fda327f56a83c91afff3eaa2ee58762802b731f4
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "value.h"
31 #include "regcache.h"
32 #include "completer.h"
33 #include "language.h"
34 #include "osabi.h"
35 #include "gdb_assert.h"
36 #include "infttrace.h"
37 /* For argument passing to the inferior */
38 #include "symtab.h"
39 #include "infcall.h"
40 #include "dis-asm.h"
41
42 #ifdef USG
43 #include <sys/types.h>
44 #endif
45
46 #include <dl.h>
47 #include <sys/param.h>
48 #include <signal.h>
49
50 #include <sys/ptrace.h>
51 #include <machine/save_state.h>
52
53 #ifdef COFF_ENCAPSULATE
54 #include "a.out.encap.h"
55 #else
56 #endif
57
58 /*#include <sys/user.h> After a.out.h */
59 #include <sys/file.h>
60 #include "gdb_stat.h"
61 #include "gdb_wait.h"
62
63 #include "gdbcore.h"
64 #include "gdbcmd.h"
65 #include "target.h"
66 #include "symfile.h"
67 #include "objfiles.h"
68 #include "hppa-tdep.h"
69
70 /* Some local constants. */
71 static const int hppa32_num_regs = 128;
72 static const int hppa64_num_regs = 96;
73
74 static const int hppa64_call_dummy_breakpoint_offset = 22 * 4;
75
76 /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
77 word on the target machine, not the size of an instruction. Since
78 a word on this target holds two instructions we have to divide the
79 instruction size by two to get the word size of the dummy. */
80 static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28;
81 static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2;
82
83 /* Get at various relevent fields of an instruction word. */
84 #define MASK_5 0x1f
85 #define MASK_11 0x7ff
86 #define MASK_14 0x3fff
87 #define MASK_21 0x1fffff
88
89 /* Define offsets into the call dummy for the target function address.
90 See comments related to CALL_DUMMY for more info. */
91 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
92 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
93
94 /* Define offsets into the call dummy for the _sr4export address.
95 See comments related to CALL_DUMMY for more info. */
96 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
97 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
98
99 /* To support detection of the pseudo-initial frame
100 that threads have. */
101 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
102 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
103
104 /* Sizes (in bytes) of the native unwind entries. */
105 #define UNWIND_ENTRY_SIZE 16
106 #define STUB_UNWIND_ENTRY_SIZE 8
107
108 static int get_field (unsigned word, int from, int to);
109
110 static int extract_5_load (unsigned int);
111
112 static unsigned extract_5R_store (unsigned int);
113
114 static unsigned extract_5r_store (unsigned int);
115
116 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
117
118 static int find_proc_framesize (CORE_ADDR);
119
120 static int find_return_regnum (CORE_ADDR);
121
122 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
123
124 static int extract_17 (unsigned int);
125
126 static unsigned deposit_21 (unsigned int, unsigned int);
127
128 static int extract_21 (unsigned);
129
130 static unsigned deposit_14 (int, unsigned int);
131
132 static int extract_14 (unsigned);
133
134 static void unwind_command (char *, int);
135
136 static int low_sign_extend (unsigned int, unsigned int);
137
138 static int sign_extend (unsigned int, unsigned int);
139
140 static int restore_pc_queue (CORE_ADDR *);
141
142 static int hppa_alignof (struct type *);
143
144 static int prologue_inst_adjust_sp (unsigned long);
145
146 static int is_branch (unsigned long);
147
148 static int inst_saves_gr (unsigned long);
149
150 static int inst_saves_fr (unsigned long);
151
152 static int pc_in_interrupt_handler (CORE_ADDR);
153
154 static int pc_in_linker_stub (CORE_ADDR);
155
156 static int compare_unwind_entries (const void *, const void *);
157
158 static void read_unwind_info (struct objfile *);
159
160 static void internalize_unwinds (struct objfile *,
161 struct unwind_table_entry *,
162 asection *, unsigned int,
163 unsigned int, CORE_ADDR);
164 static void pa_print_registers (char *, int, int);
165 static void pa_strcat_registers (char *, int, int, struct ui_file *);
166 static void pa_register_look_aside (char *, int, long *);
167 static void pa_print_fp_reg (int);
168 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
169 static void record_text_segment_lowaddr (bfd *, asection *, void *);
170 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
171 following functions static, once we hppa is partially multiarched. */
172 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
173 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
174 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
175 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
176 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
177 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
178 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
179 CORE_ADDR hppa32_stack_align (CORE_ADDR sp);
180 CORE_ADDR hppa64_stack_align (CORE_ADDR sp);
181 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
182 int hppa_instruction_nullified (void);
183 int hppa_register_raw_size (int reg_nr);
184 int hppa_register_byte (int reg_nr);
185 struct type * hppa32_register_virtual_type (int reg_nr);
186 struct type * hppa64_register_virtual_type (int reg_nr);
187 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
188 void hppa32_extract_return_value (struct type *type, char *regbuf,
189 char *valbuf);
190 void hppa64_extract_return_value (struct type *type, char *regbuf,
191 char *valbuf);
192 int hppa32_use_struct_convention (int gcc_p, struct type *type);
193 int hppa64_use_struct_convention (int gcc_p, struct type *type);
194 void hppa32_store_return_value (struct type *type, char *valbuf);
195 void hppa64_store_return_value (struct type *type, char *valbuf);
196 CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
197 int hppa_cannot_store_register (int regnum);
198 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
199 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
200 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
201 int hppa_frameless_function_invocation (struct frame_info *frame);
202 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
203 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
204 int hppa_frame_num_args (struct frame_info *frame);
205 void hppa_push_dummy_frame (void);
206 void hppa_pop_frame (void);
207 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
208 int nargs, struct value **args,
209 struct type *type, int gcc_p);
210 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
211 int struct_return, CORE_ADDR struct_addr);
212 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
213 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
214 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
215 CORE_ADDR hppa_target_read_fp (void);
216
217 typedef struct
218 {
219 struct minimal_symbol *msym;
220 CORE_ADDR solib_handle;
221 CORE_ADDR return_val;
222 }
223 args_for_find_stub;
224
225 static int cover_find_stub_with_shl_get (void *);
226
227 static int is_pa_2 = 0; /* False */
228
229 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
230 extern int hp_som_som_object_present;
231
232 /* In breakpoint.c */
233 extern int exception_catchpoints_are_fragile;
234
235 /* Should call_function allocate stack space for a struct return? */
236
237 int
238 hppa32_use_struct_convention (int gcc_p, struct type *type)
239 {
240 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
241 }
242
243 /* Same as hppa32_use_struct_convention() for the PA64 ABI. */
244
245 int
246 hppa64_use_struct_convention (int gcc_p, struct type *type)
247 {
248 /* RM: struct upto 128 bits are returned in registers */
249 return TYPE_LENGTH (type) > 16;
250 }
251
252 /* Routines to extract various sized constants out of hppa
253 instructions. */
254
255 /* This assumes that no garbage lies outside of the lower bits of
256 value. */
257
258 static int
259 sign_extend (unsigned val, unsigned bits)
260 {
261 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
262 }
263
264 /* For many immediate values the sign bit is the low bit! */
265
266 static int
267 low_sign_extend (unsigned val, unsigned bits)
268 {
269 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
270 }
271
272 /* Extract the bits at positions between FROM and TO, using HP's numbering
273 (MSB = 0). */
274
275 static int
276 get_field (unsigned word, int from, int to)
277 {
278 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
279 }
280
281 /* extract the immediate field from a ld{bhw}s instruction */
282
283 static int
284 extract_5_load (unsigned word)
285 {
286 return low_sign_extend (word >> 16 & MASK_5, 5);
287 }
288
289 /* extract the immediate field from a break instruction */
290
291 static unsigned
292 extract_5r_store (unsigned word)
293 {
294 return (word & MASK_5);
295 }
296
297 /* extract the immediate field from a {sr}sm instruction */
298
299 static unsigned
300 extract_5R_store (unsigned word)
301 {
302 return (word >> 16 & MASK_5);
303 }
304
305 /* extract a 14 bit immediate field */
306
307 static int
308 extract_14 (unsigned word)
309 {
310 return low_sign_extend (word & MASK_14, 14);
311 }
312
313 /* deposit a 14 bit constant in a word */
314
315 static unsigned
316 deposit_14 (int opnd, unsigned word)
317 {
318 unsigned sign = (opnd < 0 ? 1 : 0);
319
320 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
321 }
322
323 /* extract a 21 bit constant */
324
325 static int
326 extract_21 (unsigned word)
327 {
328 int val;
329
330 word &= MASK_21;
331 word <<= 11;
332 val = get_field (word, 20, 20);
333 val <<= 11;
334 val |= get_field (word, 9, 19);
335 val <<= 2;
336 val |= get_field (word, 5, 6);
337 val <<= 5;
338 val |= get_field (word, 0, 4);
339 val <<= 2;
340 val |= get_field (word, 7, 8);
341 return sign_extend (val, 21) << 11;
342 }
343
344 /* deposit a 21 bit constant in a word. Although 21 bit constants are
345 usually the top 21 bits of a 32 bit constant, we assume that only
346 the low 21 bits of opnd are relevant */
347
348 static unsigned
349 deposit_21 (unsigned opnd, unsigned word)
350 {
351 unsigned val = 0;
352
353 val |= get_field (opnd, 11 + 14, 11 + 18);
354 val <<= 2;
355 val |= get_field (opnd, 11 + 12, 11 + 13);
356 val <<= 2;
357 val |= get_field (opnd, 11 + 19, 11 + 20);
358 val <<= 11;
359 val |= get_field (opnd, 11 + 1, 11 + 11);
360 val <<= 1;
361 val |= get_field (opnd, 11 + 0, 11 + 0);
362 return word | val;
363 }
364
365 /* extract a 17 bit constant from branch instructions, returning the
366 19 bit signed value. */
367
368 static int
369 extract_17 (unsigned word)
370 {
371 return sign_extend (get_field (word, 19, 28) |
372 get_field (word, 29, 29) << 10 |
373 get_field (word, 11, 15) << 11 |
374 (word & 0x1) << 16, 17) << 2;
375 }
376 \f
377
378 /* Compare the start address for two unwind entries returning 1 if
379 the first address is larger than the second, -1 if the second is
380 larger than the first, and zero if they are equal. */
381
382 static int
383 compare_unwind_entries (const void *arg1, const void *arg2)
384 {
385 const struct unwind_table_entry *a = arg1;
386 const struct unwind_table_entry *b = arg2;
387
388 if (a->region_start > b->region_start)
389 return 1;
390 else if (a->region_start < b->region_start)
391 return -1;
392 else
393 return 0;
394 }
395
396 static CORE_ADDR low_text_segment_address;
397
398 static void
399 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
400 {
401 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
402 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
403 && section->vma < low_text_segment_address)
404 low_text_segment_address = section->vma;
405 }
406
407 static void
408 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
409 asection *section, unsigned int entries, unsigned int size,
410 CORE_ADDR text_offset)
411 {
412 /* We will read the unwind entries into temporary memory, then
413 fill in the actual unwind table. */
414 if (size > 0)
415 {
416 unsigned long tmp;
417 unsigned i;
418 char *buf = alloca (size);
419
420 low_text_segment_address = -1;
421
422 /* If addresses are 64 bits wide, then unwinds are supposed to
423 be segment relative offsets instead of absolute addresses.
424
425 Note that when loading a shared library (text_offset != 0) the
426 unwinds are already relative to the text_offset that will be
427 passed in. */
428 if (TARGET_PTR_BIT == 64 && text_offset == 0)
429 {
430 bfd_map_over_sections (objfile->obfd,
431 record_text_segment_lowaddr, NULL);
432
433 /* ?!? Mask off some low bits. Should this instead subtract
434 out the lowest section's filepos or something like that?
435 This looks very hokey to me. */
436 low_text_segment_address &= ~0xfff;
437 text_offset += low_text_segment_address;
438 }
439
440 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
441
442 /* Now internalize the information being careful to handle host/target
443 endian issues. */
444 for (i = 0; i < entries; i++)
445 {
446 table[i].region_start = bfd_get_32 (objfile->obfd,
447 (bfd_byte *) buf);
448 table[i].region_start += text_offset;
449 buf += 4;
450 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
451 table[i].region_end += text_offset;
452 buf += 4;
453 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
454 buf += 4;
455 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
456 table[i].Millicode = (tmp >> 30) & 0x1;
457 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
458 table[i].Region_description = (tmp >> 27) & 0x3;
459 table[i].reserved1 = (tmp >> 26) & 0x1;
460 table[i].Entry_SR = (tmp >> 25) & 0x1;
461 table[i].Entry_FR = (tmp >> 21) & 0xf;
462 table[i].Entry_GR = (tmp >> 16) & 0x1f;
463 table[i].Args_stored = (tmp >> 15) & 0x1;
464 table[i].Variable_Frame = (tmp >> 14) & 0x1;
465 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
466 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
467 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
468 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
469 table[i].Ada_Region = (tmp >> 9) & 0x1;
470 table[i].cxx_info = (tmp >> 8) & 0x1;
471 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
472 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
473 table[i].reserved2 = (tmp >> 5) & 0x1;
474 table[i].Save_SP = (tmp >> 4) & 0x1;
475 table[i].Save_RP = (tmp >> 3) & 0x1;
476 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
477 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
478 table[i].Cleanup_defined = tmp & 0x1;
479 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
480 buf += 4;
481 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
482 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
483 table[i].Large_frame = (tmp >> 29) & 0x1;
484 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
485 table[i].reserved4 = (tmp >> 27) & 0x1;
486 table[i].Total_frame_size = tmp & 0x7ffffff;
487
488 /* Stub unwinds are handled elsewhere. */
489 table[i].stub_unwind.stub_type = 0;
490 table[i].stub_unwind.padding = 0;
491 }
492 }
493 }
494
495 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
496 the object file. This info is used mainly by find_unwind_entry() to find
497 out the stack frame size and frame pointer used by procedures. We put
498 everything on the psymbol obstack in the objfile so that it automatically
499 gets freed when the objfile is destroyed. */
500
501 static void
502 read_unwind_info (struct objfile *objfile)
503 {
504 asection *unwind_sec, *stub_unwind_sec;
505 unsigned unwind_size, stub_unwind_size, total_size;
506 unsigned index, unwind_entries;
507 unsigned stub_entries, total_entries;
508 CORE_ADDR text_offset;
509 struct obj_unwind_info *ui;
510 obj_private_data_t *obj_private;
511
512 text_offset = ANOFFSET (objfile->section_offsets, 0);
513 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
514 sizeof (struct obj_unwind_info));
515
516 ui->table = NULL;
517 ui->cache = NULL;
518 ui->last = -1;
519
520 /* For reasons unknown the HP PA64 tools generate multiple unwinder
521 sections in a single executable. So we just iterate over every
522 section in the BFD looking for unwinder sections intead of trying
523 to do a lookup with bfd_get_section_by_name.
524
525 First determine the total size of the unwind tables so that we
526 can allocate memory in a nice big hunk. */
527 total_entries = 0;
528 for (unwind_sec = objfile->obfd->sections;
529 unwind_sec;
530 unwind_sec = unwind_sec->next)
531 {
532 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
533 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
534 {
535 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
536 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
537
538 total_entries += unwind_entries;
539 }
540 }
541
542 /* Now compute the size of the stub unwinds. Note the ELF tools do not
543 use stub unwinds at the curren time. */
544 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
545
546 if (stub_unwind_sec)
547 {
548 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
549 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
550 }
551 else
552 {
553 stub_unwind_size = 0;
554 stub_entries = 0;
555 }
556
557 /* Compute total number of unwind entries and their total size. */
558 total_entries += stub_entries;
559 total_size = total_entries * sizeof (struct unwind_table_entry);
560
561 /* Allocate memory for the unwind table. */
562 ui->table = (struct unwind_table_entry *)
563 obstack_alloc (&objfile->psymbol_obstack, total_size);
564 ui->last = total_entries - 1;
565
566 /* Now read in each unwind section and internalize the standard unwind
567 entries. */
568 index = 0;
569 for (unwind_sec = objfile->obfd->sections;
570 unwind_sec;
571 unwind_sec = unwind_sec->next)
572 {
573 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
574 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
575 {
576 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
577 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
578
579 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
580 unwind_entries, unwind_size, text_offset);
581 index += unwind_entries;
582 }
583 }
584
585 /* Now read in and internalize the stub unwind entries. */
586 if (stub_unwind_size > 0)
587 {
588 unsigned int i;
589 char *buf = alloca (stub_unwind_size);
590
591 /* Read in the stub unwind entries. */
592 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
593 0, stub_unwind_size);
594
595 /* Now convert them into regular unwind entries. */
596 for (i = 0; i < stub_entries; i++, index++)
597 {
598 /* Clear out the next unwind entry. */
599 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
600
601 /* Convert offset & size into region_start and region_end.
602 Stuff away the stub type into "reserved" fields. */
603 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
604 (bfd_byte *) buf);
605 ui->table[index].region_start += text_offset;
606 buf += 4;
607 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
608 (bfd_byte *) buf);
609 buf += 2;
610 ui->table[index].region_end
611 = ui->table[index].region_start + 4 *
612 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
613 buf += 2;
614 }
615
616 }
617
618 /* Unwind table needs to be kept sorted. */
619 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
620 compare_unwind_entries);
621
622 /* Keep a pointer to the unwind information. */
623 if (objfile->obj_private == NULL)
624 {
625 obj_private = (obj_private_data_t *)
626 obstack_alloc (&objfile->psymbol_obstack,
627 sizeof (obj_private_data_t));
628 obj_private->unwind_info = NULL;
629 obj_private->so_info = NULL;
630 obj_private->dp = 0;
631
632 objfile->obj_private = obj_private;
633 }
634 obj_private = (obj_private_data_t *) objfile->obj_private;
635 obj_private->unwind_info = ui;
636 }
637
638 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
639 of the objfiles seeking the unwind table entry for this PC. Each objfile
640 contains a sorted list of struct unwind_table_entry. Since we do a binary
641 search of the unwind tables, we depend upon them to be sorted. */
642
643 struct unwind_table_entry *
644 find_unwind_entry (CORE_ADDR pc)
645 {
646 int first, middle, last;
647 struct objfile *objfile;
648
649 /* A function at address 0? Not in HP-UX! */
650 if (pc == (CORE_ADDR) 0)
651 return NULL;
652
653 ALL_OBJFILES (objfile)
654 {
655 struct obj_unwind_info *ui;
656 ui = NULL;
657 if (objfile->obj_private)
658 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
659
660 if (!ui)
661 {
662 read_unwind_info (objfile);
663 if (objfile->obj_private == NULL)
664 error ("Internal error reading unwind information.");
665 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
666 }
667
668 /* First, check the cache */
669
670 if (ui->cache
671 && pc >= ui->cache->region_start
672 && pc <= ui->cache->region_end)
673 return ui->cache;
674
675 /* Not in the cache, do a binary search */
676
677 first = 0;
678 last = ui->last;
679
680 while (first <= last)
681 {
682 middle = (first + last) / 2;
683 if (pc >= ui->table[middle].region_start
684 && pc <= ui->table[middle].region_end)
685 {
686 ui->cache = &ui->table[middle];
687 return &ui->table[middle];
688 }
689
690 if (pc < ui->table[middle].region_start)
691 last = middle - 1;
692 else
693 first = middle + 1;
694 }
695 } /* ALL_OBJFILES() */
696 return NULL;
697 }
698
699 const unsigned char *
700 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
701 {
702 static const char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
703 (*len) = sizeof (breakpoint);
704 return breakpoint;
705 }
706
707 /* Return the name of a register. */
708
709 const char *
710 hppa32_register_name (int i)
711 {
712 static char *names[] = {
713 "flags", "r1", "rp", "r3",
714 "r4", "r5", "r6", "r7",
715 "r8", "r9", "r10", "r11",
716 "r12", "r13", "r14", "r15",
717 "r16", "r17", "r18", "r19",
718 "r20", "r21", "r22", "r23",
719 "r24", "r25", "r26", "dp",
720 "ret0", "ret1", "sp", "r31",
721 "sar", "pcoqh", "pcsqh", "pcoqt",
722 "pcsqt", "eiem", "iir", "isr",
723 "ior", "ipsw", "goto", "sr4",
724 "sr0", "sr1", "sr2", "sr3",
725 "sr5", "sr6", "sr7", "cr0",
726 "cr8", "cr9", "ccr", "cr12",
727 "cr13", "cr24", "cr25", "cr26",
728 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
729 "fpsr", "fpe1", "fpe2", "fpe3",
730 "fpe4", "fpe5", "fpe6", "fpe7",
731 "fr4", "fr4R", "fr5", "fr5R",
732 "fr6", "fr6R", "fr7", "fr7R",
733 "fr8", "fr8R", "fr9", "fr9R",
734 "fr10", "fr10R", "fr11", "fr11R",
735 "fr12", "fr12R", "fr13", "fr13R",
736 "fr14", "fr14R", "fr15", "fr15R",
737 "fr16", "fr16R", "fr17", "fr17R",
738 "fr18", "fr18R", "fr19", "fr19R",
739 "fr20", "fr20R", "fr21", "fr21R",
740 "fr22", "fr22R", "fr23", "fr23R",
741 "fr24", "fr24R", "fr25", "fr25R",
742 "fr26", "fr26R", "fr27", "fr27R",
743 "fr28", "fr28R", "fr29", "fr29R",
744 "fr30", "fr30R", "fr31", "fr31R"
745 };
746 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
747 return NULL;
748 else
749 return names[i];
750 }
751
752 const char *
753 hppa64_register_name (int i)
754 {
755 static char *names[] = {
756 "flags", "r1", "rp", "r3",
757 "r4", "r5", "r6", "r7",
758 "r8", "r9", "r10", "r11",
759 "r12", "r13", "r14", "r15",
760 "r16", "r17", "r18", "r19",
761 "r20", "r21", "r22", "r23",
762 "r24", "r25", "r26", "dp",
763 "ret0", "ret1", "sp", "r31",
764 "sar", "pcoqh", "pcsqh", "pcoqt",
765 "pcsqt", "eiem", "iir", "isr",
766 "ior", "ipsw", "goto", "sr4",
767 "sr0", "sr1", "sr2", "sr3",
768 "sr5", "sr6", "sr7", "cr0",
769 "cr8", "cr9", "ccr", "cr12",
770 "cr13", "cr24", "cr25", "cr26",
771 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
772 "fpsr", "fpe1", "fpe2", "fpe3",
773 "fr4", "fr5", "fr6", "fr7",
774 "fr8", "fr9", "fr10", "fr11",
775 "fr12", "fr13", "fr14", "fr15",
776 "fr16", "fr17", "fr18", "fr19",
777 "fr20", "fr21", "fr22", "fr23",
778 "fr24", "fr25", "fr26", "fr27",
779 "fr28", "fr29", "fr30", "fr31"
780 };
781 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
782 return NULL;
783 else
784 return names[i];
785 }
786
787
788
789 /* Return the adjustment necessary to make for addresses on the stack
790 as presented by hpread.c.
