_start > b->region_start)
294 return 1;
295 else if (a->region_start < b->region_start)
296 return -1;
297 else
298 return 0;
299 }
300
301 static void
302 internalize_unwinds (objfile, table, section, entries, size, text_offset)
303 struct objfile *objfile;
304 struct unwind_table_entry *table;
305 asection *section;
306 unsigned int entries, size;
307 CORE_ADDR text_offset;
308 {
309 /* We will read the unwind entries into temporary memory, then
310 fill in the actual unwind table. */
311 if (size > 0)
312 {
313 unsigned long tmp;
314 unsigned i;
315 char *buf = alloca (size);
316
317 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
318
319 /* Now internalize the information being careful to handle host/target
320 endian issues. */
321 for (i = 0; i < entries; i++)
322 {
323 table[i].region_start = bfd_get_32 (objfile->obfd,
324 (bfd_byte *)buf);
325 table[i].region_start += text_offset;
326 buf += 4;
327 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
328 table[i].region_end += text_offset;
329 buf += 4;
330 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
331 buf += 4;
332 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
333 table[i].Millicode = (tmp >> 30) & 0x1;
334 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
335 table[i].Region_description = (tmp >> 27) & 0x3;
336 table[i].reserved1 = (tmp >> 26) & 0x1;
337 table[i].Entry_SR = (tmp >> 25) & 0x1;
338 table[i].Entry_FR = (tmp >> 21) & 0xf;
339 table[i].Entry_GR = (tmp >> 16) & 0x1f;
340 table[i].Args_stored = (tmp >> 15) & 0x1;
341 table[i].Variable_Frame = (tmp >> 14) & 0x1;
342 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
343 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
344 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
345 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
346 table[i].Ada_Region = (tmp >> 9) & 0x1;
347 table[i].reserved2 = (tmp >> 5) & 0xf;
348 table[i].Save_SP = (tmp >> 4) & 0x1;
349 table[i].Save_RP = (tmp >> 3) & 0x1;
350 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
351 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
352 table[i].Cleanup_defined = tmp & 0x1;
353 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
354 buf += 4;
355 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
356 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
357 table[i].Large_frame = (tmp >> 29) & 0x1;
358 table[i].reserved4 = (tmp >> 27) & 0x3;
359 table[i].Total_frame_size = tmp & 0x7ffffff;
360 }
361 }
362 }
363
364 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
365 the object file. This info is used mainly by find_unwind_entry() to find
366 out the stack frame size and frame pointer used by procedures. We put
367 everything on the psymbol obstack in the objfile so that it automatically
368 gets freed when the objfile is destroyed. */
369
370 static void
371 read_unwind_info (objfile)
372 struct objfile *objfile;
373 {
374 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
375 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
376 unsigned index, unwind_entries, elf_unwind_entries;
377 unsigned stub_entries, total_entries;
378 CORE_ADDR text_offset;
379 struct obj_unwind_info *ui;
380
381 text_offset = ANOFFSET (objfile->section_offsets, 0);
382 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
383 sizeof (struct obj_unwind_info));
384
385 ui->table = NULL;
386 ui->cache = NULL;
387 ui->last = -1;
388
389 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
390 section in ELF at the moment. */
391 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
392 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
393 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
394
395 /* Get sizes and unwind counts for all sections. */
396 if (unwind_sec)
397 {
398 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
399 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
400 }
401 else
402 {
403 unwind_size = 0;
404 unwind_entries = 0;
405 }
406
407 if (elf_unwind_sec)
408 {
409 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
410 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
411 }
412 else
413 {
414 elf_unwind_size = 0;
415 elf_unwind_entries = 0;
416 }
417
418 if (stub_unwind_sec)
419 {
420 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
421 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
422 }
423 else
424 {
425 stub_unwind_size = 0;
426 stub_entries = 0;
427 }
428
429 /* Compute total number of unwind entries and their total size. */
430 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
431 total_size = total_entries * sizeof (struct unwind_table_entry);
432
433 /* Allocate memory for the unwind table. */
434 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
435 ui->last = total_entries - 1;
436
437 /* Internalize the standard unwind entries. */
438 index = 0;
439 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
440 unwind_entries, unwind_size, text_offset);
441 index += unwind_entries;
442 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
443 elf_unwind_entries, elf_unwind_size, text_offset);
444 index += elf_unwind_entries;
445
446 /* Now internalize the stub unwind entries. */
447 if (stub_unwind_size > 0)
448 {
449 unsigned int i;
450 char *buf = alloca (stub_unwind_size);
451
452 /* Read in the stub unwind entries. */
453 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
454 0, stub_unwind_size);
455
456 /* Now convert them into regular unwind entries. */
457 for (i = 0; i < stub_entries; i++, index++)
458 {
459 /* Clear out the next unwind entry. */
460 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
461
462 /* Convert offset & size into region_start and region_end.
463 Stuff away the stub type into "reserved" fields. */
464 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
465 (bfd_byte *) buf);
466 ui->table[index].region_start += text_offset;
467 buf += 4;
468 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
469 (bfd_byte *) buf);
470 buf += 2;
471 ui->table[index].region_end
472 = ui->table[index].region_start + 4 *
473 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
474 buf += 2;
475 }
476
477 }
478
479 /* Unwind table needs to be kept sorted. */
480 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
481 compare_unwind_entries);
482
483 /* Keep a pointer to the unwind information. */
484 objfile->obj_private = (PTR) ui;
485 }
486
487 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
488 of the objfiles seeking the unwind table entry for this PC. Each objfile
489 contains a sorted list of struct unwind_table_entry. Since we do a binary
490 search of the unwind tables, we depend upon them to be sorted. */
491
492 struct unwind_table_entry *
493 find_unwind_entry(pc)
494 CORE_ADDR pc;
495 {
496 int first, middle, last;
497 struct objfile *objfile;
498
499 ALL_OBJFILES (objfile)
500 {
501 struct obj_unwind_info *ui;
502
503 ui = OBJ_UNWIND_INFO (objfile);
504
505 if (!ui)
506 {
507 read_unwind_info (objfile);
508 ui = OBJ_UNWIND_INFO (objfile);
509 }
510
511 /* First, check the cache */
512
513 if (ui->cache
514 && pc >= ui->cache->region_start
515 && pc <= ui->cache->region_end)
516 return ui->cache;
517
518 /* Not in the cache, do a binary search */
519
520 first = 0;
521 last = ui->last;
522
523 while (first <= last)
524 {
525 middle = (first + last) / 2;
526 if (pc >= ui->table[middle].region_start
527 && pc <= ui->table[middle].region_end)
528 {
529 ui->cache = &ui->table[middle];
530 return &ui->table[middle];
531 }
532
533 if (pc < ui->table[middle].region_start)
534 last = middle - 1;
535 else
536 first = middle + 1;
537 }
538 } /* ALL_OBJFILES() */
539 return NULL;
540 }
541
542 /* Return the adjustment necessary to make for addresses on the stack
543 as presented by hpread.c.
