1 /* Target-dependent code for the HP PA architecture, for GDB.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
32 #include "completer.h"
35 #include "gdb_assert.h"
36 #include "infttrace.h"
37 /* For argument passing to the inferior */
43 #include <sys/types.h>
47 #include <sys/param.h>
50 #include <sys/ptrace.h>
51 #include <machine/save_state.h>
53 #ifdef COFF_ENCAPSULATE
54 #include "a.out.encap.h"
58 /*#include <sys/user.h> After a.out.h */
68 #include "hppa-tdep.h"
70 /* Some local constants. */
71 static const int hppa32_num_regs
= 128;
72 static const int hppa64_num_regs
= 96;
74 static const int hppa64_call_dummy_breakpoint_offset
= 22 * 4;
76 /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
77 word on the target machine, not the size of an instruction. Since
78 a word on this target holds two instructions we have to divide the
79 instruction size by two to get the word size of the dummy. */
80 static const int hppa32_call_dummy_length
= INSTRUCTION_SIZE
* 28;
81 static const int hppa64_call_dummy_length
= INSTRUCTION_SIZE
* 26 / 2;
83 /* Get at various relevent fields of an instruction word. */
86 #define MASK_14 0x3fff
87 #define MASK_21 0x1fffff
89 /* Define offsets into the call dummy for the target function address.
90 See comments related to CALL_DUMMY for more info. */
91 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
92 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
94 /* Define offsets into the call dummy for the _sr4export address.
95 See comments related to CALL_DUMMY for more info. */
96 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
97 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
99 /* To support detection of the pseudo-initial frame
100 that threads have. */
101 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
102 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
104 /* Sizes (in bytes) of the native unwind entries. */
105 #define UNWIND_ENTRY_SIZE 16
106 #define STUB_UNWIND_ENTRY_SIZE 8
108 static int get_field (unsigned word
, int from
, int to
);
110 static int extract_5_load (unsigned int);
112 static unsigned extract_5R_store (unsigned int);
114 static unsigned extract_5r_store (unsigned int);
116 static void find_dummy_frame_regs (struct frame_info
*, CORE_ADDR
*);
118 static int find_proc_framesize (CORE_ADDR
);
120 static int find_return_regnum (CORE_ADDR
);
122 struct unwind_table_entry
*find_unwind_entry (CORE_ADDR
);
124 static int extract_17 (unsigned int);
126 static unsigned deposit_21 (unsigned int, unsigned int);
128 static int extract_21 (unsigned);
130 static unsigned deposit_14 (int, unsigned int);
132 static int extract_14 (unsigned);
134 static void unwind_command (char *, int);
136 static int low_sign_extend (unsigned int, unsigned int);
138 static int sign_extend (unsigned int, unsigned int);
140 static int restore_pc_queue (CORE_ADDR
*);
142 static int hppa_alignof (struct type
*);
144 static int prologue_inst_adjust_sp (unsigned long);
146 static int is_branch (unsigned long);
148 static int inst_saves_gr (unsigned long);
150 static int inst_saves_fr (unsigned long);
152 static int pc_in_interrupt_handler (CORE_ADDR
);
154 static int pc_in_linker_stub (CORE_ADDR
);
156 static int compare_unwind_entries (const void *, const void *);
158 static void read_unwind_info (struct objfile
*);
160 static void internalize_unwinds (struct objfile
*,
161 struct unwind_table_entry
*,
162 asection
*, unsigned int,
163 unsigned int, CORE_ADDR
);
164 static void pa_print_registers (char *, int, int);
165 static void pa_strcat_registers (char *, int, int, struct ui_file
*);
166 static void pa_register_look_aside (char *, int, long *);
167 static void pa_print_fp_reg (int);
168 static void pa_strcat_fp_reg (int, struct ui_file
*, enum precision_type
);
169 static void record_text_segment_lowaddr (bfd
*, asection
*, void *);
170 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
171 following functions static, once we hppa is partially multiarched. */
172 int hppa_reg_struct_has_addr (int gcc_p
, struct type
*type
);
173 CORE_ADDR
hppa_skip_prologue (CORE_ADDR pc
);
174 CORE_ADDR
hppa_skip_trampoline_code (CORE_ADDR pc
);
175 int hppa_in_solib_call_trampoline (CORE_ADDR pc
, char *name
);
176 int hppa_in_solib_return_trampoline (CORE_ADDR pc
, char *name
);
177 CORE_ADDR
hppa_saved_pc_after_call (struct frame_info
*frame
);
178 int hppa_inner_than (CORE_ADDR lhs
, CORE_ADDR rhs
);
179 CORE_ADDR
hppa32_stack_align (CORE_ADDR sp
);
180 CORE_ADDR
hppa64_stack_align (CORE_ADDR sp
);
181 int hppa_pc_requires_run_before_use (CORE_ADDR pc
);
182 int hppa_instruction_nullified (void);
183 int hppa_register_raw_size (int reg_nr
);
184 int hppa_register_byte (int reg_nr
);
185 struct type
* hppa32_register_virtual_type (int reg_nr
);
186 struct type
* hppa64_register_virtual_type (int reg_nr
);
187 void hppa_store_struct_return (CORE_ADDR addr
, CORE_ADDR sp
);
188 void hppa32_extract_return_value (struct type
*type
, char *regbuf
,
190 void hppa64_extract_return_value (struct type
*type
, char *regbuf
,
192 int hppa32_use_struct_convention (int gcc_p
, struct type
*type
);
193 int hppa64_use_struct_convention (int gcc_p
, struct type
*type
);
194 void hppa32_store_return_value (struct type
*type
, char *valbuf
);
195 void hppa64_store_return_value (struct type
*type
, char *valbuf
);
196 CORE_ADDR
hppa_extract_struct_value_address (char *regbuf
);
197 int hppa_cannot_store_register (int regnum
);
198 void hppa_init_extra_frame_info (int fromleaf
, struct frame_info
*frame
);
199 CORE_ADDR
hppa_frame_chain (struct frame_info
*frame
);
200 int hppa_frame_chain_valid (CORE_ADDR chain
, struct frame_info
*thisframe
);
201 int hppa_frameless_function_invocation (struct frame_info