791
792 This is necessary because of the stack direction on the PA and the
793 bizarre way in which someone (?) decided they wanted to handle
794 frame pointerless code in GDB. */
795 int
796 hpread_adjust_stack_address (CORE_ADDR func_addr)
797 {
798 struct unwind_table_entry *u;
799
800 u = find_unwind_entry (func_addr);
801 if (!u)
802 return 0;
803 else
804 return u->Total_frame_size << 3;
805 }
806
807 /* Called to determine if PC is in an interrupt handler of some
808 kind. */
809
810 static int
811 pc_in_interrupt_handler (CORE_ADDR pc)
812 {
813 struct unwind_table_entry *u;
814 struct minimal_symbol *msym_us;
815
816 u = find_unwind_entry (pc);
817 if (!u)
818 return 0;
819
820 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
821 its frame isn't a pure interrupt frame. Deal with this. */
822 msym_us = lookup_minimal_symbol_by_pc (pc);
823
824 return (u->HP_UX_interrupt_marker
825 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
826 }
827
828 /* Called when no unwind descriptor was found for PC. Returns 1 if it
829 appears that PC is in a linker stub.
830
831 ?!? Need to handle stubs which appear in PA64 code. */
832
833 static int
834 pc_in_linker_stub (CORE_ADDR pc)
835 {
836 int found_magic_instruction = 0;
837 int i;
838 char buf[4];
839
840 /* If unable to read memory, assume pc is not in a linker stub. */
841 if (target_read_memory (pc, buf, 4) != 0)
842 return 0;
843
844 /* We are looking for something like
845
846 ; $$dyncall jams RP into this special spot in the frame (RP')
847 ; before calling the "call stub"
848 ldw -18(sp),rp
849
850 ldsid (rp),r1 ; Get space associated with RP into r1
851 mtsp r1,sp ; Move it into space register 0
852 be,n 0(sr0),rp) ; back to your regularly scheduled program */
853
854 /* Maximum known linker stub size is 4 instructions. Search forward
855 from the given PC, then backward. */
856 for (i = 0; i < 4; i++)
857 {
858 /* If we hit something with an unwind, stop searching this direction. */
859
860 if (find_unwind_entry (pc + i * 4) != 0)
861 break;
862
863 /* Check for ldsid (rp),r1 which is the magic instruction for a
864 return from a cross-space function call. */
865 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
866 {
867 found_magic_instruction = 1;
868 break;
869 }
870 /* Add code to handle long call/branch and argument relocation stubs
871 here. */
872 }
873
874 if (found_magic_instruction != 0)
875 return 1;
876
877 /* Now look backward. */
878 for (i = 0; i < 4; i++)
879 {
880 /* If we hit something with an unwind, stop searching this direction. */
881
882 if (find_unwind_entry (pc - i * 4) != 0)
883 break;
884
885 /* Check for ldsid (rp),r1 which is the magic instruction for a
886 return from a cross-space function call. */
887 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
888 {
889 found_magic_instruction = 1;
890 break;
891 }
892 /* Add code to handle long call/branch and argument relocation stubs
893 here. */
894 }
895 return found_magic_instruction;
896 }
897
898 static int
899 find_return_regnum (CORE_ADDR pc)
900 {
901 struct unwind_table_entry *u;
902
903 u = find_unwind_entry (pc);
904
905 if (!u)
906 return RP_REGNUM;
907
908 if (u->Millicode)
909 return 31;
910
911 return RP_REGNUM;
912 }
913
914 /* Return size of frame, or -1 if we should use a frame pointer. */
915 static int
916 find_proc_framesize (CORE_ADDR pc)
917 {
918 struct unwind_table_entry *u;
919 struct minimal_symbol *msym_us;
920
921 /* This may indicate a bug in our callers... */
922 if (pc == (CORE_ADDR) 0)
923 return -1;
924
925 u = find_unwind_entry (pc);
926
927 if (!u)
928 {
929 if (pc_in_linker_stub (pc))
930 /* Linker stubs have a zero size frame. */
931 return 0;
932 else
933 return -1;
934 }
935
936 msym_us = lookup_minimal_symbol_by_pc (pc);
937
938 /* If Save_SP is set, and we're not in an interrupt or signal caller,
939 then we have a frame pointer. Use it. */
940 if (u->Save_SP
941 && !pc_in_interrupt_handler (pc)
942 && msym_us
943 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
944 return -1;
945
946 return u->Total_frame_size << 3;
947 }
948
949 /* Return offset from sp at which rp is saved, or 0 if not saved. */
950 static int rp_saved (CORE_ADDR);
951
952 static int
953 rp_saved (CORE_ADDR pc)
954 {
955 struct unwind_table_entry *u;
956
957 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
958 if (pc == (CORE_ADDR) 0)
959 return 0;
960
961 u = find_unwind_entry (pc);
962
963 if (!u)
964 {
965 if (pc_in_linker_stub (pc))
966 /* This is the so-called RP'. */
967 return -24;
968 else
969 return 0;
970 }
971
972 if (u->Save_RP)
973 return (TARGET_PTR_BIT == 64 ? -16 : -20);
974 else if (u->stub_unwind.stub_type != 0)
975 {
976 switch (u->stub_unwind.stub_type)
977 {
978 case EXPORT:
979 case IMPORT:
980 return -24;
981 case PARAMETER_RELOCATION:
982 return -8;
983 default:
984 return 0;
985 }
986 }
987 else
988 return 0;
989 }
990 \f
991 int
992 hppa_frameless_function_invocation (struct frame_info *frame)
993 {
994 struct unwind_table_entry *u;
995
996 u = find_unwind_entry (get_frame_pc (frame));
997
998 if (u == 0)
999 return 0;
1000
1001 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
1002 }
1003
1004 /* Immediately after a function call, return the saved pc.
1005 Can't go through the frames for this because on some machines
1006 the new frame is not set up until the new function executes
1007 some instructions. */
1008
1009 CORE_ADDR
1010 hppa_saved_pc_after_call (struct frame_info *frame)
1011 {
1012 int ret_regnum;
1013 CORE_ADDR pc;
1014 struct unwind_table_entry *u;
1015
1016 ret_regnum = find_return_regnum (get_frame_pc (frame));
1017 pc = read_register (ret_regnum) & ~0x3;
1018
1019 /* If PC is in a linker stub, then we need to dig the address
1020 the stub will return to out of the stack. */
1021 u = find_unwind_entry (pc);
1022 if (u && u->stub_unwind.stub_type != 0)
1023 return DEPRECATED_FRAME_SAVED_PC (frame);
1024 else
1025 return pc;
1026 }
1027 \f
1028 CORE_ADDR
1029 hppa_frame_saved_pc (struct frame_info *frame)
1030 {
1031 CORE_ADDR pc = get_frame_pc (frame);
1032 struct unwind_table_entry *u;
1033 CORE_ADDR old_pc = 0;
1034 int spun_around_loop = 0;
1035 int rp_offset = 0;
1036
1037 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1038 at the base of the frame in an interrupt handler. Registers within
1039 are saved in the exact same order as GDB numbers registers. How
1040 convienent. */
1041 if (pc_in_interrupt_handler (pc))
1042 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
1043 TARGET_PTR_BIT / 8) & ~0x3;
1044
1045 if ((get_frame_pc (frame) >= get_frame_base (frame)
1046 && (get_frame_pc (frame)
1047 <= (get_frame_base (frame)
1048 /* A call dummy is sized in words, but it is actually a
1049 series of instructions. Account for that scaling
1050 factor. */
1051 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1052 * DEPRECATED_CALL_DUMMY_LENGTH)
1053 /* Similarly we have to account for 64bit wide register
1054 saves. */
1055 + (32 * DEPRECATED_REGISTER_SIZE)
1056 /* We always consider FP regs 8 bytes long. */
1057 + (NUM_REGS - FP0_REGNUM) * 8
1058 /* Similarly we have to account for 64bit wide register
1059 saves. */
1060 + (6 * DEPRECATED_REGISTER_SIZE)))))
1061 {
1062 return read_memory_integer ((get_frame_base (frame)
1063 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1064 TARGET_PTR_BIT / 8) & ~0x3;
1065 }
1066
1067 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1068 /* Deal with signal handler caller frames too. */
1069 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1070 {
1071 CORE_ADDR rp;
1072 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1073 return rp & ~0x3;
1074 }
1075 #endif
1076
1077 if (hppa_frameless_function_invocation (frame))
1078 {
1079 int ret_regnum;
1080
1081 ret_regnum = find_return_regnum (pc);
1082
1083 /* If the next frame is an interrupt frame or a signal
1084 handler caller, then we need to look in the saved
1085 register area to get the return pointer (the values
1086 in the registers may not correspond to anything useful). */
1087 if (get_next_frame (frame)
1088 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1089 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1090 {
1091 CORE_ADDR *saved_regs;
1092 hppa_frame_init_saved_regs (get_next_frame (frame));
1093 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1094 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1095 TARGET_PTR_BIT / 8) & 0x2)
1096 {
1097 pc = read_memory_integer (saved_regs[31],
1098 TARGET_PTR_BIT / 8) & ~0x3;
1099
1100 /* Syscalls are really two frames. The syscall stub itself
1101 with a return pointer in %rp and the kernel call with
1102 a return pointer in %r31. We return the %rp variant
1103 if %r31 is the same as frame->pc. */
1104 if (pc == get_frame_pc (frame))
1105 pc = read_memory_integer (saved_regs[RP_REGNUM],
1106 TARGET_PTR_BIT / 8) & ~0x3;
1107 }
1108 else
1109 pc = read_memory_integer (saved_regs[RP_REGNUM],
1110 TARGET_PTR_BIT / 8) & ~0x3;
1111 }
1112 else
1113 pc = read_register (ret_regnum) & ~0x3;
1114 }
1115 else
1116 {
1117 spun_around_loop = 0;
1118 old_pc = pc;
1119
1120 restart:
1121 rp_offset = rp_saved (pc);
1122
1123 /* Similar to code in frameless function case. If the next
1124 frame is a signal or interrupt handler, then dig the right
1125 information out of the saved register info. */
1126 if (rp_offset == 0
1127 && get_next_frame (frame)
1128 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1129 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1130 {
1131 CORE_ADDR *saved_regs;
1132 hppa_frame_init_saved_regs (get_next_frame (frame));
1133 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1134 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1135 TARGET_PTR_BIT / 8) & 0x2)
1136 {
1137 pc = read_memory_integer (saved_regs[31],
1138 TARGET_PTR_BIT / 8) & ~0x3;
1139
1140 /* Syscalls are really two frames. The syscall stub itself
1141 with a return pointer in %rp and the kernel call with
1142 a return pointer in %r31. We return the %rp variant
1143 if %r31 is the same as frame->pc. */
1144 if (pc == get_frame_pc (frame))
1145 pc = read_memory_integer (saved_regs[RP_REGNUM],
1146 TARGET_PTR_BIT / 8) & ~0x3;
1147 }
1148 else
1149 pc = read_memory_integer (saved_regs[RP_REGNUM],
1150 TARGET_PTR_BIT / 8) & ~0x3;
1151 }
1152 else if (rp_offset == 0)
1153 {
1154 old_pc = pc;
1155 pc = read_register (RP_REGNUM) & ~0x3;
1156 }
1157 else
1158 {
1159 old_pc = pc;
1160 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1161 TARGET_PTR_BIT / 8) & ~0x3;
1162 }
1163 }
1164
1165 /* If PC is inside a linker stub, then dig out the address the stub
1166 will return to.
1167
1168 Don't do this for long branch stubs. Why? For some unknown reason
1169 _start is marked as a long branch stub in hpux10. */
1170 u = find_unwind_entry (pc);
1171 if (u && u->stub_unwind.stub_type != 0
1172 && u->stub_unwind.stub_type != LONG_BRANCH)
1173 {
1174 unsigned int insn;
1175
1176 /* If this is a dynamic executable, and we're in a signal handler,
1177 then the call chain will eventually point us into the stub for
1178 _sigreturn. Unlike most cases, we'll be pointed to the branch
1179 to the real sigreturn rather than the code after the real branch!.
1180
1181 Else, try to dig the address the stub will return to in the normal
1182 fashion. */
1183 insn = read_memory_integer (pc, 4);
1184 if ((insn & 0xfc00e000) == 0xe8000000)
1185 return (pc + extract_17 (insn) + 8) & ~0x3;
1186 else
1187 {
1188 if (old_pc == pc)
1189 spun_around_loop++;
1190
1191 if (spun_around_loop > 1)
1192 {
1193 /* We're just about to go around the loop again with
1194 no more hope of success. Die. */
1195 error ("Unable to find return pc for this frame");
1196 }
1197 else
1198 goto restart;
1199 }
1200 }
1201
1202 return pc;
1203 }
1204 \f
1205 /* We need to correct the PC and the FP for the outermost frame when we are
1206 in a system call. */
1207
1208 void
1209 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1210 {
1211 int flags;
1212 int framesize;
1213
1214 if (get_next_frame (frame) && !fromleaf)
1215 return;
1216
1217 /* If the next frame represents a frameless function invocation then
1218 we have to do some adjustments that are normally done by
1219 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1220 this case.) */
1221 if (fromleaf)
1222 {
1223 /* Find the framesize of *this* frame without peeking at the PC
1224 in the current frame structure (it isn't set yet). */
1225 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1226
1227 /* Now adjust our base frame accordingly. If we have a frame pointer
1228 use it, else subtract the size of this frame from the current
1229 frame. (we always want frame->frame to point at the lowest address
1230 in the frame). */
1231 if (framesize == -1)
1232 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1233 else
1234 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1235 return;
1236 }
1237
1238 flags = read_register (FLAGS_REGNUM);
1239 if (flags & 2) /* In system call? */
1240 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1241
1242 /* The outermost frame is always derived from PC-framesize
1243
1244 One might think frameless innermost frames should have
1245 a frame->frame that is the same as the parent's frame->frame.
1246 That is wrong; frame->frame in that case should be the *high*
1247 address of the parent's frame. It's complicated as hell to
1248 explain, but the parent *always* creates some stack space for
1249 the child. So the child actually does have a frame of some
1250 sorts, and its base is the high address in its parent's frame. */
1251 framesize = find_proc_framesize (get_frame_pc (frame));
1252 if (framesize == -1)
1253 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1254 else
1255 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1256 }
1257 \f
1258 /* Given a GDB frame, determine the address of the calling function's
1259 frame. This will be used to create a new GDB frame struct, and
1260 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1261 will be called for the new frame.
1262
1263 This may involve searching through prologues for several functions
1264 at boundaries where GCC calls HP C code, or where code which has
1265 a frame pointer calls code without a frame pointer. */
1266
1267 CORE_ADDR
1268 hppa_frame_chain (struct frame_info *frame)
1269 {
1270 int my_framesize, caller_framesize;
1271 struct unwind_table_entry *u;
1272 CORE_ADDR frame_base;
1273 struct frame_info *tmp_frame;
1274
1275 /* A frame in the current frame list, or zero. */
1276 struct frame_info *saved_regs_frame = 0;
1277 /* Where the registers were saved in saved_regs_frame. If
1278 saved_regs_frame is zero, this is garbage. */
1279 CORE_ADDR *saved_regs = NULL;
1280
1281 CORE_ADDR caller_pc;
1282
1283 struct minimal_symbol *min_frame_symbol;
1284 struct symbol *frame_symbol;
1285 char *frame_symbol_name;
1286
1287 /* If this is a threaded application, and we see the
1288 routine "__pthread_exit", treat it as the stack root
1289 for this thread. */
1290 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1291 frame_symbol = find_pc_function (get_frame_pc (frame));
1292
1293 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1294 {
1295 /* The test above for "no user function name" would defend
1296 against the slim likelihood that a user might define a
1297 routine named "__pthread_exit" and then try to debug it.
1298
1299 If it weren't commented out, and you tried to debug the
1300 pthread library itself, you'd get errors.
1301
1302 So for today, we don't make that check. */
1303 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1304 if (frame_symbol_name != 0)
1305 {
1306 if (0 == strncmp (frame_symbol_name,
1307 THREAD_INITIAL_FRAME_SYMBOL,
1308 THREAD_INITIAL_FRAME_SYM_LEN))
1309 {
1310 /* Pretend we've reached the bottom of the stack. */
1311 return (CORE_ADDR) 0;
1312 }
1313 }
1314 } /* End of hacky code for threads. */
1315
1316 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1317 are easy; at *sp we have a full save state strucutre which we can
1318 pull the old stack pointer from. Also see frame_saved_pc for
1319 code to dig a saved PC out of the save state structure. */
1320 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1321 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1322 TARGET_PTR_BIT / 8);
1323 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1324 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1325 {
1326 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1327 }
1328 #endif
1329 else
1330 frame_base = get_frame_base (frame);
1331
1332 /* Get frame sizes for the current frame and the frame of the
1333 caller. */
1334 my_framesize = find_proc_framesize (get_frame_pc (frame));
1335 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1336
1337 /* If we can't determine the caller's PC, then it's not likely we can
1338 really determine anything meaningful about its frame. We'll consider
1339 this to be stack bottom. */
1340 if (caller_pc == (CORE_ADDR) 0)
1341 return (CORE_ADDR) 0;
1342
1343 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1344
1345 /* If caller does not have a frame pointer, then its frame
1346 can be found at current_frame - caller_framesize. */
1347 if (caller_framesize != -1)
1348 {
1349 return frame_base - caller_framesize;
1350 }
1351 /* Both caller and callee have frame pointers and are GCC compiled
1352 (SAVE_SP bit in unwind descriptor is on for both functions.
1353 The previous frame pointer is found at the top of the current frame. */
1354 if (caller_framesize == -1 && my_framesize == -1)
1355 {
1356 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1357 }
1358 /* Caller has a frame pointer, but callee does not. This is a little
1359 more difficult as GCC and HP C lay out locals and callee register save
1360 areas very differently.
1361
1362 The previous frame pointer could be in a register, or in one of
1363 several areas on the stack.
1364
1365 Walk from the current frame to the innermost frame examining
1366 unwind descriptors to determine if %r3 ever gets saved into the
1367 stack. If so return whatever value got saved into the stack.
1368 If it was never saved in the stack, then the value in %r3 is still
1369 valid, so use it.
