Switch the license of all .exp files to GPLv3.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "bfd.h"
27 #include "inferior.h"
28 #include "regcache.h"
29 #include "completer.h"
30 #include "osabi.h"
31 #include "gdb_assert.h"
32 #include "gdb_stdint.h"
33 #include "arch-utils.h"
34 /* For argument passing to the inferior */
35 #include "symtab.h"
36 #include "dis-asm.h"
37 #include "trad-frame.h"
38 #include "frame-unwind.h"
39 #include "frame-base.h"
40
41 #include "gdbcore.h"
42 #include "gdbcmd.h"
43 #include "gdbtypes.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46
47 static int hppa_debug = 0;
48
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74
75 /* Routines to extract various sized constants out of hppa
76 instructions. */
77
78 /* This assumes that no garbage lies outside of the lower bits of
79 value. */
80
81 int
82 hppa_sign_extend (unsigned val, unsigned bits)
83 {
84 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
85 }
86
87 /* For many immediate values the sign bit is the low bit! */
88
89 int
90 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
91 {
92 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
93 }
94
95 /* Extract the bits at positions between FROM and TO, using HP's numbering
96 (MSB = 0). */
97
98 int
99 hppa_get_field (unsigned word, int from, int to)
100 {
101 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
102 }
103
104 /* extract the immediate field from a ld{bhw}s instruction */
105
106 int
107 hppa_extract_5_load (unsigned word)
108 {
109 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
110 }
111
112 /* extract the immediate field from a break instruction */
113
114 unsigned
115 hppa_extract_5r_store (unsigned word)
116 {
117 return (word & MASK_5);
118 }
119
120 /* extract the immediate field from a {sr}sm instruction */
121
122 unsigned
123 hppa_extract_5R_store (unsigned word)
124 {
125 return (word >> 16 & MASK_5);
126 }
127
128 /* extract a 14 bit immediate field */
129
130 int
131 hppa_extract_14 (unsigned word)
132 {
133 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
134 }
135
136 /* extract a 21 bit constant */
137
138 int
139 hppa_extract_21 (unsigned word)
140 {
141 int val;
142
143 word &= MASK_21;
144 word <<= 11;
145 val = hppa_get_field (word, 20, 20);
146 val <<= 11;
147 val |= hppa_get_field (word, 9, 19);
148 val <<= 2;
149 val |= hppa_get_field (word, 5, 6);
150 val <<= 5;
151 val |= hppa_get_field (word, 0, 4);
152 val <<= 2;
153 val |= hppa_get_field (word, 7, 8);
154 return hppa_sign_extend (val, 21) << 11;
155 }
156
157 /* extract a 17 bit constant from branch instructions, returning the
158 19 bit signed value. */
159
160 int
161 hppa_extract_17 (unsigned word)
162 {
163 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
164 hppa_get_field (word, 29, 29) << 10 |
165 hppa_get_field (word, 11, 15) << 11 |
166 (word & 0x1) << 16, 17) << 2;
167 }
168
169 CORE_ADDR
170 hppa_symbol_address(const char *sym)
171 {
172 struct minimal_symbol *minsym;
173
174 minsym = lookup_minimal_symbol (sym, NULL, NULL);
175 if (minsym)
176 return SYMBOL_VALUE_ADDRESS (minsym);
177 else
178 return (CORE_ADDR)-1;
179 }
180
181 struct hppa_objfile_private *
182 hppa_init_objfile_priv_data (struct objfile *objfile)
183 {
184 struct hppa_objfile_private *priv;
185
186 priv = (struct hppa_objfile_private *)
187 obstack_alloc (&objfile->objfile_obstack,
188 sizeof (struct hppa_objfile_private));
189 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
190 memset (priv, 0, sizeof (*priv));
191
192 return priv;
193 }
194 \f
195
196 /* Compare the start address for two unwind entries returning 1 if
197 the first address is larger than the second, -1 if the second is
198 larger than the first, and zero if they are equal. */
199
200 static int
201 compare_unwind_entries (const void *arg1, const void *arg2)
202 {
203 const struct unwind_table_entry *a = arg1;
204 const struct unwind_table_entry *b = arg2;
205
206 if (a->region_start > b->region_start)
207 return 1;
208 else if (a->region_start < b->region_start)
209 return -1;
210 else
211 return 0;
212 }
213
214 static void
215 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
216 {
217 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
218 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
219 {
220 bfd_vma value = section->vma - section->filepos;
221 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
222
223 if (value < *low_text_segment_address)
224 *low_text_segment_address = value;
225 }
226 }
227
228 static void
229 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
230 asection *section, unsigned int entries, unsigned int size,
231 CORE_ADDR text_offset)
232 {
233 /* We will read the unwind entries into temporary memory, then
234 fill in the actual unwind table. */
235
236 if (size > 0)
237 {
238 unsigned long tmp;
239 unsigned i;
240 char *buf = alloca (size);
241 CORE_ADDR low_text_segment_address;
242
243 /* For ELF targets, then unwinds are supposed to
244 be segment relative offsets instead of absolute addresses.
245
246 Note that when loading a shared library (text_offset != 0) the
247 unwinds are already relative to the text_offset that will be
248 passed in. */
249 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
250 {
251 low_text_segment_address = -1;
252
253 bfd_map_over_sections (objfile->obfd,
254 record_text_segment_lowaddr,
255 &low_text_segment_address);
256
257 text_offset = low_text_segment_address;
258 }
259 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
260 {
261 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
262 }
263
264 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
265
266 /* Now internalize the information being careful to handle host/target
267 endian issues. */
268 for (i = 0; i < entries; i++)
269 {
270 table[i].region_start = bfd_get_32 (objfile->obfd,
271 (bfd_byte *) buf);
272 table[i].region_start += text_offset;
273 buf += 4;
274 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
275 table[i].region_end += text_offset;
276 buf += 4;
277 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
278 buf += 4;
279 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
280 table[i].Millicode = (tmp >> 30) & 0x1;
281 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
282 table[i].Region_description = (tmp >> 27) & 0x3;
283 table[i].reserved = (tmp >> 26) & 0x1;
284 table[i].Entry_SR = (tmp >> 25) & 0x1;
285 table[i].Entry_FR = (tmp >> 21) & 0xf;
286 table[i].Entry_GR = (tmp >> 16) & 0x1f;
287 table[i].Args_stored = (tmp >> 15) & 0x1;
288 table[i].Variable_Frame = (tmp >> 14) & 0x1;
289 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
290 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
291 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
292 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
293 table[i].sr4export = (tmp >> 9) & 0x1;
294 table[i].cxx_info = (tmp >> 8) & 0x1;
295 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
296 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
297 table[i].reserved1 = (tmp >> 5) & 0x1;
298 table[i].Save_SP = (tmp >> 4) & 0x1;
299 table[i].Save_RP = (tmp >> 3) & 0x1;
300 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
301 table[i].save_r19 = (tmp >> 1) & 0x1;
302 table[i].Cleanup_defined = tmp & 0x1;
303 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
304 buf += 4;
305 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
306 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
307 table[i].Large_frame = (tmp >> 29) & 0x1;
308 table[i].alloca_frame = (tmp >> 28) & 0x1;
309 table[i].reserved2 = (tmp >> 27) & 0x1;
310 table[i].Total_frame_size = tmp & 0x7ffffff;
311
312 /* Stub unwinds are handled elsewhere. */
313 table[i].stub_unwind.stub_type = 0;
314 table[i].stub_unwind.padding = 0;
315 }
316 }
317 }
318
319 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
320 the object file. This info is used mainly by find_unwind_entry() to find
321 out the stack frame size and frame pointer used by procedures. We put
322 everything on the psymbol obstack in the objfile so that it automatically
323 gets freed when the objfile is destroyed. */
324
325 static void
326 read_unwind_info (struct objfile *objfile)
327 {
328 asection *unwind_sec, *stub_unwind_sec;
329 unsigned unwind_size, stub_unwind_size, total_size;
330 unsigned index, unwind_entries;
331 unsigned stub_entries, total_entries;
332 CORE_ADDR text_offset;
333 struct hppa_unwind_info *ui;
334 struct hppa_objfile_private *obj_private;
335
336 text_offset = ANOFFSET (objfile->section_offsets, 0);
337 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
338 sizeof (struct hppa_unwind_info));
339
340 ui->table = NULL;
341 ui->cache = NULL;
342 ui->last = -1;
343
344 /* For reasons unknown the HP PA64 tools generate multiple unwinder
345 sections in a single executable. So we just iterate over every
346 section in the BFD looking for unwinder sections intead of trying
347 to do a lookup with bfd_get_section_by_name.
348
349 First determine the total size of the unwind tables so that we
350 can allocate memory in a nice big hunk. */
351 total_entries = 0;
352 for (unwind_sec = objfile->obfd->sections;
353 unwind_sec;
354 unwind_sec = unwind_sec->next)
355 {
356 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
357 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
358 {
359 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
360 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
361
362 total_entries += unwind_entries;
363 }
364 }
365
366 /* Now compute the size of the stub unwinds. Note the ELF tools do not
367 use stub unwinds at the current time. */
368 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
369
370 if (stub_unwind_sec)
371 {
372 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
373 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
374 }
375 else
376 {
377 stub_unwind_size = 0;
378 stub_entries = 0;
379 }
380
381 /* Compute total number of unwind entries and their total size. */
382 total_entries += stub_entries;
383 total_size = total_entries * sizeof (struct unwind_table_entry);
384
385 /* Allocate memory for the unwind table. */
386 ui->table = (struct unwind_table_entry *)
387 obstack_alloc (&objfile->objfile_obstack, total_size);
388 ui->last = total_entries - 1;
389
390 /* Now read in each unwind section and internalize the standard unwind
391 entries. */
392 index = 0;
393 for (unwind_sec = objfile->obfd->sections;
394 unwind_sec;
395 unwind_sec = unwind_sec->next)
396 {
397 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
398 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
399 {
400 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
401 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
402
403 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
404 unwind_entries, unwind_size, text_offset);
405 index += unwind_entries;
406 }
407 }
408
409 /* Now read in and internalize the stub unwind entries. */
410 if (stub_unwind_size > 0)
411 {
412 unsigned int i;
413 char *buf = alloca (stub_unwind_size);
414
415 /* Read in the stub unwind entries. */
416 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
417 0, stub_unwind_size);
418
419 /* Now convert them into regular unwind entries. */
420 for (i = 0; i < stub_entries; i++, index++)
421 {
422 /* Clear out the next unwind entry. */
423 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
424
425 /* Convert offset & size into region_start and region_end.