*frame
);
202 CORE_ADDR
hppa_frame_saved_pc (struct frame_info
*frame
);
203 CORE_ADDR
hppa_frame_args_address (struct frame_info
*fi
);
204 int hppa_frame_num_args (struct frame_info
*frame
);
205 void hppa_push_dummy_frame (void);
206 void hppa_pop_frame (void);
207 CORE_ADDR
hppa_fix_call_dummy (char *dummy
, CORE_ADDR pc
, CORE_ADDR fun
,
208 int nargs
, struct value
**args
,
209 struct type
*type
, int gcc_p
);
210 CORE_ADDR
hppa_push_arguments (int nargs
, struct value
**args
, CORE_ADDR sp
,
211 int struct_return
, CORE_ADDR struct_addr
);
212 CORE_ADDR
hppa_smash_text_address (CORE_ADDR addr
);
213 CORE_ADDR
hppa_target_read_pc (ptid_t ptid
);
214 void hppa_target_write_pc (CORE_ADDR v
, ptid_t ptid
);
215 CORE_ADDR
hppa_target_read_fp (void);
219 struct minimal_symbol
*msym
;
220 CORE_ADDR solib_handle
;
221 CORE_ADDR return_val
;
225 static int cover_find_stub_with_shl_get (void *);
227 static int is_pa_2
= 0; /* False */
229 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
230 extern int hp_som_som_object_present
;
232 /* In breakpoint.c */
233 extern int exception_catchpoints_are_fragile
;
235 /* Should call_function allocate stack space for a struct return? */
238 hppa32_use_struct_convention (int gcc_p
, struct type
*type
)
240 return (TYPE_LENGTH (type
) > 2 * DEPRECATED_REGISTER_SIZE
);
243 /* Same as hppa32_use_struct_convention() for the PA64 ABI. */
246 hppa64_use_struct_convention (int gcc_p
, struct type
*type
)
248 /* RM: struct upto 128 bits are returned in registers */
249 return TYPE_LENGTH (type
) > 16;
252 /* Routines to extract various sized constants out of hppa
255 /* This assumes that no garbage lies outside of the lower bits of
259 sign_extend (unsigned val
, unsigned bits
)
261 return (int) (val
>> (bits
- 1) ? (-1 << bits
) | val
: val
);
264 /* For many immediate values the sign bit is the low bit! */
267 low_sign_extend (unsigned val
, unsigned bits
)
269 return (int) ((val
& 0x1 ? (-1 << (bits
- 1)) : 0) | val
>> 1);
272 /* Extract the bits at positions between FROM and TO, using HP's numbering
276 get_field (unsigned word
, int from
, int to
)
278 return ((word
) >> (31 - (to
)) & ((1 << ((to
) - (from
) + 1)) - 1));
281 /* extract the immediate field from a ld{bhw}s instruction */
284 extract_5_load (unsigned word
)
286 return low_sign_extend (word
>> 16 & MASK_5
, 5);
289 /* extract the immediate field from a break instruction */
292 extract_5r_store (unsigned word
)
294 return (word
& MASK_5
);
297 /* extract the immediate field from a {sr}sm instruction */
300 extract_5R_store (unsigned word
)
302 return (word
>> 16 & MASK_5
);
305 /* extract a 14 bit immediate field */
308 extract_14 (unsigned word
)
310 return low_sign_extend (word
& MASK_14
, 14);
313 /* deposit a 14 bit constant in a word */
316 deposit_14 (int opnd
, unsigned word
)
318 unsigned sign
= (opnd
< 0 ? 1 : 0);
320 return word
| ((unsigned) opnd
<< 1 & MASK_14
) | sign
;
323 /* extract a 21 bit constant */
326 extract_21 (unsigned word
)
332 val
= get_field (word
, 20, 20);
334 val
|= get_field (word
, 9, 19);
336 val
|= get_field (word
, 5, 6);
338 val
|= get_field (word
, 0, 4);
340 val
|= get_field (word
, 7, 8);
341 return sign_extend (val
, 21) << 11;
344 /* deposit a 21 bit constant in a word. Although 21 bit constants are
345 usually the top 21 bits of a 32 bit constant, we assume that only
346 the low 21 bits of opnd are relevant */
349 deposit_21 (unsigned opnd
, unsigned word
)
353 val
|= get_field (opnd
, 11 + 14, 11 + 18);
355 val
|= get_field (opnd
, 11 + 12, 11 + 13);
357 val
|= get_field (opnd
, 11 + 19, 11 + 20);
359 val
|= get_field (opnd
, 11 + 1, 11 + 11);
361 val
|= get_field (opnd
, 11 + 0, 11 + 0);
365 /* extract a 17 bit constant from branch instructions, returning the
366 19 bit signed value. */
369 extract_17 (unsigned word
)
371 return sign_extend (get_field (word
, 19, 28) |
372 get_field (word
, 29, 29) << 10 |
373 get_field (word
, 11, 15) << 11 |
374 (word
& 0x1) << 16, 17) << 2;
378 /* Compare the start address for two unwind entries returning 1 if
379 the first address is larger than the second, -1 if the second is
380 larger than the first, and zero if they are equal. */
383 compare_unwind_entries (const void *arg1
, const void *arg2
)
385 const struct unwind_table_entry
*a
= arg1
;
386 const struct unwind_table_entry
*b
= arg2
;
388 if (a
->region_start
> b
->region_start
)
390 else if (a
->region_start
< b
->region_start
)
396 static CORE_ADDR low_text_segment_address
;
399 record_text_segment_lowaddr (bfd
*abfd
, asection
*section
, void *ignored
)
401 if (((section
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
))
402 == (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
))
403 && section
->vma
< low_text_segment_address
)
404 low_text_segment_address
= section
->vma
;
408 internalize_unwinds (struct objfile
*objfile
, struct unwind_table_entry
*table
,
409 asection
*section
, unsigned int entries
, unsigned int size
,
410 CORE_ADDR text_offset
)
412 /* We will read the unwind entries into temporary memory, then
413 fill in the actual unwind table. */
418 char *buf
= alloca (size
);
420 low_text_segment_address
= -1;
422 /* If addresses are 64 bits wide, then unwinds are supposed to
423 be segment relative offsets instead of absolute addresses.
425 Note that when loading a shared library (text_offset != 0) the
426 unwinds are already relative to the text_offset that will be
428 if (TARGET_PTR_BIT
== 64 && text_offset
== 0)
430 bfd_map_over_sections (objfile
->obfd
,
431 record_text_segment_lowaddr
, NULL
);
433 /* ?!? Mask off some low bits. Should this instead subtract
434 out the lowest section's filepos or something like that?