1370
1371 We use information from unwind descriptors to determine if %r3
1372 is saved into the stack (Entry_GR field has this information). */
1373
1374 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1375 {
1376 u = find_unwind_entry (get_frame_pc (tmp_frame));
1377
1378 if (!u)
1379 {
1380 /* We could find this information by examining prologues. I don't
1381 think anyone has actually written any tools (not even "strip")
1382 which leave them out of an executable, so maybe this is a moot
1383 point. */
1384 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1385 code that doesn't have unwind entries. For example, stepping into
1386 the dynamic linker will give you a PC that has none. Thus, I've
1387 disabled this warning. */
1388 #if 0
1389 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1390 #endif
1391 return (CORE_ADDR) 0;
1392 }
1393
1394 if (u->Save_SP
1395 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1396 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1397 break;
1398
1399 /* Entry_GR specifies the number of callee-saved general registers
1400 saved in the stack. It starts at %r3, so %r3 would be 1. */
1401 if (u->Entry_GR >= 1)
1402 {
1403 /* The unwind entry claims that r3 is saved here. However,
1404 in optimized code, GCC often doesn't actually save r3.
1405 We'll discover this if we look at the prologue. */
1406 hppa_frame_init_saved_regs (tmp_frame);
1407 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1408 saved_regs_frame = tmp_frame;
1409
1410 /* If we have an address for r3, that's good. */
1411 if (saved_regs[DEPRECATED_FP_REGNUM])
1412 break;
1413 }
1414 }
1415
1416 if (tmp_frame)
1417 {
1418 /* We may have walked down the chain into a function with a frame
1419 pointer. */
1420 if (u->Save_SP
1421 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1422 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1423 {
1424 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1425 }
1426 /* %r3 was saved somewhere in the stack. Dig it out. */
1427 else
1428 {
1429 /* Sick.
1430
1431 For optimization purposes many kernels don't have the
1432 callee saved registers into the save_state structure upon
1433 entry into the kernel for a syscall; the optimization
1434 is usually turned off if the process is being traced so
1435 that the debugger can get full register state for the
1436 process.
1437
1438 This scheme works well except for two cases:
1439
1440 * Attaching to a process when the process is in the
1441 kernel performing a system call (debugger can't get
1442 full register state for the inferior process since
1443 the process wasn't being traced when it entered the
1444 system call).
1445
1446 * Register state is not complete if the system call
1447 causes the process to core dump.
1448
1449
1450 The following heinous code is an attempt to deal with
1451 the lack of register state in a core dump. It will
1452 fail miserably if the function which performs the
1453 system call has a variable sized stack frame. */
1454
1455 if (tmp_frame != saved_regs_frame)
1456 {
1457 hppa_frame_init_saved_regs (tmp_frame);
1458 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1459 }
1460
1461 /* Abominable hack. */
1462 if (current_target.to_has_execution == 0
1463 && ((saved_regs[FLAGS_REGNUM]
1464 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1465 TARGET_PTR_BIT / 8)
1466 & 0x2))
1467 || (saved_regs[FLAGS_REGNUM] == 0
1468 && read_register (FLAGS_REGNUM) & 0x2)))
1469 {
1470 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1471 if (!u)
1472 {
1473 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1474 TARGET_PTR_BIT / 8);
1475 }
1476 else
1477 {
1478 return frame_base - (u->Total_frame_size << 3);
1479 }
1480 }
1481
1482 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1483 TARGET_PTR_BIT / 8);
1484 }
1485 }
1486 else
1487 {
1488 /* Get the innermost frame. */
1489 tmp_frame = frame;
1490 while (get_next_frame (tmp_frame) != NULL)
1491 tmp_frame = get_next_frame (tmp_frame);
1492
1493 if (tmp_frame != saved_regs_frame)
1494 {
1495 hppa_frame_init_saved_regs (tmp_frame);
1496 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1497 }
1498
1499 /* Abominable hack. See above. */
1500 if (current_target.to_has_execution == 0
1501 && ((saved_regs[FLAGS_REGNUM]
1502 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1503 TARGET_PTR_BIT / 8)
1504 & 0x2))
1505 || (saved_regs[FLAGS_REGNUM] == 0
1506 && read_register (FLAGS_REGNUM) & 0x2)))
1507 {
1508 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1509 if (!u)
1510 {
1511 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1512 TARGET_PTR_BIT / 8);
1513 }
1514 else
1515 {
1516 return frame_base - (u->Total_frame_size << 3);
1517 }
1518 }
1519
1520 /* The value in %r3 was never saved into the stack (thus %r3 still
1521 holds the value of the previous frame pointer). */
1522 return deprecated_read_fp ();
1523 }
1524 }
1525 \f
1526
1527 /* To see if a frame chain is valid, see if the caller looks like it
1528 was compiled with gcc. */
1529
1530 int
1531 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1532 {
1533 struct minimal_symbol *msym_us;
1534 struct minimal_symbol *msym_start;
1535 struct unwind_table_entry *u, *next_u = NULL;
1536 struct frame_info *next;
1537
1538 u = find_unwind_entry (get_frame_pc (thisframe));
1539
1540 if (u == NULL)
1541 return 1;
1542
1543 /* We can't just check that the same of msym_us is "_start", because
1544 someone idiotically decided that they were going to make a Ltext_end
1545 symbol with the same address. This Ltext_end symbol is totally
1546 indistinguishable (as nearly as I can tell) from the symbol for a function
1547 which is (legitimately, since it is in the user's namespace)
1548 named Ltext_end, so we can't just ignore it. */
1549 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1550 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1551 if (msym_us
1552 && msym_start
1553 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1554 return 0;
1555
1556 /* Grrrr. Some new idiot decided that they don't want _start for the
1557 PRO configurations; $START$ calls main directly.... Deal with it. */
1558 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1559 if (msym_us
1560 && msym_start
1561 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1562 return 0;
1563
1564 next = get_next_frame (thisframe);
1565 if (next)
1566 next_u = find_unwind_entry (get_frame_pc (next));
1567
1568 /* If this frame does not save SP, has no stack, isn't a stub,
1569 and doesn't "call" an interrupt routine or signal handler caller,
1570 then its not valid. */
1571 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1572 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1573 || (next_u && next_u->HP_UX_interrupt_marker))
1574 return 1;
1575
1576 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1577 return 1;
1578
1579 return 0;
1580 }
1581
1582 /* These functions deal with saving and restoring register state
1583 around a function call in the inferior. They keep the stack
1584 double-word aligned; eventually, on an hp700, the stack will have
1585 to be aligned to a 64-byte boundary. */
1586
1587 void
1588 hppa_push_dummy_frame (void)
1589 {
1590 CORE_ADDR sp, pc, pcspace;
1591 int regnum;
1592 CORE_ADDR int_buffer;
1593 double freg_buffer;
1594
1595 pc = hppa_target_read_pc (inferior_ptid);
1596 int_buffer = read_register (FLAGS_REGNUM);
1597 if (int_buffer & 0x2)
1598 {
1599 const unsigned int sid = (pc >> 30) & 0x3;
1600 if (sid == 0)
1601 pcspace = read_register (SR4_REGNUM);
1602 else
1603 pcspace = read_register (SR4_REGNUM + 4 + sid);
1604 }
1605 else
1606 pcspace = read_register (PCSQ_HEAD_REGNUM);
1607
1608 /* Space for "arguments"; the RP goes in here. */
1609 sp = read_register (SP_REGNUM) + 48;
1610 int_buffer = read_register (RP_REGNUM) | 0x3;
1611
1612 /* The 32bit and 64bit ABIs save the return pointer into different
1613 stack slots. */
1614 if (DEPRECATED_REGISTER_SIZE == 8)
1615 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1616 else
1617 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1618
1619 int_buffer = deprecated_read_fp ();
1620 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1621
1622 write_register (DEPRECATED_FP_REGNUM, sp);
1623
1624 sp += 2 * DEPRECATED_REGISTER_SIZE;
1625
1626 for (regnum = 1; regnum < 32; regnum++)
1627 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1628 sp = push_word (sp, read_register (regnum));
1629
1630 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1631 if (DEPRECATED_REGISTER_SIZE != 8)
1632 sp += 4;
1633
1634 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1635 {
1636 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1637 (char *) &freg_buffer, 8);
1638 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1639 }
1640 sp = push_word (sp, read_register (IPSW_REGNUM));
1641 sp = push_word (sp, read_register (SAR_REGNUM));
1642 sp = push_word (sp, pc);
1643 sp = push_word (sp, pcspace);
1644 sp = push_word (sp, pc + 4);
1645 sp = push_word (sp, pcspace);
1646 write_register (SP_REGNUM, sp);
1647 }
1648
1649 static void
1650 find_dummy_frame_regs (struct frame_info *frame,
1651 CORE_ADDR frame_saved_regs[])
1652 {
1653 CORE_ADDR fp = get_frame_base (frame);
1654 int i;
1655
1656 /* The 32bit and 64bit ABIs save RP into different locations. */
1657 if (DEPRECATED_REGISTER_SIZE == 8)
1658 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1659 else
1660 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1661
1662 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1663
1664 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1665
1666 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1667 {
1668 if (i != DEPRECATED_FP_REGNUM)
1669 {
1670 frame_saved_regs[i] = fp;
1671 fp += DEPRECATED_REGISTER_SIZE;
1672 }
1673 }
1674
1675 /* This is not necessary or desirable for the 64bit ABI. */
1676 if (DEPRECATED_REGISTER_SIZE != 8)
1677 fp += 4;
1678
1679 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1680 frame_saved_regs[i] = fp;
1681
1682 frame_saved_regs[IPSW_REGNUM] = fp;
1683 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1684 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1685 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1686 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1687 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1688 }
1689
1690 void
1691 hppa_pop_frame (void)
1692 {
1693 struct frame_info *frame = get_current_frame ();
1694 CORE_ADDR fp, npc, target_pc;
1695 int regnum;
1696 CORE_ADDR *fsr;
1697 double freg_buffer;
1698
1699 fp = get_frame_base (frame);
1700 hppa_frame_init_saved_regs (frame);
1701 fsr = deprecated_get_frame_saved_regs (frame);
1702
1703 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1704 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1705 restore_pc_queue (fsr);
1706 #endif
1707
1708 for (regnum = 31; regnum > 0; regnum--)
1709 if (fsr[regnum])
1710 write_register (regnum, read_memory_integer (fsr[regnum],
1711 DEPRECATED_REGISTER_SIZE));
1712
1713 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1714 if (fsr[regnum])
1715 {
1716 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1717 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1718 (char *) &freg_buffer, 8);
1719 }
1720
1721 if (fsr[IPSW_REGNUM])
1722 write_register (IPSW_REGNUM,
1723 read_memory_integer (fsr[IPSW_REGNUM],
1724 DEPRECATED_REGISTER_SIZE));
1725
1726 if (fsr[SAR_REGNUM])
1727 write_register (SAR_REGNUM,
1728 read_memory_integer (fsr[SAR_REGNUM],
1729 DEPRECATED_REGISTER_SIZE));
1730
1731 /* If the PC was explicitly saved, then just restore it. */
1732 if (fsr[PCOQ_TAIL_REGNUM])
1733 {
1734 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1735 DEPRECATED_REGISTER_SIZE);
1736 write_register (PCOQ_TAIL_REGNUM, npc);
1737 }
1738 /* Else use the value in %rp to set the new PC. */
1739 else
1740 {
1741 npc = read_register (RP_REGNUM);
1742 write_pc (npc);
1743 }
1744
1745 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1746
1747 if (fsr[IPSW_REGNUM]) /* call dummy */
1748 write_register (SP_REGNUM, fp - 48);
1749 else
1750 write_register (SP_REGNUM, fp);
1751
1752 /* The PC we just restored may be inside a return trampoline. If so
1753 we want to restart the inferior and run it through the trampoline.
1754
1755 Do this by setting a momentary breakpoint at the location the
1756 trampoline returns to.
1757
1758 Don't skip through the trampoline if we're popping a dummy frame. */
1759 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1760 if (target_pc && !fsr[IPSW_REGNUM])
1761 {
1762 struct symtab_and_line sal;
1763 struct breakpoint *breakpoint;
1764 struct cleanup *old_chain;
1765
1766 /* Set up our breakpoint. Set it to be silent as the MI code
1767 for "return_command" will print the frame we returned to. */
1768 sal = find_pc_line (target_pc, 0);
1769 sal.pc = target_pc;
1770 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1771 breakpoint->silent = 1;
1772
1773 /* So we can clean things up. */
1774 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1775
1776 /* Start up the inferior. */
1777 clear_proceed_status ();
1778 proceed_to_finish = 1;
1779 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1780
1781 /* Perform our cleanups. */
1782 do_cleanups (old_chain);
1783 }
1784 flush_cached_frames ();
1785 }
1786
1787 /* After returning to a dummy on the stack, restore the instruction
1788 queue space registers. */
1789
1790 static int
1791 restore_pc_queue (CORE_ADDR *fsr)
1792 {
1793 CORE_ADDR pc = read_pc ();
1794 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1795 TARGET_PTR_BIT / 8);
1796 struct target_waitstatus w;
1797 int insn_count;
1798
1799 /* Advance past break instruction in the call dummy. */
1800 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1801 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1802
1803 /* HPUX doesn't let us set the space registers or the space
1804 registers of the PC queue through ptrace. Boo, hiss.
1805 Conveniently, the call dummy has this sequence of instructions
1806 after the break:
1807 mtsp r21, sr0
1808 ble,n 0(sr0, r22)
1809
1810 So, load up the registers and single step until we are in the
1811 right place. */
1812
1813 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1814 DEPRECATED_REGISTER_SIZE));
1815 write_register (22, new_pc);
1816
1817 for (insn_count = 0; insn_count < 3; insn_count++)
1818 {
1819 /* FIXME: What if the inferior gets a signal right now? Want to
1820 merge this into wait_for_inferior (as a special kind of
1821 watchpoint? By setting a breakpoint at the end? Is there
1822 any other choice? Is there *any* way to do this stuff with
1823 ptrace() or some equivalent?). */
1824 resume (1, 0);
1825 target_wait (inferior_ptid, &w);
1826
1827 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1828 {
1829 stop_signal = w.value.sig;
1830 terminal_ours_for_output ();
1831 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1832 target_signal_to_name (stop_signal),
1833 target_signal_to_string (stop_signal));
1834 gdb_flush (gdb_stdout);
1835 return 0;
1836 }
1837 }
1838 target_terminal_ours ();
1839 target_fetch_registers (-1);
1840 return 1;
1841 }
1842
1843
1844 #ifdef PA20W_CALLING_CONVENTIONS
1845
1846 /* This function pushes a stack frame with arguments as part of the
1847 inferior function calling mechanism.
1848
1849 This is the version for the PA64, in which later arguments appear
1850 at higher addresses. (The stack always grows towards higher
1851 addresses.)
1852
1853 We simply allocate the appropriate amount of stack space and put
1854 arguments into their proper slots. The call dummy code will copy
1855 arguments into registers as needed by the ABI.
1856
1857 This ABI also requires that the caller provide an argument pointer
1858 to the callee, so we do that too. */
1859
1860 CORE_ADDR
1861 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1862 int struct_return, CORE_ADDR struct_addr)
1863 {
1864 /* array of arguments' offsets */
1865 int *offset = (int *) alloca (nargs * sizeof (int));
1866
1867 /* array of arguments' lengths: real lengths in bytes, not aligned to
1868 word size */
1869 int *lengths = (int *) alloca (nargs * sizeof (int));
1870
1871 /* The value of SP as it was passed into this function after
1872 aligning. */
1873 CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp);
1874
1875 /* The number of stack bytes occupied by the current argument. */
1876 int bytes_reserved;
1877
1878 /* The total number of bytes reserved for the arguments. */
1879 int cum_bytes_reserved = 0;
1880
1881 /* Similarly, but aligned. */
1882 int cum_bytes_aligned = 0;
1883 int i;
1884
1885 /* Iterate over each argument provided by the user. */
1886 for (i = 0; i < nargs; i++)
1887 {
1888 struct type *arg_type = VALUE_TYPE (args[i]);
1889
1890 /* Integral scalar values smaller than a register are padded on
1891 the left. We do this by promoting them to full-width,
1892 although the ABI says to pad them with garbage. */
1893 if (is_integral_type (arg_type)
1894 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1895 {
1896 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1897 ? builtin_type_unsigned_long
1898 : builtin_type_long),
1899 args[i]);
1900 arg_type = VALUE_TYPE (args[i]);
1901 }
1902
1903 lengths[i] = TYPE_LENGTH (arg_type);
1904
1905 /* Align the size of the argument to the word size for this
1906 target. */
1907 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1908
1909 offset[i] = cum_bytes_reserved;
1910
1911 /* Aggregates larger than eight bytes (the only types larger
1912 than eight bytes we have) are aligned on a 16-byte boundary,
1913 possibly padded on the right with garbage. This may leave an
1914 empty word on the stack, and thus an unused register, as per
1915 the ABI. */
1916 if (bytes_reserved > 8)
1917 {
1918 /* Round up the offset to a multiple of two slots. */
1919 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1920 & -(2*DEPRECATED_REGISTER_SIZE));
1921
1922 /* Note the space we've wasted, if any. */
1923 bytes_reserved += new_offset - offset[i];
1924 offset[i] = new_offset;
1925 }
1926
1927 cum_bytes_reserved += bytes_reserved;
1928 }
1929
1930 /* CUM_BYTES_RESERVED already accounts for all the arguments
1931 passed by the user. However, the ABIs mandate minimum stack space
1932 allocations for outgoing arguments.
1933
1934 The ABIs also mandate minimum stack alignments which we must
1935 preserve. */
1936 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
1937 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1938
1939 /* Now write each of the args at the proper offset down the stack. */
1940 for (i = 0; i < nargs; i++)
1941 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1942
1943 /* If a structure has to be returned, set up register 28 to hold its
1944 address */
1945 if (struct_return)
1946 write_register (28, struct_addr);
1947
1948 /* For the PA64 we must pass a pointer to the outgoing argument list.
1949 The ABI mandates that the pointer should point to the first byte of
1950 storage beyond the register flushback area.
1951
1952 However, the call dummy expects the outgoing argument pointer to
1953 be passed in register %r4. */
1954 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1955
1956 /* ?!? This needs further work. We need to set up the global data
1957 pointer for this procedure. This assumes the same global pointer
1958 for every procedure. The call dummy expects the dp value to
1959 be passed in register %r6. */
1960 write_register (6, read_register (27));
1961
1962 /* The stack will have 64 bytes of additional space for a frame marker. */
1963 return sp + 64;
1964 }
1965
1966 #else
1967
1968 /* This function pushes a stack frame with arguments as part of the
1969 inferior function calling mechanism.
1970
1971 This is the version of the function for the 32-bit PA machines, in
1972 which later arguments appear at lower addresses. (The stack always
1973 grows towards higher addresses.)
1974
1975 We simply allocate the appropriate amount of stack space and put
1976 arguments into their proper slots. The call dummy code will copy
1977 arguments into registers as needed by the ABI. */
1978
1979 CORE_ADDR
1980 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1981 int struct_return, CORE_ADDR struct_addr)
1982 {
1983 /* array of arguments' offsets */
1984 int *offset = (int *) alloca (nargs * sizeof (int));
1985
1986 /* array of arguments' lengths: real lengths in bytes, not aligned to
1987 word size */
1988 int *lengths = (int *) alloca (nargs * sizeof (int));
1989
1990 /* The number of stack bytes occupied by the current argument. */
1991 int bytes_reserved;
1992
1993 /* The total number of bytes reserved for the arguments. */
1994 int cum_bytes_reserved = 0;
1995
1996 /* Similarly, but aligned. */
1997 int cum_bytes_aligned = 0;
1998 int i;
1999
2000 /* Iterate over each argument provided by the user. */
2001 for (i = 0; i < nargs; i++)
2002 {
2003 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2004
2005 /* Align the size of the argument to the word size for this
2006 target. */
2007 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2008
2009 offset[i] = (cum_bytes_reserved
2010 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
2011
2012 /* If the argument is a double word argument, then it needs to be
2013 double word aligned. */
2014 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
2015 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
2016 {
2017 int new_offset = 0;
2018 /* BYTES_RESERVED is already aligned to the word, so we put
2019 the argument at one word more down the stack.
2020
2021 This will leave one empty word on the stack, and one unused
2022 register as mandated by the ABI. */
2023 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
2024 & -(2 * DEPRECATED_REGISTER_SIZE));
2025
2026 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
2027 {
2028 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2029 offset[i] += DEPRECATED_REGISTER_SIZE;
2030 }
2031 }
2032
2033 cum_bytes_reserved += bytes_reserved;
2034
2035 }
2036
2037 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2038 by the user. However, the ABI mandates minimum stack space
2039 allocations for outgoing arguments.