544
545 This is necessary because of the stack direction on the PA and the
546 bizarre way in which someone (?) decided they wanted to handle
547 frame pointerless code in GDB. */
548 int
549 hpread_adjust_stack_address (func_addr)
550 CORE_ADDR func_addr;
551 {
552 struct unwind_table_entry *u;
553
554 u = find_unwind_entry (func_addr);
555 if (!u)
556 return 0;
557 else
558 return u->Total_frame_size << 3;
559 }
560
561 /* Called to determine if PC is in an interrupt handler of some
562 kind. */
563
564 static int
565 pc_in_interrupt_handler (pc)
566 CORE_ADDR pc;
567 {
568 struct unwind_table_entry *u;
569 struct minimal_symbol *msym_us;
570
571 u = find_unwind_entry (pc);
572 if (!u)
573 return 0;
574
575 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
576 its frame isn't a pure interrupt frame. Deal with this. */
577 msym_us = lookup_minimal_symbol_by_pc (pc);
578
579 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
580 }
581
582 /* Called when no unwind descriptor was found for PC. Returns 1 if it
583 appears that PC is in a linker stub. */
584
585 static int
586 pc_in_linker_stub (pc)
587 CORE_ADDR pc;
588 {
589 int found_magic_instruction = 0;
590 int i;
591 char buf[4];
592
593 /* If unable to read memory, assume pc is not in a linker stub. */
594 if (target_read_memory (pc, buf, 4) != 0)
595 return 0;
596
597 /* We are looking for something like
598
599 ; $$dyncall jams RP into this special spot in the frame (RP')
600 ; before calling the "call stub"
601 ldw -18(sp),rp
602
603 ldsid (rp),r1 ; Get space associated with RP into r1
604 mtsp r1,sp ; Move it into space register 0
605 be,n 0(sr0),rp) ; back to your regularly scheduled program
606 */
607
608 /* Maximum known linker stub size is 4 instructions. Search forward
609 from the given PC, then backward. */
610 for (i = 0; i < 4; i++)
611 {
612 /* If we hit something with an unwind, stop searching this direction. */
613
614 if (find_unwind_entry (pc + i * 4) != 0)
615 break;
616
617 /* Check for ldsid (rp),r1 which is the magic instruction for a
618 return from a cross-space function call. */
619 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
620 {
621 found_magic_instruction = 1;
622 break;
623 }
624 /* Add code to handle long call/branch and argument relocation stubs
625 here. */
626 }
627
628 if (found_magic_instruction != 0)
629 return 1;
630
631 /* Now look backward. */
632 for (i = 0; i < 4; i++)
633 {
634 /* If we hit something with an unwind, stop searching this direction. */
635
636 if (find_unwind_entry (pc - i * 4) != 0)
637 break;
638
639 /* Check for ldsid (rp),r1 which is the magic instruction for a
640 return from a cross-space function call. */
641 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
642 {
643 found_magic_instruction = 1;
644 break;
645 }
646 /* Add code to handle long call/branch and argument relocation stubs
647 here. */
648 }
649 return found_magic_instruction;
650 }
651
652 static int
653 find_return_regnum(pc)
654 CORE_ADDR pc;
655 {
656 struct unwind_table_entry *u;
657
658 u = find_unwind_entry (pc);
659
660 if (!u)
661 return RP_REGNUM;
662
663 if (u->Millicode)
664 return 31;
665
666 return RP_REGNUM;
667 }
668
669 /* Return size of frame, or -1 if we should use a frame pointer. */
670 int
671 find_proc_framesize (pc)
672 CORE_ADDR pc;
673 {
674 struct unwind_table_entry *u;
675 struct minimal_symbol *msym_us;
676
677 u = find_unwind_entry (pc);
678
679 if (!u)
680 {
681 if (pc_in_linker_stub (pc))
682 /* Linker stubs have a zero size frame. */
683 return 0;
684 else
685 return -1;
686 }
687
688 msym_us = lookup_minimal_symbol_by_pc (pc);
689
690 /* If Save_SP is set, and we're not in an interrupt or signal caller,
691 then we have a frame pointer. Use it. */
692 if (u->Save_SP && !pc_in_interrupt_handler (pc)
693 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
694 return -1;
695
696 return u->Total_frame_size << 3;
697 }
698
699 /* Return offset from sp at which rp is saved, or 0 if not saved. */
700 static int rp_saved PARAMS ((CORE_ADDR));
701
702 static int
703 rp_saved (pc)
704 CORE_ADDR pc;
705 {
706 struct unwind_table_entry *u;
707
708 u = find_unwind_entry (pc);
709
710 if (!u)
711 {
712 if (pc_in_linker_stub (pc))
713 /* This is the so-called RP'. */
714 return -24;
715 else
716 return 0;
717 }
718
719 if (u->Save_RP)
720 return -20;
721 else if (u->stub_type != 0)
722 {
723 switch (u->stub_type)
724 {
725 case EXPORT:
726 case IMPORT:
727 return -24;
728 case PARAMETER_RELOCATION:
729 return -8;
730 default:
731 return 0;
732 }
733 }
734 else
735 return 0;
736 }
737 \f
738 int
739 frameless_function_invocation (frame)
740 struct frame_info *frame;
741 {
742 struct unwind_table_entry *u;
743
744 u = find_unwind_entry (frame->pc);
745
746 if (u == 0)
747 return 0;
748
749 return (u->Total_frame_size == 0 && u->stub_type == 0);
750 }
751
752 CORE_ADDR
753 saved_pc_after_call (frame)
754 struct frame_info *frame;
755 {
756 int ret_regnum;
757 CORE_ADDR pc;
758 struct unwind_table_entry *u;
759
760 ret_regnum = find_return_regnum (get_frame_pc (frame));
761 pc = read_register (ret_regnum) & ~0x3;
762
763 /* If PC is in a linker stub, then we need to dig the address
764 the stub will return to out of the stack. */
765 u = find_unwind_entry (pc);
766 if (u && u->stub_type != 0)
767 return frame_saved_pc (frame);
768 else
769 return pc;
770 }
771 \f
772 CORE_ADDR
773 frame_saved_pc (frame)
774 struct frame_info *frame;
775 {
776 CORE_ADDR pc = get_frame_pc (frame);
777 struct unwind_table_entry *u;
778
779 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
780 at the base of the frame in an interrupt handler. Registers within
781 are saved in the exact same order as GDB numbers registers. How
782 convienent. */
783 if (pc_in_interrupt_handler (pc))
784 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
785
786 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
787 /* Deal with signal handler caller frames too. */
788 if (frame->signal_handler_caller)
789 {
790 CORE_ADDR rp;
791 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
792 return rp & ~0x3;
793 }
794 #endif
795
796 if (frameless_function_invocation (frame))
797 {
798 int ret_regnum;
799
800 ret_regnum = find_return_regnum (pc);
801
802 /* If the next frame is an interrupt frame or a signal
803 handler caller, then we need to look in the saved
804 register area to get the return pointer (the values
805 in the registers may not correspond to anything useful). */
806 if (frame->next
807 && (frame->next->signal_handler_caller
808 || pc_in_interrupt_handler (frame->next->pc)))
809 {
810 struct frame_saved_regs saved_regs;
811
812 get_frame_saved_regs (frame->next, &saved_regs);
813 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
814 {
815 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
816
817 /* Syscalls are really two frames. The syscall stub itself
818 with a return pointer in %rp and the kernel call with
819 a return pointer in %r31. We return the %rp variant
820 if %r31 is the same as frame->pc. */
821 if (pc == frame->pc)
822 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
823 }
824 else
825 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
826 }
827 else
828 pc = read_register (ret_regnum) & ~0x3;
829 }
830 else
831 {
832 int rp_offset;
833
834 restart:
835 rp_offset = rp_saved (pc);
836 /* Similar to code in frameless function case. If the next
837 frame is a signal or interrupt handler, then dig the right
838 information out of the saved register info. */
839 if (rp_offset == 0
840 && frame->next
841 && (frame->next->signal_handler_caller
842 || pc_in_interrupt_handler (frame->next->pc)))
843 {
844 struct frame_saved_regs saved_regs;
845
846 get_frame_saved_regs (frame->next, &saved_regs);
847 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
848 {
849 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
850
851 /* Syscalls are really two frames. The syscall stub itself
852 with a return pointer in %rp and the kernel call with
853 a return pointer in %r31. We return the %rp variant
854 if %r31 is the same as frame->pc. */
855 if (pc == frame->pc)
856 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
857 }
858 else
859 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
860 }
861 else if (rp_offset == 0)
862 pc = read_register (RP_REGNUM) & ~0x3;
863 else
864 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
865 }
866
867 /* If PC is inside a linker stub, then dig out the address the stub
868 will return to.
869
870 Don't do this for long branch stubs. Why? For some unknown reason
871 _start is marked as a long branch stub in hpux10. */
872 u = find_unwind_entry (pc);
873 if (u && u->stub_type != 0
874 && u->stub_type != LONG_BRANCH)
875 {
876 unsigned int insn;
877
878 /* If this is a dynamic executable, and we're in a signal handler,
879 then the call chain will eventually point us into the stub for
880 _sigreturn. Unlike most cases, we'll be pointed to the branch
881 to the real sigreturn rather than the code after the real branch!.
882
883 Else, try to dig the address the stub will return to in the normal
884 fashion. */
885 insn = read_memory_integer (pc, 4);
886 if ((insn & 0xfc00e000) == 0xe8000000)
887 return (pc + extract_17 (insn) + 8) & ~0x3;
888 else
889 goto restart;
890 }
891
892 return pc;
893 }
894 \f
895 /* We need to correct the PC and the FP for the outermost frame when we are
896 in a system call. */
897
898 void
899 init_extra_frame_info (fromleaf, frame)
900 int fromleaf;
901 struct frame_info *frame;
902 {
903 int flags;
904 int framesize;
905
906 if (frame->next && !fromleaf)
907 return;
908
909 /* If the next frame represents a frameless function invocation
910 then we have to do some adjustments that are normally done by
911 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
912 if (fromleaf)
913 {
914 /* Find the framesize of *this* frame without peeking at the PC
915 in the current frame structure (it isn't set yet). */
916 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
917
918 /* Now adjust our base frame accordingly. If we have a frame pointer
919 use it, else subtract the size of this frame from the current
920 frame. (we always want frame->frame to point at the lowest address
921 in the frame). */
922 if (framesize == -1)
923 frame->frame = read_register (FP_REGNUM);
924 else
925 frame->frame -= framesize;
926 return;
927 }
928
929 flags = read_register (FLAGS_REGNUM);
930 if (flags & 2) /* In system call? */
931 frame->pc = read_register (31) & ~0x3;
932
933 /* The outermost frame is always derived from PC-framesize
934
935 One might think frameless innermost frames should have
936 a frame->frame that is the same as the parent's frame->frame.
937 That is wrong; frame->frame in that case should be the *high*
938 address of the parent's frame. It's complicated as hell to
939 explain, but the parent *always* creates some stack space for
940 the child. So the child actually does have a frame of some
941 sorts, and its base is the high address in its parent's frame. */
942 framesize = find_proc_framesize(frame->pc);
943 if (framesize == -1)
944 frame->frame = read_register (FP_REGNUM);
945 else
946 frame->frame = read_register (SP_REGNUM) - framesize;
947 }
948 \f
949 /* Given a GDB frame, determine the address of the calling function's frame.
950 This will be used to create a new GDB frame struct, and then
951 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
952
953 This may involve searching through prologues for several functions
954 at boundaries where GCC calls HP C code, or where code which has
955 a frame pointer calls code without a frame pointer. */
956
957 CORE_ADDR
958 frame_chain (frame)
959 struct frame_info *frame;
960 {
961 int my_framesize, caller_framesize;
962 struct unwind_table_entry *u;
963 CORE_ADDR frame_base;
964 struct frame_info *tmp_frame;
965
966 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
967 are easy; at *sp we have a full save state strucutre which we can
968 pull the old stack pointer from. Also see frame_saved_pc for
969 code to dig a saved PC out of the save state structure. */
970 if (pc_in_interrupt_handler (frame->pc))
971 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
972 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
973 else if (frame->signal_handler_caller)
974 {
975 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
976 }
977 #endif
978 else
979 frame_base = frame->frame;
980
981 /* Get frame sizes for the current frame and the frame of the
982 caller. */
983 my_framesize = find_proc_framesize (frame->pc);
984 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
985
986 /* If caller does not have a frame pointer, then its frame
987 can be found at current_frame - caller_framesize. */
988 if (caller_framesize != -1)
989 return frame_base - caller_framesize;
990
991 /* Both caller and callee have frame pointers and are GCC compiled
992 (SAVE_SP bit in unwind descriptor is on for both functions.