426 Stuff away the stub type into "reserved" fields. */
427 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
428 (bfd_byte *) buf);
429 ui->table[index].region_start += text_offset;
430 buf += 4;
431 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
432 (bfd_byte *) buf);
433 buf += 2;
434 ui->table[index].region_end
435 = ui->table[index].region_start + 4 *
436 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
437 buf += 2;
438 }
439
440 }
441
442 /* Unwind table needs to be kept sorted. */
443 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
444 compare_unwind_entries);
445
446 /* Keep a pointer to the unwind information. */
447 obj_private = (struct hppa_objfile_private *)
448 objfile_data (objfile, hppa_objfile_priv_data);
449 if (obj_private == NULL)
450 obj_private = hppa_init_objfile_priv_data (objfile);
451
452 obj_private->unwind_info = ui;
453 }
454
455 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
456 of the objfiles seeking the unwind table entry for this PC. Each objfile
457 contains a sorted list of struct unwind_table_entry. Since we do a binary
458 search of the unwind tables, we depend upon them to be sorted. */
459
460 struct unwind_table_entry *
461 find_unwind_entry (CORE_ADDR pc)
462 {
463 int first, middle, last;
464 struct objfile *objfile;
465 struct hppa_objfile_private *priv;
466
467 if (hppa_debug)
468 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
469 paddr_nz (pc));
470
471 /* A function at address 0? Not in HP-UX! */
472 if (pc == (CORE_ADDR) 0)
473 {
474 if (hppa_debug)
475 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
476 return NULL;
477 }
478
479 ALL_OBJFILES (objfile)
480 {
481 struct hppa_unwind_info *ui;
482 ui = NULL;
483 priv = objfile_data (objfile, hppa_objfile_priv_data);
484 if (priv)
485 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
486
487 if (!ui)
488 {
489 read_unwind_info (objfile);
490 priv = objfile_data (objfile, hppa_objfile_priv_data);
491 if (priv == NULL)
492 error (_("Internal error reading unwind information."));
493 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
494 }
495
496 /* First, check the cache */
497
498 if (ui->cache
499 && pc >= ui->cache->region_start
500 && pc <= ui->cache->region_end)
501 {
502 if (hppa_debug)
503 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
504 paddr_nz ((uintptr_t) ui->cache));
505 return ui->cache;
506 }
507
508 /* Not in the cache, do a binary search */
509
510 first = 0;
511 last = ui->last;
512
513 while (first <= last)
514 {
515 middle = (first + last) / 2;
516 if (pc >= ui->table[middle].region_start
517 && pc <= ui->table[middle].region_end)
518 {
519 ui->cache = &ui->table[middle];
520 if (hppa_debug)
521 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
522 paddr_nz ((uintptr_t) ui->cache));
523 return &ui->table[middle];
524 }
525
526 if (pc < ui->table[middle].region_start)
527 last = middle - 1;
528 else
529 first = middle + 1;
530 }
531 } /* ALL_OBJFILES() */
532
533 if (hppa_debug)
534 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
535
536 return NULL;
537 }
538
539 /* The epilogue is defined here as the area either on the `bv' instruction
540 itself or an instruction which destroys the function's stack frame.
541
542 We do not assume that the epilogue is at the end of a function as we can
543 also have return sequences in the middle of a function. */
544 static int
545 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
546 {
547 unsigned long status;
548 unsigned int inst;
549 char buf[4];
550 int off;
551
552 status = read_memory_nobpt (pc, buf, 4);
553 if (status != 0)
554 return 0;
555
556 inst = extract_unsigned_integer (buf, 4);
557
558 /* The most common way to perform a stack adjustment ldo X(sp),sp
559 We are destroying a stack frame if the offset is negative. */
560 if ((inst & 0xffffc000) == 0x37de0000
561 && hppa_extract_14 (inst) < 0)
562 return 1;
563
564 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
565 if (((inst & 0x0fc010e0) == 0x0fc010e0
566 || (inst & 0x0fc010e0) == 0x0fc010e0)
567 && hppa_extract_14 (inst) < 0)
568 return 1;
569
570 /* bv %r0(%rp) or bv,n %r0(%rp) */
571 if (inst == 0xe840c000 || inst == 0xe840c002)
572 return 1;
573
574 return 0;
575 }
576
577 static const unsigned char *
578 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
579 {
580 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
581 (*len) = sizeof (breakpoint);
582 return breakpoint;
583 }
584
585 /* Return the name of a register. */
586
587 static const char *
588 hppa32_register_name (int i)
589 {
590 static char *names[] = {
591 "flags", "r1", "rp", "r3",
592 "r4", "r5", "r6", "r7",
593 "r8", "r9", "r10", "r11",
594 "r12", "r13", "r14", "r15",
595 "r16", "r17", "r18", "r19",
596 "r20", "r21", "r22", "r23",
597 "r24", "r25", "r26", "dp",
598 "ret0", "ret1", "sp", "r31",
599 "sar", "pcoqh", "pcsqh", "pcoqt",
600 "pcsqt", "eiem", "iir", "isr",
601 "ior", "ipsw", "goto", "sr4",
602 "sr0", "sr1", "sr2", "sr3",
603 "sr5", "sr6", "sr7", "cr0",
604 "cr8", "cr9", "ccr", "cr12",
605 "cr13", "cr24", "cr25", "cr26",
606 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
607 "fpsr", "fpe1", "fpe2", "fpe3",
608 "fpe4", "fpe5", "fpe6", "fpe7",
609 "fr4", "fr4R", "fr5", "fr5R",
610 "fr6", "fr6R", "fr7", "fr7R",
611 "fr8", "fr8R", "fr9", "fr9R",
612 "fr10", "fr10R", "fr11", "fr11R",
613 "fr12", "fr12R", "fr13", "fr13R",
614 "fr14", "fr14R", "fr15", "fr15R",
615 "fr16", "fr16R", "fr17", "fr17R",
616 "fr18", "fr18R", "fr19", "fr19R",
617 "fr20", "fr20R", "fr21", "fr21R",
618 "fr22", "fr22R", "fr23", "fr23R",
619 "fr24", "fr24R", "fr25", "fr25R",
620 "fr26", "fr26R", "fr27", "fr27R",
621 "fr28", "fr28R", "fr29", "fr29R",
622 "fr30", "fr30R", "fr31", "fr31R"
623 };
624 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
625 return NULL;
626 else
627 return names[i];
628 }
629
630 static const char *
631 hppa64_register_name (int i)
632 {
633 static char *names[] = {
634 "flags", "r1", "rp", "r3",
635 "r4", "r5", "r6", "r7",
636 "r8", "r9", "r10", "r11",
637 "r12", "r13", "r14", "r15",
638 "r16", "r17", "r18", "r19",
639 "r20", "r21", "r22", "r23",
640 "r24", "r25", "r26", "dp",
641 "ret0", "ret1", "sp", "r31",
642 "sar", "pcoqh", "pcsqh", "pcoqt",
643 "pcsqt", "eiem", "iir", "isr",
644 "ior", "ipsw", "goto", "sr4",
645 "sr0", "sr1", "sr2", "sr3",
646 "sr5", "sr6", "sr7", "cr0",
647 "cr8", "cr9", "ccr", "cr12",
648 "cr13", "cr24", "cr25", "cr26",
649 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
650 "fpsr", "fpe1", "fpe2", "fpe3",
651 "fr4", "fr5", "fr6", "fr7",
652 "fr8", "fr9", "fr10", "fr11",
653 "fr12", "fr13", "fr14", "fr15",
654 "fr16", "fr17", "fr18", "fr19",
655 "fr20", "fr21", "fr22", "fr23",
656 "fr24", "fr25", "fr26", "fr27",
657 "fr28", "fr29", "fr30", "fr31"
658 };
659 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
660 return NULL;
661 else
662 return names[i];
663 }
664
665 static int
666 hppa64_dwarf_reg_to_regnum (int reg)
667 {
668 /* r0-r31 and sar map one-to-one. */
669 if (reg <= 32)
670 return reg;
671
672 /* fr4-fr31 are mapped from 72 in steps of 2. */
673 if (reg >= 72 || reg < 72 + 28 * 2)
674 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
675
676 error ("Invalid DWARF register num %d.", reg);
677 return -1;
678 }
679
680 /* This function pushes a stack frame with arguments as part of the
681 inferior function calling mechanism.
682
683 This is the version of the function for the 32-bit PA machines, in
684 which later arguments appear at lower addresses. (The stack always
685 grows towards higher addresses.)
686
687 We simply allocate the appropriate amount of stack space and put
688 arguments into their proper slots. */
689
690 static CORE_ADDR
691 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
692 struct regcache *regcache, CORE_ADDR bp_addr,
693 int nargs, struct value **args, CORE_ADDR sp,
694 int struct_return, CORE_ADDR struct_addr)
695 {
696 /* Stack base address at which any pass-by-reference parameters are
697 stored. */
698 CORE_ADDR struct_end = 0;
699 /* Stack base address at which the first parameter is stored. */
700 CORE_ADDR param_end = 0;
701
702 /* The inner most end of the stack after all the parameters have
703 been pushed. */
704 CORE_ADDR new_sp = 0;
705
706 /* Two passes. First pass computes the location of everything,
707 second pass writes the bytes out. */
708 int write_pass;
709
710 /* Global pointer (r19) of the function we are trying to call. */
711 CORE_ADDR gp;
712
713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
714
715 for (write_pass = 0; write_pass < 2; write_pass++)
716 {
717 CORE_ADDR struct_ptr = 0;
718 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
719 struct_ptr is adjusted for each argument below, so the first
720 argument will end up at sp-36. */
721 CORE_ADDR param_ptr = 32;
722 int i;
723 int small_struct = 0;
724
725 for (i = 0; i < nargs; i++)
726 {
727 struct value *arg = args[i];
728 struct type *type = check_typedef (value_type (arg));
729 /* The corresponding parameter that is pushed onto the
730 stack, and [possibly] passed in a register. */
731 char param_val[8];
732 int param_len;
733 memset (param_val, 0, sizeof param_val);
734 if (TYPE_LENGTH (type) > 8)
735 {
736 /* Large parameter, pass by reference. Store the value
737 in "struct" area and then pass its address. */
738 param_len = 4;
739 struct_ptr += align_up (TYPE_LENGTH (type), 8);
740 if (write_pass)
741 write_memory (struct_end - struct_ptr, value_contents (arg),
742 TYPE_LENGTH (type));
743 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
744 }
745 else if (TYPE_CODE (type) == TYPE_CODE_INT
746 || TYPE_CODE (type) == TYPE_CODE_ENUM)
747 {
748 /* Integer value store, right aligned. "unpack_long"
749 takes care of any sign-extension problems. */
750 param_len = align_up (TYPE_LENGTH (type), 4);
751 store_unsigned_integer (param_val, param_len,
752 unpack_long (type,
753 value_contents (arg)));
754 }
755 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
756 {
757 /* Floating point value store, right aligned. */
758 param_len = align_up (TYPE_LENGTH (type), 4);
759 memcpy (param_val, value_contents (arg), param_len);
760 }
761 else
762 {
763 param_len = align_up (TYPE_LENGTH (type), 4);
764
765 /* Small struct value are stored right-aligned. */
766 memcpy (param_val + param_len - TYPE_LENGTH (type),
767 value_contents (arg), TYPE_LENGTH (type));
768
769 /* Structures of size 5, 6 and 7 bytes are special in that
770 the higher-ordered word is stored in the lower-ordered
771 argument, and even though it is a 8-byte quantity the
772 registers need not be 8-byte aligned. */
773 if (param_len > 4 && param_len < 8)
774 small_struct = 1;
775 }
776
777 param_ptr += param_len;
778 if (param_len == 8 && !small_struct)
779 param_ptr = align_up (param_ptr, 8);
780
781 /* First 4 non-FP arguments are passed in gr26-gr23.