435 This looks very hokey to me. */
436 low_text_segment_address
&= ~0xfff;
437 text_offset
+= low_text_segment_address
;
440 bfd_get_section_contents (objfile
->obfd
, section
, buf
, 0, size
);
442 /* Now internalize the information being careful to handle host/target
444 for (i
= 0; i
< entries
; i
++)
446 table
[i
].region_start
= bfd_get_32 (objfile
->obfd
,
448 table
[i
].region_start
+= text_offset
;
450 table
[i
].region_end
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
451 table
[i
].region_end
+= text_offset
;
453 tmp
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
455 table
[i
].Cannot_unwind
= (tmp
>> 31) & 0x1;
456 table
[i
].Millicode
= (tmp
>> 30) & 0x1;
457 table
[i
].Millicode_save_sr0
= (tmp
>> 29) & 0x1;
458 table
[i
].Region_description
= (tmp
>> 27) & 0x3;
459 table
[i
].reserved1
= (tmp
>> 26) & 0x1;
460 table
[i
].Entry_SR
= (tmp
>> 25) & 0x1;
461 table
[i
].Entry_FR
= (tmp
>> 21) & 0xf;
462 table
[i
].Entry_GR
= (tmp
>> 16) & 0x1f;
463 table
[i
].Args_stored
= (tmp
>> 15) & 0x1;
464 table
[i
].Variable_Frame
= (tmp
>> 14) & 0x1;
465 table
[i
].Separate_Package_Body
= (tmp
>> 13) & 0x1;
466 table
[i
].Frame_Extension_Millicode
= (tmp
>> 12) & 0x1;
467 table
[i
].Stack_Overflow_Check
= (tmp
>> 11) & 0x1;
468 table
[i
].Two_Instruction_SP_Increment
= (tmp
>> 10) & 0x1;
469 table
[i
].Ada_Region
= (tmp
>> 9) & 0x1;
470 table
[i
].cxx_info
= (tmp
>> 8) & 0x1;
471 table
[i
].cxx_try_catch
= (tmp
>> 7) & 0x1;
472 table
[i
].sched_entry_seq
= (tmp
>> 6) & 0x1;
473 table
[i
].reserved2
= (tmp
>> 5) & 0x1;
474 table
[i
].Save_SP
= (tmp
>> 4) & 0x1;
475 table
[i
].Save_RP
= (tmp
>> 3) & 0x1;
476 table
[i
].Save_MRP_in_frame
= (tmp
>> 2) & 0x1;
477 table
[i
].extn_ptr_defined
= (tmp
>> 1) & 0x1;
478 table
[i
].Cleanup_defined
= tmp
& 0x1;
479 tmp
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
481 table
[i
].MPE_XL_interrupt_marker
= (tmp
>> 31) & 0x1;
482 table
[i
].HP_UX_interrupt_marker
= (tmp
>> 30) & 0x1;
483 table
[i
].Large_frame
= (tmp
>> 29) & 0x1;
484 table
[i
].Pseudo_SP_Set
= (tmp
>> 28) & 0x1;
485 table
[i
].reserved4
= (tmp
>> 27) & 0x1;
486 table
[i
].Total_frame_size
= tmp
& 0x7ffffff;
488 /* Stub unwinds are handled elsewhere. */
489 table
[i
].stub_unwind
.stub_type
= 0;
490 table
[i
].stub_unwind
.padding
= 0;
495 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
496 the object file. This info is used mainly by find_unwind_entry() to find
497 out the stack frame size and frame pointer used by procedures. We put
498 everything on the psymbol obstack in the objfile so that it automatically
499 gets freed when the objfile is destroyed. */
502 read_unwind_info (struct objfile
*objfile
)
504 asection
*unwind_sec
, *stub_unwind_sec
;
505 unsigned unwind_size
, stub_unwind_size
, total_size
;
506 unsigned index
, unwind_entries
;
507 unsigned stub_entries
, total_entries
;
508 CORE_ADDR text_offset
;
509 struct obj_unwind_info
*ui
;
510 obj_private_data_t
*obj_private
;
512 text_offset
= ANOFFSET (objfile
->section_offsets
, 0);
513 ui
= (struct obj_unwind_info
*) obstack_alloc (&objfile
->psymbol_obstack
,
514 sizeof (struct obj_unwind_info
));
520 /* For reasons unknown the HP PA64 tools generate multiple unwinder
521 sections in a single executable. So we just iterate over every
522 section in the BFD looking for unwinder sections intead of trying
523 to do a lookup with bfd_get_section_by_name.
525 First determine the total size of the unwind tables so that we
526 can allocate memory in a nice big hunk. */
528 for (unwind_sec
= objfile
->obfd
->sections
;
530 unwind_sec
= unwind_sec
->next
)
532 if (strcmp (unwind_sec
->name
, "$UNWIND_START$") == 0
533 || strcmp (unwind_sec
->name
, ".PARISC.unwind") == 0)
535 unwind_size
= bfd_section_size (objfile
->obfd
, unwind_sec
);
536 unwind_entries
= unwind_size
/ UNWIND_ENTRY_SIZE
;
538 total_entries
+= unwind_entries
;
542 /* Now compute the size of the stub unwinds. Note the ELF tools do not
543 use stub unwinds at the curren time. */
544 stub_unwind_sec
= bfd_get_section_by_name (objfile
->obfd
, "$UNWIND_END$");
548 stub_unwind_size
= bfd_section_size (objfile
->obfd
, stub_unwind_sec
);
549 stub_entries
= stub_unwind_size
/ STUB_UNWIND_ENTRY_SIZE
;
553 stub_unwind_size
= 0;
557 /* Compute total number of unwind entries and their total size. */
558 total_entries
+= stub_entries
;
559 total_size
= total_entries
* sizeof (struct unwind_table_entry
);
561 /* Allocate memory for the unwind table. */
562 ui
->table
= (struct unwind_table_entry
*)
563 obstack_alloc (&objfile
->psymbol_obstack
, total_size
);
564 ui
->last
= total_entries
- 1;
566 /* Now read in each unwind section and internalize the standard unwind
569 for (unwind_sec
= objfile
->obfd
->sections
;
571 unwind_sec
= unwind_sec
->next
)
573 if (strcmp (unwind_sec
->name
, "$UNWIND_START$") == 0
574 || strcmp (unwind_sec
->name
, ".PARISC.unwind") == 0)
576 unwind_size
= bfd_section_size (objfile
->obfd
, unwind_sec
);
577 unwind_entries
= unwind_size
/ UNWIND_ENTRY_SIZE
;
579 internalize_unwinds (objfile
, &ui
->table
[index
], unwind_sec
,
580 unwind_entries
, unwind_size
, text_offset
);
581 index
+= unwind_entries
;
585 /* Now read in and internalize the stub unwind entries. */
586 if (stub_unwind_size
> 0)
589 char *buf
= alloca (stub_unwind_size
);
591 /* Read in the stub unwind entries. */
592 bfd_get_section_contents (objfile
->obfd
, stub_unwind_sec
, buf
,
593 0, stub_unwind_size
);
595 /* Now convert them into regular unwind entries. */
596 for (i
= 0; i
< stub_entries
; i
++, index
++)
598 /* Clear out the next unwind entry. */
599 memset (&ui
->table
[index
], 0, sizeof (struct unwind_table_entry
));
601 /* Convert offset & size into region_start and region_end.