2040
2041 The ABI also mandates minimum stack alignments which we must
2042 preserve. */
2043 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
2044 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2045
2046 /* Now write each of the args at the proper offset down the stack.
2047 ?!? We need to promote values to a full register instead of skipping
2048 words in the stack. */
2049 for (i = 0; i < nargs; i++)
2050 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2051
2052 /* If a structure has to be returned, set up register 28 to hold its
2053 address */
2054 if (struct_return)
2055 write_register (28, struct_addr);
2056
2057 /* The stack will have 32 bytes of additional space for a frame marker. */
2058 return sp + 32;
2059 }
2060
2061 #endif
2062
2063 /* elz: this function returns a value which is built looking at the given address.
2064 It is called from call_function_by_hand, in case we need to return a
2065 value which is larger than 64 bits, and it is stored in the stack rather than
2066 in the registers r28 and r29 or fr4.
2067 This function does the same stuff as value_being_returned in values.c, but
2068 gets the value from the stack rather than from the buffer where all the
2069 registers were saved when the function called completed. */
2070 /* FIXME: cagney/2003-09-27: This function is no longer needed. The
2071 inferior function call code now directly handles the case described
2072 above. */
2073 struct value *
2074 hppa_value_returned_from_stack (struct type *valtype, CORE_ADDR addr)
2075 {
2076 struct value *val;
2077
2078 val = allocate_value (valtype);
2079 CHECK_TYPEDEF (valtype);
2080 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
2081
2082 return val;
2083 }
2084
2085
2086
2087 /* elz: Used to lookup a symbol in the shared libraries.
2088 This function calls shl_findsym, indirectly through a
2089 call to __d_shl_get. __d_shl_get is in end.c, which is always
2090 linked in by the hp compilers/linkers.
2091 The call to shl_findsym cannot be made directly because it needs
2092 to be active in target address space.
2093 inputs: - minimal symbol pointer for the function we want to look up
2094 - address in target space of the descriptor for the library
2095 where we want to look the symbol up.
2096 This address is retrieved using the
2097 som_solib_get_solib_by_pc function (somsolib.c).
2098 output: - real address in the library of the function.
2099 note: the handle can be null, in which case shl_findsym will look for
2100 the symbol in all the loaded shared libraries.
2101 files to look at if you need reference on this stuff:
2102 dld.c, dld_shl_findsym.c
2103 end.c
2104 man entry for shl_findsym */
2105
2106 CORE_ADDR
2107 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
2108 {
2109 struct symbol *get_sym, *symbol2;
2110 struct minimal_symbol *buff_minsym, *msymbol;
2111 struct type *ftype;
2112 struct value **args;
2113 struct value *funcval;
2114 struct value *val;
2115
2116 int x, namelen, err_value, tmp = -1;
2117 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2118 CORE_ADDR stub_addr;
2119
2120
2121 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
2122 funcval = find_function_in_inferior ("__d_shl_get");
2123 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
2124 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2125 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
2126 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
2127 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
2128 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
2129 value_return_addr = endo_buff_addr + namelen;
2130 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2131
2132 /* do alignment */
2133 if ((x = value_return_addr % 64) != 0)
2134 value_return_addr = value_return_addr + 64 - x;
2135
2136 errno_return_addr = value_return_addr + 64;
2137
2138
2139 /* set up stuff needed by __d_shl_get in buffer in end.o */
2140
2141 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
2142
2143 target_write_memory (value_return_addr, (char *) &tmp, 4);
2144
2145 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2146
2147 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2148 (char *) &handle, 4);
2149
2150 /* now prepare the arguments for the call */
2151
2152 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2153 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2154 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2155 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2156 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2157 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2158
2159 /* now call the function */
2160
2161 val = call_function_by_hand (funcval, 6, args);
2162
2163 /* now get the results */
2164
2165 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2166
2167 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2168 if (stub_addr <= 0)
2169 error ("call to __d_shl_get failed, error code is %d", err_value);
2170
2171 return (stub_addr);
2172 }
2173
2174 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2175 static int
2176 cover_find_stub_with_shl_get (void *args_untyped)
2177 {
2178 args_for_find_stub *args = args_untyped;
2179 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2180 return 0;
2181 }
2182
2183 /* Insert the specified number of args and function address
2184 into a call sequence of the above form stored at DUMMYNAME.
2185
2186 On the hppa we need to call the stack dummy through $$dyncall.
2187 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2188 argument, real_pc, which is the location where gdb should start up
2189 the inferior to do the function call.
2190
2191 This has to work across several versions of hpux, bsd, osf1. It has to
2192 work regardless of what compiler was used to build the inferior program.
2193 It should work regardless of whether or not end.o is available. It has
2194 to work even if gdb can not call into the dynamic loader in the inferior
2195 to query it for symbol names and addresses.
2196
2197 Yes, all those cases should work. Luckily code exists to handle most
2198 of them. The complexity is in selecting exactly what scheme should
2199 be used to perform the inferior call.
2200
2201 At the current time this routine is known not to handle cases where
2202 the program was linked with HP's compiler without including end.o.
2203
2204 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2205
2206 CORE_ADDR
2207 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2208 struct value **args, struct type *type, int gcc_p)
2209 {
2210 CORE_ADDR dyncall_addr;
2211 struct minimal_symbol *msymbol;
2212 struct minimal_symbol *trampoline;
2213 int flags = read_register (FLAGS_REGNUM);
2214 struct unwind_table_entry *u = NULL;
2215 CORE_ADDR new_stub = 0;
2216 CORE_ADDR solib_handle = 0;
2217
2218 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2219 passed an import stub, not a PLABEL. It is also necessary to set %r19
2220 (the PIC register) before performing the call.
2221
2222 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2223 are calling the target directly. When using __d_plt_call we want to
2224 use a PLABEL instead of an import stub. */
2225 int using_gcc_plt_call = 1;
2226
2227 #ifdef GDB_TARGET_IS_HPPA_20W
2228 /* We currently use completely different code for the PA2.0W inferior
2229 function call sequences. This needs to be cleaned up. */
2230 {
2231 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2232 struct target_waitstatus w;
2233 int inst1, inst2;
2234 char buf[4];
2235 int status;
2236 struct objfile *objfile;
2237
2238 /* We can not modify the PC space queues directly, so we start
2239 up the inferior and execute a couple instructions to set the
2240 space queues so that they point to the call dummy in the stack. */
2241 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2242 sr5 = read_register (SR5_REGNUM);
2243 if (1)
2244 {
2245 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2246 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2247 if (target_read_memory (pcoqh, buf, 4) != 0)
2248 error ("Couldn't modify space queue\n");
2249 inst1 = extract_unsigned_integer (buf, 4);
2250
2251 if (target_read_memory (pcoqt, buf, 4) != 0)
2252 error ("Couldn't modify space queue\n");
2253 inst2 = extract_unsigned_integer (buf, 4);
2254
2255 /* BVE (r1) */
2256 *((int *) buf) = 0xe820d000;
2257 if (target_write_memory (pcoqh, buf, 4) != 0)
2258 error ("Couldn't modify space queue\n");
2259
2260 /* NOP */
2261 *((int *) buf) = 0x08000240;
2262 if (target_write_memory (pcoqt, buf, 4) != 0)
2263 {
2264 *((int *) buf) = inst1;
2265 target_write_memory (pcoqh, buf, 4);
2266 error ("Couldn't modify space queue\n");
2267 }
2268
2269 write_register (1, pc);
2270
2271 /* Single step twice, the BVE instruction will set the space queue
2272 such that it points to the PC value written immediately above
2273 (ie the call dummy). */
2274 resume (1, 0);
2275 target_wait (inferior_ptid, &w);
2276 resume (1, 0);
2277 target_wait (inferior_ptid, &w);
2278
2279 /* Restore the two instructions at the old PC locations. */
2280 *((int *) buf) = inst1;
2281 target_write_memory (pcoqh, buf, 4);
2282 *((int *) buf) = inst2;
2283 target_write_memory (pcoqt, buf, 4);
2284 }
2285
2286 /* The call dummy wants the ultimate destination address initially
2287 in register %r5. */
2288 write_register (5, fun);
2289
2290 /* We need to see if this objfile has a different DP value than our
2291 own (it could be a shared library for example). */
2292 ALL_OBJFILES (objfile)
2293 {
2294 struct obj_section *s;
2295 obj_private_data_t *obj_private;
2296
2297 /* See if FUN is in any section within this shared library. */
2298 for (s = objfile->sections; s < objfile->sections_end; s++)
2299 if (s->addr <= fun && fun < s->endaddr)
2300 break;
2301
2302 if (s >= objfile->sections_end)
2303 continue;
2304
2305 obj_private = (obj_private_data_t *) objfile->obj_private;
2306
2307 /* The DP value may be different for each objfile. But within an
2308 objfile each function uses the same dp value. Thus we do not need
2309 to grope around the opd section looking for dp values.
2310
2311 ?!? This is not strictly correct since we may be in a shared library
2312 and want to call back into the main program. To make that case
2313 work correctly we need to set obj_private->dp for the main program's
2314 objfile, then remove this conditional. */
2315 if (obj_private->dp)
2316 write_register (27, obj_private->dp);
2317 break;
2318 }
2319 return pc;
2320 }
2321 #endif
2322
2323 #ifndef GDB_TARGET_IS_HPPA_20W
2324 /* Prefer __gcc_plt_call over the HP supplied routine because
2325 __gcc_plt_call works for any number of arguments. */
2326 trampoline = NULL;
2327 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2328 using_gcc_plt_call = 0;
2329
2330 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2331 if (msymbol == NULL)
2332 error ("Can't find an address for $$dyncall trampoline");
2333
2334 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2335
2336 /* FUN could be a procedure label, in which case we have to get
2337 its real address and the value of its GOT/DP if we plan to
2338 call the routine via gcc_plt_call. */
2339 if ((fun & 0x2) && using_gcc_plt_call)
2340 {
2341 /* Get the GOT/DP value for the target function. It's
2342 at *(fun+4). Note the call dummy is *NOT* allowed to
2343 trash %r19 before calling the target function. */
2344 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2345 DEPRECATED_REGISTER_SIZE));
2346
2347 /* Now get the real address for the function we are calling, it's
2348 at *fun. */
2349 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2350 TARGET_PTR_BIT / 8);
2351 }
2352 else
2353 {
2354
2355 #ifndef GDB_TARGET_IS_PA_ELF
2356 /* FUN could be an export stub, the real address of a function, or
2357 a PLABEL. When using gcc's PLT call routine we must call an import
2358 stub rather than the export stub or real function for lazy binding
2359 to work correctly
2360
2361 If we are using the gcc PLT call routine, then we need to
2362 get the import stub for the target function. */
2363 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2364 {
2365 struct objfile *objfile;
2366 struct minimal_symbol *funsymbol, *stub_symbol;
2367 CORE_ADDR newfun = 0;
2368
2369 funsymbol = lookup_minimal_symbol_by_pc (fun);
2370 if (!funsymbol)
2371 error ("Unable to find minimal symbol for target function.\n");
2372
2373 /* Search all the object files for an import symbol with the
2374 right name. */
2375 ALL_OBJFILES (objfile)
2376 {
2377 stub_symbol
2378 = lookup_minimal_symbol_solib_trampoline
2379 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
2380
2381 if (!stub_symbol)
2382 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2383 NULL, objfile);
2384
2385 /* Found a symbol with the right name. */
2386 if (stub_symbol)
2387 {
2388 struct unwind_table_entry *u;
2389 /* It must be a shared library trampoline. */
2390 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2391 continue;
2392
2393 /* It must also be an import stub. */
2394 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2395 if (u == NULL
2396 || (u->stub_unwind.stub_type != IMPORT
2397 #ifdef GDB_NATIVE_HPUX_11
2398 /* Sigh. The hpux 10.20 dynamic linker will blow
2399 chunks if we perform a call to an unbound function
2400 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2401 linker will blow chunks if we do not call the
2402 unbound function via the IMPORT_SHLIB stub.
2403
2404 We currently have no way to select bevahior on just
2405 the target. However, we only support HPUX/SOM in
2406 native mode. So we conditinalize on a native
2407 #ifdef. Ugly. Ugly. Ugly */
2408 && u->stub_unwind.stub_type != IMPORT_SHLIB
2409 #endif
2410 ))
2411 continue;
2412
2413 /* OK. Looks like the correct import stub. */
2414 newfun = SYMBOL_VALUE (stub_symbol);
2415 fun = newfun;
2416
2417 /* If we found an IMPORT stub, then we want to stop
2418 searching now. If we found an IMPORT_SHLIB, we want
2419 to continue the search in the hopes that we will find
2420 an IMPORT stub. */
2421 if (u->stub_unwind.stub_type == IMPORT)
2422 break;
2423 }
2424 }
2425
2426 /* Ouch. We did not find an import stub. Make an attempt to
2427 do the right thing instead of just croaking. Most of the
2428 time this will actually work. */
2429 if (newfun == 0)
2430 write_register (19, som_solib_get_got_by_pc (fun));
2431
2432 u = find_unwind_entry (fun);
2433 if (u
2434 && (u->stub_unwind.stub_type == IMPORT
2435 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2436 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2437
2438 /* If we found the import stub in the shared library, then we have
2439 to set %r19 before we call the stub. */
2440 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2441 write_register (19, som_solib_get_got_by_pc (fun));
2442 }
2443 #endif
2444 }
2445
2446 /* If we are calling into another load module then have sr4export call the
2447 magic __d_plt_call routine which is linked in from end.o.
2448
2449 You can't use _sr4export to make the call as the value in sp-24 will get
2450 fried and you end up returning to the wrong location. You can't call the
2451 target as the code to bind the PLT entry to a function can't return to a
2452 stack address.
2453
2454 Also, query the dynamic linker in the inferior to provide a suitable
2455 PLABEL for the target function. */
2456 if (!using_gcc_plt_call)
2457 {
2458 CORE_ADDR new_fun;
2459
2460 /* Get a handle for the shared library containing FUN. Given the
2461 handle we can query the shared library for a PLABEL. */
2462 solib_handle = som_solib_get_solib_by_pc (fun);
2463
2464 if (solib_handle)
2465 {
2466 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2467
2468 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2469
2470 if (trampoline == NULL)
2471 {
2472 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2473 }
2474
2475 /* This is where sr4export will jump to. */
2476 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2477
2478 /* If the function is in a shared library, then call __d_shl_get to
2479 get a PLABEL for the target function. */
2480 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2481
2482 if (new_stub == 0)
2483 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2484
2485 /* We have to store the address of the stub in __shlib_funcptr. */
2486 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2487 (struct objfile *) NULL);
2488
2489 if (msymbol == NULL)
2490 error ("Can't find an address for __shlib_funcptr");
2491 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2492 (char *) &new_stub, 4);
2493
2494 /* We want sr4export to call __d_plt_call, so we claim it is
2495 the final target. Clear trampoline. */
2496 fun = new_fun;
2497 trampoline = NULL;
2498 }
2499 }
2500
2501 /* Store upper 21 bits of function address into ldil. fun will either be
2502 the final target (most cases) or __d_plt_call when calling into a shared
2503 library and __gcc_plt_call is not available. */
2504 store_unsigned_integer
2505 (&dummy[FUNC_LDIL_OFFSET],
2506 INSTRUCTION_SIZE,
2507 deposit_21 (fun >> 11,
2508 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2509 INSTRUCTION_SIZE)));
2510
2511 /* Store lower 11 bits of function address into ldo */
2512 store_unsigned_integer
2513 (&dummy[FUNC_LDO_OFFSET],
2514 INSTRUCTION_SIZE,
2515 deposit_14 (fun & MASK_11,
2516 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2517 INSTRUCTION_SIZE)));
2518 #ifdef SR4EXPORT_LDIL_OFFSET
2519
2520 {
2521 CORE_ADDR trampoline_addr;
2522
2523 /* We may still need sr4export's address too. */
2524
2525 if (trampoline == NULL)
2526 {
2527 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2528 if (msymbol == NULL)
2529 error ("Can't find an address for _sr4export trampoline");
2530
2531 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2532 }
2533 else
2534 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2535
2536
2537 /* Store upper 21 bits of trampoline's address into ldil */
2538 store_unsigned_integer
2539 (&dummy[SR4EXPORT_LDIL_OFFSET],
2540 INSTRUCTION_SIZE,
2541 deposit_21 (trampoline_addr >> 11,
2542 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2543 INSTRUCTION_SIZE)));
2544
2545 /* Store lower 11 bits of trampoline's address into ldo */
2546 store_unsigned_integer
2547 (&dummy[SR4EXPORT_LDO_OFFSET],
2548 INSTRUCTION_SIZE,
2549 deposit_14 (trampoline_addr & MASK_11,
2550 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2551 INSTRUCTION_SIZE)));
2552 }
2553 #endif
2554
2555 write_register (22, pc);
2556
2557 /* If we are in a syscall, then we should call the stack dummy
2558 directly. $$dyncall is not needed as the kernel sets up the
2559 space id registers properly based on the value in %r31. In
2560 fact calling $$dyncall will not work because the value in %r22
2561 will be clobbered on the syscall exit path.
2562
2563 Similarly if the current PC is in a shared library. Note however,
2564 this scheme won't work if the shared library isn't mapped into
2565 the same space as the stack. */
2566 if (flags & 2)
2567 return pc;
2568 #ifndef GDB_TARGET_IS_PA_ELF
2569 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2570 return pc;
2571 #endif
2572 else
2573 return dyncall_addr;
2574 #endif
2575 }
2576
2577 /* If the pid is in a syscall, then the FP register is not readable.
2578 We'll return zero in that case, rather than attempting to read it
2579 and cause a warning. */
2580
2581 CORE_ADDR
2582 hppa_read_fp (int pid)
2583 {
2584 int flags = read_register (FLAGS_REGNUM);
2585
2586 if (flags & 2)
2587 {
2588 return (CORE_ADDR) 0;
2589 }
2590
2591 /* This is the only site that may directly read_register () the FP
2592 register. All others must use deprecated_read_fp (). */
2593 return read_register (DEPRECATED_FP_REGNUM);
2594 }
2595
2596 CORE_ADDR
2597 hppa_target_read_fp (void)
2598 {
2599 return hppa_read_fp (PIDGET (inferior_ptid));
2600 }
2601
2602 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2603 bits. */
2604
2605 CORE_ADDR
2606 hppa_target_read_pc (ptid_t ptid)
2607 {
2608 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2609
2610 /* The following test does not belong here. It is OS-specific, and belongs
2611 in native code. */
2612 /* Test SS_INSYSCALL */
2613 if (flags & 2)
2614 return read_register_pid (31, ptid) & ~0x3;
2615
2616 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2617 }
2618
2619 /* Write out the PC. If currently in a syscall, then also write the new
2620 PC value into %r31. */
2621
2622 void
2623 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2624 {
2625 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2626
2627 /* The following test does not belong here. It is OS-specific, and belongs
2628 in native code. */
2629 /* If in a syscall, then set %r31. Also make sure to get the
2630 privilege bits set correctly. */
2631 /* Test SS_INSYSCALL */
2632 if (flags & 2)
2633 write_register_pid (31, v | 0x3, ptid);
2634
2635 write_register_pid (PC_REGNUM, v, ptid);
2636 write_register_pid (DEPRECATED_NPC_REGNUM, v + 4, ptid);
2637 }
2638
2639 /* return the alignment of a type in bytes. Structures have the maximum
2640 alignment required by their fields. */
2641
2642 static int
2643 hppa_alignof (struct type *type)
2644 {
2645 int max_align, align, i;
2646 CHECK_TYPEDEF (type);
2647 switch (TYPE_CODE (type))
2648 {
2649 case TYPE_CODE_PTR:
2650 case TYPE_CODE_INT:
2651 case TYPE_CODE_FLT:
2652 return TYPE_LENGTH (type);
2653 case TYPE_CODE_ARRAY:
2654 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2655 case TYPE_CODE_STRUCT:
2656 case TYPE_CODE_UNION:
2657 max_align = 1;
2658 for (i = 0; i < TYPE_NFIELDS (type); i++)
2659 {
2660 /* Bit fields have no real alignment. */
2661 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2662 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2663 {
2664 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2665 max_align = max (max_align, align);
2666 }
2667 }
2668 return max_align;
2669 default:
2670 return 4;
2671 }
2672 }
2673
2674 /* Print the register regnum, or all registers if regnum is -1 */
2675
2676 void
2677 pa_do_registers_info (int regnum, int fpregs)
2678 {
2679 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2680 int i;
2681
2682 /* Make a copy of gdb's save area (may cause actual
2683 reads from the target). */
2684 for (i = 0; i < NUM_REGS; i++)
2685 frame_register_read (deprecated_selected_frame, i,
2686 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2687
2688 if (regnum == -1)
2689 pa_print_registers (raw_regs, regnum, fpregs);
2690 else if (regnum < FP4_REGNUM)
2691 {
2692 long reg_val[2];
2693
2694 /* Why is the value not passed through "extract_signed_integer"
2695 as in "pa_print_registers" below? */
2696 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2697
2698 if (!is_pa_2)
2699 {
2700 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2701 }
2702 else
2703 {
2704 /* Fancy % formats to prevent leading zeros. */
2705 if (reg_val[0] == 0)
2706 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2707 else
2708 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2709 reg_val[0], reg_val[1]);
2710 }
2711 }
2712 else
2713 /* Note that real floating point values only start at
2714 FP4_REGNUM. FP0 and up are just status and error
2715 registers, which have integral (bit) values. */
2716 pa_print_fp_reg (regnum);
2717 }
2718
2719 /********** new function ********************/
2720 void
2721 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2722 enum precision_type precision)
2723 {
2724 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2725 int i;
2726
2727 /* Make a copy of gdb's save area (may cause actual
2728 reads from the target). */
2729 for (i = 0; i < NUM_REGS; i++)
2730 frame_register_read (deprecated_selected_frame, i,
2731 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2732
2733 if (regnum == -1)
2734 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2735
2736 else if (regnum < FP4_REGNUM)
2737 {
2738 long reg_val[2];
2739
2740 /* Why is the value not passed through "extract_signed_integer"
2741 as in "pa_print_registers" below? */
2742 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2743
2744 if (!is_pa_2)
2745 {
2746 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2747 }
2748 else
2749 {
2750 /* Fancy % formats to prevent leading zeros. */
2751 if (reg_val[0] == 0)
2752 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2753 reg_val[1]);
2754 else
2755 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2756 reg_val[0], reg_val[1]);
2757 }
2758 }
2759 else
2760 /* Note that real floating point values only start at
2761 FP4_REGNUM. FP0 and up are just status and error
2762 registers, which have integral (bit) values. */
2763 pa_strcat_fp_reg (regnum, stream, precision);
2764 }
2765
2766 /* If this is a PA2.0 machine, fetch the real 64-bit register
2767 value. Otherwise use the info from gdb's saved register area.