993 The previous frame pointer is found at the top of the current frame. */
994 if (caller_framesize == -1 && my_framesize == -1)
995 return read_memory_integer (frame_base, 4);
996
997 /* Caller has a frame pointer, but callee does not. This is a little
998 more difficult as GCC and HP C lay out locals and callee register save
999 areas very differently.
1000
1001 The previous frame pointer could be in a register, or in one of
1002 several areas on the stack.
1003
1004 Walk from the current frame to the innermost frame examining
1005 unwind descriptors to determine if %r3 ever gets saved into the
1006 stack. If so return whatever value got saved into the stack.
1007 If it was never saved in the stack, then the value in %r3 is still
1008 valid, so use it.
1009
1010 We use information from unwind descriptors to determine if %r3
1011 is saved into the stack (Entry_GR field has this information). */
1012
1013 tmp_frame = frame;
1014 while (tmp_frame)
1015 {
1016 u = find_unwind_entry (tmp_frame->pc);
1017
1018 if (!u)
1019 {
1020 /* We could find this information by examining prologues. I don't
1021 think anyone has actually written any tools (not even "strip")
1022 which leave them out of an executable, so maybe this is a moot
1023 point. */
1024 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1025 return 0;
1026 }
1027
1028 /* Entry_GR specifies the number of callee-saved general registers
1029 saved in the stack. It starts at %r3, so %r3 would be 1. */
1030 if (u->Entry_GR >= 1 || u->Save_SP
1031 || tmp_frame->signal_handler_caller
1032 || pc_in_interrupt_handler (tmp_frame->pc))
1033 break;
1034 else
1035 tmp_frame = tmp_frame->next;
1036 }
1037
1038 if (tmp_frame)
1039 {
1040 /* We may have walked down the chain into a function with a frame
1041 pointer. */
1042 if (u->Save_SP
1043 && !tmp_frame->signal_handler_caller
1044 && !pc_in_interrupt_handler (tmp_frame->pc))
1045 return read_memory_integer (tmp_frame->frame, 4);
1046 /* %r3 was saved somewhere in the stack. Dig it out. */
1047 else
1048 {
1049 struct frame_saved_regs saved_regs;
1050
1051 /* Sick.
1052
1053 For optimization purposes many kernels don't have the
1054 callee saved registers into the save_state structure upon
1055 entry into the kernel for a syscall; the optimization
1056 is usually turned off if the process is being traced so
1057 that the debugger can get full register state for the
1058 process.
1059
1060 This scheme works well except for two cases:
1061
1062 * Attaching to a process when the process is in the
1063 kernel performing a system call (debugger can't get
1064 full register state for the inferior process since
1065 the process wasn't being traced when it entered the
1066 system call).
1067
1068 * Register state is not complete if the system call
1069 causes the process to core dump.
1070
1071
1072 The following heinous code is an attempt to deal with
1073 the lack of register state in a core dump. It will
1074 fail miserably if the function which performs the
1075 system call has a variable sized stack frame. */
1076
1077 get_frame_saved_regs (tmp_frame, &saved_regs);
1078
1079 /* Abominable hack. */
1080 if (current_target.to_has_execution == 0
1081 && ((saved_regs.regs[FLAGS_REGNUM]
1082 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1083 & 0x2))
1084 || (saved_regs.regs[FLAGS_REGNUM] == 0
1085 && read_register (FLAGS_REGNUM) & 0x2)))
1086 {
1087 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1088 if (!u)
1089 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1090 else
1091 return frame_base - (u->Total_frame_size << 3);
1092 }
1093
1094 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1095 }
1096 }
1097 else
1098 {
1099 struct frame_saved_regs saved_regs;
1100
1101 /* Get the innermost frame. */
1102 tmp_frame = frame;
1103 while (tmp_frame->next != NULL)
1104 tmp_frame = tmp_frame->next;
1105
1106 get_frame_saved_regs (tmp_frame, &saved_regs);
1107 /* Abominable hack. See above. */
1108 if (current_target.to_has_execution == 0
1109 && ((saved_regs.regs[FLAGS_REGNUM]
1110 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1111 & 0x2))
1112 || (saved_regs.regs[FLAGS_REGNUM] == 0
1113 && read_register (FLAGS_REGNUM) & 0x2)))
1114 {
1115 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1116 if (!u)
1117 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1118 else
1119 return frame_base - (u->Total_frame_size << 3);
1120 }
1121
1122 /* The value in %r3 was never saved into the stack (thus %r3 still
1123 holds the value of the previous frame pointer). */
1124 return read_register (FP_REGNUM);
1125 }
1126 }
1127
1128 \f
1129 /* To see if a frame chain is valid, see if the caller looks like it
1130 was compiled with gcc. */
1131
1132 int
1133 frame_chain_valid (chain, thisframe)
1134 CORE_ADDR chain;
1135 struct frame_info *thisframe;
1136 {
1137 struct minimal_symbol *msym_us;
1138 struct minimal_symbol *msym_start;
1139 struct unwind_table_entry *u, *next_u = NULL;
1140 struct frame_info *next;
1141
1142 if (!chain)
1143 return 0;
1144
1145 u = find_unwind_entry (thisframe->pc);
1146
1147 if (u == NULL)
1148 return 1;
1149
1150 /* We can't just check that the same of msym_us is "_start", because
1151 someone idiotically decided that they were going to make a Ltext_end
1152 symbol with the same address. This Ltext_end symbol is totally
1153 indistinguishable (as nearly as I can tell) from the symbol for a function
1154 which is (legitimately, since it is in the user's namespace)
1155 named Ltext_end, so we can't just ignore it. */
1156 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1157 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1158 if (msym_us
1159 && msym_start
1160 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1161 return 0;
1162
1163 /* Grrrr. Some new idiot decided that they don't want _start for the
1164 PRO configurations; $START$ calls main directly.... Deal with it. */
1165 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1166 if (msym_us
1167 && msym_start
1168 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1169 return 0;
1170
1171 next = get_next_frame (thisframe);
1172 if (next)
1173 next_u = find_unwind_entry (next->pc);
1174
1175 /* If this frame does not save SP, has no stack, isn't a stub,
1176 and doesn't "call" an interrupt routine or signal handler caller,
1177 then its not valid. */
1178 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1179 || (thisframe->next && thisframe->next->signal_handler_caller)
1180 || (next_u && next_u->HP_UX_interrupt_marker))
1181 return 1;
1182
1183 if (pc_in_linker_stub (thisframe->pc))
1184 return 1;
1185
1186 return 0;
1187 }
1188
1189 /*
1190 * These functions deal with saving and restoring register state
1191 * around a function call in the inferior. They keep the stack
1192 * double-word aligned; eventually, on an hp700, the stack will have
1193 * to be aligned to a 64-byte boundary.
1194 */
1195
1196 void
1197 push_dummy_frame (inf_status)
1198 struct inferior_status *inf_status;
1199 {
1200 CORE_ADDR sp, pc, pcspace;
1201 register int regnum;
1202 int int_buffer;
1203 double freg_buffer;
1204
1205 /* Oh, what a hack. If we're trying to perform an inferior call
1206 while the inferior is asleep, we have to make sure to clear
1207 the "in system call" bit in the flag register (the call will
1208 start after the syscall returns, so we're no longer in the system
1209 call!) This state is kept in "inf_status", change it there.
1210
1211 We also need a number of horrid hacks to deal with lossage in the
1212 PC queue registers (apparently they're not valid when the in syscall
1213 bit is set). */
1214 pc = target_read_pc (inferior_pid);
1215 int_buffer = read_register (FLAGS_REGNUM);
1216 if (int_buffer & 0x2)
1217 {
1218 unsigned int sid;
1219 int_buffer &= ~0x2;
1220 memcpy (inf_status->registers, &int_buffer, 4);
1221 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1222 pc += 4;
1223 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1224 pc -= 4;
1225 sid = (pc >> 30) & 0x3;
1226 if (sid == 0)
1227 pcspace = read_register (SR4_REGNUM);
1228 else
1229 pcspace = read_register (SR4_REGNUM + 4 + sid);
1230 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1231 &pcspace, 4);
1232 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1233 &pcspace, 4);
1234 }
1235 else
1236 pcspace = read_register (PCSQ_HEAD_REGNUM);
1237
1238 /* Space for "arguments"; the RP goes in here. */
1239 sp = read_register (SP_REGNUM) + 48;
1240 int_buffer = read_register (RP_REGNUM) | 0x3;
1241 write_memory (sp - 20, (char *)&int_buffer, 4);
1242
1243 int_buffer = read_register (FP_REGNUM);
1244 write_memory (sp, (char *)&int_buffer, 4);
1245
1246 write_register (FP_REGNUM, sp);
1247
1248 sp += 8;
1249
1250 for (regnum = 1; regnum < 32; regnum++)
1251 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1252 sp = push_word (sp, read_register (regnum));
1253
1254 sp += 4;
1255
1256 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1257 {
1258 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1259 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1260 }
1261 sp = push_word (sp, read_register (IPSW_REGNUM));
1262 sp = push_word (sp, read_register (SAR_REGNUM));
1263 sp = push_word (sp, pc);
1264 sp = push_word (sp, pcspace);
1265 sp = push_word (sp, pc + 4);
1266 sp = push_word (sp, pcspace);
1267 write_register (SP_REGNUM, sp);
1268 }
1269
1270 void
1271 find_dummy_frame_regs (frame, frame_saved_regs)
1272 struct frame_info *frame;
1273 struct frame_saved_regs *frame_saved_regs;
1274 {
1275 CORE_ADDR fp = frame->frame;
1276 int i;
1277
1278 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1279 frame_saved_regs->regs[FP_REGNUM] = fp;
1280 frame_saved_regs->regs[1] = fp + 8;
1281
1282 for (fp += 12, i = 3; i < 32; i++)
1283 {
1284 if (i != FP_REGNUM)
1285 {
1286 frame_saved_regs->regs[i] = fp;
1287 fp += 4;
1288 }
1289 }
1290
1291 fp += 4;
1292 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1293 frame_saved_regs->regs[i] = fp;
1294
1295 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1296 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1297 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1298 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1299 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1300 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1301 }
1302
1303 void
1304 hppa_pop_frame ()
1305 {
1306 register struct frame_info *frame = get_current_frame ();
1307 register CORE_ADDR fp, npc, target_pc;
1308 register int regnum;
1309 struct frame_saved_regs fsr;
1310 double freg_buffer;
1311
1312 fp = FRAME_FP (frame);
1313 get_frame_saved_regs (frame, &fsr);
1314
1315 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1316 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1317 restore_pc_queue (&fsr);
1318 #endif
1319
1320 for (regnum = 31; regnum > 0; regnum--)
1321 if (fsr.regs[regnum])
1322 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1323
1324 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1325 if (fsr.regs[regnum])
1326 {
1327 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1328 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1329 }
1330
1331 if (fsr.regs[IPSW_REGNUM])
1332 write_register (IPSW_REGNUM,
1333 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1334
1335 if (fsr.regs[SAR_REGNUM])
1336 write_register (SAR_REGNUM,
1337 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1338
1339 /* If the PC was explicitly saved, then just restore it. */
1340 if (fsr.regs[PCOQ_TAIL_REGNUM])
1341 {
1342 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1343 write_register (PCOQ_TAIL_REGNUM, npc);
1344 }
1345 /* Else use the value in %rp to set the new PC. */
1346 else
1347 {
1348 npc = read_register (RP_REGNUM);
1349 target_write_pc (npc, 0);
1350 }
1351
1352 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1353
1354 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1355 write_register (SP_REGNUM, fp - 48);
1356 else
1357 write_register (SP_REGNUM, fp);
1358
1359 /* The PC we just restored may be inside a return trampoline. If so
1360 we want to restart the inferior and run it through the trampoline.