782 First 4 32-bit FP arguments are passed in fr4L-fr7L.
783 First 2 64-bit FP arguments are passed in fr5 and fr7.
784
785 The rest go on the stack, starting at sp-36, towards lower
786 addresses. 8-byte arguments must be aligned to a 8-byte
787 stack boundary. */
788 if (write_pass)
789 {
790 write_memory (param_end - param_ptr, param_val, param_len);
791
792 /* There are some cases when we don't know the type
793 expected by the callee (e.g. for variadic functions), so
794 pass the parameters in both general and fp regs. */
795 if (param_ptr <= 48)
796 {
797 int grreg = 26 - (param_ptr - 36) / 4;
798 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
799 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
800
801 regcache_cooked_write (regcache, grreg, param_val);
802 regcache_cooked_write (regcache, fpLreg, param_val);
803
804 if (param_len > 4)
805 {
806 regcache_cooked_write (regcache, grreg + 1,
807 param_val + 4);
808
809 regcache_cooked_write (regcache, fpreg, param_val);
810 regcache_cooked_write (regcache, fpreg + 1,
811 param_val + 4);
812 }
813 }
814 }
815 }
816
817 /* Update the various stack pointers. */
818 if (!write_pass)
819 {
820 struct_end = sp + align_up (struct_ptr, 64);
821 /* PARAM_PTR already accounts for all the arguments passed
822 by the user. However, the ABI mandates minimum stack
823 space allocations for outgoing arguments. The ABI also
824 mandates minimum stack alignments which we must
825 preserve. */
826 param_end = struct_end + align_up (param_ptr, 64);
827 }
828 }
829
830 /* If a structure has to be returned, set up register 28 to hold its
831 address */
832 if (struct_return)
833 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
834
835 gp = tdep->find_global_pointer (function);
836
837 if (gp != 0)
838 regcache_cooked_write_unsigned (regcache, 19, gp);
839
840 /* Set the return address. */
841 if (!gdbarch_push_dummy_code_p (gdbarch))
842 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
843
844 /* Update the Stack Pointer. */
845 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
846
847 return param_end;
848 }
849
850 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
851 Runtime Architecture for PA-RISC 2.0", which is distributed as part
852 as of the HP-UX Software Transition Kit (STK). This implementation
853 is based on version 3.3, dated October 6, 1997. */
854
855 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
856
857 static int
858 hppa64_integral_or_pointer_p (const struct type *type)
859 {
860 switch (TYPE_CODE (type))
861 {
862 case TYPE_CODE_INT:
863 case TYPE_CODE_BOOL:
864 case TYPE_CODE_CHAR:
865 case TYPE_CODE_ENUM:
866 case TYPE_CODE_RANGE:
867 {
868 int len = TYPE_LENGTH (type);
869 return (len == 1 || len == 2 || len == 4 || len == 8);
870 }
871 case TYPE_CODE_PTR:
872 case TYPE_CODE_REF:
873 return (TYPE_LENGTH (type) == 8);
874 default:
875 break;
876 }
877
878 return 0;
879 }
880
881 /* Check whether TYPE is a "Floating Scalar Type". */
882
883 static int
884 hppa64_floating_p (const struct type *type)
885 {
886 switch (TYPE_CODE (type))
887 {
888 case TYPE_CODE_FLT:
889 {
890 int len = TYPE_LENGTH (type);
891 return (len == 4 || len == 8 || len == 16);
892 }
893 default:
894 break;
895 }
896
897 return 0;
898 }
899
900 /* If CODE points to a function entry address, try to look up the corresponding
901 function descriptor and return its address instead. If CODE is not a
902 function entry address, then just return it unchanged. */
903 static CORE_ADDR
904 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
905 {
906 struct obj_section *sec, *opd;
907
908 sec = find_pc_section (code);
909
910 if (!sec)
911 return code;
912
913 /* If CODE is in a data section, assume it's already a fptr. */
914 if (!(sec->the_bfd_section->flags & SEC_CODE))
915 return code;
916
917 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
918 {
919 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
920 break;
921 }
922
923 if (opd < sec->objfile->sections_end)
924 {
925 CORE_ADDR addr;
926
927 for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
928 {
929 ULONGEST opdaddr;
930 char tmp[8];
931
932 if (target_read_memory (addr, tmp, sizeof (tmp)))
933 break;
934 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
935
936 if (opdaddr == code)
937 return addr - 16;
938 }
939 }
940
941 return code;
942 }
943
944 static CORE_ADDR
945 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
946 struct regcache *regcache, CORE_ADDR bp_addr,
947 int nargs, struct value **args, CORE_ADDR sp,
948 int struct_return, CORE_ADDR struct_addr)
949 {
950 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
951 int i, offset = 0;
952 CORE_ADDR gp;
953
954 /* "The outgoing parameter area [...] must be aligned at a 16-byte
955 boundary." */
956 sp = align_up (sp, 16);
957
958 for (i = 0; i < nargs; i++)
959 {
960 struct value *arg = args[i];
961 struct type *type = value_type (arg);
962 int len = TYPE_LENGTH (type);
963 const bfd_byte *valbuf;
964 bfd_byte fptrbuf[8];
965 int regnum;
966
967 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
968 offset = align_up (offset, 8);
969
970 if (hppa64_integral_or_pointer_p (type))
971 {
972 /* "Integral scalar parameters smaller than 64 bits are
973 padded on the left (i.e., the value is in the
974 least-significant bits of the 64-bit storage unit, and
975 the high-order bits are undefined)." Therefore we can
976 safely sign-extend them. */
977 if (len < 8)
978 {
979 arg = value_cast (builtin_type_int64, arg);
980 len = 8;
981 }
982 }
983 else if (hppa64_floating_p (type))
984 {
985 if (len > 8)
986 {
987 /* "Quad-precision (128-bit) floating-point scalar
988 parameters are aligned on a 16-byte boundary." */
989 offset = align_up (offset, 16);
990
991 /* "Double-extended- and quad-precision floating-point
992 parameters within the first 64 bytes of the parameter
993 list are always passed in general registers." */
994 }
995 else
996 {
997 if (len == 4)
998 {
999 /* "Single-precision (32-bit) floating-point scalar
1000 parameters are padded on the left with 32 bits of
1001 garbage (i.e., the floating-point value is in the
1002 least-significant 32 bits of a 64-bit storage
1003 unit)." */
1004 offset += 4;
1005 }
1006
1007 /* "Single- and double-precision floating-point
1008 parameters in this area are passed according to the
1009 available formal parameter information in a function
1010 prototype. [...] If no prototype is in scope,
1011 floating-point parameters must be passed both in the
1012 corresponding general registers and in the
1013 corresponding floating-point registers." */
1014 regnum = HPPA64_FP4_REGNUM + offset / 8;
1015
1016 if (regnum < HPPA64_FP4_REGNUM + 8)
1017 {
1018 /* "Single-precision floating-point parameters, when
1019 passed in floating-point registers, are passed in
1020 the right halves of the floating point registers;
1021 the left halves are unused." */
1022 regcache_cooked_write_part (regcache, regnum, offset % 8,
1023 len, value_contents (arg));
1024 }
1025 }
1026 }
1027 else
1028 {
1029 if (len > 8)
1030 {
1031 /* "Aggregates larger than 8 bytes are aligned on a
1032 16-byte boundary, possibly leaving an unused argument
1033 slot, which is filled with garbage. If necessary,
1034 they are padded on the right (with garbage), to a
1035 multiple of 8 bytes." */
1036 offset = align_up (offset, 16);
1037 }
1038 }
1039
1040 /* If we are passing a function pointer, make sure we pass a function
1041 descriptor instead of the function entry address. */
1042 if (TYPE_CODE (type) == TYPE_CODE_PTR
1043 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1044 {
1045 ULONGEST codeptr, fptr;
1046
1047 codeptr = unpack_long (type, value_contents (arg));
1048 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1049 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1050 valbuf = fptrbuf;
1051 }
1052 else
1053 {
1054 valbuf = value_contents (arg);
1055 }
1056
1057 /* Always store the argument in memory. */
1058 write_memory (sp + offset, valbuf, len);
1059
1060 regnum = HPPA_ARG0_REGNUM - offset / 8;
1061 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1062 {
1063 regcache_cooked_write_part (regcache, regnum,
1064 offset % 8, min (len, 8), valbuf);
1065 offset += min (len, 8);
1066 valbuf += min (len, 8);
1067 len -= min (len, 8);
1068 regnum--;
1069 }
1070
1071 offset += len;
1072 }
1073
1074 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1075 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1076
1077 /* Allocate the outgoing parameter area. Make sure the outgoing
1078 parameter area is multiple of 16 bytes in length. */
1079 sp += max (align_up (offset, 16), 64);
1080
1081 /* Allocate 32-bytes of scratch space. The documentation doesn't
1082 mention this, but it seems to be needed. */
1083 sp += 32;
1084
1085 /* Allocate the frame marker area. */
1086 sp += 16;
1087
1088 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1089 its address. */
1090 if (struct_return)
1091 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1092
1093 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1094 gp = tdep->find_global_pointer (function);
1095 if (gp != 0)
1096 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1097
1098 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1099 if (!gdbarch_push_dummy_code_p (gdbarch))
1100 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1101
1102 /* Set up GR30 to hold the stack pointer (sp). */
1103 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1104
1105 return sp;
1106 }
1107 \f
1108
1109 /* Handle 32/64-bit struct return conventions. */
1110
1111 static enum return_value_convention
1112 hppa32_return_value (struct gdbarch *gdbarch,
1113 struct type *type, struct regcache *regcache,
1114 gdb_byte *readbuf, const gdb_byte *writebuf)
1115 {
1116 if (TYPE_LENGTH (type) <= 2 * 4)
1117 {
1118 /* The value always lives in the right hand end of the register
1119 (or register pair)? */
1120 int b;
1121 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1122 int part = TYPE_LENGTH (type) % 4;
1123 /* The left hand register contains only part of the value,
1124 transfer that first so that the rest can be xfered as entire
1125 4-byte registers. */
1126 if (part > 0)
1127 {
1128 if (readbuf != NULL)
1129 regcache_cooked_read_part (regcache, reg, 4 - part,
1130 part, readbuf);
1131 if (writebuf != NULL)
1132 regcache_cooked_write_part (regcache, reg, 4 - part,
1133 part, writebuf);
1134 reg++;
1135 }
1136 /* Now transfer the remaining register values. */
1137 for (b = part; b < TYPE_LENGTH (type); b += 4)
1138 {
1139 if (readbuf != NULL)
1140 regcache_cooked_read (regcache, reg, readbuf + b);
1141 if (writebuf != NULL)
1142 regcache_cooked_write (regcache, reg, writebuf + b);
1143 reg++;
1144 }
1145 return RETURN_VALUE_REGISTER_CONVENTION;
1146 }
1147 else
1148 return RETURN_VALUE_STRUCT_CONVENTION;
1149 }
1150
1151 static enum return_value_convention
1152 hppa64_return_value (struct gdbarch *gdbarch,
1153 struct type *type, struct regcache *regcache,
1154 gdb_byte *readbuf, const gdb_byte *writebuf)
1155 {
1156 int len = TYPE_LENGTH (type);
1157 int regnum, offset;
1158
1159 if (len > 16)
1160 {
1161 /* All return values larget than 128 bits must be aggregate
1162 return values. */
1163 gdb_assert (!hppa64_integral_or_pointer_p (type));
1164 gdb_assert (!hppa64_floating_p (type));
1165
1166 /* "Aggregate return values larger than 128 bits are returned in
1167 a buffer allocated by the caller. The address of the buffer
1168 must be passed in GR 28." */
1169 return RETURN_VALUE_STRUCT_CONVENTION;
1170 }
1171
1172 if (hppa64_integral_or_pointer_p (type))
1173 {
1174 /* "Integral return values are returned in GR 28. Values
1175 smaller than 64 bits are padded on the left (with garbage)." */
1176 regnum = HPPA_RET0_REGNUM;
1177 offset = 8 - len;
1178 }
1179 else if (hppa64_floating_p (type))
1180 {
1181 if (len > 8)
1182 {
1183 /* "Double-extended- and quad-precision floating-point
1184 values are returned in GRs 28 and 29. The sign,
1185 exponent, and most-significant bits of the mantissa are
1186 returned in GR 28; the least-significant bits of the
1187 mantissa are passed in GR 29. For double-extended
1188 precision values, GR 29 is padded on the right with 48
1189 bits of garbage." */
1190 regnum = HPPA_RET0_REGNUM;
1191 offset = 0;
1192 }
1193 else
1194 {
1195 /* "Single-precision and double-precision floating-point
1196 return values are returned in FR 4R (single precision) or
1197 FR 4 (double-precision)." */
1198 regnum = HPPA64_FP4_REGNUM;
1199 offset = 8 - len;
1200 }
1201 }
1202 else
1203 {
1204 /* "Aggregate return values up to 64 bits in size are returned
1205 in GR 28. Aggregates smaller than 64 bits are left aligned
1206 in the register; the pad bits on the right are undefined."