2768
2769 Note that reg_val is really expected to be an array of longs,
2770 with two elements. */
2771 static void
2772 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2773 {
2774 static int know_which = 0; /* False */
2775
2776 int regaddr;
2777 unsigned int offset;
2778 int i;
2779 int start;
2780
2781
2782 char buf[MAX_REGISTER_SIZE];
2783 long long reg_val;
2784
2785 if (!know_which)
2786 {
2787 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2788 {
2789 is_pa_2 = (1 == 1);
2790 }
2791
2792 know_which = 1; /* True */
2793 }
2794
2795 raw_val[0] = 0;
2796 raw_val[1] = 0;
2797
2798 if (!is_pa_2)
2799 {
2800 raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum));
2801 return;
2802 }
2803
2804 /* Code below copied from hppah-nat.c, with fixes for wide
2805 registers, using different area of save_state, etc. */
2806 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2807 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2808 {
2809 /* Use narrow regs area of save_state and default macro. */
2810 offset = U_REGS_OFFSET;
2811 regaddr = register_addr (regnum, offset);
2812 start = 1;
2813 }
2814 else
2815 {
2816 /* Use wide regs area, and calculate registers as 8 bytes wide.
2817
2818 We'd like to do this, but current version of "C" doesn't
2819 permit "offsetof":
2820
2821 offset = offsetof(save_state_t, ss_wide);
2822
2823 Note that to avoid "C" doing typed pointer arithmetic, we
2824 have to cast away the type in our offset calculation:
2825 otherwise we get an offset of 1! */
2826
2827 /* NB: save_state_t is not available before HPUX 9.
2828 The ss_wide field is not available previous to HPUX 10.20,
2829 so to avoid compile-time warnings, we only compile this for
2830 PA 2.0 processors. This control path should only be followed
2831 if we're debugging a PA 2.0 processor, so this should not cause
2832 problems. */
2833
2834 /* #if the following code out so that this file can still be
2835 compiled on older HPUX boxes (< 10.20) which don't have
2836 this structure/structure member. */
2837 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2838 save_state_t temp;
2839
2840 offset = ((int) &temp.ss_wide) - ((int) &temp);
2841 regaddr = offset + regnum * 8;
2842 start = 0;
2843 #endif
2844 }
2845
2846 for (i = start; i < 2; i++)
2847 {
2848 errno = 0;
2849 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2850 (PTRACE_ARG3_TYPE) regaddr, 0);
2851 if (errno != 0)
2852 {
2853 /* Warning, not error, in case we are attached; sometimes the
2854 kernel doesn't let us at the registers. */
2855 char *err = safe_strerror (errno);
2856 char *msg = alloca (strlen (err) + 128);
2857 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2858 warning (msg);
2859 goto error_exit;
2860 }
2861
2862 regaddr += sizeof (long);
2863 }
2864
2865 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2866 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2867
2868 error_exit:
2869 ;
2870 }
2871
2872 /* "Info all-reg" command */
2873
2874 static void
2875 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2876 {
2877 int i, j;
2878 /* Alas, we are compiled so that "long long" is 32 bits */
2879 long raw_val[2];
2880 long long_val;
2881 int rows = 48, columns = 2;
2882
2883 for (i = 0; i < rows; i++)
2884 {
2885 for (j = 0; j < columns; j++)
2886 {
2887 /* We display registers in column-major order. */
2888 int regnum = i + j * rows;
2889
2890 /* Q: Why is the value passed through "extract_signed_integer",
2891 while above, in "pa_do_registers_info" it isn't?
2892 A: ? */
2893 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2894
2895 /* Even fancier % formats to prevent leading zeros
2896 and still maintain the output in columns. */
2897 if (!is_pa_2)
2898 {
2899 /* Being big-endian, on this machine the low bits
2900 (the ones we want to look at) are in the second longword. */
2901 long_val = extract_signed_integer (&raw_val[1], 4);
2902 printf_filtered ("%10.10s: %8lx ",
2903 REGISTER_NAME (regnum), long_val);
2904 }
2905 else
2906 {
2907 /* raw_val = extract_signed_integer(&raw_val, 8); */
2908 if (raw_val[0] == 0)
2909 printf_filtered ("%10.10s: %8lx ",
2910 REGISTER_NAME (regnum), raw_val[1]);
2911 else
2912 printf_filtered ("%10.10s: %8lx%8.8lx ",
2913 REGISTER_NAME (regnum),
2914 raw_val[0], raw_val[1]);
2915 }
2916 }
2917 printf_unfiltered ("\n");
2918 }
2919
2920 if (fpregs)
2921 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2922 pa_print_fp_reg (i);
2923 }
2924
2925 /************* new function ******************/
2926 static void
2927 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2928 struct ui_file *stream)
2929 {
2930 int i, j;
2931 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2932 long long_val;
2933 enum precision_type precision;
2934
2935 precision = unspecified_precision;
2936
2937 for (i = 0; i < 18; i++)
2938 {
2939 for (j = 0; j < 4; j++)
2940 {
2941 /* Q: Why is the value passed through "extract_signed_integer",
2942 while above, in "pa_do_registers_info" it isn't?
2943 A: ? */
2944 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2945
2946 /* Even fancier % formats to prevent leading zeros
2947 and still maintain the output in columns. */
2948 if (!is_pa_2)
2949 {
2950 /* Being big-endian, on this machine the low bits
2951 (the ones we want to look at) are in the second longword. */
2952 long_val = extract_signed_integer (&raw_val[1], 4);
2953 fprintf_filtered (stream, "%8.8s: %8lx ",
2954 REGISTER_NAME (i + (j * 18)), long_val);
2955 }
2956 else
2957 {
2958 /* raw_val = extract_signed_integer(&raw_val, 8); */
2959 if (raw_val[0] == 0)
2960 fprintf_filtered (stream, "%8.8s: %8lx ",
2961 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2962 else
2963 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2964 REGISTER_NAME (i + (j * 18)), raw_val[0],
2965 raw_val[1]);
2966 }
2967 }
2968 fprintf_unfiltered (stream, "\n");
2969 }
2970
2971 if (fpregs)
2972 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2973 pa_strcat_fp_reg (i, stream, precision);
2974 }
2975
2976 static void
2977 pa_print_fp_reg (int i)
2978 {
2979 char raw_buffer[MAX_REGISTER_SIZE];
2980 char virtual_buffer[MAX_REGISTER_SIZE];
2981
2982 /* Get 32bits of data. */
2983 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2984
2985 /* Put it in the buffer. No conversions are ever necessary. */
2986 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2987
2988 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2989 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2990 fputs_filtered ("(single precision) ", gdb_stdout);
2991
2992 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2993 1, 0, Val_pretty_default);
2994 printf_filtered ("\n");
2995
2996 /* If "i" is even, then this register can also be a double-precision
2997 FP register. Dump it out as such. */
2998 if ((i % 2) == 0)
2999 {
3000 /* Get the data in raw format for the 2nd half. */
3001 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
3002
3003 /* Copy it into the appropriate part of the virtual buffer. */
3004 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
3005 REGISTER_RAW_SIZE (i));
3006
3007 /* Dump it as a double. */
3008 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3009 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3010 fputs_filtered ("(double precision) ", gdb_stdout);
3011
3012 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
3013 1, 0, Val_pretty_default);
3014 printf_filtered ("\n");
3015 }
3016 }
3017
3018 /*************** new function ***********************/
3019 static void
3020 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
3021 {
3022 char raw_buffer[MAX_REGISTER_SIZE];
3023 char virtual_buffer[MAX_REGISTER_SIZE];
3024
3025 fputs_filtered (REGISTER_NAME (i), stream);
3026 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
3027
3028 /* Get 32bits of data. */
3029 frame_register_read (deprecated_selected_frame, i, raw_buffer);
3030
3031 /* Put it in the buffer. No conversions are ever necessary. */
3032 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
3033
3034 if (precision == double_precision && (i % 2) == 0)
3035 {
3036
3037 char raw_buf[MAX_REGISTER_SIZE];
3038
3039 /* Get the data in raw format for the 2nd half. */
3040 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
3041
3042 /* Copy it into the appropriate part of the virtual buffer. */
3043 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
3044
3045 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3046 1, 0, Val_pretty_default);
3047
3048 }
3049 else
3050 {
3051 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
3052 1, 0, Val_pretty_default);
3053 }
3054
3055 }
3056
3057 /* Return one if PC is in the call path of a trampoline, else return zero.
3058
3059 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3060 just shared library trampolines (import, export). */
3061
3062 int
3063 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
3064 {
3065 struct minimal_symbol *minsym;
3066 struct unwind_table_entry *u;
3067 static CORE_ADDR dyncall = 0;
3068 static CORE_ADDR sr4export = 0;
3069
3070 #ifdef GDB_TARGET_IS_HPPA_20W
3071 /* PA64 has a completely different stub/trampoline scheme. Is it
3072 better? Maybe. It's certainly harder to determine with any
3073 certainty that we are in a stub because we can not refer to the
3074 unwinders to help.
3075
3076 The heuristic is simple. Try to lookup the current PC value in th
3077 minimal symbol table. If that fails, then assume we are not in a
3078 stub and return.
3079
3080 Then see if the PC value falls within the section bounds for the
3081 section containing the minimal symbol we found in the first
3082 step. If it does, then assume we are not in a stub and return.
3083
3084 Finally peek at the instructions to see if they look like a stub. */
3085 {
3086 struct minimal_symbol *minsym;
3087 asection *sec;
3088 CORE_ADDR addr;
3089 int insn, i;
3090
3091 minsym = lookup_minimal_symbol_by_pc (pc);
3092 if (! minsym)
3093 return 0;
3094
3095 sec = SYMBOL_BFD_SECTION (minsym);
3096
3097 if (sec->vma <= pc
3098 && sec->vma + sec->_cooked_size < pc)
3099 return 0;
3100
3101 /* We might be in a stub. Peek at the instructions. Stubs are 3
3102 instructions long. */
3103 insn = read_memory_integer (pc, 4);
3104
3105 /* Find out where we think we are within the stub. */
3106 if ((insn & 0xffffc00e) == 0x53610000)
3107 addr = pc;
3108 else if ((insn & 0xffffffff) == 0xe820d000)
3109 addr = pc - 4;
3110 else if ((insn & 0xffffc00e) == 0x537b0000)
3111 addr = pc - 8;
3112 else
3113 return 0;
3114
3115 /* Now verify each insn in the range looks like a stub instruction. */
3116 insn = read_memory_integer (addr, 4);
3117 if ((insn & 0xffffc00e) != 0x53610000)
3118 return 0;
3119
3120 /* Now verify each insn in the range looks like a stub instruction. */
3121 insn = read_memory_integer (addr + 4, 4);
3122 if ((insn & 0xffffffff) != 0xe820d000)
3123 return 0;
3124
3125 /* Now verify each insn in the range looks like a stub instruction. */
3126 insn = read_memory_integer (addr + 8, 4);
3127 if ((insn & 0xffffc00e) != 0x537b0000)
3128 return 0;
3129
3130 /* Looks like a stub. */
3131 return 1;
3132 }
3133 #endif
3134
3135 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3136 new exec file */
3137
3138 /* First see if PC is in one of the two C-library trampolines. */
3139 if (!dyncall)
3140 {
3141 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3142 if (minsym)
3143 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3144 else
3145 dyncall = -1;
3146 }
3147
3148 if (!sr4export)
3149 {
3150 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3151 if (minsym)
3152 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3153 else
3154 sr4export = -1;
3155 }
3156
3157 if (pc == dyncall || pc == sr4export)
3158 return 1;
3159
3160 minsym = lookup_minimal_symbol_by_pc (pc);
3161 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3162 return 1;
3163
3164 /* Get the unwind descriptor corresponding to PC, return zero
3165 if no unwind was found. */
3166 u = find_unwind_entry (pc);
3167 if (!u)
3168 return 0;
3169
3170 /* If this isn't a linker stub, then return now. */
3171 if (u->stub_unwind.stub_type == 0)
3172 return 0;
3173
3174 /* By definition a long-branch stub is a call stub. */
3175 if (u->stub_unwind.stub_type == LONG_BRANCH)
3176 return 1;
3177
3178 /* The call and return path execute the same instructions within
3179 an IMPORT stub! So an IMPORT stub is both a call and return
3180 trampoline. */
3181 if (u->stub_unwind.stub_type == IMPORT)
3182 return 1;
3183
3184 /* Parameter relocation stubs always have a call path and may have a
3185 return path. */
3186 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3187 || u->stub_unwind.stub_type == EXPORT)
3188 {
3189 CORE_ADDR addr;
3190
3191 /* Search forward from the current PC until we hit a branch
3192 or the end of the stub. */
3193 for (addr = pc; addr <= u->region_end; addr += 4)
3194 {
3195 unsigned long insn;
3196
3197 insn = read_memory_integer (addr, 4);
3198
3199 /* Does it look like a bl? If so then it's the call path, if
3200 we find a bv or be first, then we're on the return path. */
3201 if ((insn & 0xfc00e000) == 0xe8000000)
3202 return 1;
3203 else if ((insn & 0xfc00e001) == 0xe800c000
3204 || (insn & 0xfc000000) == 0xe0000000)
3205 return 0;
3206 }
3207
3208 /* Should never happen. */
3209 warning ("Unable to find branch in parameter relocation stub.\n");
3210 return 0;
3211 }
3212
3213 /* Unknown stub type. For now, just return zero. */
3214 return 0;
3215 }
3216
3217 /* Return one if PC is in the return path of a trampoline, else return zero.
3218
3219 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3220 just shared library trampolines (import, export). */
3221
3222 int
3223 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3224 {
3225 struct unwind_table_entry *u;
3226
3227 /* Get the unwind descriptor corresponding to PC, return zero
3228 if no unwind was found. */
3229 u = find_unwind_entry (pc);
3230 if (!u)
3231 return 0;
3232
3233 /* If this isn't a linker stub or it's just a long branch stub, then
3234 return zero. */
3235 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3236 return 0;
3237
3238 /* The call and return path execute the same instructions within
3239 an IMPORT stub! So an IMPORT stub is both a call and return
3240 trampoline. */
3241 if (u->stub_unwind.stub_type == IMPORT)
3242 return 1;
3243
3244 /* Parameter relocation stubs always have a call path and may have a
3245 return path. */
3246 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3247 || u->stub_unwind.stub_type == EXPORT)
3248 {
3249 CORE_ADDR addr;
3250
3251 /* Search forward from the current PC until we hit a branch
3252 or the end of the stub. */
3253 for (addr = pc; addr <= u->region_end; addr += 4)
3254 {
3255 unsigned long insn;
3256
3257 insn = read_memory_integer (addr, 4);
3258
3259 /* Does it look like a bl? If so then it's the call path, if
3260 we find a bv or be first, then we're on the return path. */
3261 if ((insn & 0xfc00e000) == 0xe8000000)
3262 return 0;
3263 else if ((insn & 0xfc00e001) == 0xe800c000
3264 || (insn & 0xfc000000) == 0xe0000000)
3265 return 1;
3266 }
3267
3268 /* Should never happen. */
3269 warning ("Unable to find branch in parameter relocation stub.\n");
3270 return 0;
3271 }
3272
3273 /* Unknown stub type. For now, just return zero. */
3274 return 0;
3275
3276 }
3277
3278 /* Figure out if PC is in a trampoline, and if so find out where
3279 the trampoline will jump to. If not in a trampoline, return zero.
3280
3281 Simple code examination probably is not a good idea since the code
3282 sequences in trampolines can also appear in user code.
3283
3284 We use unwinds and information from the minimal symbol table to
3285 determine when we're in a trampoline. This won't work for ELF
3286 (yet) since it doesn't create stub unwind entries. Whether or
3287 not ELF will create stub unwinds or normal unwinds for linker
3288 stubs is still being debated.
3289
3290 This should handle simple calls through dyncall or sr4export,
3291 long calls, argument relocation stubs, and dyncall/sr4export
3292 calling an argument relocation stub. It even handles some stubs
3293 used in dynamic executables. */
3294
3295 CORE_ADDR
3296 hppa_skip_trampoline_code (CORE_ADDR pc)
3297 {
3298 long orig_pc = pc;
3299 long prev_inst, curr_inst, loc;
3300 static CORE_ADDR dyncall = 0;
3301 static CORE_ADDR dyncall_external = 0;
3302 static CORE_ADDR sr4export = 0;
3303 struct minimal_symbol *msym;
3304 struct unwind_table_entry *u;
3305
3306 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3307 new exec file */
3308
3309 if (!dyncall)
3310 {
3311 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3312 if (msym)
3313 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3314 else
3315 dyncall = -1;
3316 }
3317
3318 if (!dyncall_external)
3319 {
3320 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3321 if (msym)
3322 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3323 else
3324 dyncall_external = -1;
3325 }
3326
3327 if (!sr4export)
3328 {
3329 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3330 if (msym)
3331 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3332 else
3333 sr4export = -1;
3334 }
3335
3336 /* Addresses passed to dyncall may *NOT* be the actual address
3337 of the function. So we may have to do something special. */
3338 if (pc == dyncall)
3339 {
3340 pc = (CORE_ADDR) read_register (22);
3341
3342 /* If bit 30 (counting from the left) is on, then pc is the address of
3343 the PLT entry for this function, not the address of the function
3344 itself. Bit 31 has meaning too, but only for MPE. */
3345 if (pc & 0x2)
3346 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3347 }
3348 if (pc == dyncall_external)
3349 {
3350 pc = (CORE_ADDR) read_register (22);
3351 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3352 }
3353 else if (pc == sr4export)
3354 pc = (CORE_ADDR) (read_register (22));
3355
3356 /* Get the unwind descriptor corresponding to PC, return zero
3357 if no unwind was found. */
3358 u = find_unwind_entry (pc);
3359 if (!u)
3360 return 0;
3361
3362 /* If this isn't a linker stub, then return now. */
3363 /* elz: attention here! (FIXME) because of a compiler/linker
3364 error, some stubs which should have a non zero stub_unwind.stub_type
3365 have unfortunately a value of zero. So this function would return here
3366 as if we were not in a trampoline. To fix this, we go look at the partial
3367 symbol information, which reports this guy as a stub.
3368 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3369 partial symbol information is also wrong sometimes. This is because
3370 when it is entered (somread.c::som_symtab_read()) it can happen that
3371 if the type of the symbol (from the som) is Entry, and the symbol is
3372 in a shared library, then it can also be a trampoline. This would
3373 be OK, except that I believe the way they decide if we are ina shared library
3374 does not work. SOOOO..., even if we have a regular function w/o trampolines
3375 its minimal symbol can be assigned type mst_solib_trampoline.