1361
1362 Do this by setting a momentary breakpoint at the location the
1363 trampoline returns to.
1364
1365 Don't skip through the trampoline if we're popping a dummy frame. */
1366 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1367 if (target_pc && !fsr.regs[IPSW_REGNUM])
1368 {
1369 struct symtab_and_line sal;
1370 struct breakpoint *breakpoint;
1371 struct cleanup *old_chain;
1372
1373 /* Set up our breakpoint. Set it to be silent as the MI code
1374 for "return_command" will print the frame we returned to. */
1375 sal = find_pc_line (target_pc, 0);
1376 sal.pc = target_pc;
1377 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1378 breakpoint->silent = 1;
1379
1380 /* So we can clean things up. */
1381 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1382
1383 /* Start up the inferior. */
1384 clear_proceed_status ();
1385 proceed_to_finish = 1;
1386 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1387
1388 /* Perform our cleanups. */
1389 do_cleanups (old_chain);
1390 }
1391 flush_cached_frames ();
1392 }
1393
1394 /*
1395 * After returning to a dummy on the stack, restore the instruction
1396 * queue space registers. */
1397
1398 static int
1399 restore_pc_queue (fsr)
1400 struct frame_saved_regs *fsr;
1401 {
1402 CORE_ADDR pc = read_pc ();
1403 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1404 struct target_waitstatus w;
1405 int insn_count;
1406
1407 /* Advance past break instruction in the call dummy. */
1408 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1409 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1410
1411 /*
1412 * HPUX doesn't let us set the space registers or the space
1413 * registers of the PC queue through ptrace. Boo, hiss.
1414 * Conveniently, the call dummy has this sequence of instructions
1415 * after the break:
1416 * mtsp r21, sr0
1417 * ble,n 0(sr0, r22)
1418 *
1419 * So, load up the registers and single step until we are in the
1420 * right place.
1421 */
1422
1423 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1424 write_register (22, new_pc);
1425
1426 for (insn_count = 0; insn_count < 3; insn_count++)
1427 {
1428 /* FIXME: What if the inferior gets a signal right now? Want to
1429 merge this into wait_for_inferior (as a special kind of
1430 watchpoint? By setting a breakpoint at the end? Is there
1431 any other choice? Is there *any* way to do this stuff with
1432 ptrace() or some equivalent?). */
1433 resume (1, 0);
1434 target_wait (inferior_pid, &w);
1435
1436 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1437 {
1438 stop_signal = w.value.sig;
1439 terminal_ours_for_output ();
1440 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1441 target_signal_to_name (stop_signal),
1442 target_signal_to_string (stop_signal));
1443 gdb_flush (gdb_stdout);
1444 return 0;
1445 }
1446 }
1447 target_terminal_ours ();
1448 target_fetch_registers (-1);
1449 return 1;
1450 }
1451
1452 CORE_ADDR
1453 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1454 int nargs;
1455 value_ptr *args;
1456 CORE_ADDR sp;
1457 int struct_return;
1458 CORE_ADDR struct_addr;
1459 {
1460 /* array of arguments' offsets */
1461 int *offset = (int *)alloca(nargs * sizeof (int));
1462 int cum = 0;
1463 int i, alignment;
1464
1465 for (i = 0; i < nargs; i++)
1466 {
1467 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1468
1469 /* value must go at proper alignment. Assume alignment is a
1470 power of two.*/
1471 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1472 if (cum % alignment)
1473 cum = (cum + alignment) & -alignment;
1474 offset[i] = -cum;
1475 }
1476 sp += max ((cum + 7) & -8, 16);
1477
1478 for (i = 0; i < nargs; i++)
1479 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1480 TYPE_LENGTH (VALUE_TYPE (args[i])));
1481
1482 if (struct_return)
1483 write_register (28, struct_addr);
1484 return sp + 32;
1485 }
1486
1487 /*
1488 * Insert the specified number of args and function address
1489 * into a call sequence of the above form stored at DUMMYNAME.
1490 *
1491 * On the hppa we need to call the stack dummy through $$dyncall.
1492 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1493 * real_pc, which is the location where gdb should start up the
1494 * inferior to do the function call.
1495 */
1496
1497 CORE_ADDR
1498 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1499 char *dummy;
1500 CORE_ADDR pc;
1501 CORE_ADDR fun;
1502 int nargs;
1503 value_ptr *args;
1504 struct type *type;
1505 int gcc_p;
1506 {
1507 CORE_ADDR dyncall_addr;
1508 struct minimal_symbol *msymbol;
1509 struct minimal_symbol *trampoline;
1510 int flags = read_register (FLAGS_REGNUM);
1511 struct unwind_table_entry *u;
1512
1513 trampoline = NULL;
1514 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1515 if (msymbol == NULL)
1516 error ("Can't find an address for $$dyncall trampoline");
1517
1518 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1519
1520 /* FUN could be a procedure label, in which case we have to get
1521 its real address and the value of its GOT/DP. */
1522 if (fun & 0x2)
1523 {
1524 /* Get the GOT/DP value for the target function. It's
1525 at *(fun+4). Note the call dummy is *NOT* allowed to
1526 trash %r19 before calling the target function. */
1527 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1528
1529 /* Now get the real address for the function we are calling, it's
1530 at *fun. */
1531 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1532 }
1533 else
1534 {
1535
1536 #ifndef GDB_TARGET_IS_PA_ELF
1537 /* FUN could be either an export stub, or the real address of a
1538 function in a shared library. We must call an import stub
1539 rather than the export stub or real function for lazy binding
1540 to work correctly. */
1541 if (som_solib_get_got_by_pc (fun))
1542 {
1543 struct objfile *objfile;
1544 struct minimal_symbol *funsymbol, *stub_symbol;
1545 CORE_ADDR newfun = 0;
1546
1547 funsymbol = lookup_minimal_symbol_by_pc (fun);
1548 if (!funsymbol)
1549 error ("Unable to find minimal symbol for target fucntion.\n");
1550
1551 /* Search all the object files for an import symbol with the
1552 right name. */
1553 ALL_OBJFILES (objfile)
1554 {
1555 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1556 NULL, objfile);
1557 /* Found a symbol with the right name. */
1558 if (stub_symbol)
1559 {
1560 struct unwind_table_entry *u;
1561 /* It must be a shared library trampoline. */
1562 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1563 continue;
1564
1565 /* It must also be an import stub. */
1566 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1567 if (!u || u->stub_type != IMPORT)
1568 continue;
1569
1570 /* OK. Looks like the correct import stub. */
1571 newfun = SYMBOL_VALUE (stub_symbol);
1572 fun = newfun;
1573 }
1574 }
1575 if (newfun == 0)
1576 write_register (19, som_solib_get_got_by_pc (fun));
1577 }
1578 #endif
1579 }
1580
1581 /* If we are calling an import stub (eg calling into a dynamic library)
1582 then have sr4export call the magic __d_plt_call routine which is linked
1583 in from end.o. (You can't use _sr4export to call the import stub as
1584 the value in sp-24 will get fried and you end up returning to the
1585 wrong location. You can't call the import stub directly as the code
1586 to bind the PLT entry to a function can't return to a stack address.) */
1587 u = find_unwind_entry (fun);
1588 if (u && u->stub_type == IMPORT)
1589 {
1590 CORE_ADDR new_fun;
1591
1592 /* Prefer __gcc_plt_call over the HP supplied routine because
1593 __gcc_plt_call works for any number of arguments. */
1594 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1595 if (trampoline == NULL)
1596 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1597
1598 if (trampoline == NULL)
1599 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1600
1601 /* This is where sr4export will jump to. */
1602 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1603
1604 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1605 {
1606 /* We have to store the address of the stub in __shlib_funcptr. */
1607 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1608 (struct objfile *)NULL);
1609 if (msymbol == NULL)
1610 error ("Can't find an address for __shlib_funcptr");
1611
1612 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1613
1614 /* We want sr4export to call __d_plt_call, so we claim it is
1615 the final target. Clear trampoline. */
1616 fun = new_fun;
1617 trampoline = NULL;
1618 }
1619 }
1620
1621 /* Store upper 21 bits of function address into ldil. fun will either be
1622 the final target (most cases) or __d_plt_call when calling into a shared
1623 library and __gcc_plt_call is not available. */
1624 store_unsigned_integer
1625 (&dummy[FUNC_LDIL_OFFSET],
1626 INSTRUCTION_SIZE,
1627 deposit_21 (fun >> 11,
1628 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1629 INSTRUCTION_SIZE)));
1630
1631 /* Store lower 11 bits of function address into ldo */
1632 store_unsigned_integer
1633 (&dummy[FUNC_LDO_OFFSET],
1634 INSTRUCTION_SIZE,
1635 deposit_14 (fun & MASK_11,
1636 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1637 INSTRUCTION_SIZE)));
1638 #ifdef SR4EXPORT_LDIL_OFFSET
1639
1640 {
1641 CORE_ADDR trampoline_addr;
1642
1643 /* We may still need sr4export's address too. */
1644
1645 if (trampoline == NULL)
1646 {
1647 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1648 if (msymbol == NULL)
1649 error ("Can't find an address for _sr4export trampoline");
1650
1651 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1652 }
1653 else
1654 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1655
1656
1657 /* Store upper 21 bits of trampoline's address into ldil */
1658 store_unsigned_integer
1659 (&dummy[SR4EXPORT_LDIL_OFFSET],
1660 INSTRUCTION_SIZE,
1661 deposit_21 (trampoline_addr >> 11,
1662 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1663 INSTRUCTION_SIZE)));
1664
1665 /* Store lower 11 bits of trampoline's address into ldo */
1666 store_unsigned_integer
1667 (&dummy[SR4EXPORT_LDO_OFFSET],
1668 INSTRUCTION_SIZE,
1669 deposit_14 (trampoline_addr & MASK_11,
1670 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1671 INSTRUCTION_SIZE)));
1672 }
1673 #endif
1674
1675 write_register (22, pc);
1676
1677 /* If we are in a syscall, then we should call the stack dummy
1678 directly. $$dyncall is not needed as the kernel sets up the
1679 space id registers properly based on the value in %r31. In
1680 fact calling $$dyncall will not work because the value in %r22
1681 will be clobbered on the syscall exit path.