1207
1208 "Aggregate return values between 65 and 128 bits are returned
1209 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1210 the remaining bits are placed, left aligned, in GR 29. The
1211 pad bits on the right of GR 29 (if any) are undefined." */
1212 regnum = HPPA_RET0_REGNUM;
1213 offset = 0;
1214 }
1215
1216 if (readbuf)
1217 {
1218 while (len > 0)
1219 {
1220 regcache_cooked_read_part (regcache, regnum, offset,
1221 min (len, 8), readbuf);
1222 readbuf += min (len, 8);
1223 len -= min (len, 8);
1224 regnum++;
1225 }
1226 }
1227
1228 if (writebuf)
1229 {
1230 while (len > 0)
1231 {
1232 regcache_cooked_write_part (regcache, regnum, offset,
1233 min (len, 8), writebuf);
1234 writebuf += min (len, 8);
1235 len -= min (len, 8);
1236 regnum++;
1237 }
1238 }
1239
1240 return RETURN_VALUE_REGISTER_CONVENTION;
1241 }
1242 \f
1243
1244 static CORE_ADDR
1245 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1246 struct target_ops *targ)
1247 {
1248 if (addr & 2)
1249 {
1250 CORE_ADDR plabel = addr & ~3;
1251 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
1252 }
1253
1254 return addr;
1255 }
1256
1257 static CORE_ADDR
1258 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1259 {
1260 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1261 and not _bit_)! */
1262 return align_up (addr, 64);
1263 }
1264
1265 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1266
1267 static CORE_ADDR
1268 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1269 {
1270 /* Just always 16-byte align. */
1271 return align_up (addr, 16);
1272 }
1273
1274 CORE_ADDR
1275 hppa_read_pc (struct regcache *regcache)
1276 {
1277 ULONGEST ipsw;
1278 ULONGEST pc;
1279
1280 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1281 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1282
1283 /* If the current instruction is nullified, then we are effectively
1284 still executing the previous instruction. Pretend we are still
1285 there. This is needed when single stepping; if the nullified
1286 instruction is on a different line, we don't want GDB to think
1287 we've stepped onto that line. */
1288 if (ipsw & 0x00200000)
1289 pc -= 4;
1290
1291 return pc & ~0x3;
1292 }
1293
1294 void
1295 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1296 {
1297 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1298 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1299 }
1300
1301 /* return the alignment of a type in bytes. Structures have the maximum
1302 alignment required by their fields. */
1303
1304 static int
1305 hppa_alignof (struct type *type)
1306 {
1307 int max_align, align, i;
1308 CHECK_TYPEDEF (type);
1309 switch (TYPE_CODE (type))
1310 {
1311 case TYPE_CODE_PTR:
1312 case TYPE_CODE_INT:
1313 case TYPE_CODE_FLT:
1314 return TYPE_LENGTH (type);
1315 case TYPE_CODE_ARRAY:
1316 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1317 case TYPE_CODE_STRUCT:
1318 case TYPE_CODE_UNION:
1319 max_align = 1;
1320 for (i = 0; i < TYPE_NFIELDS (type); i++)
1321 {
1322 /* Bit fields have no real alignment. */
1323 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1324 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1325 {
1326 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1327 max_align = max (max_align, align);
1328 }
1329 }
1330 return max_align;
1331 default:
1332 return 4;
1333 }
1334 }
1335
1336 /* For the given instruction (INST), return any adjustment it makes
1337 to the stack pointer or zero for no adjustment.
1338
1339 This only handles instructions commonly found in prologues. */
1340
1341 static int
1342 prologue_inst_adjust_sp (unsigned long inst)
1343 {
1344 /* This must persist across calls. */
1345 static int save_high21;
1346
1347 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1348 if ((inst & 0xffffc000) == 0x37de0000)
1349 return hppa_extract_14 (inst);
1350
1351 /* stwm X,D(sp) */
1352 if ((inst & 0xffe00000) == 0x6fc00000)
1353 return hppa_extract_14 (inst);
1354
1355 /* std,ma X,D(sp) */
1356 if ((inst & 0xffe00008) == 0x73c00008)
1357 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1358
1359 /* addil high21,%r30; ldo low11,(%r1),%r30)
1360 save high bits in save_high21 for later use. */
1361 if ((inst & 0xffe00000) == 0x2bc00000)
1362 {
1363 save_high21 = hppa_extract_21 (inst);
1364 return 0;
1365 }
1366
1367 if ((inst & 0xffff0000) == 0x343e0000)
1368 return save_high21 + hppa_extract_14 (inst);
1369
1370 /* fstws as used by the HP compilers. */
1371 if ((inst & 0xffffffe0) == 0x2fd01220)
1372 return hppa_extract_5_load (inst);
1373
1374 /* No adjustment. */
1375 return 0;
1376 }
1377
1378 /* Return nonzero if INST is a branch of some kind, else return zero. */
1379
1380 static int
1381 is_branch (unsigned long inst)
1382 {
1383 switch (inst >> 26)
1384 {
1385 case 0x20:
1386 case 0x21:
1387 case 0x22:
1388 case 0x23:
1389 case 0x27:
1390 case 0x28:
1391 case 0x29:
1392 case 0x2a:
1393 case 0x2b:
1394 case 0x2f:
1395 case 0x30:
1396 case 0x31:
1397 case 0x32:
1398 case 0x33:
1399 case 0x38:
1400 case 0x39:
1401 case 0x3a:
1402 case 0x3b:
1403 return 1;
1404
1405 default:
1406 return 0;
1407 }
1408 }
1409
1410 /* Return the register number for a GR which is saved by INST or
1411 zero it INST does not save a GR. */
1412
1413 static int
1414 inst_saves_gr (unsigned long inst)
1415 {
1416 /* Does it look like a stw? */
1417 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1418 || (inst >> 26) == 0x1f
1419 || ((inst >> 26) == 0x1f
1420 && ((inst >> 6) == 0xa)))
1421 return hppa_extract_5R_store (inst);
1422
1423 /* Does it look like a std? */
1424 if ((inst >> 26) == 0x1c
1425 || ((inst >> 26) == 0x03
1426 && ((inst >> 6) & 0xf) == 0xb))
1427 return hppa_extract_5R_store (inst);
1428
1429 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1430 if ((inst >> 26) == 0x1b)
1431 return hppa_extract_5R_store (inst);
1432
1433 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1434 too. */
1435 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1436 || ((inst >> 26) == 0x3
1437 && (((inst >> 6) & 0xf) == 0x8
1438 || (inst >> 6) & 0xf) == 0x9))
1439 return hppa_extract_5R_store (inst);
1440
1441 return 0;
1442 }
1443
1444 /* Return the register number for a FR which is saved by INST or
1445 zero it INST does not save a FR.
1446
1447 Note we only care about full 64bit register stores (that's the only
1448 kind of stores the prologue will use).
1449
1450 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1451
1452 static int
1453 inst_saves_fr (unsigned long inst)
1454 {
1455 /* is this an FSTD ? */
1456 if ((inst & 0xfc00dfc0) == 0x2c001200)
1457 return hppa_extract_5r_store (inst);
1458 if ((inst & 0xfc000002) == 0x70000002)
1459 return hppa_extract_5R_store (inst);
1460 /* is this an FSTW ? */
1461 if ((inst & 0xfc00df80) == 0x24001200)
1462 return hppa_extract_5r_store (inst);
1463 if ((inst & 0xfc000002) == 0x7c000000)
1464 return hppa_extract_5R_store (inst);
1465 return 0;
1466 }
1467
1468 /* Advance PC across any function entry prologue instructions
1469 to reach some "real" code.
1470
1471 Use information in the unwind table to determine what exactly should
1472 be in the prologue. */
1473
1474
1475 static CORE_ADDR
1476 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1477 {
1478 char buf[4];
1479 CORE_ADDR orig_pc = pc;
1480 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1481 unsigned long args_stored, status, i, restart_gr, restart_fr;
1482 struct unwind_table_entry *u;
1483 int final_iteration;
1484
1485 restart_gr = 0;
1486 restart_fr = 0;
1487
1488 restart:
1489 u = find_unwind_entry (pc);
1490 if (!u)
1491 return pc;
1492
1493 /* If we are not at the beginning of a function, then return now. */
1494 if ((pc & ~0x3) != u->region_start)
1495 return pc;
1496
1497 /* This is how much of a frame adjustment we need to account for. */
1498 stack_remaining = u->Total_frame_size << 3;
1499
1500 /* Magic register saves we want to know about. */
1501 save_rp = u->Save_RP;
1502 save_sp = u->Save_SP;
1503
1504 /* An indication that args may be stored into the stack. Unfortunately
1505 the HPUX compilers tend to set this in cases where no args were
1506 stored too!. */
1507 args_stored = 1;
1508
1509 /* Turn the Entry_GR field into a bitmask. */
1510 save_gr = 0;
1511 for (i = 3; i < u->Entry_GR + 3; i++)
1512 {
1513 /* Frame pointer gets saved into a special location. */
1514 if (u->Save_SP && i == HPPA_FP_REGNUM)
1515 continue;
1516
1517 save_gr |= (1 << i);
1518 }
1519 save_gr &= ~restart_gr;
1520
1521 /* Turn the Entry_FR field into a bitmask too. */
1522 save_fr = 0;
1523 for (i = 12; i < u->Entry_FR + 12; i++)
1524 save_fr |= (1 << i);
1525 save_fr &= ~restart_fr;
1526
1527 final_iteration = 0;
1528
1529 /* Loop until we find everything of interest or hit a branch.
1530
1531 For unoptimized GCC code and for any HP CC code this will never ever
1532 examine any user instructions.
1533
1534 For optimzied GCC code we're faced with problems. GCC will schedule
1535 its prologue and make prologue instructions available for delay slot
1536 filling. The end result is user code gets mixed in with the prologue
1537 and a prologue instruction may be in the delay slot of the first branch
1538 or call.
1539
1540 Some unexpected things are expected with debugging optimized code, so
1541 we allow this routine to walk past user instructions in optimized
1542 GCC code. */
1543 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1544 || args_stored)
1545 {
1546 unsigned int reg_num;
1547 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1548 unsigned long old_save_rp, old_save_sp, next_inst;
1549
1550 /* Save copies of all the triggers so we can compare them later
1551 (only for HPC). */
1552 old_save_gr = save_gr;
1553 old_save_fr = save_fr;
1554 old_save_rp = save_rp;
1555 old_save_sp = save_sp;
1556 old_stack_remaining = stack_remaining;
1557
1558 status = read_memory_nobpt (pc, buf, 4);
1559 inst = extract_unsigned_integer (buf, 4);
1560
1561 /* Yow! */
1562 if (status != 0)
1563 return pc;
1564
1565 /* Note the interesting effects of this instruction. */
1566 stack_remaining -= prologue_inst_adjust_sp (inst);
1567
1568 /* There are limited ways to store the return pointer into the
1569 stack. */
1570 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1571 save_rp = 0;
1572
1573 /* These are the only ways we save SP into the stack. At this time
1574 the HP compilers never bother to save SP into the stack. */
1575 if ((inst & 0xffffc000) == 0x6fc10000
1576 || (inst & 0xffffc00c) == 0x73c10008)
1577 save_sp = 0;
1578
1579 /* Are we loading some register with an offset from the argument
1580 pointer? */
1581 if ((inst & 0xffe00000) == 0x37a00000
1582 || (inst & 0xffffffe0) == 0x081d0240)
1583 {
1584 pc += 4;
1585 continue;
1586 }
1587
1588 /* Account for general and floating-point register saves. */
1589 reg_num = inst_saves_gr (inst);
1590 save_gr &= ~(1 << reg_num);
1591
1592 /* Ugh. Also account for argument stores into the stack.
1593 Unfortunately args_stored only tells us that some arguments
1594 where stored into the stack. Not how many or what kind!
1595
1596 This is a kludge as on the HP compiler sets this bit and it
1597 never does prologue scheduling. So once we see one, skip past
1598 all of them. We have similar code for the fp arg stores below.