602 Stuff away the stub type into "reserved" fields. */
603 ui
->table
[index
].region_start
= bfd_get_32 (objfile
->obfd
,
605 ui
->table
[index
].region_start
+= text_offset
;
607 ui
->table
[index
].stub_unwind
.stub_type
= bfd_get_8 (objfile
->obfd
,
610 ui
->table
[index
].region_end
611 = ui
->table
[index
].region_start
+ 4 *
612 (bfd_get_16 (objfile
->obfd
, (bfd_byte
*) buf
) - 1);
618 /* Unwind table needs to be kept sorted. */
619 qsort (ui
->table
, total_entries
, sizeof (struct unwind_table_entry
),
620 compare_unwind_entries
);
622 /* Keep a pointer to the unwind information. */
623 if (objfile
->obj_private
== NULL
)
625 obj_private
= (obj_private_data_t
*)
626 obstack_alloc (&objfile
->psymbol_obstack
,
627 sizeof (obj_private_data_t
));
628 obj_private
->unwind_info
= NULL
;
629 obj_private
->so_info
= NULL
;
632 objfile
->obj_private
= obj_private
;
634 obj_private
= (obj_private_data_t
*) objfile
->obj_private
;
635 obj_private
->unwind_info
= ui
;
638 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
639 of the objfiles seeking the unwind table entry for this PC. Each objfile
640 contains a sorted list of struct unwind_table_entry. Since we do a binary
641 search of the unwind tables, we depend upon them to be sorted. */
643 struct unwind_table_entry
*
644 find_unwind_entry (CORE_ADDR pc
)
646 int first
, middle
, last
;
647 struct objfile
*objfile
;
649 /* A function at address 0? Not in HP-UX! */
650 if (pc
== (CORE_ADDR
) 0)
653 ALL_OBJFILES (objfile
)
655 struct obj_unwind_info
*ui
;
657 if (objfile
->obj_private
)
658 ui
= ((obj_private_data_t
*) (objfile
->obj_private
))->unwind_info
;
662 read_unwind_info (objfile
);
663 if (objfile
->obj_private
== NULL
)
664 error ("Internal error reading unwind information.");
665 ui
= ((obj_private_data_t
*) (objfile
->obj_private
))->unwind_info
;
668 /* First, check the cache */
671 && pc
>= ui
->cache
->region_start
672 && pc
<= ui
->cache
->region_end
)
675 /* Not in the cache, do a binary search */
680 while (first
<= last
)
682 middle
= (first
+ last
) / 2;
683 if (pc
>= ui
->table
[middle
].region_start
684 && pc
<= ui
->table
[middle
].region_end
)
686 ui
->cache
= &ui
->table
[middle
];
687 return &ui
->table
[middle
];
690 if (pc
< ui
->table
[middle
].region_start
)
695 } /* ALL_OBJFILES() */
699 const unsigned char *
700 hppa_breakpoint_from_pc (CORE_ADDR
*pc
, int *len
)
702 static const char breakpoint
[] = {0x00, 0x01, 0x00, 0x04};
703 (*len
) = sizeof (breakpoint
);
707 /* Return the name of a register. */
710 hppa32_register_name (int i
)
712 static char *names
[] = {
713 "flags", "r1", "rp", "r3",
714 "r4", "r5", "r6", "r7",
715 "r8", "r9", "r10", "r11",
716 "r12", "r13", "r14", "r15",
717 "r16", "r17", "r18", "r19",
718 "r20", "r21", "r22", "r23",
719 "r24", "r25", "r26", "dp",
720 "ret0", "ret1", "sp", "r31",
721 "sar", "pcoqh", "pcsqh", "pcoqt",
722 "pcsqt", "eiem", "iir", "isr",
723 "ior", "ipsw", "goto", "sr4",
724 "sr0", "sr1", "sr2", "sr3",
725 "sr5", "sr6", "sr7", "cr0",
726 "cr8", "cr9", "ccr", "cr12",
727 "cr13", "cr24", "cr25", "cr26",
728 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
729 "fpsr", "fpe1", "fpe2", "fpe3",
730 "fpe4", "fpe5", "fpe6", "fpe7",
731 "fr4", "fr4R", "fr5", "fr5R",
732 "fr6", "fr6R", "fr7", "fr7R",
733 "fr8", "fr8R", "fr9", "fr9R",
734 "fr10", "fr10R", "fr11", "fr11R",
735 "fr12", "fr12R", "fr13", "fr13R",
736 "fr14", "fr14R", "fr15", "fr15R",
737 "fr16", "fr16R", "fr17", "fr17R",
738 "fr18", "fr18R", "fr19", "fr19R",
739 "fr20", "fr20R", "fr21", "fr21R",
740 "fr22", "fr22R", "fr23", "fr23R",
741 "fr24", "fr24R", "fr25", "fr25R",
742 "fr26", "fr26R", "fr27", "fr27R",
743 "fr28", "fr28R", "fr29", "fr29R",
744 "fr30", "fr30R", "fr31", "fr31R"
746 if (i
< 0 || i
>= (sizeof (names
) / sizeof (*names
)))
753 hppa64_register_name (int i
)
755 static char *names
[] = {
756 "flags", "r1", "rp", "r3",
757 "r4", "r5", "r6", "r7",
758 "r8", "r9", "r10", "r11",
759 "r12", "r13", "r14", "r15",
760 "r16", "r17", "r18", "r19",
761 "r20", "r21", "r22", "r23",
762 "r24", "r25", "r26", "dp",
763 "ret0", "ret1", "sp", "r31",
764 "sar", "pcoqh", "pcsqh", "pcoqt",
765 "pcsqt", "eiem", "iir", "isr",
766 "ior", "ipsw", "goto", "sr4",
767 "sr0", "sr1", "sr2", "sr3",
768 "sr5", "sr6", "sr7", "cr0",
769 "cr8", "cr9", "ccr", "cr12",
770 "cr13", "cr24", "cr25", "cr26",
771 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
772 "fpsr", "fpe1", "fpe2", "fpe3",
773 "fr4", "fr5", "fr6", "fr7",
774 "fr8", "fr9", "fr10", "fr11",
775 "fr12", "fr13", "fr14", "fr15",
776 "fr16", "fr17", "fr18", "fr19",
777 "fr20", "fr21", "fr22", "fr23",
778 "fr24", "fr25", "fr26", "fr27",
779 "fr28", "fr29", "fr30", "fr31"
781 if (i
< 0 || i
>= (sizeof (names
) / sizeof (*names
)))
789 /* Return the adjustment necessary to make for addresses on the stack
790 as presented by hpread.c.
792 This is necessary because of the stack direction on the PA and the
793 bizarre way in which someone (?) decided they wanted to handle
794 frame pointerless code in GDB. */
796 hpread_adjust_stack_address (CORE_ADDR func_addr
)
798 struct unwind_table_entry
*u
;
800 u
= find_unwind_entry (func_addr
);
804 return u
->Total_frame_size
<< 3;
807 /* Called to determine if PC is in an interrupt handler of some
811 pc_in_interrupt_handler (CORE_ADDR pc
)
813 struct unwind_table_entry
*u
;
814 struct minimal_symbol
*msym_us
;
816 u
= find_unwind_entry (pc
);
820 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
821 its frame isn't a pure interrupt frame. Deal with this. */
822 msym_us
= lookup_minimal_symbol_by_pc (pc
);
824 return (u
->HP_UX_interrupt_marker
825 && !PC_IN_SIGTRAMP (pc
, DEPRECATED_SYMBOL_NAME (msym_us
)));
828 /* Called when no unwind descriptor was found for PC. Returns 1 if it
829 appears that PC is in a linker stub.