1682
1683 Similarly if the current PC is in a shared library. Note however,
1684 this scheme won't work if the shared library isn't mapped into
1685 the same space as the stack. */
1686 if (flags & 2)
1687 return pc;
1688 #ifndef GDB_TARGET_IS_PA_ELF
1689 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1690 return pc;
1691 #endif
1692 else
1693 return dyncall_addr;
1694
1695 }
1696
1697 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1698 bits. */
1699
1700 CORE_ADDR
1701 target_read_pc (pid)
1702 int pid;
1703 {
1704 int flags = read_register (FLAGS_REGNUM);
1705
1706 if (flags & 2) {
1707 return read_register (31) & ~0x3;
1708 }
1709 return read_register (PC_REGNUM) & ~0x3;
1710 }
1711
1712 /* Write out the PC. If currently in a syscall, then also write the new
1713 PC value into %r31. */
1714
1715 void
1716 target_write_pc (v, pid)
1717 CORE_ADDR v;
1718 int pid;
1719 {
1720 int flags = read_register (FLAGS_REGNUM);
1721
1722 /* If in a syscall, then set %r31. Also make sure to get the
1723 privilege bits set correctly. */
1724 if (flags & 2)
1725 write_register (31, (long) (v | 0x3));
1726
1727 write_register (PC_REGNUM, (long) v);
1728 write_register (NPC_REGNUM, (long) v + 4);
1729 }
1730
1731 /* return the alignment of a type in bytes. Structures have the maximum
1732 alignment required by their fields. */
1733
1734 static int
1735 hppa_alignof (type)
1736 struct type *type;
1737 {
1738 int max_align, align, i;
1739 CHECK_TYPEDEF (type);
1740 switch (TYPE_CODE (type))
1741 {
1742 case TYPE_CODE_PTR:
1743 case TYPE_CODE_INT:
1744 case TYPE_CODE_FLT:
1745 return TYPE_LENGTH (type);
1746 case TYPE_CODE_ARRAY:
1747 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1748 case TYPE_CODE_STRUCT:
1749 case TYPE_CODE_UNION:
1750 max_align = 2;
1751 for (i = 0; i < TYPE_NFIELDS (type); i++)
1752 {
1753 /* Bit fields have no real alignment. */
1754 if (!TYPE_FIELD_BITPOS (type, i))
1755 {
1756 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1757 max_align = max (max_align, align);
1758 }
1759 }
1760 return max_align;
1761 default:
1762 return 4;
1763 }
1764 }
1765
1766 /* Print the register regnum, or all registers if regnum is -1 */
1767
1768 void
1769 pa_do_registers_info (regnum, fpregs)
1770 int regnum;
1771 int fpregs;
1772 {
1773 char raw_regs [REGISTER_BYTES];
1774 int i;
1775
1776 for (i = 0; i < NUM_REGS; i++)
1777 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1778 if (regnum == -1)
1779 pa_print_registers (raw_regs, regnum, fpregs);
1780 else if (regnum < FP0_REGNUM)
1781 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1782 REGISTER_BYTE (regnum)));
1783 else
1784 pa_print_fp_reg (regnum);
1785 }
1786
1787 static void
1788 pa_print_registers (raw_regs, regnum, fpregs)
1789 char *raw_regs;
1790 int regnum;
1791 int fpregs;
1792 {
1793 int i,j;
1794 long val;
1795
1796 for (i = 0; i < 18; i++)
1797 {
1798 for (j = 0; j < 4; j++)
1799 {
1800 val =
1801 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1802 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1803 }
1804 printf_unfiltered ("\n");
1805 }
1806
1807 if (fpregs)
1808 for (i = 72; i < NUM_REGS; i++)
1809 pa_print_fp_reg (i);
1810 }
1811
1812 static void
1813 pa_print_fp_reg (i)
1814 int i;
1815 {
1816 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1817 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1818
1819 /* Get 32bits of data. */
1820 read_relative_register_raw_bytes (i, raw_buffer);
1821
1822 /* Put it in the buffer. No conversions are ever necessary. */
1823 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1824
1825 fputs_filtered (reg_names[i], gdb_stdout);
1826 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1827 fputs_filtered ("(single precision) ", gdb_stdout);
1828
1829 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1830 1, 0, Val_pretty_default);
1831 printf_filtered ("\n");
1832
1833 /* If "i" is even, then this register can also be a double-precision
1834 FP register. Dump it out as such. */
1835 if ((i % 2) == 0)
1836 {
1837 /* Get the data in raw format for the 2nd half. */
1838 read_relative_register_raw_bytes (i + 1, raw_buffer);
1839
1840 /* Copy it into the appropriate part of the virtual buffer. */
1841 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1842 REGISTER_RAW_SIZE (i));
1843
1844 /* Dump it as a double. */
1845 fputs_filtered (reg_names[i], gdb_stdout);
1846 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1847 fputs_filtered ("(double precision) ", gdb_stdout);
1848
1849 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1850 1, 0, Val_pretty_default);
1851 printf_filtered ("\n");
1852 }
1853 }
1854
1855 /* Return one if PC is in the call path of a trampoline, else return zero.
1856
1857 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1858 just shared library trampolines (import, export). */
1859
1860 int
1861 in_solib_call_trampoline (pc, name)
1862 CORE_ADDR pc;
1863 char *name;
1864 {
1865 struct minimal_symbol *minsym;
1866 struct unwind_table_entry *u;
1867 static CORE_ADDR dyncall = 0;
1868 static CORE_ADDR sr4export = 0;
1869
1870 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1871 new exec file */
1872
1873 /* First see if PC is in one of the two C-library trampolines. */
1874 if (!dyncall)
1875 {
1876 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1877 if (minsym)
1878 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1879 else
1880 dyncall = -1;
1881 }
1882
1883 if (!sr4export)
1884 {
1885 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1886 if (minsym)
1887 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1888 else
1889 sr4export = -1;
1890 }
1891
1892 if (pc == dyncall || pc == sr4export)
1893 return 1;
1894
1895 /* Get the unwind descriptor corresponding to PC, return zero
1896 if no unwind was found. */
1897 u = find_unwind_entry (pc);
1898 if (!u)
1899 return 0;
1900
1901 /* If this isn't a linker stub, then return now. */
1902 if (u->stub_type == 0)
1903 return 0;
1904
1905 /* By definition a long-branch stub is a call stub. */
1906 if (u->stub_type == LONG_BRANCH)
1907 return 1;
1908
1909 /* The call and return path execute the same instructions within
1910 an IMPORT stub! So an IMPORT stub is both a call and return
1911 trampoline. */
1912 if (u->stub_type == IMPORT)
1913 return 1;
1914
1915 /* Parameter relocation stubs always have a call path and may have a
1916 return path. */
1917 if (u->stub_type == PARAMETER_RELOCATION
1918 || u->stub_type == EXPORT)
1919 {
1920 CORE_ADDR addr;
1921
1922 /* Search forward from the current PC until we hit a branch
1923 or the end of the stub. */
1924 for (addr = pc; addr <= u->region_end; addr += 4)
1925 {
1926 unsigned long insn;
1927
1928 insn = read_memory_integer (addr, 4);
1929
1930 /* Does it look like a bl? If so then it's the call path, if
1931 we find a bv or be first, then we're on the return path. */
1932 if ((insn & 0xfc00e000) == 0xe8000000)
1933 return 1;
1934 else if ((insn & 0xfc00e001) == 0xe800c000
1935 || (insn & 0xfc000000) == 0xe0000000)
1936 return 0;
1937 }
1938
1939 /* Should never happen. */
1940 warning ("Unable to find branch in parameter relocation stub.\n");
1941 return 0;
1942 }
1943
1944 /* Unknown stub type. For now, just return zero. */
1945 return 0;
1946 }
1947
1948 /* Return one if PC is in the return path of a trampoline, else return zero.