3376 Also, if we find that the symbol is a real stub, then we fix the unwind
3377 descriptor, and define the stub type to be EXPORT.
3378 Hopefully this is correct most of the times. */
3379 if (u->stub_unwind.stub_type == 0)
3380 {
3381
3382 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3383 we can delete all the code which appears between the lines */
3384 /*--------------------------------------------------------------------------*/
3385 msym = lookup_minimal_symbol_by_pc (pc);
3386
3387 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3388 return orig_pc == pc ? 0 : pc & ~0x3;
3389
3390 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3391 {
3392 struct objfile *objfile;
3393 struct minimal_symbol *msymbol;
3394 int function_found = 0;
3395
3396 /* go look if there is another minimal symbol with the same name as
3397 this one, but with type mst_text. This would happen if the msym
3398 is an actual trampoline, in which case there would be another
3399 symbol with the same name corresponding to the real function */
3400
3401 ALL_MSYMBOLS (objfile, msymbol)
3402 {
3403 if (MSYMBOL_TYPE (msymbol) == mst_text
3404 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3405 {
3406 function_found = 1;
3407 break;
3408 }
3409 }
3410
3411 if (function_found)
3412 /* the type of msym is correct (mst_solib_trampoline), but
3413 the unwind info is wrong, so set it to the correct value */
3414 u->stub_unwind.stub_type = EXPORT;
3415 else
3416 /* the stub type info in the unwind is correct (this is not a
3417 trampoline), but the msym type information is wrong, it
3418 should be mst_text. So we need to fix the msym, and also
3419 get out of this function */
3420 {
3421 MSYMBOL_TYPE (msym) = mst_text;
3422 return orig_pc == pc ? 0 : pc & ~0x3;
3423 }
3424 }
3425
3426 /*--------------------------------------------------------------------------*/
3427 }
3428
3429 /* It's a stub. Search for a branch and figure out where it goes.
3430 Note we have to handle multi insn branch sequences like ldil;ble.
3431 Most (all?) other branches can be determined by examining the contents
3432 of certain registers and the stack. */
3433
3434 loc = pc;
3435 curr_inst = 0;
3436 prev_inst = 0;
3437 while (1)
3438 {
3439 /* Make sure we haven't walked outside the range of this stub. */
3440 if (u != find_unwind_entry (loc))
3441 {
3442 warning ("Unable to find branch in linker stub");
3443 return orig_pc == pc ? 0 : pc & ~0x3;
3444 }
3445
3446 prev_inst = curr_inst;
3447 curr_inst = read_memory_integer (loc, 4);
3448
3449 /* Does it look like a branch external using %r1? Then it's the
3450 branch from the stub to the actual function. */
3451 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3452 {
3453 /* Yup. See if the previous instruction loaded
3454 a value into %r1. If so compute and return the jump address. */
3455 if ((prev_inst & 0xffe00000) == 0x20200000)
3456 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3457 else
3458 {
3459 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3460 return orig_pc == pc ? 0 : pc & ~0x3;
3461 }
3462 }
3463
3464 /* Does it look like a be 0(sr0,%r21)? OR
3465 Does it look like a be, n 0(sr0,%r21)? OR
3466 Does it look like a bve (r21)? (this is on PA2.0)
3467 Does it look like a bve, n(r21)? (this is also on PA2.0)
3468 That's the branch from an
3469 import stub to an export stub.
3470
3471 It is impossible to determine the target of the branch via
3472 simple examination of instructions and/or data (consider
3473 that the address in the plabel may be the address of the
3474 bind-on-reference routine in the dynamic loader).
3475
3476 So we have try an alternative approach.
3477
3478 Get the name of the symbol at our current location; it should
3479 be a stub symbol with the same name as the symbol in the
3480 shared library.
3481
3482 Then lookup a minimal symbol with the same name; we should
3483 get the minimal symbol for the target routine in the shared
3484 library as those take precedence of import/export stubs. */
3485 if ((curr_inst == 0xe2a00000) ||
3486 (curr_inst == 0xe2a00002) ||
3487 (curr_inst == 0xeaa0d000) ||
3488 (curr_inst == 0xeaa0d002))
3489 {
3490 struct minimal_symbol *stubsym, *libsym;
3491
3492 stubsym = lookup_minimal_symbol_by_pc (loc);
3493 if (stubsym == NULL)
3494 {
3495 warning ("Unable to find symbol for 0x%lx", loc);
3496 return orig_pc == pc ? 0 : pc & ~0x3;
3497 }
3498
3499 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3500 if (libsym == NULL)
3501 {
3502 warning ("Unable to find library symbol for %s\n",
3503 DEPRECATED_SYMBOL_NAME (stubsym));
3504 return orig_pc == pc ? 0 : pc & ~0x3;
3505 }
3506
3507 return SYMBOL_VALUE (libsym);
3508 }
3509
3510 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3511 branch from the stub to the actual function. */
3512 /*elz */
3513 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3514 || (curr_inst & 0xffe0e000) == 0xe8000000
3515 || (curr_inst & 0xffe0e000) == 0xe800A000)
3516 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3517
3518 /* Does it look like bv (rp)? Note this depends on the
3519 current stack pointer being the same as the stack
3520 pointer in the stub itself! This is a branch on from the
3521 stub back to the original caller. */
3522 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3523 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3524 {
3525 /* Yup. See if the previous instruction loaded
3526 rp from sp - 8. */
3527 if (prev_inst == 0x4bc23ff1)
3528 return (read_memory_integer
3529 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3530 else
3531 {
3532 warning ("Unable to find restore of %%rp before bv (%%rp).");
3533 return orig_pc == pc ? 0 : pc & ~0x3;
3534 }
3535 }
3536
3537 /* elz: added this case to capture the new instruction
3538 at the end of the return part of an export stub used by
3539 the PA2.0: BVE, n (rp) */
3540 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3541 {
3542 return (read_memory_integer
3543 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3544 }
3545
3546 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3547 the original caller from the stub. Used in dynamic executables. */
3548 else if (curr_inst == 0xe0400002)
3549 {
3550 /* The value we jump to is sitting in sp - 24. But that's
3551 loaded several instructions before the be instruction.
3552 I guess we could check for the previous instruction being
3553 mtsp %r1,%sr0 if we want to do sanity checking. */
3554 return (read_memory_integer
3555 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3556 }
3557
3558 /* Haven't found the branch yet, but we're still in the stub.
3559 Keep looking. */
3560 loc += 4;
3561 }
3562 }
3563
3564
3565 /* For the given instruction (INST), return any adjustment it makes
3566 to the stack pointer or zero for no adjustment.
3567
3568 This only handles instructions commonly found in prologues. */
3569
3570 static int
3571 prologue_inst_adjust_sp (unsigned long inst)
3572 {
3573 /* This must persist across calls. */
3574 static int save_high21;
3575
3576 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3577 if ((inst & 0xffffc000) == 0x37de0000)
3578 return extract_14 (inst);
3579
3580 /* stwm X,D(sp) */
3581 if ((inst & 0xffe00000) == 0x6fc00000)
3582 return extract_14 (inst);
3583
3584 /* std,ma X,D(sp) */
3585 if ((inst & 0xffe00008) == 0x73c00008)
3586 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3587
3588 /* addil high21,%r1; ldo low11,(%r1),%r30)
3589 save high bits in save_high21 for later use. */
3590 if ((inst & 0xffe00000) == 0x28200000)
3591 {
3592 save_high21 = extract_21 (inst);
3593 return 0;
3594 }
3595
3596 if ((inst & 0xffff0000) == 0x343e0000)
3597 return save_high21 + extract_14 (inst);
3598
3599 /* fstws as used by the HP compilers. */
3600 if ((inst & 0xffffffe0) == 0x2fd01220)
3601 return extract_5_load (inst);
3602
3603 /* No adjustment. */
3604 return 0;
3605 }
3606
3607 /* Return nonzero if INST is a branch of some kind, else return zero. */
3608
3609 static int
3610 is_branch (unsigned long inst)
3611 {
3612 switch (inst >> 26)
3613 {
3614 case 0x20:
3615 case 0x21:
3616 case 0x22:
3617 case 0x23:
3618 case 0x27:
3619 case 0x28:
3620 case 0x29:
3621 case 0x2a:
3622 case 0x2b:
3623 case 0x2f:
3624 case 0x30:
3625 case 0x31:
3626 case 0x32:
3627 case 0x33:
3628 case 0x38:
3629 case 0x39:
3630 case 0x3a:
3631 case 0x3b:
3632 return 1;
3633
3634 default:
3635 return 0;
3636 }
3637 }
3638
3639 /* Return the register number for a GR which is saved by INST or
3640 zero it INST does not save a GR. */
3641
3642 static int
3643 inst_saves_gr (unsigned long inst)
3644 {
3645 /* Does it look like a stw? */
3646 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3647 || (inst >> 26) == 0x1f
3648 || ((inst >> 26) == 0x1f
3649 && ((inst >> 6) == 0xa)))
3650 return extract_5R_store (inst);
3651
3652 /* Does it look like a std? */
3653 if ((inst >> 26) == 0x1c
3654 || ((inst >> 26) == 0x03
3655 && ((inst >> 6) & 0xf) == 0xb))
3656 return extract_5R_store (inst);
3657
3658 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3659 if ((inst >> 26) == 0x1b)
3660 return extract_5R_store (inst);
3661
3662 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3663 too. */
3664 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3665 || ((inst >> 26) == 0x3
3666 && (((inst >> 6) & 0xf) == 0x8
3667 || (inst >> 6) & 0xf) == 0x9))
3668 return extract_5R_store (inst);
3669
3670 return 0;
3671 }
3672
3673 /* Return the register number for a FR which is saved by INST or
3674 zero it INST does not save a FR.
3675
3676 Note we only care about full 64bit register stores (that's the only
3677 kind of stores the prologue will use).
3678
3679 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3680
3681 static int
3682 inst_saves_fr (unsigned long inst)
3683 {
3684 /* is this an FSTD ? */
3685 if ((inst & 0xfc00dfc0) == 0x2c001200)
3686 return extract_5r_store (inst);
3687 if ((inst & 0xfc000002) == 0x70000002)
3688 return extract_5R_store (inst);
3689 /* is this an FSTW ? */
3690 if ((inst & 0xfc00df80) == 0x24001200)
3691 return extract_5r_store (inst);
3692 if ((inst & 0xfc000002) == 0x7c000000)
3693 return extract_5R_store (inst);
3694 return 0;
3695 }
3696
3697 /* Advance PC across any function entry prologue instructions
3698 to reach some "real" code.
3699
3700 Use information in the unwind table to determine what exactly should
3701 be in the prologue. */
3702
3703
3704 CORE_ADDR
3705 skip_prologue_hard_way (CORE_ADDR pc)
3706 {
3707 char buf[4];
3708 CORE_ADDR orig_pc = pc;
3709 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3710 unsigned long args_stored, status, i, restart_gr, restart_fr;
3711 struct unwind_table_entry *u;
3712
3713 restart_gr = 0;
3714 restart_fr = 0;
3715
3716 restart:
3717 u = find_unwind_entry (pc);
3718 if (!u)
3719 return pc;
3720
3721 /* If we are not at the beginning of a function, then return now. */
3722 if ((pc & ~0x3) != u->region_start)
3723 return pc;
3724
3725 /* This is how much of a frame adjustment we need to account for. */
3726 stack_remaining = u->Total_frame_size << 3;
3727
3728 /* Magic register saves we want to know about. */
3729 save_rp = u->Save_RP;
3730 save_sp = u->Save_SP;
3731
3732 /* An indication that args may be stored into the stack. Unfortunately
3733 the HPUX compilers tend to set this in cases where no args were
3734 stored too!. */
3735 args_stored = 1;
3736
3737 /* Turn the Entry_GR field into a bitmask. */
3738 save_gr = 0;
3739 for (i = 3; i < u->Entry_GR + 3; i++)
3740 {
3741 /* Frame pointer gets saved into a special location. */
3742 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3743 continue;
3744
3745 save_gr |= (1 << i);
3746 }
3747 save_gr &= ~restart_gr;
3748
3749 /* Turn the Entry_FR field into a bitmask too. */
3750 save_fr = 0;
3751 for (i = 12; i < u->Entry_FR + 12; i++)
3752 save_fr |= (1 << i);
3753 save_fr &= ~restart_fr;
3754
3755 /* Loop until we find everything of interest or hit a branch.
3756
3757 For unoptimized GCC code and for any HP CC code this will never ever
3758 examine any user instructions.
3759
3760 For optimzied GCC code we're faced with problems. GCC will schedule
3761 its prologue and make prologue instructions available for delay slot
3762 filling. The end result is user code gets mixed in with the prologue
3763 and a prologue instruction may be in the delay slot of the first branch
3764 or call.
3765
3766 Some unexpected things are expected with debugging optimized code, so
3767 we allow this routine to walk past user instructions in optimized
3768 GCC code. */
3769 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3770 || args_stored)
3771 {
3772 unsigned int reg_num;
3773 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3774 unsigned long old_save_rp, old_save_sp, next_inst;
3775
3776 /* Save copies of all the triggers so we can compare them later
3777 (only for HPC). */
3778 old_save_gr = save_gr;
3779 old_save_fr = save_fr;
3780 old_save_rp = save_rp;
3781 old_save_sp = save_sp;
3782 old_stack_remaining = stack_remaining;
3783
3784 status = target_read_memory (pc, buf, 4);
3785 inst = extract_unsigned_integer (buf, 4);
3786
3787 /* Yow! */
3788 if (status != 0)
3789 return pc;
3790
3791 /* Note the interesting effects of this instruction. */
3792 stack_remaining -= prologue_inst_adjust_sp (inst);
3793
3794 /* There are limited ways to store the return pointer into the
3795 stack. */
3796 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3797 save_rp = 0;
3798
3799 /* These are the only ways we save SP into the stack. At this time
3800 the HP compilers never bother to save SP into the stack. */
3801 if ((inst & 0xffffc000) == 0x6fc10000
3802 || (inst & 0xffffc00c) == 0x73c10008)
3803 save_sp = 0;
3804
3805 /* Are we loading some register with an offset from the argument
3806 pointer? */
3807 if ((inst & 0xffe00000) == 0x37a00000
3808 || (inst & 0xffffffe0) == 0x081d0240)
3809 {
3810 pc += 4;
3811 continue;
3812 }
3813
3814 /* Account for general and floating-point register saves. */
3815 reg_num = inst_saves_gr (inst);
3816 save_gr &= ~(1 << reg_num);
3817
3818 /* Ugh. Also account for argument stores into the stack.
3819 Unfortunately args_stored only tells us that some arguments
3820 where stored into the stack. Not how many or what kind!
3821
3822 This is a kludge as on the HP compiler sets this bit and it
3823 never does prologue scheduling. So once we see one, skip past
3824 all of them. We have similar code for the fp arg stores below.
3825
3826 FIXME. Can still die if we have a mix of GR and FR argument
3827 stores! */
3828 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3829 {
3830 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3831 {
3832 pc += 4;
3833 status = target_read_memory (pc, buf, 4);
3834 inst = extract_unsigned_integer (buf, 4);
3835 if (status != 0)
3836 return pc;
3837 reg_num = inst_saves_gr (inst);
3838 }
3839 args_stored = 0;
3840 continue;
3841 }
3842
3843 reg_num = inst_saves_fr (inst);
3844 save_fr &= ~(1 << reg_num);
3845
3846 status = target_read_memory (pc + 4, buf, 4);
3847 next_inst = extract_unsigned_integer (buf, 4);
3848
3849 /* Yow! */
3850 if (status != 0)
3851 return pc;
3852
3853 /* We've got to be read to handle the ldo before the fp register
3854 save. */
3855 if ((inst & 0xfc000000) == 0x34000000
3856 && inst_saves_fr (next_inst) >= 4
3857 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3858 {
3859 /* So we drop into the code below in a reasonable state. */
3860 reg_num = inst_saves_fr (next_inst);
3861 pc -= 4;
3862 }
3863
3864 /* Ugh. Also account for argument stores into the stack.
3865 This is a kludge as on the HP compiler sets this bit and it
3866 never does prologue scheduling. So once we see one, skip past
3867 all of them. */
3868 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3869 {
3870 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3871 {
3872 pc += 8;
3873 status = target_read_memory (pc, buf, 4);
3874 inst = extract_unsigned_integer (buf, 4);
3875 if (status != 0)
3876 return pc;
3877 if ((inst & 0xfc000000) != 0x34000000)
3878 break;
3879 status = target_read_memory (pc + 4, buf, 4);
3880 next_inst = extract_unsigned_integer (buf, 4);
3881 if (status != 0)
3882 return pc;
3883 reg_num = inst_saves_fr (next_inst);
3884 }
3885 args_stored = 0;
3886 continue;
3887 }
3888
3889 /* Quit if we hit any kind of branch. This can happen if a prologue
3890 instruction is in the delay slot of the first call/branch. */
3891 if (is_branch (inst))
3892 break;
3893
3894 /* What a crock. The HP compilers set args_stored even if no
3895 arguments were stored into the stack (boo hiss). This could
3896 cause this code to then skip a bunch of user insns (up to the
3897 first branch).
3898
3899 To combat this we try to identify when args_stored was bogusly
3900 set and clear it. We only do this when args_stored is nonzero,
3901 all other resources are accounted for, and nothing changed on
3902 this pass. */
3903 if (args_stored
3904 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3905 && old_save_gr == save_gr && old_save_fr == save_fr
3906 && old_save_rp == save_rp && old_save_sp == save_sp
3907 && old_stack_remaining == stack_remaining)
3908 break;
3909
3910 /* Bump the PC. */
3911 pc += 4;
3912 }
3913
3914 /* We've got a tenative location for the end of the prologue. However
3915 because of limitations in the unwind descriptor mechanism we may
3916 have went too far into user code looking for the save of a register
3917 that does not exist. So, if there registers we expected to be saved
3918 but never were, mask them out and restart.
3919
3920 This should only happen in optimized code, and should be very rare. */
3921 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3922 {
3923 pc = orig_pc;
3924 restart_gr = save_gr;
3925 restart_fr = save_fr;
3926 goto restart;
3927 }
3928
3929 return pc;
3930 }
3931
3932
3933 /* Return the address of the PC after the last prologue instruction if
3934 we can determine it from the debug symbols. Else return zero. */
3935
3936 static CORE_ADDR
3937 after_prologue (CORE_ADDR pc)
3938 {
3939 struct symtab_and_line sal;
3940 CORE_ADDR func_addr, func_end;
3941 struct symbol *f;
3942
3943 /* If we can not find the symbol in the partial symbol table, then
3944 there is no hope we can determine the function's start address
3945 with this code. */
3946 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3947 return 0;
3948
3949 /* Get the line associated with FUNC_ADDR. */
3950 sal = find_pc_line (func_addr, 0);
3951
3952 /* There are only two cases to consider. First, the end of the source line
3953 is within the function bounds. In that case we return the end of the
3954 source line. Second is the end of the source line extends beyond the
3955 bounds of the current function. We need to use the slow code to
3956 examine instructions in that case.
3957
3958 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3959 the wrong thing to do. In fact, it should be entirely possible for this
3960 function to always return zero since the slow instruction scanning code
3961 is supposed to *always* work. If it does not, then it is a bug. */
3962 if (sal.end < func_end)
3963 return sal.end;
3964 else
3965 return 0;
3966 }
3967
3968 /* To skip prologues, I use this predicate. Returns either PC itself
3969 if the code at PC does not look like a function prologue; otherwise
3970 returns an address that (if we're lucky) follows the prologue. If
3971 LENIENT, then we must skip everything which is involved in setting
3972 up the frame (it's OK to skip more, just so long as we don't skip
3973 anything which might clobber the registers which are being saved.
3974 Currently we must not skip more on the alpha, but we might the lenient
3975 stuff some day. */
3976
3977 CORE_ADDR
3978 hppa_skip_prologue (CORE_ADDR pc)
3979 {
3980 unsigned long inst;
3981 int offset;
3982 CORE_ADDR post_prologue_pc;
3983 char buf[4];
3984
3985 /* See if we can determine the end of the prologue via the symbol table.
3986 If so, then return either PC, or the PC after the prologue, whichever
3987 is greater. */
3988
3989 post_prologue_pc = after_prologue (pc);
3990
3991 /* If after_prologue returned a useful address, then use it. Else
3992 fall back on the instruction skipping code.