831 ?!? Need to handle stubs which appear in PA64 code. */
834 pc_in_linker_stub (CORE_ADDR pc
)
836 int found_magic_instruction
= 0;
840 /* If unable to read memory, assume pc is not in a linker stub. */
841 if (target_read_memory (pc
, buf
, 4) != 0)
844 /* We are looking for something like
846 ; $$dyncall jams RP into this special spot in the frame (RP')
847 ; before calling the "call stub"
850 ldsid (rp),r1 ; Get space associated with RP into r1
851 mtsp r1,sp ; Move it into space register 0
852 be,n 0(sr0),rp) ; back to your regularly scheduled program */
854 /* Maximum known linker stub size is 4 instructions. Search forward
855 from the given PC, then backward. */
856 for (i
= 0; i
< 4; i
++)
858 /* If we hit something with an unwind, stop searching this direction. */
860 if (find_unwind_entry (pc
+ i
* 4) != 0)
863 /* Check for ldsid (rp),r1 which is the magic instruction for a
864 return from a cross-space function call. */
865 if (read_memory_integer (pc
+ i
* 4, 4) == 0x004010a1)
867 found_magic_instruction
= 1;
870 /* Add code to handle long call/branch and argument relocation stubs
874 if (found_magic_instruction
!= 0)
877 /* Now look backward. */
878 for (i
= 0; i
< 4; i
++)
880 /* If we hit something with an unwind, stop searching this direction. */
882 if (find_unwind_entry (pc
- i
* 4) != 0)
885 /* Check for ldsid (rp),r1 which is the magic instruction for a
886 return from a cross-space function call. */
887 if (read_memory_integer (pc
- i
* 4, 4) == 0x004010a1)
889 found_magic_instruction
= 1;
892 /* Add code to handle long call/branch and argument relocation stubs
895 return found_magic_instruction
;
899 find_return_regnum (CORE_ADDR pc
)
901 struct unwind_table_entry
*u
;
903 u
= find_unwind_entry (pc
);
914 /* Return size of frame, or -1 if we should use a frame pointer. */
916 find_proc_framesize (CORE_ADDR pc
)
918 struct unwind_table_entry
*u
;
919 struct minimal_symbol
*msym_us
;
921 /* This may indicate a bug in our callers... */
922 if (pc
== (CORE_ADDR
) 0)
925 u
= find_unwind_entry (pc
);
929 if (pc_in_linker_stub (pc
))
930 /* Linker stubs have a zero size frame. */
936 msym_us
= lookup_minimal_symbol_by_pc (pc
);
938 /* If Save_SP is set, and we're not in an interrupt or signal caller,
939 then we have a frame pointer. Use it. */
941 && !pc_in_interrupt_handler (pc
)
943 && !PC_IN_SIGTRAMP (pc
, DEPRECATED_SYMBOL_NAME (msym_us
)))
946 return u
->Total_frame_size
<< 3;
949 /* Return offset from sp at which rp is saved, or 0 if not saved. */
950 static int rp_saved (CORE_ADDR
);
953 rp_saved (CORE_ADDR pc
)
955 struct unwind_table_entry
*u
;
957 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
958 if (pc
== (CORE_ADDR
) 0)
961 u
= find_unwind_entry (pc
);
965 if (pc_in_linker_stub (pc
))
966 /* This is the so-called RP'. */
973 return (TARGET_PTR_BIT
== 64 ? -16 : -20);
974 else if (u
->stub_unwind
.stub_type
!= 0)
976 switch (u
->stub_unwind
.stub_type
)
981 case PARAMETER_RELOCATION
:
992 hppa_frameless_function_invocation (struct frame_info
*frame
)
994 struct unwind_table_entry
*u
;
996 u
= find_unwind_entry (get_frame_pc (frame
));
1001 return (u
->Total_frame_size
== 0 && u
->stub_unwind
.stub_type
== 0);
1004 /* Immediately after a function call, return the saved pc.
1005 Can't go through the frames for this because on some machines
1006 the new frame is not set up until the new function executes
1007 some instructions. */
1010 hppa_saved_pc_after_call (struct frame_info
*frame
)
1014 struct unwind_table_entry
*u
;
1016 ret_regnum
= find_return_regnum (get_frame_pc (frame
));
1017 pc
= read_register (ret_regnum
) & ~0x3;
1019 /* If PC is in a linker stub, then we need to dig the address
1020 the stub will return to out of the stack. */
1021 u
= find_unwind_entry (pc
);
1022 if (u
&& u
->stub_unwind
.stub_type
!= 0)
1023 return DEPRECATED_FRAME_SAVED_PC (frame
);
1029 hppa_frame_saved_pc (struct frame_info
*frame
)
1031 CORE_ADDR pc
= get_frame_pc (frame
);
1032 struct unwind_table_entry
*u
;
1033 CORE_ADDR old_pc
= 0;
1034 int spun_around_loop
= 0;
1037 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1038 at the base of the frame in an interrupt handler. Registers within
1039 are saved in the exact same order as GDB numbers registers. How
1041 if (pc_in_interrupt_handler (pc
))
1042 return read_memory_integer (get_frame_base (frame
) + PC_REGNUM
* 4,
1043 TARGET_PTR_BIT
/ 8) & ~0x3;
1045 if ((get_frame_pc (frame
) >= get_frame_base (frame
)
1046 && (get_frame_pc (frame
)
1047 <= (get_frame_base (frame
)
1048 /* A call dummy is sized in words, but it is actually a
1049 series of instructions. Account for that scaling
1051 + ((DEPRECATED_REGISTER_SIZE
/ INSTRUCTION_SIZE
)
1052 * DEPRECATED_CALL_DUMMY_LENGTH
)
1053 /* Similarly we have to account for 64bit wide register
1055 + (32 * DEPRECATED_REGISTER_SIZE
)
1056 /* We always consider FP regs 8 bytes long. */
1057 + (NUM_REGS
- FP0_REGNUM
) * 8
1058 /* Similarly we have to account for 64bit wide register
1060 + (6 * DEPRECATED_REGISTER_SIZE
)))))
1062 return read_memory_integer ((get_frame_base (frame
)
1063 + (TARGET_PTR_BIT
== 64 ? -16 : -20)),
1064 TARGET_PTR_BIT
/ 8) & ~0x3;
1067 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1068 /* Deal with signal handler caller frames too. */
1069 if ((get_frame_type (frame
) == SIGTRAMP_FRAME
))
1072 FRAME_SAVED_PC_IN_SIGTRAMP (frame
, &rp
);
1077 if (hppa_frameless_function_invocation (frame
))
1081 ret_regnum
= find_return_regnum (pc
);
1083 /* If the next frame is an interrupt frame or a signal
1084 handler caller, then we need to look in the saved
1085 register area to get the return pointer (the values
1086 in the registers may not correspond to anything useful). */
1087 if (get_next_frame (frame
)
1088 && ((get_frame_type (get_next_frame (frame
)) == SIGTRAMP_FRAME
)
1089 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame
)))))
1091 CORE_ADDR
*saved_regs
;
1092 hppa_frame_init_saved_regs (get_next_frame (frame
));
1093 saved_regs
= deprecated_get_frame_saved_regs (get_next_frame (frame
));
1094 if (read_memory_integer (saved_regs
[FLAGS_REGNUM
],
1095 TARGET_PTR_BIT
/ 8) & 0x2)
1097 pc
= read_memory_integer (saved_regs
[31],
1098 TARGET_PTR_BIT
/ 8) & ~0x3;
1100 /* Syscalls are really two frames. The syscall stub itself
1101 with a return pointer in %rp and the kernel call with
1102 a return pointer in %r31. We return the %rp variant
1103 if %r31 is the same as frame->pc. */
1104 if (pc
== get_frame_pc (frame
))
1105 pc
= read_memory_integer (saved_regs
[RP_REGNUM
],
1106 TARGET_PTR_BIT
/ 8) & ~0x3;
1109 pc
= read_memory_integer (saved_regs
[RP_REGNUM
],
1110 TARGET_PTR_BIT
/ 8) & ~0x3;
1113 pc
= read_register (ret_regnum
) & ~0x3;
1117 spun_around_loop
= 0;
1121 rp_offset
= rp_saved (pc
);
1123 /* Similar to code in frameless function case. If the next
1124 frame is a signal or interrupt handler, then dig the right
1125 information out of the saved register info. */
1127 && get_next_frame (frame
)
1128 && ((get_frame_type (get_next_frame (frame
)) == SIGTRAMP_FRAME
)
1129 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame
)))))
1131 CORE_ADDR
*saved_regs
;
1132 hppa_frame_init_saved_regs (get_next_frame (frame
));
1133 saved_regs
= deprecated_get_frame_saved_regs (get_next_frame (frame
));
1134 if (read_memory_integer (saved_regs
[FLAGS_REGNUM
],
1135 TARGET_PTR_BIT
/ 8) & 0x2)
1137 pc
= read_memory_integer (saved_regs
[31],
1138 TARGET_PTR_BIT
/ 8) & ~0x3;
1140 /* Syscalls are really two frames. The syscall stub itself
1141 with a return pointer in %rp and the kernel call with
1142 a return pointer in %r31. We return the %rp variant
1143 if %r31 is the same as frame->pc. */
1144 if (pc
== get_frame_pc (frame
))
1145 pc
= read_memory_integer (saved_regs
[RP_REGNUM
],
1146 TARGET_PTR_BIT
/ 8) & ~0x3;
1149 pc
= read_memory_integer (saved_regs
[RP_REGNUM
],
1150 TARGET_PTR_BIT
/ 8) & ~0x3;
1152 else if (rp_offset
== 0)
1155 pc
= read_register (RP_REGNUM
) & ~0x3;
1160 pc
= read_memory_integer (get_frame_base (frame
) + rp_offset
,
1161 TARGET_PTR_BIT
/ 8) & ~0x3;
1165 /* If PC is inside a linker stub, then dig out the address the stub
1168 Don't do this for long branch stubs. Why? For some unknown reason
1169 _start is marked as a long branch stub in hpux10. */
1170 u
= find_unwind_entry (pc
);
1171 if (u
&& u
->stub_unwind
.stub_type
!= 0
1172 && u
->stub_unwind
.stub_type
!= LONG_BRANCH
)
1176 /* If this is a dynamic executable, and we're in a signal handler,
1177 then the call chain will eventually point us into the stub for
1178 _sigreturn. Unlike most cases, we'll be pointed to the branch
1179 to the real sigreturn rather than the code after the real branch!.