1949
1950 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1951 just shared library trampolines (import, export). */
1952
1953 int
1954 in_solib_return_trampoline (pc, name)
1955 CORE_ADDR pc;
1956 char *name;
1957 {
1958 struct unwind_table_entry *u;
1959
1960 /* Get the unwind descriptor corresponding to PC, return zero
1961 if no unwind was found. */
1962 u = find_unwind_entry (pc);
1963 if (!u)
1964 return 0;
1965
1966 /* If this isn't a linker stub or it's just a long branch stub, then
1967 return zero. */
1968 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
1969 return 0;
1970
1971 /* The call and return path execute the same instructions within
1972 an IMPORT stub! So an IMPORT stub is both a call and return
1973 trampoline. */
1974 if (u->stub_type == IMPORT)
1975 return 1;
1976
1977 /* Parameter relocation stubs always have a call path and may have a
1978 return path. */
1979 if (u->stub_type == PARAMETER_RELOCATION
1980 || u->stub_type == EXPORT)
1981 {
1982 CORE_ADDR addr;
1983
1984 /* Search forward from the current PC until we hit a branch
1985 or the end of the stub. */
1986 for (addr = pc; addr <= u->region_end; addr += 4)
1987 {
1988 unsigned long insn;
1989
1990 insn = read_memory_integer (addr, 4);
1991
1992 /* Does it look like a bl? If so then it's the call path, if
1993 we find a bv or be first, then we're on the return path. */
1994 if ((insn & 0xfc00e000) == 0xe8000000)
1995 return 0;
1996 else if ((insn & 0xfc00e001) == 0xe800c000
1997 || (insn & 0xfc000000) == 0xe0000000)
1998 return 1;
1999 }
2000
2001 /* Should never happen. */
2002 warning ("Unable to find branch in parameter relocation stub.\n");
2003 return 0;
2004 }
2005
2006 /* Unknown stub type. For now, just return zero. */
2007 return 0;
2008
2009 }
2010
2011 /* Figure out if PC is in a trampoline, and if so find out where
2012 the trampoline will jump to. If not in a trampoline, return zero.
2013
2014 Simple code examination probably is not a good idea since the code
2015 sequences in trampolines can also appear in user code.
2016
2017 We use unwinds and information from the minimal symbol table to
2018 determine when we're in a trampoline. This won't work for ELF
2019 (yet) since it doesn't create stub unwind entries. Whether or
2020 not ELF will create stub unwinds or normal unwinds for linker
2021 stubs is still being debated.
2022
2023 This should handle simple calls through dyncall or sr4export,
2024 long calls, argument relocation stubs, and dyncall/sr4export
2025 calling an argument relocation stub. It even handles some stubs
2026 used in dynamic executables. */
2027
2028 CORE_ADDR
2029 skip_trampoline_code (pc, name)
2030 CORE_ADDR pc;
2031 char *name;
2032 {
2033 long orig_pc = pc;
2034 long prev_inst, curr_inst, loc;
2035 static CORE_ADDR dyncall = 0;
2036 static CORE_ADDR sr4export = 0;
2037 struct minimal_symbol *msym;
2038 struct unwind_table_entry *u;
2039
2040 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2041 new exec file */
2042
2043 if (!dyncall)
2044 {
2045 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2046 if (msym)
2047 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2048 else
2049 dyncall = -1;
2050 }
2051
2052 if (!sr4export)
2053 {
2054 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2055 if (msym)
2056 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2057 else
2058 sr4export = -1;
2059 }
2060
2061 /* Addresses passed to dyncall may *NOT* be the actual address
2062 of the function. So we may have to do something special. */
2063 if (pc == dyncall)
2064 {
2065 pc = (CORE_ADDR) read_register (22);
2066
2067 /* If bit 30 (counting from the left) is on, then pc is the address of
2068 the PLT entry for this function, not the address of the function
2069 itself. Bit 31 has meaning too, but only for MPE. */
2070 if (pc & 0x2)
2071 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2072 }
2073 else if (pc == sr4export)
2074 pc = (CORE_ADDR) (read_register (22));
2075
2076 /* Get the unwind descriptor corresponding to PC, return zero
2077 if no unwind was found. */
2078 u = find_unwind_entry (pc);
2079 if (!u)
2080 return 0;
2081
2082 /* If this isn't a linker stub, then return now. */
2083 if (u->stub_type == 0)
2084 return orig_pc == pc ? 0 : pc & ~0x3;
2085
2086 /* It's a stub. Search for a branch and figure out where it goes.
2087 Note we have to handle multi insn branch sequences like ldil;ble.
2088 Most (all?) other branches can be determined by examining the contents
2089 of certain registers and the stack. */
2090 loc = pc;
2091 curr_inst = 0;
2092 prev_inst = 0;
2093 while (1)
2094 {
2095 /* Make sure we haven't walked outside the range of this stub. */
2096 if (u != find_unwind_entry (loc))
2097 {
2098 warning ("Unable to find branch in linker stub");
2099 return orig_pc == pc ? 0 : pc & ~0x3;
2100 }
2101
2102 prev_inst = curr_inst;
2103 curr_inst = read_memory_integer (loc, 4);
2104
2105 /* Does it look like a branch external using %r1? Then it's the
2106 branch from the stub to the actual function. */
2107 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2108 {
2109 /* Yup. See if the previous instruction loaded
2110 a value into %r1. If so compute and return the jump address. */
2111 if ((prev_inst & 0xffe00000) == 0x20200000)
2112 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2113 else
2114 {
2115 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2116 return orig_pc == pc ? 0 : pc & ~0x3;
2117 }
2118 }
2119
2120 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2121 import stub to an export stub.
2122
2123 It is impossible to determine the target of the branch via
2124 simple examination of instructions and/or data (consider
2125 that the address in the plabel may be the address of the
2126 bind-on-reference routine in the dynamic loader).
2127
2128 So we have try an alternative approach.
2129
2130 Get the name of the symbol at our current location; it should
2131 be a stub symbol with the same name as the symbol in the
2132 shared library.
2133
2134 Then lookup a minimal symbol with the same name; we should
2135 get the minimal symbol for the target routine in the shared
2136 library as those take precedence of import/export stubs. */
2137 if (curr_inst == 0xe2a00000)
2138 {
2139 struct minimal_symbol *stubsym, *libsym;
2140
2141 stubsym = lookup_minimal_symbol_by_pc (loc);
2142 if (stubsym == NULL)
2143 {
2144 warning ("Unable to find symbol for 0x%x", loc);
2145 return orig_pc == pc ? 0 : pc & ~0x3;
2146 }
2147
2148 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2149 if (libsym == NULL)
2150 {
2151 warning ("Unable to find library symbol for %s\n",
2152 SYMBOL_NAME (stubsym));
2153 return orig_pc == pc ? 0 : pc & ~0x3;
2154 }
2155
2156 return SYMBOL_VALUE (libsym);
2157 }
2158
2159 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2160 branch from the stub to the actual function. */
2161 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2162 || (curr_inst & 0xffe0e000) == 0xe8000000)
2163 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2164
2165 /* Does it look like bv (rp)? Note this depends on the
2166 current stack pointer being the same as the stack
2167 pointer in the stub itself! This is a branch on from the
2168 stub back to the original caller. */
2169 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2170 {
2171 /* Yup. See if the previous instruction loaded
2172 rp from sp - 8. */
2173 if (prev_inst == 0x4bc23ff1)
2174 return (read_memory_integer
2175 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2176 else
2177 {
2178 warning ("Unable to find restore of %%rp before bv (%%rp).");
2179 return orig_pc == pc ? 0 : pc & ~0x3;
2180 }
2181 }
2182
2183 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2184 the original caller from the stub. Used in dynamic executables. */
2185 else if (curr_inst == 0xe0400002)
2186 {
2187 /* The value we jump to is sitting in sp - 24. But that's
2188 loaded several instructions before the be instruction.
2189 I guess we could check for the previous instruction being
2190 mtsp %r1,%sr0 if we want to do sanity checking. */
2191 return (read_memory_integer
2192 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2193 }
2194
2195 /* Haven't found the branch yet, but we're still in the stub.
2196 Keep looking. */
2197 loc += 4;
2198 }
2199 }
2200
2201 /* For the given instruction (INST), return any adjustment it makes
2202 to the stack pointer or zero for no adjustment.