1599
1600 FIXME. Can still die if we have a mix of GR and FR argument
1601 stores! */
1602 if (reg_num >= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 19 : 23)
1603 && reg_num <= 26)
1604 {
1605 while (reg_num >= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 19 : 23)
1606 && reg_num <= 26)
1607 {
1608 pc += 4;
1609 status = read_memory_nobpt (pc, buf, 4);
1610 inst = extract_unsigned_integer (buf, 4);
1611 if (status != 0)
1612 return pc;
1613 reg_num = inst_saves_gr (inst);
1614 }
1615 args_stored = 0;
1616 continue;
1617 }
1618
1619 reg_num = inst_saves_fr (inst);
1620 save_fr &= ~(1 << reg_num);
1621
1622 status = read_memory_nobpt (pc + 4, buf, 4);
1623 next_inst = extract_unsigned_integer (buf, 4);
1624
1625 /* Yow! */
1626 if (status != 0)
1627 return pc;
1628
1629 /* We've got to be read to handle the ldo before the fp register
1630 save. */
1631 if ((inst & 0xfc000000) == 0x34000000
1632 && inst_saves_fr (next_inst) >= 4
1633 && inst_saves_fr (next_inst)
1634 <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
1635 {
1636 /* So we drop into the code below in a reasonable state. */
1637 reg_num = inst_saves_fr (next_inst);
1638 pc -= 4;
1639 }
1640
1641 /* Ugh. Also account for argument stores into the stack.
1642 This is a kludge as on the HP compiler sets this bit and it
1643 never does prologue scheduling. So once we see one, skip past
1644 all of them. */
1645 if (reg_num >= 4
1646 && reg_num <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
1647 {
1648 while (reg_num >= 4
1649 && reg_num
1650 <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
1651 {
1652 pc += 8;
1653 status = read_memory_nobpt (pc, buf, 4);
1654 inst = extract_unsigned_integer (buf, 4);
1655 if (status != 0)
1656 return pc;
1657 if ((inst & 0xfc000000) != 0x34000000)
1658 break;
1659 status = read_memory_nobpt (pc + 4, buf, 4);
1660 next_inst = extract_unsigned_integer (buf, 4);
1661 if (status != 0)
1662 return pc;
1663 reg_num = inst_saves_fr (next_inst);
1664 }
1665 args_stored = 0;
1666 continue;
1667 }
1668
1669 /* Quit if we hit any kind of branch. This can happen if a prologue
1670 instruction is in the delay slot of the first call/branch. */
1671 if (is_branch (inst) && stop_before_branch)
1672 break;
1673
1674 /* What a crock. The HP compilers set args_stored even if no
1675 arguments were stored into the stack (boo hiss). This could
1676 cause this code to then skip a bunch of user insns (up to the
1677 first branch).
1678
1679 To combat this we try to identify when args_stored was bogusly
1680 set and clear it. We only do this when args_stored is nonzero,
1681 all other resources are accounted for, and nothing changed on
1682 this pass. */
1683 if (args_stored
1684 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1685 && old_save_gr == save_gr && old_save_fr == save_fr
1686 && old_save_rp == save_rp && old_save_sp == save_sp
1687 && old_stack_remaining == stack_remaining)
1688 break;
1689
1690 /* Bump the PC. */
1691 pc += 4;
1692
1693 /* !stop_before_branch, so also look at the insn in the delay slot
1694 of the branch. */
1695 if (final_iteration)
1696 break;
1697 if (is_branch (inst))
1698 final_iteration = 1;
1699 }
1700
1701 /* We've got a tenative location for the end of the prologue. However
1702 because of limitations in the unwind descriptor mechanism we may
1703 have went too far into user code looking for the save of a register
1704 that does not exist. So, if there registers we expected to be saved
1705 but never were, mask them out and restart.
1706
1707 This should only happen in optimized code, and should be very rare. */
1708 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1709 {
1710 pc = orig_pc;
1711 restart_gr = save_gr;
1712 restart_fr = save_fr;
1713 goto restart;
1714 }
1715
1716 return pc;
1717 }
1718
1719
1720 /* Return the address of the PC after the last prologue instruction if
1721 we can determine it from the debug symbols. Else return zero. */
1722
1723 static CORE_ADDR
1724 after_prologue (CORE_ADDR pc)
1725 {
1726 struct symtab_and_line sal;
1727 CORE_ADDR func_addr, func_end;
1728 struct symbol *f;
1729
1730 /* If we can not find the symbol in the partial symbol table, then
1731 there is no hope we can determine the function's start address
1732 with this code. */
1733 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1734 return 0;
1735
1736 /* Get the line associated with FUNC_ADDR. */
1737 sal = find_pc_line (func_addr, 0);
1738
1739 /* There are only two cases to consider. First, the end of the source line
1740 is within the function bounds. In that case we return the end of the
1741 source line. Second is the end of the source line extends beyond the
1742 bounds of the current function. We need to use the slow code to
1743 examine instructions in that case.
1744
1745 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1746 the wrong thing to do. In fact, it should be entirely possible for this
1747 function to always return zero since the slow instruction scanning code
1748 is supposed to *always* work. If it does not, then it is a bug. */
1749 if (sal.end < func_end)
1750 return sal.end;
1751 else
1752 return 0;
1753 }
1754
1755 /* To skip prologues, I use this predicate. Returns either PC itself
1756 if the code at PC does not look like a function prologue; otherwise
1757 returns an address that (if we're lucky) follows the prologue.
1758
1759 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1760 It doesn't necessarily skips all the insns in the prologue. In fact
1761 we might not want to skip all the insns because a prologue insn may
1762 appear in the delay slot of the first branch, and we don't want to
1763 skip over the branch in that case. */
1764
1765 static CORE_ADDR
1766 hppa_skip_prologue (CORE_ADDR pc)
1767 {
1768 unsigned long inst;
1769 int offset;
1770 CORE_ADDR post_prologue_pc;
1771 char buf[4];
1772
1773 /* See if we can determine the end of the prologue via the symbol table.
1774 If so, then return either PC, or the PC after the prologue, whichever
1775 is greater. */
1776
1777 post_prologue_pc = after_prologue (pc);
1778
1779 /* If after_prologue returned a useful address, then use it. Else
1780 fall back on the instruction skipping code.
1781
1782 Some folks have claimed this causes problems because the breakpoint
1783 may be the first instruction of the prologue. If that happens, then
1784 the instruction skipping code has a bug that needs to be fixed. */
1785 if (post_prologue_pc != 0)
1786 return max (pc, post_prologue_pc);
1787 else
1788 return (skip_prologue_hard_way (pc, 1));
1789 }
1790
1791 /* Return an unwind entry that falls within the frame's code block. */
1792 static struct unwind_table_entry *
1793 hppa_find_unwind_entry_in_block (struct frame_info *f)
1794 {
1795 CORE_ADDR pc = frame_unwind_address_in_block (f, NORMAL_FRAME);
1796
1797 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1798 result of frame_unwind_address_in_block implies a problem.
1799 The bits should have been removed earlier, before the return
1800 value of frame_pc_unwind. That might be happening already;
1801 if it isn't, it should be fixed. Then this call can be
1802 removed. */
1803 pc = gdbarch_addr_bits_remove (get_frame_arch (f), pc);
1804 return find_unwind_entry (pc);
1805 }
1806
1807 struct hppa_frame_cache
1808 {
1809 CORE_ADDR base;
1810 struct trad_frame_saved_reg *saved_regs;
1811 };
1812
1813 static struct hppa_frame_cache *
1814 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1815 {
1816 struct hppa_frame_cache *cache;
1817 long saved_gr_mask;
1818 long saved_fr_mask;
1819 CORE_ADDR this_sp;
1820 long frame_size;
1821 struct unwind_table_entry *u;
1822 CORE_ADDR prologue_end;
1823 int fp_in_r1 = 0;
1824 int i;
1825
1826 if (hppa_debug)
1827 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1828 frame_relative_level(next_frame));
1829
1830 if ((*this_cache) != NULL)
1831 {
1832 if (hppa_debug)
1833 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1834 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1835 return (*this_cache);
1836 }
1837 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1838 (*this_cache) = cache;
1839 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1840
1841 /* Yow! */
1842 u = hppa_find_unwind_entry_in_block (next_frame);
1843 if (!u)
1844 {
1845 if (hppa_debug)
1846 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1847 return (*this_cache);
1848 }
1849
1850 /* Turn the Entry_GR field into a bitmask. */
1851 saved_gr_mask = 0;
1852 for (i = 3; i < u->Entry_GR + 3; i++)
1853 {
1854 /* Frame pointer gets saved into a special location. */
1855 if (u->Save_SP && i == HPPA_FP_REGNUM)
1856 continue;
1857
1858 saved_gr_mask |= (1 << i);
1859 }
1860
1861 /* Turn the Entry_FR field into a bitmask too. */
1862 saved_fr_mask = 0;
1863 for (i = 12; i < u->Entry_FR + 12; i++)
1864 saved_fr_mask |= (1 << i);
1865
1866 /* Loop until we find everything of interest or hit a branch.
1867
1868 For unoptimized GCC code and for any HP CC code this will never ever
1869 examine any user instructions.
1870
1871 For optimized GCC code we're faced with problems. GCC will schedule
1872 its prologue and make prologue instructions available for delay slot
1873 filling. The end result is user code gets mixed in with the prologue
1874 and a prologue instruction may be in the delay slot of the first branch
1875 or call.
1876
1877 Some unexpected things are expected with debugging optimized code, so
1878 we allow this routine to walk past user instructions in optimized
1879 GCC code. */
1880 {
1881 int final_iteration = 0;
1882 CORE_ADDR pc, start_pc, end_pc;
1883 int looking_for_sp = u->Save_SP;
1884 int looking_for_rp = u->Save_RP;
1885 int fp_loc = -1;
1886
1887 /* We have to use skip_prologue_hard_way instead of just
1888 skip_prologue_using_sal, in case we stepped into a function without
1889 symbol information. hppa_skip_prologue also bounds the returned
1890 pc by the passed in pc, so it will not return a pc in the next
1891 function.
1892
1893 We used to call hppa_skip_prologue to find the end of the prologue,
1894 but if some non-prologue instructions get scheduled into the prologue,
1895 and the program is compiled with debug information, the "easy" way
1896 in hppa_skip_prologue will return a prologue end that is too early
1897 for us to notice any potential frame adjustments. */
1898
1899 /* We used to use frame_func_unwind () to locate the beginning of the
1900 function to pass to skip_prologue (). However, when objects are
1901 compiled without debug symbols, frame_func_unwind can return the wrong
1902 function (or 0). We can do better than that by using unwind records.
1903 This only works if the Region_description of the unwind record
1904 indicates that it includes the entry point of the function.