1181 Else, try to dig the address the stub will return to in the normal
1183 insn
= read_memory_integer (pc
, 4);
1184 if ((insn
& 0xfc00e000) == 0xe8000000)
1185 return (pc
+ extract_17 (insn
) + 8) & ~0x3;
1191 if (spun_around_loop
> 1)
1193 /* We're just about to go around the loop again with
1194 no more hope of success. Die. */
1195 error ("Unable to find return pc for this frame");
1205 /* We need to correct the PC and the FP for the outermost frame when we are
1206 in a system call. */
1209 hppa_init_extra_frame_info (int fromleaf
, struct frame_info
*frame
)
1214 if (get_next_frame (frame
) && !fromleaf
)
1217 /* If the next frame represents a frameless function invocation then
1218 we have to do some adjustments that are normally done by
1219 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1223 /* Find the framesize of *this* frame without peeking at the PC
1224 in the current frame structure (it isn't set yet). */
1225 framesize
= find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame
)));
1227 /* Now adjust our base frame accordingly. If we have a frame pointer
1228 use it, else subtract the size of this frame from the current
1229 frame. (we always want frame->frame to point at the lowest address
1231 if (framesize
== -1)
1232 deprecated_update_frame_base_hack (frame
, deprecated_read_fp ());
1234 deprecated_update_frame_base_hack (frame
, get_frame_base (frame
) - framesize
);
1238 flags
= read_register (FLAGS_REGNUM
);
1239 if (flags
& 2) /* In system call? */
1240 deprecated_update_frame_pc_hack (frame
, read_register (31) & ~0x3);
1242 /* The outermost frame is always derived from PC-framesize
1244 One might think frameless innermost frames should have
1245 a frame->frame that is the same as the parent's frame->frame.
1246 That is wrong; frame->frame in that case should be the *high*
1247 address of the parent's frame. It's complicated as hell to
1248 explain, but the parent *always* creates some stack space for
1249 the child. So the child actually does have a frame of some
1250 sorts, and its base is the high address in its parent's frame. */
1251 framesize
= find_proc_framesize (get_frame_pc (frame
));
1252 if (framesize
== -1)
1253 deprecated_update_frame_base_hack (frame
, deprecated_read_fp ());
1255 deprecated_update_frame_base_hack (frame
, read_register (SP_REGNUM
) - framesize
);
1258 /* Given a GDB frame, determine the address of the calling function's
1259 frame. This will be used to create a new GDB frame struct, and
1260 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1261 will be called for the new frame.
1263 This may involve searching through prologues for several functions
1264 at boundaries where GCC calls HP C code, or where code which has
1265 a frame pointer calls code without a frame pointer. */
1268 hppa_frame_chain (struct frame_info
*frame
)
1270 int my_framesize
, caller_framesize
;
1271 struct unwind_table_entry
*u
;
1272 CORE_ADDR frame_base
;
1273 struct frame_info
*tmp_frame
;
1275 /* A frame in the current frame list, or zero. */
1276 struct frame_info
*saved_regs_frame
= 0;
1277 /* Where the registers were saved in saved_regs_frame. If
1278 saved_regs_frame is zero, this is garbage. */
1279 CORE_ADDR
*saved_regs
= NULL
;
1281 CORE_ADDR caller_pc
;
1283 struct minimal_symbol
*min_frame_symbol
;
1284 struct symbol
*frame_symbol
;
1285 char *frame_symbol_name
;
1287 /* If this is a threaded application, and we see the
1288 routine "__pthread_exit", treat it as the stack root
1290 min_frame_symbol
= lookup_minimal_symbol_by_pc (get_frame_pc (frame
));
1291 frame_symbol
= find_pc_function (get_frame_pc (frame
));
1293 if ((min_frame_symbol
!= 0) /* && (frame_symbol == 0) */ )
1295 /* The test above for "no user function name" would defend
1296 against the slim likelihood that a user might define a
1297 routine named "__pthread_exit" and then try to debug it.
1299 If it weren't commented out, and you tried to debug the
1300 pthread library itself, you'd get errors.
1302 So for today, we don't make that check. */
1303 frame_symbol_name
= DEPRECATED_SYMBOL_NAME (min_frame_symbol
);
1304 if (frame_symbol_name
!= 0)
1306 if (0 == strncmp (frame_symbol_name
,
1307 THREAD_INITIAL_FRAME_SYMBOL
,
1308 THREAD_INITIAL_FRAME_SYM_LEN
))
1310 /* Pretend we've reached the bottom of the stack. */
1311 return (CORE_ADDR
) 0;
1314 } /* End of hacky code for threads. */
1316 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1317 are easy; at *sp we have a full save state strucutre which we can
1318 pull the old stack pointer from. Also see frame_saved_pc for
1319 code to dig a saved PC out of the save state structure. */
1320 if (pc_in_interrupt_handler (get_frame_pc (frame
)))
1321 frame_base
= read_memory_integer (get_frame_base (frame
) + SP_REGNUM
* 4,
1322 TARGET_PTR_BIT
/ 8);
1323 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1324 else if ((get_frame_type (frame
) == SIGTRAMP_FRAME
))
1326 FRAME_BASE_BEFORE_SIGTRAMP (frame
, &frame_base
);
1330 frame_base
= get_frame_base (frame
);
1332 /* Get frame sizes for the current frame and the frame of the
1334 my_framesize
= find_proc_framesize (get_frame_pc (frame
));
1335 caller_pc
= DEPRECATED_FRAME_SAVED_PC (frame
);
1337 /* If we can't determine the caller's PC, then it's not likely we can
1338 really determine anything meaningful about its frame. We'll consider
1339 this to be stack bottom. */
1340 if (caller_pc
== (CORE_ADDR
) 0)
1341 return (CORE_ADDR
) 0;
1343 caller_framesize
= find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame
));
1345 /* If caller does not have a frame pointer, then its frame
1346 can be found at current_frame - caller_framesize. */
1347 if (caller_framesize
!= -1)
1349 return frame_base
- caller_framesize
;
1351 /* Both caller and callee have frame pointers and are GCC compiled
1352 (SAVE_SP bit in unwind descriptor is on for both functions.