2203
2204 This only handles instructions commonly found in prologues. */
2205
2206 static int
2207 prologue_inst_adjust_sp (inst)
2208 unsigned long inst;
2209 {
2210 /* This must persist across calls. */
2211 static int save_high21;
2212
2213 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2214 if ((inst & 0xffffc000) == 0x37de0000)
2215 return extract_14 (inst);
2216
2217 /* stwm X,D(sp) */
2218 if ((inst & 0xffe00000) == 0x6fc00000)
2219 return extract_14 (inst);
2220
2221 /* addil high21,%r1; ldo low11,(%r1),%r30)
2222 save high bits in save_high21 for later use. */
2223 if ((inst & 0xffe00000) == 0x28200000)
2224 {
2225 save_high21 = extract_21 (inst);
2226 return 0;
2227 }
2228
2229 if ((inst & 0xffff0000) == 0x343e0000)
2230 return save_high21 + extract_14 (inst);
2231
2232 /* fstws as used by the HP compilers. */
2233 if ((inst & 0xffffffe0) == 0x2fd01220)
2234 return extract_5_load (inst);
2235
2236 /* No adjustment. */
2237 return 0;
2238 }
2239
2240 /* Return nonzero if INST is a branch of some kind, else return zero. */
2241
2242 static int
2243 is_branch (inst)
2244 unsigned long inst;
2245 {
2246 switch (inst >> 26)
2247 {
2248 case 0x20:
2249 case 0x21:
2250 case 0x22:
2251 case 0x23:
2252 case 0x28:
2253 case 0x29:
2254 case 0x2a:
2255 case 0x2b:
2256 case 0x30:
2257 case 0x31:
2258 case 0x32:
2259 case 0x33:
2260 case 0x38:
2261 case 0x39:
2262 case 0x3a:
2263 return 1;
2264
2265 default:
2266 return 0;
2267 }
2268 }
2269
2270 /* Return the register number for a GR which is saved by INST or
2271 zero it INST does not save a GR. */
2272
2273 static int
2274 inst_saves_gr (inst)
2275 unsigned long inst;
2276 {
2277 /* Does it look like a stw? */
2278 if ((inst >> 26) == 0x1a)
2279 return extract_5R_store (inst);
2280
2281 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2282 if ((inst >> 26) == 0x1b)
2283 return extract_5R_store (inst);
2284
2285 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2286 too. */
2287 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2288 return extract_5R_store (inst);
2289
2290 return 0;
2291 }
2292
2293 /* Return the register number for a FR which is saved by INST or
2294 zero it INST does not save a FR.
2295
2296 Note we only care about full 64bit register stores (that's the only
2297 kind of stores the prologue will use).
2298
2299 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2300
2301 static int
2302 inst_saves_fr (inst)
2303 unsigned long inst;
2304 {
2305 if ((inst & 0xfc00dfc0) == 0x2c001200)
2306 return extract_5r_store (inst);
2307 return 0;
2308 }
2309
2310 /* Advance PC across any function entry prologue instructions
2311 to reach some "real" code.
2312
2313 Use information in the unwind table to determine what exactly should
2314 be in the prologue. */
2315
2316 CORE_ADDR
2317 skip_prologue (pc)
2318 CORE_ADDR pc;
2319 {
2320 char buf[4];
2321 CORE_ADDR orig_pc = pc;
2322 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2323 unsigned long args_stored, status, i, restart_gr, restart_fr;
2324 struct unwind_table_entry *u;
2325
2326 restart_gr = 0;
2327 restart_fr = 0;
2328
2329 restart:
2330 u = find_unwind_entry (pc);
2331 if (!u)
2332 return pc;
2333
2334 /* If we are not at the beginning of a function, then return now. */
2335 if ((pc & ~0x3) != u->region_start)
2336 return pc;
2337
2338 /* This is how much of a frame adjustment we need to account for. */
2339 stack_remaining = u->Total_frame_size << 3;
2340
2341 /* Magic register saves we want to know about. */
2342 save_rp = u->Save_RP;
2343 save_sp = u->Save_SP;
2344
2345 /* An indication that args may be stored into the stack. Unfortunately
2346 the HPUX compilers tend to set this in cases where no args were
2347 stored too!. */
2348 args_stored = 1;
2349
2350 /* Turn the Entry_GR field into a bitmask. */
2351 save_gr = 0;
2352 for (i = 3; i < u->Entry_GR + 3; i++)
2353 {
2354 /* Frame pointer gets saved into a special location. */
2355 if (u->Save_SP && i == FP_REGNUM)
2356 continue;
2357
2358 save_gr |= (1 << i);
2359 }
2360 save_gr &= ~restart_gr;
2361
2362 /* Turn the Entry_FR field into a bitmask too. */
2363 save_fr = 0;
2364 for (i = 12; i < u->Entry_FR + 12; i++)
2365 save_fr |= (1 << i);
2366 save_fr &= ~restart_fr;
2367
2368 /* Loop until we find everything of interest or hit a branch.
2369
2370 For unoptimized GCC code and for any HP CC code this will never ever
2371 examine any user instructions.
2372
2373 For optimzied GCC code we're faced with problems. GCC will schedule
2374 its prologue and make prologue instructions available for delay slot
2375 filling. The end result is user code gets mixed in with the prologue
2376 and a prologue instruction may be in the delay slot of the first branch
2377 or call.
2378
2379 Some unexpected things are expected with debugging optimized code, so
2380 we allow this routine to walk past user instructions in optimized
2381 GCC code. */
2382 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2383 || args_stored)
2384 {
2385 unsigned int reg_num;
2386 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2387 unsigned long old_save_rp, old_save_sp, next_inst;
2388
2389 /* Save copies of all the triggers so we can compare them later
2390 (only for HPC). */
2391 old_save_gr = save_gr;
2392 old_save_fr = save_fr;
2393 old_save_rp = save_rp;
2394 old_save_sp = save_sp;
2395 old_stack_remaining = stack_remaining;
2396
2397 status = target_read_memory (pc, buf, 4);
2398 inst = extract_unsigned_integer (buf, 4);
2399
2400 /* Yow! */
2401 if (status != 0)
2402 return pc;
2403
2404 /* Note the interesting effects of this instruction. */
2405 stack_remaining -= prologue_inst_adjust_sp (inst);
2406
2407 /* There is only one instruction used for saving RP into the stack. */
2408 if (inst == 0x6bc23fd9)
2409 save_rp = 0;
2410
2411 /* This is the only way we save SP into the stack. At this time
2412 the HP compilers never bother to save SP into the stack. */
2413 if ((inst & 0xffffc000) == 0x6fc10000)
2414 save_sp = 0;
2415
2416 /* Account for general and floating-point register saves. */
2417 reg_num = inst_saves_gr (inst);
2418 save_gr &= ~(1 << reg_num);
2419
2420 /* Ugh. Also account for argument stores into the stack.
2421 Unfortunately args_stored only tells us that some arguments
2422 where stored into the stack. Not how many or what kind!
2423
2424 This is a kludge as on the HP compiler sets this bit and it
2425 never does prologue scheduling. So once we see one, skip past
2426 all of them. We have similar code for the fp arg stores below.
2427
2428 FIXME. Can still die if we have a mix of GR and FR argument
2429 stores! */
2430 if (reg_num >= 23 && reg_num <= 26)
2431 {
2432 while (reg_num >= 23 && reg_num <= 26)
2433 {
2434 pc += 4;
2435 status = target_read_memory (pc, buf, 4);
2436 inst = extract_unsigned_integer (buf, 4);
2437 if (status != 0)
2438 return pc;
2439 reg_num = inst_saves_gr (inst);
2440 }
2441 args_stored = 0;
2442 continue;
2443 }
2444
2445 reg_num = inst_saves_fr (inst);
2446 save_fr &= ~(1 << reg_num);
2447
2448 status = target_read_memory (pc + 4, buf, 4);
2449 next_inst = extract_unsigned_integer (buf, 4);
2450
2451 /* Yow! */
2452 if (status != 0)
2453 return pc;
2454
2455 /* We've got to be read to handle the ldo before the fp register
2456 save. */
2457 if ((inst & 0xfc000000) == 0x34000000
2458 && inst_saves_fr (next_inst) >= 4
2459 && inst_saves_fr (next_inst) <= 7)
2460 {
2461 /* So we drop into the code below in a reasonable state. */
2462 reg_num = inst_saves_fr (next_inst);
2463 pc -= 4;
2464 }
2465
2466 /* Ugh. Also account for argument stores into the stack.
2467 This is a kludge as on the HP compiler sets this bit and it
2468 never does prologue scheduling. So once we see one, skip past
2469 all of them. */
2470 if (reg_num >= 4 && reg_num <= 7)
2471 {
2472 while (reg_num >= 4 && reg_num <= 7)
2473 {
2474 pc += 8;
2475 status = target_read_memory (pc, buf, 4);
2476 inst = extract_unsigned_integer (buf, 4);
2477 if (status != 0)
2478 return pc;
2479 if ((inst & 0xfc000000) != 0x34000000)
2480 break;
2481 status = target_read_memory (pc + 4, buf, 4);
2482 next_inst = extract_unsigned_integer (buf, 4);
2483 if (status != 0)
2484 return pc;
2485 reg_num = inst_saves_fr (next_inst);
2486 }
2487 args_stored = 0;
2488 continue;
2489 }
2490
2491 /* Quit if we hit any kind of branch. This can happen if a prologue
2492 instruction is in the delay slot of the first call/branch. */
2493 if (is_branch (inst))
2494 break;
2495
2496 /* What a crock. The HP compilers set args_stored even if no
2497 arguments were stored into the stack (boo hiss). This could
2498 cause this code to then skip a bunch of user insns (up to the
2499 first branch).
2500
2501 To combat this we try to identify when args_stored was bogusly
2502 set and clear it. We only do this when args_stored is nonzero,
2503 all other resources are accounted for, and nothing changed on
2504 this pass. */
2505 if (args_stored
2506 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2507 && old_save_gr == save_gr && old_save_fr == save_fr
2508 && old_save_rp == save_rp && old_save_sp == save_sp
2509 && old_stack_remaining == stack_remaining)
2510 break;
2511
2512 /* Bump the PC. */
2513 pc += 4;
2514 }
2515
2516 /* We've got a tenative location for the end of the prologue. However
2517 because of limitations in the unwind descriptor mechanism we may
2518 have went too far into user code looking for the save of a register
2519 that does not exist. So, if there registers we expected to be saved
2520 but never were, mask them out and restart.