1905 HP compilers sometimes generate unwind records for regions that
1906 do not include the entry or exit point of a function. GNU tools
1907 do not do this. */
1908
1909 if ((u->Region_description & 0x2) == 0)
1910 start_pc = u->region_start;
1911 else
1912 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1913
1914 prologue_end = skip_prologue_hard_way (start_pc, 0);
1915 end_pc = frame_pc_unwind (next_frame);
1916
1917 if (prologue_end != 0 && end_pc > prologue_end)
1918 end_pc = prologue_end;
1919
1920 frame_size = 0;
1921
1922 for (pc = start_pc;
1923 ((saved_gr_mask || saved_fr_mask
1924 || looking_for_sp || looking_for_rp
1925 || frame_size < (u->Total_frame_size << 3))
1926 && pc < end_pc);
1927 pc += 4)
1928 {
1929 int reg;
1930 char buf4[4];
1931 long inst;
1932
1933 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1934 sizeof buf4))
1935 {
1936 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1937 return (*this_cache);
1938 }
1939
1940 inst = extract_unsigned_integer (buf4, sizeof buf4);
1941
1942 /* Note the interesting effects of this instruction. */
1943 frame_size += prologue_inst_adjust_sp (inst);
1944
1945 /* There are limited ways to store the return pointer into the
1946 stack. */
1947 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1948 {
1949 looking_for_rp = 0;
1950 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1951 }
1952 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1953 {
1954 looking_for_rp = 0;
1955 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1956 }
1957 else if (inst == 0x0fc212c1
1958 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1959 {
1960 looking_for_rp = 0;
1961 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1962 }
1963
1964 /* Check to see if we saved SP into the stack. This also
1965 happens to indicate the location of the saved frame
1966 pointer. */
1967 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1968 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1969 {
1970 looking_for_sp = 0;
1971 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1972 }
1973 else if (inst == 0x08030241) /* copy %r3, %r1 */
1974 {
1975 fp_in_r1 = 1;
1976 }
1977
1978 /* Account for general and floating-point register saves. */
1979 reg = inst_saves_gr (inst);
1980 if (reg >= 3 && reg <= 18
1981 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1982 {
1983 saved_gr_mask &= ~(1 << reg);
1984 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1985 /* stwm with a positive displacement is a _post_
1986 _modify_. */
1987 cache->saved_regs[reg].addr = 0;
1988 else if ((inst & 0xfc00000c) == 0x70000008)
1989 /* A std has explicit post_modify forms. */
1990 cache->saved_regs[reg].addr = 0;
1991 else
1992 {
1993 CORE_ADDR offset;
1994
1995 if ((inst >> 26) == 0x1c)
1996 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1997 else if ((inst >> 26) == 0x03)
1998 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1999 else
2000 offset = hppa_extract_14 (inst);
2001
2002 /* Handle code with and without frame pointers. */
2003 if (u->Save_SP)
2004 cache->saved_regs[reg].addr = offset;
2005 else
2006 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2007 }
2008 }
2009
2010 /* GCC handles callee saved FP regs a little differently.
2011
2012 It emits an instruction to put the value of the start of
2013 the FP store area into %r1. It then uses fstds,ma with a
2014 basereg of %r1 for the stores.
2015
2016 HP CC emits them at the current stack pointer modifying the
2017 stack pointer as it stores each register. */
2018
2019 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2020 if ((inst & 0xffffc000) == 0x34610000
2021 || (inst & 0xffffc000) == 0x37c10000)
2022 fp_loc = hppa_extract_14 (inst);
2023
2024 reg = inst_saves_fr (inst);
2025 if (reg >= 12 && reg <= 21)
2026 {
2027 /* Note +4 braindamage below is necessary because the FP
2028 status registers are internally 8 registers rather than
2029 the expected 4 registers. */
2030 saved_fr_mask &= ~(1 << reg);
2031 if (fp_loc == -1)
2032 {
2033 /* 1st HP CC FP register store. After this
2034 instruction we've set enough state that the GCC and
2035 HPCC code are both handled in the same manner. */
2036 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2037 fp_loc = 8;
2038 }
2039 else
2040 {
2041 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2042 fp_loc += 8;
2043 }
2044 }
2045
2046 /* Quit if we hit any kind of branch the previous iteration. */
2047 if (final_iteration)
2048 break;
2049 /* We want to look precisely one instruction beyond the branch
2050 if we have not found everything yet. */
2051 if (is_branch (inst))
2052 final_iteration = 1;
2053 }
2054 }
2055
2056 {
2057 /* The frame base always represents the value of %sp at entry to
2058 the current function (and is thus equivalent to the "saved"
2059 stack pointer. */
2060 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2061 CORE_ADDR fp;
2062
2063 if (hppa_debug)
2064 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2065 "prologue_end=0x%s) ",
2066 paddr_nz (this_sp),
2067 paddr_nz (frame_pc_unwind (next_frame)),
2068 paddr_nz (prologue_end));
2069
2070 /* Check to see if a frame pointer is available, and use it for
2071 frame unwinding if it is.
2072
2073 There are some situations where we need to rely on the frame
2074 pointer to do stack unwinding. For example, if a function calls
2075 alloca (), the stack pointer can get adjusted inside the body of
2076 the function. In this case, the ABI requires that the compiler
2077 maintain a frame pointer for the function.
2078
2079 The unwind record has a flag (alloca_frame) that indicates that
2080 a function has a variable frame; unfortunately, gcc/binutils
2081 does not set this flag. Instead, whenever a frame pointer is used
2082 and saved on the stack, the Save_SP flag is set. We use this to
2083 decide whether to use the frame pointer for unwinding.
2084
2085 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2086 instead of Save_SP. */
2087
2088 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
2089
2090 if (u->alloca_frame)
2091 fp -= u->Total_frame_size << 3;
2092
2093 if (frame_pc_unwind (next_frame) >= prologue_end
2094 && (u->Save_SP || u->alloca_frame) && fp != 0)
2095 {
2096 cache->base = fp;
2097
2098 if (hppa_debug)
2099 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
2100 paddr_nz (cache->base));
2101 }
2102 else if (u->Save_SP
2103 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2104 {
2105 /* Both we're expecting the SP to be saved and the SP has been
2106 saved. The entry SP value is saved at this frame's SP
2107 address. */
2108 cache->base = read_memory_integer
2109 (this_sp, gdbarch_ptr_bit (current_gdbarch) / 8);
2110
2111 if (hppa_debug)
2112 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2113 paddr_nz (cache->base));
2114 }
2115 else
2116 {
2117 /* The prologue has been slowly allocating stack space. Adjust
2118 the SP back. */
2119 cache->base = this_sp - frame_size;
2120 if (hppa_debug)
2121 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2122 paddr_nz (cache->base));
2123
2124 }
2125 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2126 }
2127
2128 /* The PC is found in the "return register", "Millicode" uses "r31"
2129 as the return register while normal code uses "rp". */
2130 if (u->Millicode)
2131 {
2132 if (trad_frame_addr_p (cache->saved_regs, 31))
2133 {
2134 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2135 if (hppa_debug)
2136 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2137 }
2138 else
2139 {
2140 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
2141 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2142 if (hppa_debug)
2143 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2144 }
2145 }
2146 else
2147 {
2148 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2149 {
2150 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2151 cache->saved_regs[HPPA_RP_REGNUM];
2152 if (hppa_debug)
2153 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2154 }
2155 else
2156 {
2157 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2158 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2159 if (hppa_debug)
2160 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2161 }
2162 }
2163
2164 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2165 frame. However, there is a one-insn window where we haven't saved it
2166 yet, but we've already clobbered it. Detect this case and fix it up.
2167
2168 The prologue sequence for frame-pointer functions is:
2169 0: stw %rp, -20(%sp)
2170 4: copy %r3, %r1
2171 8: copy %sp, %r3
2172 c: stw,ma %r1, XX(%sp)
2173
2174 So if we are at offset c, the r3 value that we want is not yet saved
2175 on the stack, but it's been overwritten. The prologue analyzer will
2176 set fp_in_r1 when it sees the copy insn so we know to get the value
2177 from r1 instead. */
2178 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2179 && fp_in_r1)
2180 {
2181 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2182 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2183 }
2184
2185 {
2186 /* Convert all the offsets into addresses. */
2187 int reg;
2188 for (reg = 0; reg < gdbarch_num_regs (current_gdbarch); reg++)
2189 {
2190 if (trad_frame_addr_p (cache->saved_regs, reg))
2191 cache->saved_regs[reg].addr += cache->base;
2192 }
2193 }
2194
2195 {
2196 struct gdbarch *gdbarch;
2197 struct gdbarch_tdep *tdep;
2198
2199 gdbarch = get_frame_arch (next_frame);
2200 tdep = gdbarch_tdep (gdbarch);
2201
2202 if (tdep->unwind_adjust_stub)
2203 {
2204 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2205 }
2206 }
2207
2208 if (hppa_debug)
2209 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2210 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2211 return (*this_cache);
2212 }
2213
2214 static void
2215 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2216 struct frame_id *this_id)
2217 {
2218 struct hppa_frame_cache *info;
2219 CORE_ADDR pc = frame_pc_unwind (next_frame);
2220 struct unwind_table_entry *u;
2221
2222 info = hppa_frame_cache (next_frame, this_cache);
2223 u = hppa_find_unwind_entry_in_block (next_frame);
2224
2225 (*this_id) = frame_id_build (info->base, u->region_start);
2226 }
2227
2228 static void
2229 hppa_frame_prev_register (struct frame_info *next_frame,
2230 void **this_cache,
2231 int regnum, int *optimizedp,
2232 enum lval_type *lvalp, CORE_ADDR *addrp,
2233 int *realnump, gdb_byte *valuep)
2234 {
2235 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2236 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2237 optimizedp, lvalp, addrp, realnump, valuep);
2238 }
2239
2240 static const struct frame_unwind hppa_frame_unwind =
2241 {
2242 NORMAL_FRAME,
2243 hppa_frame_this_id,
2244 hppa_frame_prev_register
2245 };
2246
2247 static const struct frame_unwind *
2248 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2249 {
2250 if (hppa_find_unwind_entry_in_block (next_frame))
2251 return &hppa_frame_unwind;
2252
2253 return NULL;
2254 }
2255
2256 /* This is a generic fallback frame unwinder that kicks in if we fail all
2257 the other ones. Normally we would expect the stub and regular unwinder
2258 to work, but in some cases we might hit a function that just doesn't
2259 have any unwind information available. In this case we try to do
2260 unwinding solely based on code reading. This is obviously going to be
2261 slow, so only use this as a last resort. Currently this will only
2262 identify the stack and pc for the frame. */
2263
2264 static struct hppa_frame_cache *
2265 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2266 {
2267 struct hppa_frame_cache *cache;
2268 unsigned int frame_size = 0;
2269 int found_rp = 0;
2270 CORE_ADDR start_pc;
2271
2272 if (hppa_debug)
2273 fprintf_unfiltered (gdb_stdlog,
2274 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2275 frame_relative_level (next_frame));
2276
2277 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2278 (*this_cache) = cache;
2279 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2280
2281 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2282 if (start_pc)
2283 {
2284 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2285 CORE_ADDR pc;
2286
2287 for (pc = start_pc; pc < cur_pc; pc += 4)
2288 {
2289 unsigned int insn;
2290
2291 insn = read_memory_unsigned_integer (pc, 4);
2292 frame_size += prologue_inst_adjust_sp (insn);
2293
2294 /* There are limited ways to store the return pointer into the
2295 stack. */
2296 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2297 {
2298 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2299 found_rp = 1;
2300 }
2301 else if (insn == 0x0fc212c1
2302 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2303 {
2304 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2305 found_rp = 1;
2306 }
2307 }
2308 }
2309
2310 if (hppa_debug)
2311 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2312 frame_size, found_rp);
2313
2314 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2315 cache->base -= frame_size;
2316 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2317