3993
3994 Some folks have claimed this causes problems because the breakpoint
3995 may be the first instruction of the prologue. If that happens, then
3996 the instruction skipping code has a bug that needs to be fixed. */
3997 if (post_prologue_pc != 0)
3998 return max (pc, post_prologue_pc);
3999 else
4000 return (skip_prologue_hard_way (pc));
4001 }
4002
4003 /* Put here the code to store, into the SAVED_REGS, the addresses of
4004 the saved registers of frame described by FRAME_INFO. This
4005 includes special registers such as pc and fp saved in special ways
4006 in the stack frame. sp is even more special: the address we return
4007 for it IS the sp for the next frame. */
4008
4009 void
4010 hppa_frame_find_saved_regs (struct frame_info *frame_info,
4011 CORE_ADDR frame_saved_regs[])
4012 {
4013 CORE_ADDR pc;
4014 struct unwind_table_entry *u;
4015 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4016 int status, i, reg;
4017 char buf[4];
4018 int fp_loc = -1;
4019 int final_iteration;
4020
4021 /* Zero out everything. */
4022 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
4023
4024 /* Call dummy frames always look the same, so there's no need to
4025 examine the dummy code to determine locations of saved registers;
4026 instead, let find_dummy_frame_regs fill in the correct offsets
4027 for the saved registers. */
4028 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
4029 && (get_frame_pc (frame_info)
4030 <= (get_frame_base (frame_info)
4031 /* A call dummy is sized in words, but it is actually a
4032 series of instructions. Account for that scaling
4033 factor. */
4034 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4035 * DEPRECATED_CALL_DUMMY_LENGTH)
4036 /* Similarly we have to account for 64bit wide register
4037 saves. */
4038 + (32 * DEPRECATED_REGISTER_SIZE)
4039 /* We always consider FP regs 8 bytes long. */
4040 + (NUM_REGS - FP0_REGNUM) * 8
4041 /* Similarly we have to account for 64bit wide register
4042 saves. */
4043 + (6 * DEPRECATED_REGISTER_SIZE)))))
4044 find_dummy_frame_regs (frame_info, frame_saved_regs);
4045
4046 /* Interrupt handlers are special too. They lay out the register
4047 state in the exact same order as the register numbers in GDB. */
4048 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
4049 {
4050 for (i = 0; i < NUM_REGS; i++)
4051 {
4052 /* SP is a little special. */
4053 if (i == SP_REGNUM)
4054 frame_saved_regs[SP_REGNUM]
4055 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
4056 TARGET_PTR_BIT / 8);
4057 else
4058 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
4059 }
4060 return;
4061 }
4062
4063 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4064 /* Handle signal handler callers. */
4065 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
4066 {
4067 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4068 return;
4069 }
4070 #endif
4071
4072 /* Get the starting address of the function referred to by the PC
4073 saved in frame. */
4074 pc = get_frame_func (frame_info);
4075
4076 /* Yow! */
4077 u = find_unwind_entry (pc);
4078 if (!u)
4079 return;
4080
4081 /* This is how much of a frame adjustment we need to account for. */
4082 stack_remaining = u->Total_frame_size << 3;
4083
4084 /* Magic register saves we want to know about. */
4085 save_rp = u->Save_RP;
4086 save_sp = u->Save_SP;
4087
4088 /* Turn the Entry_GR field into a bitmask. */
4089 save_gr = 0;
4090 for (i = 3; i < u->Entry_GR + 3; i++)
4091 {
4092 /* Frame pointer gets saved into a special location. */
4093 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4094 continue;
4095
4096 save_gr |= (1 << i);
4097 }
4098
4099 /* Turn the Entry_FR field into a bitmask too. */
4100 save_fr = 0;
4101 for (i = 12; i < u->Entry_FR + 12; i++)
4102 save_fr |= (1 << i);
4103
4104 /* The frame always represents the value of %sp at entry to the
4105 current function (and is thus equivalent to the "saved" stack
4106 pointer. */
4107 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
4108
4109 /* Loop until we find everything of interest or hit a branch.
4110
4111 For unoptimized GCC code and for any HP CC code this will never ever
4112 examine any user instructions.
4113
4114 For optimized GCC code we're faced with problems. GCC will schedule
4115 its prologue and make prologue instructions available for delay slot
4116 filling. The end result is user code gets mixed in with the prologue
4117 and a prologue instruction may be in the delay slot of the first branch
4118 or call.
4119
4120 Some unexpected things are expected with debugging optimized code, so
4121 we allow this routine to walk past user instructions in optimized
4122 GCC code. */
4123 final_iteration = 0;
4124 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4125 && pc <= get_frame_pc (frame_info))
4126 {
4127 status = target_read_memory (pc, buf, 4);
4128 inst = extract_unsigned_integer (buf, 4);
4129
4130 /* Yow! */
4131 if (status != 0)
4132 return;
4133
4134 /* Note the interesting effects of this instruction. */
4135 stack_remaining -= prologue_inst_adjust_sp (inst);
4136
4137 /* There are limited ways to store the return pointer into the
4138 stack. */
4139 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4140 {
4141 save_rp = 0;
4142 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
4143 }
4144 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4145 {
4146 save_rp = 0;
4147 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4148 }
4149
4150 /* Note if we saved SP into the stack. This also happens to indicate
4151 the location of the saved frame pointer. */
4152 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4153 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4154 {
4155 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4156 save_sp = 0;
4157 }
4158
4159 /* Account for general and floating-point register saves. */
4160 reg = inst_saves_gr (inst);
4161 if (reg >= 3 && reg <= 18
4162 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4163 {
4164 save_gr &= ~(1 << reg);
4165
4166 /* stwm with a positive displacement is a *post modify*. */
4167 if ((inst >> 26) == 0x1b
4168 && extract_14 (inst) >= 0)
4169 frame_saved_regs[reg] = get_frame_base (frame_info);
4170 /* A std has explicit post_modify forms. */
4171 else if ((inst & 0xfc00000c0) == 0x70000008)
4172 frame_saved_regs[reg] = get_frame_base (frame_info);
4173 else
4174 {
4175 CORE_ADDR offset;
4176
4177 if ((inst >> 26) == 0x1c)
4178 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4179 else if ((inst >> 26) == 0x03)
4180 offset = low_sign_extend (inst & 0x1f, 5);
4181 else
4182 offset = extract_14 (inst);
4183
4184 /* Handle code with and without frame pointers. */
4185 if (u->Save_SP)
4186 frame_saved_regs[reg]
4187 = get_frame_base (frame_info) + offset;
4188 else
4189 frame_saved_regs[reg]
4190 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4191 + offset);
4192 }
4193 }
4194
4195
4196 /* GCC handles callee saved FP regs a little differently.
4197
4198 It emits an instruction to put the value of the start of
4199 the FP store area into %r1. It then uses fstds,ma with
4200 a basereg of %r1 for the stores.
4201
4202 HP CC emits them at the current stack pointer modifying
4203 the stack pointer as it stores each register. */
4204
4205 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4206 if ((inst & 0xffffc000) == 0x34610000
4207 || (inst & 0xffffc000) == 0x37c10000)
4208 fp_loc = extract_14 (inst);
4209
4210 reg = inst_saves_fr (inst);
4211 if (reg >= 12 && reg <= 21)
4212 {
4213 /* Note +4 braindamage below is necessary because the FP status
4214 registers are internally 8 registers rather than the expected
4215 4 registers. */
4216 save_fr &= ~(1 << reg);
4217 if (fp_loc == -1)
4218 {
4219 /* 1st HP CC FP register store. After this instruction
4220 we've set enough state that the GCC and HPCC code are
4221 both handled in the same manner. */
4222 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4223 fp_loc = 8;
4224 }
4225 else
4226 {
4227 frame_saved_regs[reg + FP0_REGNUM + 4]
4228 = get_frame_base (frame_info) + fp_loc;
4229 fp_loc += 8;
4230 }
4231 }
4232
4233 /* Quit if we hit any kind of branch the previous iteration. */
4234 if (final_iteration)
4235 break;
4236
4237 /* We want to look precisely one instruction beyond the branch
4238 if we have not found everything yet. */
4239 if (is_branch (inst))
4240 final_iteration = 1;
4241
4242 /* Bump the PC. */
4243 pc += 4;
4244 }
4245 }
4246
4247 /* XXX - deprecated. This is a compatibility function for targets
4248 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4249 /* Find the addresses in which registers are saved in FRAME. */
4250
4251 void
4252 hppa_frame_init_saved_regs (struct frame_info *frame)
4253 {
4254 if (deprecated_get_frame_saved_regs (frame) == NULL)
4255 frame_saved_regs_zalloc (frame);
4256 hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame));
4257 }
4258
4259 /* Exception handling support for the HP-UX ANSI C++ compiler.
4260 The compiler (aCC) provides a callback for exception events;
4261 GDB can set a breakpoint on this callback and find out what
4262 exception event has occurred. */
4263
4264 /* The name of the hook to be set to point to the callback function */
4265 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4266 /* The name of the function to be used to set the hook value */
4267 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4268 /* The name of the callback function in end.o */
4269 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4270 /* Name of function in end.o on which a break is set (called by above) */
4271 static char HP_ACC_EH_break[] = "__d_eh_break";
4272 /* Name of flag (in end.o) that enables catching throws */
4273 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4274 /* Name of flag (in end.o) that enables catching catching */
4275 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4276 /* The enum used by aCC */
4277 typedef enum
4278 {
4279 __EH_NOTIFY_THROW,
4280 __EH_NOTIFY_CATCH
4281 }
4282 __eh_notification;
4283
4284 /* Is exception-handling support available with this executable? */
4285 static int hp_cxx_exception_support = 0;
4286 /* Has the initialize function been run? */
4287 int hp_cxx_exception_support_initialized = 0;
4288 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4289 extern int exception_support_initialized;
4290 /* Address of __eh_notify_hook */
4291 static CORE_ADDR eh_notify_hook_addr = 0;
4292 /* Address of __d_eh_notify_callback */
4293 static CORE_ADDR eh_notify_callback_addr = 0;
4294 /* Address of __d_eh_break */
4295 static CORE_ADDR eh_break_addr = 0;
4296 /* Address of __d_eh_catch_catch */
4297 static CORE_ADDR eh_catch_catch_addr = 0;
4298 /* Address of __d_eh_catch_throw */
4299 static CORE_ADDR eh_catch_throw_addr = 0;
4300 /* Sal for __d_eh_break */
4301 static struct symtab_and_line *break_callback_sal = 0;
4302
4303 /* Code in end.c expects __d_pid to be set in the inferior,
4304 otherwise __d_eh_notify_callback doesn't bother to call
4305 __d_eh_break! So we poke the pid into this symbol
4306 ourselves.
4307 0 => success
4308 1 => failure */
4309 int
4310 setup_d_pid_in_inferior (void)
4311 {
4312 CORE_ADDR anaddr;
4313 struct minimal_symbol *msymbol;
4314 char buf[4]; /* FIXME 32x64? */
4315
4316 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4317 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4318 if (msymbol == NULL)
4319 {
4320 warning ("Unable to find __d_pid symbol in object file.");
4321 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4322 return 1;
4323 }
4324
4325 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4326 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4327 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4328 {
4329 warning ("Unable to write __d_pid");
4330 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4331 return 1;
4332 }
4333 return 0;
4334 }
4335
4336 /* Initialize exception catchpoint support by looking for the
4337 necessary hooks/callbacks in end.o, etc., and set the hook value to
4338 point to the required debug function
4339
4340 Return 0 => failure
4341 1 => success */
4342
4343 static int
4344 initialize_hp_cxx_exception_support (void)
4345 {
4346 struct symtabs_and_lines sals;
4347 struct cleanup *old_chain;
4348 struct cleanup *canonical_strings_chain = NULL;
4349 int i;
4350 char *addr_start;
4351 char *addr_end = NULL;
4352 char **canonical = (char **) NULL;
4353 int thread = -1;
4354 struct symbol *sym = NULL;
4355 struct minimal_symbol *msym = NULL;
4356 struct objfile *objfile;
4357 asection *shlib_info;
4358
4359 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4360 recursion is a possibility because finding the hook for exception
4361 callbacks involves making a call in the inferior, which means
4362 re-inserting breakpoints which can re-invoke this code */
4363
4364 static int recurse = 0;
4365 if (recurse > 0)
4366 {
4367 hp_cxx_exception_support_initialized = 0;
4368 exception_support_initialized = 0;
4369 return 0;
4370 }
4371
4372 hp_cxx_exception_support = 0;
4373
4374 /* First check if we have seen any HP compiled objects; if not,
4375 it is very unlikely that HP's idiosyncratic callback mechanism
4376 for exception handling debug support will be available!
4377 This will percolate back up to breakpoint.c, where our callers
4378 will decide to try the g++ exception-handling support instead. */
4379 if (!hp_som_som_object_present)
4380 return 0;
4381
4382 /* We have a SOM executable with SOM debug info; find the hooks */
4383
4384 /* First look for the notify hook provided by aCC runtime libs */
4385 /* If we find this symbol, we conclude that the executable must
4386 have HP aCC exception support built in. If this symbol is not
4387 found, even though we're a HP SOM-SOM file, we may have been
4388 built with some other compiler (not aCC). This results percolates
4389 back up to our callers in breakpoint.c which can decide to
4390 try the g++ style of exception support instead.
4391 If this symbol is found but the other symbols we require are
4392 not found, there is something weird going on, and g++ support
4393 should *not* be tried as an alternative.
4394
4395 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4396 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4397
4398 /* libCsup has this hook; it'll usually be non-debuggable */
4399 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4400 if (msym)
4401 {
4402 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4403 hp_cxx_exception_support = 1;
4404 }
4405 else
4406 {
4407 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4408 warning ("Executable may not have been compiled debuggable with HP aCC.");
4409 warning ("GDB will be unable to intercept exception events.");
4410 eh_notify_hook_addr = 0;
4411 hp_cxx_exception_support = 0;
4412 return 0;
4413 }
4414
4415 /* Next look for the notify callback routine in end.o */
4416 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4417 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4418 if (msym)
4419 {
4420 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4421 hp_cxx_exception_support = 1;
4422 }
4423 else
4424 {
4425 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4426 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4427 warning ("GDB will be unable to intercept exception events.");
4428 eh_notify_callback_addr = 0;
4429 return 0;
4430 }
4431
4432 #ifndef GDB_TARGET_IS_HPPA_20W
4433 /* Check whether the executable is dynamically linked or archive bound */
4434 /* With an archive-bound executable we can use the raw addresses we find
4435 for the callback function, etc. without modification. For an executable
4436 with shared libraries, we have to do more work to find the plabel, which
4437 can be the target of a call through $$dyncall from the aCC runtime support
4438 library (libCsup) which is linked shared by default by aCC. */
4439 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4440 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4441 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4442 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4443 {
4444 /* The minsym we have has the local code address, but that's not the
4445 plabel that can be used by an inter-load-module call. */
4446 /* Find solib handle for main image (which has end.o), and use that
4447 and the min sym as arguments to __d_shl_get() (which does the equivalent
4448 of shl_findsym()) to find the plabel. */
4449
4450 args_for_find_stub args;
4451 static char message[] = "Error while finding exception callback hook:\n";
4452
4453 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4454 args.msym = msym;
4455 args.return_val = 0;
4456
4457 recurse++;
4458 catch_errors (cover_find_stub_with_shl_get, &args, message,
4459 RETURN_MASK_ALL);
4460 eh_notify_callback_addr = args.return_val;
4461 recurse--;
4462
4463 exception_catchpoints_are_fragile = 1;
4464
4465 if (!eh_notify_callback_addr)
4466 {
4467 /* We can get here either if there is no plabel in the export list
4468 for the main image, or if something strange happened (?) */
4469 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4470 warning ("GDB will not be able to intercept exception events.");
4471 return 0;
4472 }
4473 }
4474 else
4475 exception_catchpoints_are_fragile = 0;
4476 #endif
4477
4478 /* Now, look for the breakpointable routine in end.o */
4479 /* This should also be available in the SOM symbol dict. if end.o linked in */
4480 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4481 if (msym)
4482 {
4483 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4484 hp_cxx_exception_support = 1;
4485 }
4486 else
4487 {
4488 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4489 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4490 warning ("GDB will be unable to intercept exception events.");
4491 eh_break_addr = 0;
4492 return 0;
4493 }
4494
4495 /* Next look for the catch enable flag provided in end.o */
4496 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4497 VAR_DOMAIN, 0, (struct symtab **) NULL);
4498 if (sym) /* sometimes present in debug info */
4499 {
4500 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4501 hp_cxx_exception_support = 1;
4502 }
4503 else
4504 /* otherwise look in SOM symbol dict. */
4505 {
4506 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4507 if (msym)
4508 {
4509 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4510 hp_cxx_exception_support = 1;
4511 }
4512 else
4513 {
4514 warning ("Unable to enable interception of exception catches.");
4515 warning ("Executable may not have been compiled debuggable with HP aCC.");
4516 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4517 return 0;
4518 }
4519 }
4520
4521 /* Next look for the catch enable flag provided end.o */
4522 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4523 VAR_DOMAIN, 0, (struct symtab **) NULL);
4524 if (sym) /* sometimes present in debug info */
4525 {
4526 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4527 hp_cxx_exception_support = 1;
4528 }
4529 else
4530 /* otherwise look in SOM symbol dict. */
4531 {
4532 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4533 if (msym)
4534 {
4535 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4536 hp_cxx_exception_support = 1;
4537 }
4538 else
4539 {
4540 warning ("Unable to enable interception of exception throws.");
4541 warning ("Executable may not have been compiled debuggable with HP aCC.");
4542 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4543 return 0;
4544 }
4545 }
4546
4547 /* Set the flags */
4548 hp_cxx_exception_support = 2; /* everything worked so far */
4549 hp_cxx_exception_support_initialized = 1;
4550 exception_support_initialized = 1;
4551
4552 return 1;
4553 }
4554
4555 /* Target operation for enabling or disabling interception of
4556 exception events.
4557 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4558 ENABLE is either 0 (disable) or 1 (enable).
4559 Return value is NULL if no support found;
4560 -1 if something went wrong,
4561 or a pointer to a symtab/line struct if the breakpointable
4562 address was found. */
4563
4564 struct symtab_and_line *
4565 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4566 {
4567 char buf[4];
4568
4569 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4570 if (!initialize_hp_cxx_exception_support ())
4571 return NULL;
4572
4573 switch (hp_cxx_exception_support)
4574 {
4575 case 0:
4576 /* Assuming no HP support at all */
4577 return NULL;
4578 case 1:
4579 /* HP support should be present, but something went wrong */
4580 return (struct symtab_and_line *) -1; /* yuck! */
4581 /* there may be other cases in the future */
4582 }
4583
4584 /* Set the EH hook to point to the callback routine */
4585 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4586 /* pai: (temp) FIXME should there be a pack operation first? */
4587 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4588 {
4589 warning ("Could not write to target memory for exception event callback.");
4590 warning ("Interception of exception events may not work.");
4591 return (struct symtab_and_line *) -1;
4592 }
4593 if (enable)
4594 {
4595 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4596 if (PIDGET (inferior_ptid) > 0)
4597 {
4598 if (setup_d_pid_in_inferior ())
4599 return (struct symtab_and_line *) -1;
4600 }
4601 else
4602 {
4603 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4604 return (struct symtab_and_line *) -1;
4605 }
4606 }
4607
4608 switch (kind)
4609 {
4610 case EX_EVENT_THROW:
4611 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4612 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4613 {
4614 warning ("Couldn't enable exception throw interception.");
4615 return (struct symtab_and_line *) -1;
4616 }
4617 break;
4618 case EX_EVENT_CATCH:
4619 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4620 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4621 {
4622 warning ("Couldn't enable exception catch interception.");
4623 return (struct symtab_and_line *) -1;
4624 }
4625 break;
4626 default:
4627 error ("Request to enable unknown or unsupported exception event.");
4628 }
4629
4630 /* Copy break address into new sal struct, malloc'ing if needed. */
4631 if (!break_callback_sal)
4632 {
4633 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4634 }
4635 init_sal (break_callback_sal);
4636 break_callback_sal->symtab = NULL;
4637 break_callback_sal->pc = eh_break_addr;
4638 break_callback_sal->line = 0;
4639 break_callback_sal->end = eh_break_addr;
4640
4641 return break_callback_sal;
4642 }
4643
4644 /* Record some information about the current exception event */
4645 static struct exception_event_record current_ex_event;
4646 /* Convenience struct */
4647 static struct symtab_and_line null_symtab_and_line =
4648 {NULL, 0, 0, 0};
4649
4650 /* Report current exception event. Returns a pointer to a record
4651 that describes the kind of the event, where it was thrown from,
4652 and where it will be caught. More information may be reported
4653 in the future */
4654 struct exception_event_record *
4655 child_get_current_exception_event (void)
4656 {
4657 CORE_ADDR event_kind;
4658 CORE_ADDR throw_addr;
4659 CORE_ADDR catch_addr;
4660 struct frame_info *fi, *curr_frame;
4661 int level = 1;
4662
4663 curr_frame = get_current_frame ();
4664 if (!curr_frame)
4665 return (struct exception_event_record *) NULL;
4666
4667 /* Go up one frame to __d_eh_notify_callback, because at the
4668 point when this code is executed, there's garbage in the
4669 arguments of __d_eh_break. */
4670 fi = find_relative_frame (curr_frame, &level);
4671 if (level != 0)
4672 return (struct exception_event_record *) NULL;
4673
4674 select_frame (fi);
4675
4676 /* Read in the arguments */
4677 /* __d_eh_notify_callback() is called with 3 arguments:
4678 1. event kind catch or throw
4679 2. the target address if known
4680 3. a flag -- not sure what this is. pai/1997-07-17 */
4681 event_kind = read_register (ARG0_REGNUM);
4682 catch_addr = read_register (ARG1_REGNUM);
4683
4684 /* Now go down to a user frame */
4685 /* For a throw, __d_eh_break is called by
4686 __d_eh_notify_callback which is called by
4687 __notify_throw which is called
4688 from user code.