2521
2522 This should only happen in optimized code, and should be very rare. */
2523 if (save_gr || save_fr
2524 && ! (restart_fr || restart_gr))
2525 {
2526 pc = orig_pc;
2527 restart_gr = save_gr;
2528 restart_fr = save_fr;
2529 goto restart;
2530 }
2531
2532 return pc;
2533 }
2534
2535 /* Put here the code to store, into a struct frame_saved_regs,
2536 the addresses of the saved registers of frame described by FRAME_INFO.
2537 This includes special registers such as pc and fp saved in special
2538 ways in the stack frame. sp is even more special:
2539 the address we return for it IS the sp for the next frame. */
2540
2541 void
2542 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2543 struct frame_info *frame_info;
2544 struct frame_saved_regs *frame_saved_regs;
2545 {
2546 CORE_ADDR pc;
2547 struct unwind_table_entry *u;
2548 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2549 int status, i, reg;
2550 char buf[4];
2551 int fp_loc = -1;
2552
2553 /* Zero out everything. */
2554 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2555
2556 /* Call dummy frames always look the same, so there's no need to
2557 examine the dummy code to determine locations of saved registers;
2558 instead, let find_dummy_frame_regs fill in the correct offsets
2559 for the saved registers. */
2560 if ((frame_info->pc >= frame_info->frame
2561 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2562 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2563 + 6 * 4)))
2564 find_dummy_frame_regs (frame_info, frame_saved_regs);
2565
2566 /* Interrupt handlers are special too. They lay out the register
2567 state in the exact same order as the register numbers in GDB. */
2568 if (pc_in_interrupt_handler (frame_info->pc))
2569 {
2570 for (i = 0; i < NUM_REGS; i++)
2571 {
2572 /* SP is a little special. */
2573 if (i == SP_REGNUM)
2574 frame_saved_regs->regs[SP_REGNUM]
2575 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2576 else
2577 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2578 }
2579 return;
2580 }
2581
2582 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2583 /* Handle signal handler callers. */
2584 if (frame_info->signal_handler_caller)
2585 {
2586 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2587 return;
2588 }
2589 #endif
2590
2591 /* Get the starting address of the function referred to by the PC
2592 saved in frame. */
2593 pc = get_pc_function_start (frame_info->pc);
2594
2595 /* Yow! */
2596 u = find_unwind_entry (pc);
2597 if (!u)
2598 return;
2599
2600 /* This is how much of a frame adjustment we need to account for. */
2601 stack_remaining = u->Total_frame_size << 3;
2602
2603 /* Magic register saves we want to know about. */
2604 save_rp = u->Save_RP;
2605 save_sp = u->Save_SP;
2606
2607 /* Turn the Entry_GR field into a bitmask. */
2608 save_gr = 0;
2609 for (i = 3; i < u->Entry_GR + 3; i++)
2610 {
2611 /* Frame pointer gets saved into a special location. */
2612 if (u->Save_SP && i == FP_REGNUM)
2613 continue;
2614
2615 save_gr |= (1 << i);
2616 }
2617
2618 /* Turn the Entry_FR field into a bitmask too. */
2619 save_fr = 0;
2620 for (i = 12; i < u->Entry_FR + 12; i++)
2621 save_fr |= (1 << i);
2622
2623 /* The frame always represents the value of %sp at entry to the
2624 current function (and is thus equivalent to the "saved" stack
2625 pointer. */
2626 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2627
2628 /* Loop until we find everything of interest or hit a branch.
2629
2630 For unoptimized GCC code and for any HP CC code this will never ever
2631 examine any user instructions.
2632
2633 For optimzied GCC code we're faced with problems. GCC will schedule
2634 its prologue and make prologue instructions available for delay slot
2635 filling. The end result is user code gets mixed in with the prologue
2636 and a prologue instruction may be in the delay slot of the first branch
2637 or call.
2638
2639 Some unexpected things are expected with debugging optimized code, so
2640 we allow this routine to walk past user instructions in optimized
2641 GCC code. */
2642 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2643 {
2644 status = target_read_memory (pc, buf, 4);
2645 inst = extract_unsigned_integer (buf, 4);
2646
2647 /* Yow! */
2648 if (status != 0)
2649 return;
2650
2651 /* Note the interesting effects of this instruction. */
2652 stack_remaining -= prologue_inst_adjust_sp (inst);
2653
2654 /* There is only one instruction used for saving RP into the stack. */
2655 if (inst == 0x6bc23fd9)
2656 {
2657 save_rp = 0;
2658 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2659 }
2660
2661 /* Just note that we found the save of SP into the stack. The
2662 value for frame_saved_regs was computed above. */
2663 if ((inst & 0xffffc000) == 0x6fc10000)
2664 save_sp = 0;
2665
2666 /* Account for general and floating-point register saves. */
2667 reg = inst_saves_gr (inst);
2668 if (reg >= 3 && reg <= 18
2669 && (!u->Save_SP || reg != FP_REGNUM))
2670 {
2671 save_gr &= ~(1 << reg);
2672
2673 /* stwm with a positive displacement is a *post modify*. */
2674 if ((inst >> 26) == 0x1b
2675 && extract_14 (inst) >= 0)
2676 frame_saved_regs->regs[reg] = frame_info->frame;
2677 else
2678 {
2679 /* Handle code with and without frame pointers. */
2680 if (u->Save_SP)
2681 frame_saved_regs->regs[reg]
2682 = frame_info->frame + extract_14 (inst);
2683 else
2684 frame_saved_regs->regs[reg]
2685 = frame_info->frame + (u->Total_frame_size << 3)
2686 + extract_14 (inst);
2687 }
2688 }
2689
2690
2691 /* GCC handles callee saved FP regs a little differently.
2692
2693 It emits an instruction to put the value of the start of
2694 the FP store area into %r1. It then uses fstds,ma with
2695 a basereg of %r1 for the stores.
2696
2697 HP CC emits them at the current stack pointer modifying
2698 the stack pointer as it stores each register. */
2699
2700 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2701 if ((inst & 0xffffc000) == 0x34610000
2702 || (inst & 0xffffc000) == 0x37c10000)
2703 fp_loc = extract_14 (inst);
2704
2705 reg = inst_saves_fr (inst);
2706 if (reg >= 12 && reg <= 21)
2707 {
2708 /* Note +4 braindamage below is necessary because the FP status
2709 registers are internally 8 registers rather than the expected
2710 4 registers. */
2711 save_fr &= ~(1 << reg);
2712 if (fp_loc == -1)
2713 {
2714 /* 1st HP CC FP register store. After this instruction
2715 we've set enough state that the GCC and HPCC code are
2716 both handled in the same manner. */
2717 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2718 fp_loc = 8;
2719 }
2720 else
2721 {
2722 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2723 = frame_info->frame + fp_loc;
2724 fp_loc += 8;
2725 }
2726 }
2727
2728 /* Quit if we hit any kind of branch. This can happen if a prologue
2729 instruction is in the delay slot of the first call/branch. */
2730 if (is_branch (inst))
2731 break;
2732
2733 /* Bump the PC. */
2734 pc += 4;
2735 }
2736 }
2737
2738 #ifdef MAINTENANCE_CMDS
2739
2740 static void
2741 unwind_command (exp, from_tty)
2742 char *exp;
2743 int from_tty;
2744 {
2745 CORE_ADDR address;
2746 struct unwind_table_entry *u;
2747
2748 /* If we have an expression, evaluate it and use it as the address. */
2749
2750 if (exp != 0 && *exp != 0)
2751 address = parse_and_eval_address (exp);
2752 else
2753 return;
2754
2755 u = find_unwind_entry (address);
2756
2757 if (!u)
2758 {
2759 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2760 return;
2761 }
2762
2763 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2764
2765 printf_unfiltered ("\tregion_start = ");
2766 print_address (u->region_start, gdb_stdout);
2767
2768 printf_unfiltered ("\n\tregion_end = ");
2769 print_address (u->region_end, gdb_stdout);
2770
2771 #ifdef __STDC__
2772 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2773 #else
2774 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2775 #endif
2776
2777 printf_unfiltered ("\n\tflags =");
2778 pif (Cannot_unwind);
2779 pif (Millicode);
2780 pif (Millicode_save_sr0);
2781 pif (Entry_SR);
2782 pif (Args_stored);
2783 pif (Variable_Frame);
2784 pif (Separate_Package_Body);
2785 pif (Frame_Extension_Millicode);
2786 pif (Stack_Overflow_Check);
2787 pif (Two_Instruction_SP_Increment);
2788 pif (Ada_Region);
2789 pif (Save_SP);
2790 pif (Save_RP);
2791 pif (Save_MRP_in_frame);
2792 pif (extn_ptr_defined);
2793 pif (Cleanup_defined);
2794 pif (MPE_XL_interrupt_marker);
2795 pif (HP_UX_interrupt_marker);
2796 pif (Large_frame);
2797
2798 putchar_unfiltered ('\n');
2799
2800 #ifdef __STDC__
2801 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2802 #else
2803 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2804 #endif
2805
2806 pin (Region_description);
2807 pin (Entry_FR);
2808 pin (Entry_GR);
2809 pin (Total_frame_size);
2810 }
2811 #endif /* MAINTENANCE_CMDS */
2812
2813 void
2814 _initialize_hppa_tdep ()
2815 {
2816 tm_print_insn = print_insn_hppa;
2817
2818 #ifdef MAINTENANCE_CMDS
2819 add_cmd ("unwind", class_maintenance, unwind_command,
2820 "Print unwind table entry at given address.",
2821 &maintenanceprintlist);
2822 #endif /* MAINTENANCE_CMDS */
2823 }
This page took 0.088006 seconds and 4 git commands to generate.