1353 The previous frame pointer is found at the top of the current frame. */
1354 if (caller_framesize
== -1 && my_framesize
== -1)
1356 return read_memory_integer (frame_base
, TARGET_PTR_BIT
/ 8);
1358 /* Caller has a frame pointer, but callee does not. This is a little
1359 more difficult as GCC and HP C lay out locals and callee register save
1360 areas very differently.
1362 The previous frame pointer could be in a register, or in one of
1363 several areas on the stack.
1365 Walk from the current frame to the innermost frame examining
1366 unwind descriptors to determine if %r3 ever gets saved into the
1367 stack. If so return whatever value got saved into the stack.
1368 If it was never saved in the stack, then the value in %r3 is still
1371 We use information from unwind descriptors to determine if %r3
1372 is saved into the stack (Entry_GR field has this information). */
1374 for (tmp_frame
= frame
; tmp_frame
; tmp_frame
= get_next_frame (tmp_frame
))
1376 u
= find_unwind_entry (get_frame_pc (tmp_frame
));
1380 /* We could find this information by examining prologues. I don't
1381 think anyone has actually written any tools (not even "strip")
1382 which leave them out of an executable, so maybe this is a moot
1384 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1385 code that doesn't have unwind entries. For example, stepping into
1386 the dynamic linker will give you a PC that has none. Thus, I've
1387 disabled this warning. */
1389 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame
));
1391 return (CORE_ADDR
) 0;
1395 || (get_frame_type (tmp_frame
) == SIGTRAMP_FRAME
)
1396 || pc_in_interrupt_handler (get_frame_pc (tmp_frame
)))
1399 /* Entry_GR specifies the number of callee-saved general registers
1400 saved in the stack. It starts at %r3, so %r3 would be 1. */
1401 if (u
->Entry_GR
>= 1)
1403 /* The unwind entry claims that r3 is saved here. However,
1404 in optimized code, GCC often doesn't actually save r3.
1405 We'll discover this if we look at the prologue. */
1406 hppa_frame_init_saved_regs (tmp_frame
);
1407 saved_regs
= deprecated_get_frame_saved_regs (tmp_frame
);
1408 saved_regs_frame
= tmp_frame
;
1410 /* If we have an address for r3, that's good. */
1411 if (saved_regs
[DEPRECATED_FP_REGNUM
])
1418 /* We may have walked down the chain into a function with a frame
1421 && !(get_frame_type (tmp_frame
) == SIGTRAMP_FRAME
)
1422 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame
)))
1424 return read_memory_integer (get_frame_base (tmp_frame
), TARGET_PTR_BIT
/ 8);
1426 /* %r3 was saved somewhere in the stack. Dig it out. */
1431 For optimization purposes many kernels don't have the
1432 callee saved registers into the save_state structure upon
1433 entry into the kernel for a syscall; the optimization
1434 is usually turned off if the process is being traced so
1435 that the debugger can get full register state for the
1438 This scheme works well except for two cases:
1440 * Attaching to a process when the process is in the
1441 kernel performing a system call (debugger can't get
1442 full register state for the inferior process since
1443 the process wasn't being traced when it entered the
1446 * Register state is not complete if the system call
1447 causes the process to core dump.
1450 The following heinous code is an attempt to deal with
1451 the lack of register state in a core dump. It will
1452 fail miserably if the function which performs the
1453 system call has a variable sized stack frame. */
1455 if (tmp_frame
!= saved_regs_frame
)
1457 hppa_frame_init_saved_regs (tmp_frame
);
1458 saved_regs
= deprecated_get_frame_saved_regs (tmp_frame
);
1461 /* Abominable hack. */
1462 if (current_target
.to_has_execution
== 0
1463 && ((saved_regs
[FLAGS_REGNUM
]
1464 && (read_memory_integer (saved_regs
[FLAGS_REGNUM
],
1467 || (saved_regs
[FLAGS_REGNUM
] == 0
1468 && read_register (FLAGS_REGNUM
) & 0x2)))
1470 u
= find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame
));
1473 return read_memory_integer (saved_regs
[DEPRECATED_FP_REGNUM
],
1474 TARGET_PTR_BIT
/ 8);
1478 return frame_base
- (u
->Total_frame_size
<< 3);
1482 return read_memory_integer (saved_regs
[DEPRECATED_FP_REGNUM
],
1483 TARGET_PTR_BIT
/ 8);
1488 /* Get the innermost frame. */
1490 while (get_next_frame (tmp_frame
) != NULL
)
1491 tmp_frame
= get_next_frame (tmp_frame
);
1493 if (tmp_frame
!= saved_regs_frame
)
1495 hppa_frame_init_saved_regs (tmp_frame
);
1496 saved_regs
= deprecated_get_frame_saved_regs (tmp_frame
);
1499 /* Abominable hack. See above. */
1500 if (current_target
.to_has_execution
== 0
1501 && ((saved_regs
[FLAGS_REGNUM
]
1502 && (read_memory_integer (saved_regs
[FLAGS_REGNUM
],
1505 || (saved_regs
[FLAGS_REGNUM
] == 0
1506 && read_register (FLAGS_REGNUM
) & 0x2)))
1508 u
= find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame
));
1511 return read_memory_integer (saved_regs
[DEPRECATED_FP_REGNUM
],
1512 TARGET_PTR_BIT
/ 8);
1516 return frame_base
- (u
->Total_frame_size
<< 3);
1520 /* The value in %r3 was never saved into the stack (thus %r3 still
1521 holds the value of the previous frame pointer). */
1522 return deprecated_read_fp ();
1527 /* To see if a frame chain is valid, see if the caller looks like it
1528 was compiled with gcc. */
1531 hppa_frame_chain_valid (CORE_ADDR chain
, struct frame_info
*thisframe
)
1533 struct minimal_symbol
*msym_us
;
1534 struct minimal_symbol
*msym_start
;
1535 struct unwind_table_entry
*u
, *next_u
= NULL
;
1536 struct frame_info
*next
;
1538 u
= find_unwind_entry (get_frame_pc (thisframe
));