4689 For a catch, __d_eh_break is called by
4690 __d_eh_notify_callback which is called by
4691 <stackwalking stuff> which is called by
4692 __throw__<stuff> or __rethrow_<stuff> which is called
4693 from user code. */
4694 /* FIXME: Don't use such magic numbers; search for the frames */
4695 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4696 fi = find_relative_frame (curr_frame, &level);
4697 if (level != 0)
4698 return (struct exception_event_record *) NULL;
4699
4700 select_frame (fi);
4701 throw_addr = get_frame_pc (fi);
4702
4703 /* Go back to original (top) frame */
4704 select_frame (curr_frame);
4705
4706 current_ex_event.kind = (enum exception_event_kind) event_kind;
4707 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4708 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4709
4710 return &current_ex_event;
4711 }
4712
4713 /* Instead of this nasty cast, add a method pvoid() that prints out a
4714 host VOID data type (remember %p isn't portable). */
4715
4716 static CORE_ADDR
4717 hppa_pointer_to_address_hack (void *ptr)
4718 {
4719 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4720 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4721 }
4722
4723 static void
4724 unwind_command (char *exp, int from_tty)
4725 {
4726 CORE_ADDR address;
4727 struct unwind_table_entry *u;
4728
4729 /* If we have an expression, evaluate it and use it as the address. */
4730
4731 if (exp != 0 && *exp != 0)
4732 address = parse_and_eval_address (exp);
4733 else
4734 return;
4735
4736 u = find_unwind_entry (address);
4737
4738 if (!u)
4739 {
4740 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4741 return;
4742 }
4743
4744 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4745 paddr_nz (hppa_pointer_to_address_hack (u)));
4746
4747 printf_unfiltered ("\tregion_start = ");
4748 print_address (u->region_start, gdb_stdout);
4749
4750 printf_unfiltered ("\n\tregion_end = ");
4751 print_address (u->region_end, gdb_stdout);
4752
4753 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4754
4755 printf_unfiltered ("\n\tflags =");
4756 pif (Cannot_unwind);
4757 pif (Millicode);
4758 pif (Millicode_save_sr0);
4759 pif (Entry_SR);
4760 pif (Args_stored);
4761 pif (Variable_Frame);
4762 pif (Separate_Package_Body);
4763 pif (Frame_Extension_Millicode);
4764 pif (Stack_Overflow_Check);
4765 pif (Two_Instruction_SP_Increment);
4766 pif (Ada_Region);
4767 pif (Save_SP);
4768 pif (Save_RP);
4769 pif (Save_MRP_in_frame);
4770 pif (extn_ptr_defined);
4771 pif (Cleanup_defined);
4772 pif (MPE_XL_interrupt_marker);
4773 pif (HP_UX_interrupt_marker);
4774 pif (Large_frame);
4775
4776 putchar_unfiltered ('\n');
4777
4778 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4779
4780 pin (Region_description);
4781 pin (Entry_FR);
4782 pin (Entry_GR);
4783 pin (Total_frame_size);
4784 }
4785
4786 void
4787 hppa_skip_permanent_breakpoint (void)
4788 {
4789 /* To step over a breakpoint instruction on the PA takes some
4790 fiddling with the instruction address queue.
4791
4792 When we stop at a breakpoint, the IA queue front (the instruction
4793 we're executing now) points at the breakpoint instruction, and
4794 the IA queue back (the next instruction to execute) points to
4795 whatever instruction we would execute after the breakpoint, if it
4796 were an ordinary instruction. This is the case even if the
4797 breakpoint is in the delay slot of a branch instruction.
4798
4799 Clearly, to step past the breakpoint, we need to set the queue
4800 front to the back. But what do we put in the back? What
4801 instruction comes after that one? Because of the branch delay
4802 slot, the next insn is always at the back + 4. */
4803 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4804 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4805
4806 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4807 /* We can leave the tail's space the same, since there's no jump. */
4808 }
4809
4810 /* Copy the function value from VALBUF into the proper location
4811 for a function return.
4812
4813 Called only in the context of the "return" command. */
4814
4815 void
4816 hppa32_store_return_value (struct type *type, char *valbuf)
4817 {
4818 /* For software floating point, the return value goes into the
4819 integer registers. But we do not have any flag to key this on,
4820 so we always store the value into the integer registers.
4821
4822 If its a float value, then we also store it into the floating
4823 point registers. */
4824 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28)
4825 + (TYPE_LENGTH (type) > 4
4826 ? (8 - TYPE_LENGTH (type))
4827 : (4 - TYPE_LENGTH (type))),
4828 valbuf, TYPE_LENGTH (type));
4829 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4830 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP4_REGNUM),
4831 valbuf, TYPE_LENGTH (type));
4832 }
4833
4834 /* Same as hppa32_store_return_value(), but for the PA64 ABI. */
4835
4836 void
4837 hppa64_store_return_value (struct type *type, char *valbuf)
4838 {
4839 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4840 deprecated_write_register_bytes
4841 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
4842 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4843 valbuf, TYPE_LENGTH (type));
4844 else if (is_integral_type(type))
4845 deprecated_write_register_bytes
4846 (DEPRECATED_REGISTER_BYTE (28)
4847 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4848 valbuf, TYPE_LENGTH (type));
4849 else if (TYPE_LENGTH (type) <= 8)
4850 deprecated_write_register_bytes
4851 (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type));
4852 else if (TYPE_LENGTH (type) <= 16)
4853 {
4854 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8);
4855 deprecated_write_register_bytes
4856 (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8);
4857 }
4858 }
4859
4860 /* Copy the function's return value into VALBUF.
4861
4862 This function is called only in the context of "target function calls",
4863 ie. when the debugger forces a function to be called in the child, and
4864 when the debugger forces a fucntion to return prematurely via the
4865 "return" command. */
4866
4867 void
4868 hppa32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4869 {
4870 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4871 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM), TYPE_LENGTH (type));
4872 else
4873 memcpy (valbuf,
4874 (regbuf
4875 + DEPRECATED_REGISTER_BYTE (28)
4876 + (TYPE_LENGTH (type) > 4
4877 ? (8 - TYPE_LENGTH (type))
4878 : (4 - TYPE_LENGTH (type)))),
4879 TYPE_LENGTH (type));
4880 }
4881
4882 /* Same as hppa32_extract_return_value but for the PA64 ABI case. */
4883
4884 void
4885 hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4886 {
4887 /* RM: Floats are returned in FR4R, doubles in FR4.
4888 Integral values are in r28, padded on the left.
4889 Aggregates less that 65 bits are in r28, right padded.
4890 Aggregates upto 128 bits are in r28 and r29, right padded. */
4891 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4892 memcpy (valbuf,
4893 regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
4894 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4895 TYPE_LENGTH (type));
4896 else if (is_integral_type(type))
4897 memcpy (valbuf,
4898 regbuf + DEPRECATED_REGISTER_BYTE (28)
4899 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4900 TYPE_LENGTH (type));
4901 else if (TYPE_LENGTH (type) <= 8)
4902 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28),
4903 TYPE_LENGTH (type));
4904 else if (TYPE_LENGTH (type) <= 16)
4905 {
4906 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8);
4907 memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29),
4908 TYPE_LENGTH (type) - 8);
4909 }
4910 }
4911
4912 int
4913 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4914 {
4915 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4916 via a pointer regardless of its type or the compiler used. */
4917 return (TYPE_LENGTH (type) > 8);
4918 }
4919
4920 int
4921 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4922 {
4923 /* Stack grows upward */
4924 return (lhs > rhs);
4925 }
4926
4927 CORE_ADDR
4928 hppa32_stack_align (CORE_ADDR sp)
4929 {
4930 /* elz: adjust the quantity to the next highest value which is
4931 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4932 On hppa the sp must always be kept 64-bit aligned */
4933 return ((sp % 8) ? (sp + 7) & -8 : sp);
4934 }
4935
4936 CORE_ADDR
4937 hppa64_stack_align (CORE_ADDR sp)
4938 {
4939 /* The PA64 ABI mandates a 16 byte stack alignment. */
4940 return ((sp % 16) ? (sp + 15) & -16 : sp);
4941 }
4942
4943 int
4944 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4945 {
4946 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4947
4948 An example of this occurs when an a.out is linked against a foo.sl.
4949 The foo.sl defines a global bar(), and the a.out declares a signature
4950 for bar(). However, the a.out doesn't directly call bar(), but passes
4951 its address in another call.
4952
4953 If you have this scenario and attempt to "break bar" before running,
4954 gdb will find a minimal symbol for bar() in the a.out. But that
4955 symbol's address will be negative. What this appears to denote is
4956 an index backwards from the base of the procedure linkage table (PLT)
4957 into the data linkage table (DLT), the end of which is contiguous
4958 with the start of the PLT. This is clearly not a valid address for
4959 us to set a breakpoint on.
4960
4961 Note that one must be careful in how one checks for a negative address.
4962 0xc0000000 is a legitimate address of something in a shared text
4963 segment, for example. Since I don't know what the possible range
4964 is of these "really, truly negative" addresses that come from the
4965 minimal symbols, I'm resorting to the gross hack of checking the
4966 top byte of the address for all 1's. Sigh. */
4967
4968 return (!target_has_stack && (pc & 0xFF000000));
4969 }
4970
4971 int
4972 hppa_instruction_nullified (void)
4973 {
4974 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4975 avoid the type cast. I'm leaving it as is for now as I'm doing
4976 semi-mechanical multiarching-related changes. */
4977 const int ipsw = (int) read_register (IPSW_REGNUM);
4978 const int flags = (int) read_register (FLAGS_REGNUM);
4979
4980 return ((ipsw & 0x00200000) && !(flags & 0x2));
4981 }
4982
4983 int
4984 hppa_register_raw_size (int reg_nr)
4985 {
4986 /* All registers have the same size. */
4987 return DEPRECATED_REGISTER_SIZE;
4988 }
4989
4990 /* Index within the register vector of the first byte of the space i
4991 used for register REG_NR. */
4992
4993 int
4994 hppa_register_byte (int reg_nr)
4995 {
4996 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4997
4998 return reg_nr * tdep->bytes_per_address;
4999 }
5000
5001 /* Return the GDB type object for the "standard" data type of data
5002 in register N. */
5003
5004 struct type *
5005 hppa32_register_virtual_type (int reg_nr)
5006 {
5007 if (reg_nr < FP4_REGNUM)
5008 return builtin_type_int;
5009 else
5010 return builtin_type_float;
5011 }
5012
5013 /* Return the GDB type object for the "standard" data type of data
5014 in register N. hppa64 version. */
5015
5016 struct type *
5017 hppa64_register_virtual_type (int reg_nr)
5018 {
5019 if (reg_nr < FP4_REGNUM)
5020 return builtin_type_unsigned_long_long;
5021 else
5022 return builtin_type_double;
5023 }
5024
5025 /* Store the address of the place in which to copy the structure the
5026 subroutine will return. This is called from call_function. */
5027
5028 void
5029 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5030 {
5031 write_register (28, addr);
5032 }
5033
5034 CORE_ADDR
5035 hppa_extract_struct_value_address (char *regbuf)
5036 {
5037 /* Extract from an array REGBUF containing the (raw) register state
5038 the address in which a function should return its structure value,
5039 as a CORE_ADDR (or an expression that can be used as one). */
5040 /* FIXME: brobecker 2002-12-26.
5041 The current implementation is historical, but we should eventually
5042 implement it in a more robust manner as it relies on the fact that
5043 the address size is equal to the size of an int* _on the host_...
5044 One possible implementation that crossed my mind is to use
5045 extract_address. */
5046 /* FIXME: cagney/2003-09-27: This function can probably go. ELZ
5047 writes: We cannot assume on the pa that r28 still contains the
5048 address of the returned structure. Usually this will be
5049 overwritten by the callee. */
5050 return (*(int *)(regbuf + DEPRECATED_REGISTER_BYTE (28)));
5051 }
5052
5053 /* Return True if REGNUM is not a register available to the user
5054 through ptrace(). */
5055
5056 int
5057 hppa_cannot_store_register (int regnum)
5058 {
5059 return (regnum == 0
5060 || regnum == PCSQ_HEAD_REGNUM
5061 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
5062 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
5063
5064 }
5065
5066 CORE_ADDR
5067 hppa_smash_text_address (CORE_ADDR addr)
5068 {
5069 /* The low two bits of the PC on the PA contain the privilege level.
5070 Some genius implementing a (non-GCC) compiler apparently decided
5071 this means that "addresses" in a text section therefore include a
5072 privilege level, and thus symbol tables should contain these bits.
5073 This seems like a bonehead thing to do--anyway, it seems to work
5074 for our purposes to just ignore those bits. */
5075
5076 return (addr &= ~0x3);
5077 }
5078
5079 /* Get the ith function argument for the current function. */
5080 CORE_ADDR
5081 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
5082 struct type *type)
5083 {
5084 CORE_ADDR addr;
5085 get_frame_register (frame, R0_REGNUM + 26 - argi, &addr);
5086 return addr;
5087 }
5088
5089 static struct gdbarch *
5090 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5091 {
5092 struct gdbarch_tdep *tdep;
5093 struct gdbarch *gdbarch;
5094
5095 /* Try to determine the ABI of the object we are loading. */
5096 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
5097 {
5098 /* If it's a SOM file, assume it's HP/UX SOM. */
5099 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5100 info.osabi = GDB_OSABI_HPUX_SOM;
5101 }
5102
5103 /* find a candidate among the list of pre-declared architectures. */
5104 arches = gdbarch_list_lookup_by_info (arches, &info);
5105 if (arches != NULL)
5106 return (arches->gdbarch);
5107
5108 /* If none found, then allocate and initialize one. */
5109 tdep = XMALLOC (struct gdbarch_tdep);
5110 gdbarch = gdbarch_alloc (&info, tdep);
5111
5112 /* Determine from the bfd_arch_info structure if we are dealing with
5113 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5114 then default to a 32bit machine. */
5115 if (info.bfd_arch_info != NULL)
5116 tdep->bytes_per_address =
5117 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
5118 else
5119 tdep->bytes_per_address = 4;
5120
5121 /* Some parts of the gdbarch vector depend on whether we are running
5122 on a 32 bits or 64 bits target. */
5123 switch (tdep->bytes_per_address)
5124 {
5125 case 4:
5126 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
5127 set_gdbarch_register_name (gdbarch, hppa32_register_name);
5128 set_gdbarch_deprecated_register_virtual_type
5129 (gdbarch, hppa32_register_virtual_type);
5130 set_gdbarch_deprecated_call_dummy_length
5131 (gdbarch, hppa32_call_dummy_length);
5132 set_gdbarch_deprecated_stack_align (gdbarch, hppa32_stack_align);
5133 set_gdbarch_deprecated_reg_struct_has_addr
5134 (gdbarch, hppa_reg_struct_has_addr);
5135 set_gdbarch_deprecated_extract_return_value
5136 (gdbarch, hppa32_extract_return_value);
5137 set_gdbarch_use_struct_convention
5138 (gdbarch, hppa32_use_struct_convention);
5139 set_gdbarch_deprecated_store_return_value
5140 (gdbarch, hppa32_store_return_value);
5141 break;
5142 case 8:
5143 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
5144 set_gdbarch_register_name (gdbarch, hppa64_register_name);
5145 set_gdbarch_deprecated_register_virtual_type
5146 (gdbarch, hppa64_register_virtual_type);
5147 set_gdbarch_deprecated_call_dummy_breakpoint_offset
5148 (gdbarch, hppa64_call_dummy_breakpoint_offset);
5149 set_gdbarch_deprecated_call_dummy_length
5150 (gdbarch, hppa64_call_dummy_length);
5151 set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align);
5152 set_gdbarch_deprecated_extract_return_value
5153 (gdbarch, hppa64_extract_return_value);
5154 set_gdbarch_use_struct_convention
5155 (gdbarch, hppa64_use_struct_convention);
5156 set_gdbarch_deprecated_store_return_value
5157 (gdbarch, hppa64_store_return_value);
5158 break;
5159 default:
5160 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
5161 tdep->bytes_per_address);
5162 }
5163
5164 /* The following gdbarch vector elements depend on other parts of this
5165 vector which have been set above, depending on the ABI. */
5166 set_gdbarch_deprecated_register_bytes
5167 (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address);
5168 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5169 set_gdbarch_long_long_bit (gdbarch, 64);
5170 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5171
5172 /* The following gdbarch vector elements do not depend on the address
5173 size, or in any other gdbarch element previously set. */
5174 set_gdbarch_function_start_offset (gdbarch, 0);
5175 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5176 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5177 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5178 set_gdbarch_in_solib_return_trampoline (gdbarch,
5179 hppa_in_solib_return_trampoline);
5180 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
5181 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
5182 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5183 set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address);
5184 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
5185 set_gdbarch_sp_regnum (gdbarch, 30);
5186 set_gdbarch_fp0_regnum (gdbarch, 64);
5187 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
5188 set_gdbarch_deprecated_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
5189 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
5190 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5191 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
5192 set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address);
5193 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5194 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5195 set_gdbarch_deprecated_extract_struct_value_address
5196 (gdbarch, hppa_extract_struct_value_address);
5197 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5198 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5199 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5200 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5201 set_gdbarch_frameless_function_invocation
5202 (gdbarch, hppa_frameless_function_invocation);
5203 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5204 set_gdbarch_frame_args_skip (gdbarch, 0);
5205 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5206 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5207 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5208 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5209 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
5210 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5211 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5212 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5213 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5214 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5215
5216 /* Helper for function argument information. */
5217 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5218
5219 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
5220
5221 /* When a hardware watchpoint triggers, we'll move the inferior past
5222 it by removing all eventpoints; stepping past the instruction
5223 that caused the trigger; reinserting eventpoints; and checking
5224 whether any watched location changed. */
5225 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5226
5227 /* Hook in ABI-specific overrides, if they have been registered. */
5228 gdbarch_init_osabi (info, gdbarch);
5229
5230 return gdbarch;
5231 }
5232
5233 static void
5234 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5235 {
5236 /* Nothing to print for the moment. */
5237 }
5238
5239 void
5240 _initialize_hppa_tdep (void)
5241 {
5242 struct cmd_list_element *c;
5243 void break_at_finish_command (char *arg, int from_tty);
5244 void tbreak_at_finish_command (char *arg, int from_tty);
5245 void break_at_finish_at_depth_command (char *arg, int from_tty);
5246
5247 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5248
5249 add_cmd ("unwind", class_maintenance, unwind_command,
5250 "Print unwind table entry at given address.",
5251 &maintenanceprintlist);
5252
5253 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5254 break_at_finish_command,
5255 concat ("Set breakpoint at procedure exit. \n\
5256 Argument may be function name, or \"*\" and an address.\n\
5257 If function is specified, break at end of code for that function.\n\
5258 If an address is specified, break at the end of the function that contains \n\
5259 that exact address.\n",
5260 "With no arg, uses current execution address of selected stack frame.\n\
5261 This is useful for breaking on return to a stack frame.\n\
5262 \n\
5263 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5264 \n\
5265 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5266 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5267 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5268 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5269 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5270
5271 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5272 tbreak_at_finish_command,
5273 "Set temporary breakpoint at procedure exit. Either there should\n\
5274 be no argument or the argument must be a depth.\n"), NULL);
5275 set_cmd_completer (c, location_completer);
5276
5277 if (xdb_commands)
5278 deprecate_cmd (add_com ("bx", class_breakpoint,
5279 break_at_finish_at_depth_command,
5280 "Set breakpoint at procedure exit. Either there should\n\
5281 be no argument or the argument must be a depth.\n"), NULL);
5282 }
5283
This page took 0.164092 seconds and 4 git commands to generate.