2318 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2319 {
2320 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2321 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2322 cache->saved_regs[HPPA_RP_REGNUM];
2323 }
2324 else
2325 {
2326 ULONGEST rp;
2327 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2328 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2329 }
2330
2331 return cache;
2332 }
2333
2334 static void
2335 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2336 struct frame_id *this_id)
2337 {
2338 struct hppa_frame_cache *info =
2339 hppa_fallback_frame_cache (next_frame, this_cache);
2340 (*this_id) = frame_id_build (info->base,
2341 frame_func_unwind (next_frame, NORMAL_FRAME));
2342 }
2343
2344 static void
2345 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2346 void **this_cache,
2347 int regnum, int *optimizedp,
2348 enum lval_type *lvalp, CORE_ADDR *addrp,
2349 int *realnump, gdb_byte *valuep)
2350 {
2351 struct hppa_frame_cache *info =
2352 hppa_fallback_frame_cache (next_frame, this_cache);
2353 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2354 optimizedp, lvalp, addrp, realnump, valuep);
2355 }
2356
2357 static const struct frame_unwind hppa_fallback_frame_unwind =
2358 {
2359 NORMAL_FRAME,
2360 hppa_fallback_frame_this_id,
2361 hppa_fallback_frame_prev_register
2362 };
2363
2364 static const struct frame_unwind *
2365 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2366 {
2367 return &hppa_fallback_frame_unwind;
2368 }
2369
2370 /* Stub frames, used for all kinds of call stubs. */
2371 struct hppa_stub_unwind_cache
2372 {
2373 CORE_ADDR base;
2374 struct trad_frame_saved_reg *saved_regs;
2375 };
2376
2377 static struct hppa_stub_unwind_cache *
2378 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2379 void **this_cache)
2380 {
2381 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2382 struct hppa_stub_unwind_cache *info;
2383 struct unwind_table_entry *u;
2384
2385 if (*this_cache)
2386 return *this_cache;
2387
2388 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2389 *this_cache = info;
2390 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2391
2392 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2393
2394 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2395 {
2396 /* HPUX uses export stubs in function calls; the export stub clobbers
2397 the return value of the caller, and, later restores it from the
2398 stack. */
2399 u = find_unwind_entry (frame_pc_unwind (next_frame));
2400
2401 if (u && u->stub_unwind.stub_type == EXPORT)
2402 {
2403 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2404
2405 return info;
2406 }
2407 }
2408
2409 /* By default we assume that stubs do not change the rp. */
2410 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2411
2412 return info;
2413 }
2414
2415 static void
2416 hppa_stub_frame_this_id (struct frame_info *next_frame,
2417 void **this_prologue_cache,
2418 struct frame_id *this_id)
2419 {
2420 struct hppa_stub_unwind_cache *info
2421 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2422
2423 if (info)
2424 *this_id = frame_id_build (info->base,
2425 frame_func_unwind (next_frame, NORMAL_FRAME));
2426 else
2427 *this_id = null_frame_id;
2428 }
2429
2430 static void
2431 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2432 void **this_prologue_cache,
2433 int regnum, int *optimizedp,
2434 enum lval_type *lvalp, CORE_ADDR *addrp,
2435 int *realnump, gdb_byte *valuep)
2436 {
2437 struct hppa_stub_unwind_cache *info
2438 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2439
2440 if (info)
2441 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2442 optimizedp, lvalp, addrp, realnump,
2443 valuep);
2444 else
2445 error (_("Requesting registers from null frame."));
2446 }
2447
2448 static const struct frame_unwind hppa_stub_frame_unwind = {
2449 NORMAL_FRAME,
2450 hppa_stub_frame_this_id,
2451 hppa_stub_frame_prev_register
2452 };
2453
2454 static const struct frame_unwind *
2455 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2456 {
2457 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2458 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2459 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2460
2461 if (pc == 0
2462 || (tdep->in_solib_call_trampoline != NULL
2463 && tdep->in_solib_call_trampoline (pc, NULL))
2464 || gdbarch_in_solib_return_trampoline (current_gdbarch, pc, NULL))
2465 return &hppa_stub_frame_unwind;
2466 return NULL;
2467 }
2468
2469 static struct frame_id
2470 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2471 {
2472 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2473 HPPA_SP_REGNUM),
2474 frame_pc_unwind (next_frame));
2475 }
2476
2477 CORE_ADDR
2478 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2479 {
2480 ULONGEST ipsw;
2481 CORE_ADDR pc;
2482
2483 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2484 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2485
2486 /* If the current instruction is nullified, then we are effectively
2487 still executing the previous instruction. Pretend we are still
2488 there. This is needed when single stepping; if the nullified
2489 instruction is on a different line, we don't want GDB to think
2490 we've stepped onto that line. */
2491 if (ipsw & 0x00200000)
2492 pc -= 4;
2493
2494 return pc & ~0x3;
2495 }
2496
2497 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2498 Return NULL if no such symbol was found. */
2499
2500 struct minimal_symbol *
2501 hppa_lookup_stub_minimal_symbol (const char *name,
2502 enum unwind_stub_types stub_type)
2503 {
2504 struct objfile *objfile;
2505 struct minimal_symbol *msym;
2506
2507 ALL_MSYMBOLS (objfile, msym)
2508 {
2509 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2510 {
2511 struct unwind_table_entry *u;
2512
2513 u = find_unwind_entry (SYMBOL_VALUE (msym));
2514 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2515 return msym;
2516 }
2517 }
2518
2519 return NULL;
2520 }
2521
2522 static void
2523 unwind_command (char *exp, int from_tty)
2524 {
2525 CORE_ADDR address;
2526 struct unwind_table_entry *u;
2527
2528 /* If we have an expression, evaluate it and use it as the address. */
2529
2530 if (exp != 0 && *exp != 0)
2531 address = parse_and_eval_address (exp);
2532 else
2533 return;
2534
2535 u = find_unwind_entry (address);
2536
2537 if (!u)
2538 {
2539 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2540 return;
2541 }
2542
2543 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2544
2545 printf_unfiltered ("\tregion_start = ");
2546 print_address (u->region_start, gdb_stdout);
2547 gdb_flush (gdb_stdout);
2548
2549 printf_unfiltered ("\n\tregion_end = ");
2550 print_address (u->region_end, gdb_stdout);
2551 gdb_flush (gdb_stdout);
2552
2553 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2554
2555 printf_unfiltered ("\n\tflags =");
2556 pif (Cannot_unwind);
2557 pif (Millicode);
2558 pif (Millicode_save_sr0);
2559 pif (Entry_SR);
2560 pif (Args_stored);
2561 pif (Variable_Frame);
2562 pif (Separate_Package_Body);
2563 pif (Frame_Extension_Millicode);
2564 pif (Stack_Overflow_Check);
2565 pif (Two_Instruction_SP_Increment);
2566 pif (sr4export);
2567 pif (cxx_info);
2568 pif (cxx_try_catch);
2569 pif (sched_entry_seq);
2570 pif (Save_SP);
2571 pif (Save_RP);
2572 pif (Save_MRP_in_frame);
2573 pif (save_r19);
2574 pif (Cleanup_defined);
2575 pif (MPE_XL_interrupt_marker);
2576 pif (HP_UX_interrupt_marker);
2577 pif (Large_frame);
2578 pif (alloca_frame);
2579
2580 putchar_unfiltered ('\n');
2581
2582 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2583
2584 pin (Region_description);
2585 pin (Entry_FR);
2586 pin (Entry_GR);
2587 pin (Total_frame_size);
2588
2589 if (u->stub_unwind.stub_type)
2590 {
2591 printf_unfiltered ("\tstub type = ");
2592 switch (u->stub_unwind.stub_type)
2593 {
2594 case LONG_BRANCH:
2595 printf_unfiltered ("long branch\n");
2596 break;
2597 case PARAMETER_RELOCATION:
2598 printf_unfiltered ("parameter relocation\n");
2599 break;
2600 case EXPORT:
2601 printf_unfiltered ("export\n");
2602 break;
2603 case IMPORT:
2604 printf_unfiltered ("import\n");
2605 break;
2606 case IMPORT_SHLIB:
2607 printf_unfiltered ("import shlib\n");
2608 break;
2609 default:
2610 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2611 }
2612 }
2613 }
2614
2615 int
2616 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2617 {
2618 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2619
2620 An example of this occurs when an a.out is linked against a foo.sl.
2621 The foo.sl defines a global bar(), and the a.out declares a signature
2622 for bar(). However, the a.out doesn't directly call bar(), but passes
2623 its address in another call.
2624
2625 If you have this scenario and attempt to "break bar" before running,
2626 gdb will find a minimal symbol for bar() in the a.out. But that
2627 symbol's address will be negative. What this appears to denote is
2628 an index backwards from the base of the procedure linkage table (PLT)
2629 into the data linkage table (DLT), the end of which is contiguous
2630 with the start of the PLT. This is clearly not a valid address for
2631 us to set a breakpoint on.
2632
2633 Note that one must be careful in how one checks for a negative address.
2634 0xc0000000 is a legitimate address of something in a shared text
2635 segment, for example. Since I don't know what the possible range
2636 is of these "really, truly negative" addresses that come from the
2637 minimal symbols, I'm resorting to the gross hack of checking the
2638 top byte of the address for all 1's. Sigh. */
2639
2640 return (!target_has_stack && (pc & 0xFF000000) == 0xFF000000);
2641 }
2642
2643 /* Return the GDB type object for the "standard" data type of data in
2644 register REGNUM. */
2645
2646 static struct type *
2647 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2648 {
2649 if (regnum < HPPA_FP4_REGNUM)
2650 return builtin_type_uint32;
2651 else
2652 return builtin_type_ieee_single;
2653 }
2654
2655 static struct type *
2656 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2657 {
2658 if (regnum < HPPA64_FP4_REGNUM)
2659 return builtin_type_uint64;
2660 else
2661 return builtin_type_ieee_double;
2662 }
2663
2664 /* Return non-zero if REGNUM is not a register available to the user
2665 through ptrace/ttrace. */
2666
2667 static int
2668 hppa32_cannot_store_register (int regnum)
2669 {
2670 return (regnum == 0
2671 || regnum == HPPA_PCSQ_HEAD_REGNUM
2672 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2673 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2674 }
2675
2676 static int
2677 hppa64_cannot_store_register (int regnum)
2678 {
2679 return (regnum == 0
2680 || regnum == HPPA_PCSQ_HEAD_REGNUM
2681 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2682 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2683 }
2684
2685 static CORE_ADDR
2686 hppa_smash_text_address (CORE_ADDR addr)
2687 {
2688 /* The low two bits of the PC on the PA contain the privilege level.
2689 Some genius implementing a (non-GCC) compiler apparently decided
2690 this means that "addresses" in a text section therefore include a
2691 privilege level, and thus symbol tables should contain these bits.
2692 This seems like a bonehead thing to do--anyway, it seems to work
2693 for our purposes to just ignore those bits. */
2694
2695 return (addr &= ~0x3);
2696 }
2697
2698 /* Get the ARGIth function argument for the current function. */
2699
2700 static CORE_ADDR
2701 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2702 struct type *type)
2703 {
2704 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2705 }
2706
2707 static void
2708 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2709 int regnum, gdb_byte *buf)
2710 {
2711 ULONGEST tmp;
2712
2713 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2714 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2715 tmp &= ~0x3;
2716 store_unsigned_integer (buf, sizeof tmp, tmp);
2717 }
2718
2719 static CORE_ADDR
2720 hppa_find_global_pointer (struct value *function)
2721 {
2722 return 0;
2723 }
2724
2725 void
2726 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2727 struct trad_frame_saved_reg saved_regs[],
2728 int regnum, int *optimizedp,
2729 enum lval_type *lvalp, CORE_ADDR *addrp,
2730 int *realnump, gdb_byte *valuep)
2731 {
2732 struct gdbarch *arch = get_frame_arch (next_frame);
2733
2734 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2735 {
2736 if (valuep)
2737 {
2738 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2739 CORE_ADDR pc;
2740
2741 trad_frame_get_prev_register (next_frame, saved_regs,
2742 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2743 lvalp, addrp, realnump, valuep);
2744
2745 pc = extract_unsigned_integer (valuep, size);
2746 store_unsigned_integer (valuep, size, pc + 4);
2747 }
2748
2749 /* It's a computed value. */
2750 *optimizedp = 0;
2751 *lvalp = not_lval;
2752 *addrp = 0;
2753 *realnump = -1;
2754 return;
2755 }
2756
2757 /* Make sure the "flags" register is zero in all unwound frames.
2758 The "flags" registers is a HP-UX specific wart, and only the code
2759 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2760 with it here. This shouldn't affect other systems since those
2761 should provide zero for the "flags" register anyway. */
2762 if (regnum == HPPA_FLAGS_REGNUM)
2763 {
2764 if (valuep)
2765 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
2766
2767 /* It's a computed value. */
2768 *optimizedp = 0;
2769 *lvalp = not_lval;
2770 *addrp = 0;
2771 *realnump = -1;
2772 return;
2773 }
2774
2775 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2776 optimizedp, lvalp, addrp, realnump, valuep);
2777 }
2778 \f
2779
2780 /* An instruction to match. */
2781 struct insn_pattern
2782 {
2783 unsigned int data; /* See if it matches this.... */
2784 unsigned int mask; /* ... with this mask. */
2785 };
2786
2787 /* See bfd/elf32-hppa.c */
2788 static struct insn_pattern hppa_long_branch_stub[] = {
2789 /* ldil LR'xxx,%r1 */
2790 { 0x20200000, 0xffe00000 },
2791 /* be,n RR'xxx(%sr4,%r1) */
2792 { 0xe0202002, 0xffe02002 },
2793 { 0, 0 }
2794 };
2795
2796 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2797 /* b,l .+8, %r1 */
2798 { 0xe8200000, 0xffe00000 },
2799 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2800 { 0x28200000, 0xffe00000 },
2801 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2802 { 0xe0202002, 0xffe02002 },
2803 { 0, 0 }
2804 };
2805
2806 static struct insn_pattern hppa_import_stub[] = {
2807 /* addil LR'xxx, %dp */
2808 { 0x2b600000, 0xffe00000 },
2809 /* ldw RR'xxx(%r1), %r21 */
2810 { 0x48350000, 0xffffb000 },
2811 /* bv %r0(%r21) */
2812 { 0xeaa0c000, 0xffffffff },
2813 /* ldw RR'xxx+4(%r1), %r19 */
2814 { 0x48330000, 0xffffb000 },
2815 { 0, 0 }
2816 };
2817
2818 static struct insn_pattern hppa_import_pic_stub[] = {
2819 /* addil LR'xxx,%r19 */
2820 { 0x2a600000, 0xffe00000 },
2821 /* ldw RR'xxx(%r1),%r21 */
2822 { 0x48350000, 0xffffb000 },
2823 /* bv %r0(%r21) */
2824 { 0xeaa0c000, 0xffffffff },
2825 /* ldw RR'xxx+4(%r1),%r19 */
2826 { 0x48330000, 0xffffb000 },
2827 { 0, 0 },
2828 };
2829
2830 static struct insn_pattern hppa_plt_stub[] = {
2831 /* b,l 1b, %r20 - 1b is 3 insns before here */
2832 { 0xea9f1fdd, 0xffffffff },
2833 /* depi 0,31,2,%r20 */
2834 { 0xd6801c1e, 0xffffffff },
2835 { 0, 0 }
2836 };
2837
2838 static struct insn_pattern hppa_sigtramp[] = {
2839 /* ldi 0, %r25 or ldi 1, %r25 */
2840 { 0x34190000, 0xfffffffd },
2841 /* ldi __NR_rt_sigreturn, %r20 */
2842 { 0x3414015a, 0xffffffff },
2843 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2844 { 0xe4008200, 0xffffffff },
2845 /* nop */
2846 { 0x08000240, 0xffffffff },
2847 { 0, 0 }
2848 };
2849
2850 /* Maximum number of instructions on the patterns above. */
2851 #define HPPA_MAX_INSN_PATTERN_LEN 4
2852
2853 /* Return non-zero if the instructions at PC match the series
2854 described in PATTERN, or zero otherwise. PATTERN is an array of
2855 'struct insn_pattern' objects, terminated by an entry whose mask is
2856 zero.
2857
2858 When the match is successful, fill INSN[i] with what PATTERN[i]
2859 matched. */
2860
2861 static int
2862 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2863 unsigned int *insn)
2864 {
2865 CORE_ADDR npc = pc;
2866 int i;
2867
2868 for (i = 0; pattern[i].mask; i++)
2869 {
2870 gdb_byte buf[HPPA_INSN_SIZE];
2871
2872 read_memory_nobpt (npc, buf, HPPA_INSN_SIZE);
2873 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2874 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2875 npc += 4;
2876 else
2877 return 0;
2878 }
2879
2880 return 1;
2881 }
2882
2883 /* This relaxed version of the insstruction matcher allows us to match
2884 from somewhere inside the pattern, by looking backwards in the
2885 instruction scheme. */
2886
2887 static int
2888 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2889 unsigned int *insn)
2890 {
2891 int offset, len = 0;
2892
2893 while (pattern[len].mask)
2894 len++;
2895
2896 for (offset = 0; offset < len; offset++)
2897 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2898 return 1;
2899
2900 return 0;
2901 }
2902
2903 static int
2904 hppa_in_dyncall (CORE_ADDR pc)
2905 {
2906 struct unwind_table_entry *u;
2907
2908 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2909 if (!u)
2910 return 0;
2911
2912 return (pc >= u->region_start && pc <= u->region_end);
2913 }
2914
2915 int
2916 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2917 {
2918 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2919 struct unwind_table_entry *u;
2920
2921 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2922 return 1;
2923
2924 /* The GNU toolchain produces linker stubs without unwind
2925 information. Since the pattern matching for linker stubs can be
2926 quite slow, so bail out if we do have an unwind entry. */
2927
2928 u = find_unwind_entry (pc);
2929 if (u != NULL)
2930 return 0;
2931
2932 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2933 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2934 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2935 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2936 }
2937
2938 /* This code skips several kind of "trampolines" used on PA-RISC
2939 systems: $$dyncall, import stubs and PLT stubs. */
2940
2941 CORE_ADDR
2942 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2943 {
2944 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2945 int dp_rel;
2946
2947 /* $$dyncall handles both PLABELs and direct addresses. */
2948 if (hppa_in_dyncall (pc))
2949 {
2950 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2951
2952 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2953 if (pc & 0x2)
2954 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2955
2956 return pc;
2957 }
2958
2959 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2960 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2961 {
2962 /* Extract the target address from the addil/ldw sequence. */
2963 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2964
2965 if (dp_rel)
2966 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2967 else
2968 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2969
2970 /* fallthrough */
2971 }
2972
2973 if (in_plt_section (pc, NULL))
2974 {
2975 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2976
2977 /* If the PLT slot has not yet been resolved, the target will be
2978 the PLT stub. */
2979 if (in_plt_section (pc, NULL))
2980 {
2981 /* Sanity check: are we pointing to the PLT stub? */
2982 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2983 {
2984 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2985 return 0;
2986 }
2987
2988 /* This should point to the fixup routine. */
2989 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2990 }
2991 }
2992
2993 return pc;
2994 }
2995 \f
2996
2997 /* Here is a table of C type sizes on hppa with various compiles
2998 and options. I measured this on PA 9000/800 with HP-UX 11.11
2999 and these compilers:
3000
3001 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3002 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3003 /opt/aCC/bin/aCC B3910B A.03.45
3004 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3005
3006 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3007 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3008 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3009 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3010 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3011 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3012 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3013 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3014
3015 Each line is:
3016
3017 compiler and options
3018 char, short, int, long, long long
3019 float, double, long double
3020 char *, void (*)()
3021
3022 So all these compilers use either ILP32 or LP64 model.
3023 TODO: gcc has more options so it needs more investigation.
3024
3025 For floating point types, see:
3026
3027 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3028 HP-UX floating-point guide, hpux 11.00
3029
3030 -- chastain 2003-12-18 */
3031
3032 static struct gdbarch *
3033 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3034 {
3035 struct gdbarch_tdep *tdep;
3036 struct gdbarch *gdbarch;
3037
3038 /* Try to determine the ABI of the object we are loading. */
3039 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3040 {
3041 /* If it's a SOM file, assume it's HP/UX SOM. */
3042 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3043 info.osabi = GDB_OSABI_HPUX_SOM;
3044 }
3045
3046 /* find a candidate among the list of pre-declared architectures. */
3047 arches = gdbarch_list_lookup_by_info (arches, &info);
3048 if (arches != NULL)
3049 return (arches->gdbarch);
3050
3051 /* If none found, then allocate and initialize one. */
3052 tdep = XZALLOC (struct gdbarch_tdep);
3053 gdbarch = gdbarch_alloc (&info, tdep);
3054
3055 /* Determine from the bfd_arch_info structure if we are dealing with
3056 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3057 then default to a 32bit machine. */
3058 if (info.bfd_arch_info != NULL)
3059 tdep->bytes_per_address =
3060 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3061 else
3062 tdep->bytes_per_address = 4;
3063
3064 tdep->find_global_pointer = hppa_find_global_pointer;
3065
3066 /* Some parts of the gdbarch vector depend on whether we are running
3067 on a 32 bits or 64 bits target. */
3068 switch (tdep->bytes_per_address)
3069 {
3070 case 4:
3071 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3072 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3073 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3074 set_gdbarch_cannot_store_register (gdbarch,
3075 hppa32_cannot_store_register);
3076 set_gdbarch_cannot_fetch_register (gdbarch,
3077 hppa32_cannot_store_register);
3078 break;
3079 case 8:
3080 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3081 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3082 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3083 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3084 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3085 set_gdbarch_cannot_store_register (gdbarch,
3086 hppa64_cannot_store_register);
3087 set_gdbarch_cannot_fetch_register (gdbarch,
3088 hppa64_cannot_store_register);
3089 break;
3090 default:
3091 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3092 tdep->bytes_per_address);
3093 }
3094
3095 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3096 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3097
3098 /* The following gdbarch vector elements are the same in both ILP32
3099 and LP64, but might show differences some day. */
3100 set_gdbarch_long_long_bit (gdbarch, 64);
3101 set_gdbarch_long_double_bit (gdbarch, 128);
3102 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3103
3104 /* The following gdbarch vector elements do not depend on the address
3105 size, or in any other gdbarch element previously set. */
3106 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3107 set_gdbarch_in_function_epilogue_p (gdbarch,
3108 hppa_in_function_epilogue_p);
3109 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3110 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3111 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3112 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3113 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3114 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3115 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3116 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3117
3118 /* Helper for function argument information. */
3119 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3120
3121 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3122
3123 /* When a hardware watchpoint triggers, we'll move the inferior past
3124 it by removing all eventpoints; stepping past the instruction
3125 that caused the trigger; reinserting eventpoints; and checking
3126 whether any watched location changed. */
3127 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3128
3129 /* Inferior function call methods. */
3130 switch (tdep->bytes_per_address)
3131 {
3132 case 4:
3133 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3134 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3135 set_gdbarch_convert_from_func_ptr_addr
3136 (gdbarch, hppa32_convert_from_func_ptr_addr);
3137 break;
3138 case 8:
3139 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3140 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3141 break;
3142 default:
3143 internal_error (__FILE__, __LINE__, _("bad switch"));
3144 }
3145
3146 /* Struct return methods. */
3147 switch (tdep->bytes_per_address)
3148 {
3149 case 4:
3150 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3151 break;
3152 case 8:
3153 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3154 break;
3155 default:
3156 internal_error (__FILE__, __LINE__, _("bad switch"));
3157 }
3158
3159 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3160 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3161
3162 /* Frame unwind methods. */
3163 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
3164 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3165
3166 /* Hook in ABI-specific overrides, if they have been registered. */
3167 gdbarch_init_osabi (info, gdbarch);
3168
3169 /* Hook in the default unwinders. */
3170 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
3171 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
3172 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
3173
3174 return gdbarch;
3175 }
3176
3177 static void
3178 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3179 {
3180 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3181
3182 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3183 tdep->bytes_per_address);
3184 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3185 }
3186
3187 void
3188 _initialize_hppa_tdep (void)
3189 {
3190 struct cmd_list_element *c;
3191
3192 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3193
3194 hppa_objfile_priv_data = register_objfile_data ();
3195
3196 add_cmd ("unwind", class_maintenance, unwind_command,
3197 _("Print unwind table entry at given address."),
3198 &maintenanceprintlist);
3199
3200 /* Debug this files internals. */
3201 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3202 Set whether hppa target specific debugging information should be displayed."),
3203 _("\
3204 Show whether hppa target specific debugging information is displayed."), _("\
3205 This flag controls whether hppa target specific debugging information is\n\
3206 displayed. This information is particularly useful for debugging frame\n\
3207 unwinding problems."),
3208 NULL,
3209 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3210 &setdebuglist, &showdebuglist);
3211 }
This page took 0.136813 seconds and 4 git commands to generate.