1543 /* We can't just check that the same of msym_us is "_start", because
1544 someone idiotically decided that they were going to make a Ltext_end
1545 symbol with the same address. This Ltext_end symbol is totally
1546 indistinguishable (as nearly as I can tell) from the symbol for a function
1547 which is (legitimately, since it is in the user's namespace)
1548 named Ltext_end, so we can't just ignore it. */
1549 msym_us
= lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe
));
1550 msym_start
= lookup_minimal_symbol ("_start", NULL
, NULL
);
1553 && SYMBOL_VALUE_ADDRESS (msym_us
) == SYMBOL_VALUE_ADDRESS (msym_start
))
1556 /* Grrrr. Some new idiot decided that they don't want _start for the
1557 PRO configurations; $START$ calls main directly.... Deal with it. */
1558 msym_start
= lookup_minimal_symbol ("$START$", NULL
, NULL
);
1561 && SYMBOL_VALUE_ADDRESS (msym_us
) == SYMBOL_VALUE_ADDRESS (msym_start
))
1564 next
= get_next_frame (thisframe
);
1566 next_u
= find_unwind_entry (get_frame_pc (next
));
1568 /* If this frame does not save SP, has no stack, isn't a stub,
1569 and doesn't "call" an interrupt routine or signal handler caller,
1570 then its not valid. */
1571 if (u
->Save_SP
|| u
->Total_frame_size
|| u
->stub_unwind
.stub_type
!= 0
1572 || (get_next_frame (thisframe
) && (get_frame_type (get_next_frame (thisframe
)) == SIGTRAMP_FRAME
))
1573 || (next_u
&& next_u
->HP_UX_interrupt_marker
))
1576 if (pc_in_linker_stub (get_frame_pc (thisframe
)))
1582 /* These functions deal with saving and restoring register state
1583 around a function call in the inferior. They keep the stack
1584 double-word aligned; eventually, on an hp700, the stack will have
1585 to be aligned to a 64-byte boundary. */
1588 hppa_push_dummy_frame (void)
1590 CORE_ADDR sp
, pc
, pcspace
;
1592 CORE_ADDR int_buffer
;
1595 pc
= hppa_target_read_pc (inferior_ptid
);
1596 int_buffer
= read_register (FLAGS_REGNUM
);
1597 if (int_buffer
& 0x2)
1599 const unsigned int sid
= (pc
>> 30) & 0x3;
1601 pcspace
= read_register (SR4_REGNUM
);
1603 pcspace
= read_register (SR4_REGNUM
+ 4 + sid
);
1606 pcspace
= read_register (PCSQ_HEAD_REGNUM
);
1608 /* Space for "arguments"; the RP goes in here. */
1609 sp
= read_register (SP_REGNUM
) + 48;
1610 int_buffer
= read_register (RP_REGNUM
) | 0x3;
1612 /* The 32bit and 64bit ABIs save the return pointer into different
1614 if (DEPRECATED_REGISTER_SIZE
== 8)
1615 write_memory (sp
- 16, (char *) &int_buffer
, DEPRECATED_REGISTER_SIZE
);
1617 write_memory (sp
- 20, (char *) &int_buffer
, DEPRECATED_REGISTER_SIZE
);
1619 int_buffer
= deprecated_read_fp ();
1620 write_memory (sp
, (char *) &int_buffer
, DEPRECATED_REGISTER_SIZE
);
1622 write_register (DEPRECATED_FP_REGNUM
, sp
);
1624 sp
+= 2 * DEPRECATED_REGISTER_SIZE
;
1626 for (regnum
= 1; regnum
< 32; regnum
++)
1627 if (regnum
!= RP_REGNUM
&& regnum
!= DEPRECATED_FP_REGNUM
)
1628 sp
= push_word (sp
, read_register (regnum
));
1630 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1631 if (DEPRECATED_REGISTER_SIZE
!= 8)
1634 for (regnum
= FP0_REGNUM
; regnum
< NUM_REGS
; regnum
++)
1636 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum
),
1637 (char *) &freg_buffer
, 8);
1638 sp
= push_bytes (sp
, (char *) &freg_buffer
, 8);
1640 sp
= push_word (sp
, read_register (IPSW_REGNUM
));
1641 sp
= push_word (sp
, read_register (SAR_REGNUM
));
1642 sp
= push_word (sp
, pc
);
1643 sp
= push_word (sp
, pcspace
);
1644 sp
= push_word (sp
, pc
+ 4);
1645 sp
= push_word (sp
, pcspace
);
1646 write_register (SP_REGNUM
, sp
);
1650 find_dummy_frame_regs (struct frame_info
*frame
,
1651 CORE_ADDR frame_saved_regs
[])
1653 CORE_ADDR fp
= get_frame_base (frame
);
1656 /* The 32bit and 64bit ABIs save RP into different locations. */
1657 if (DEPRECATED_REGISTER_SIZE
== 8)
1658 frame_saved_regs
[RP_REGNUM
] = (fp
- 16) & ~0x3;
1660 frame_saved_regs
[RP_REGNUM
] = (fp
- 20) & ~0x3;
1662 frame_saved_regs
[DEPRECATED_FP_REGNUM
] = fp
;
1664 frame_saved_regs
[1] = fp
+ (2 * DEPRECATED_REGISTER_SIZE
);
1666 for (fp
+= 3 * DEPRECATED_REGISTER_SIZE
, i
= 3; i
< 32; i
++)
1668 if (i
!= DEPRECATED_FP_REGNUM
)
1670 frame_saved_regs
[i
] = fp
;
1671 fp
+= DEPRECATED_REGISTER_SIZE
;
1675 /* This is not necessary or desirable for the 64bit ABI. */
1676 if (DEPRECATED_REGISTER_SIZE
!= 8)
1679 for (i
= FP0_REGNUM
; i
< NUM_REGS
; i
++, fp
+= 8)
1680 frame_saved_regs
[i
] = fp
;
1682 frame_saved_regs
[IPSW_REGNUM
] = fp
;
1683 frame_saved_regs
[SAR_REGNUM
] = fp
+ DEPRECATED_REGISTER_SIZE
;
1684 frame_saved_regs
[PCOQ_HEAD_REGNUM
] = fp
+ 2 * DEPRECATED_REGISTER_SIZE
;
1685 frame_saved_regs
[PCSQ_HEAD_REGNUM
] = fp
+ 3 * DEPRECATED_REGISTER_SIZE
;
1686 frame_saved_regs
[PCOQ_TAIL_REGNUM
] = fp
+ 4 * DEPRECATED_REGISTER_SIZE
;
1687 frame_saved_regs
[PCSQ_TAIL_REGNUM
] = fp
+ 5 * DEPRECATED_REGISTER_SIZE
;
1691 hppa_pop_frame (void)
1693 struct frame_info
*frame
= get_current_frame ();
1694 CORE_ADDR fp
, npc
, target_pc
;
1699 fp
= get_frame_base (frame
);
1700 hppa_frame_init_saved_regs (frame
);
1701 fsr
= deprecated_get_frame_saved_regs (frame
);
1703 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1704 if (fsr
[IPSW_REGNUM
]) /* Restoring a call dummy frame */
1705 restore_pc_queue (fsr
);
1708 for (regnum
= 31; regnum
> 0; regnum
--)
1710 write_register (regnum
, read_memory_integer (fsr
[regnum
],
1711 DEPRECATED_REGISTER_SIZE
));
1713 for (regnum
= NUM_REGS
- 1; regnum
>= FP0_REGNUM
; regnum
--)
1716 read_memory (fsr
[regnum
], (char *) &freg_buffer
, 8);
1717 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum
),
1718 (char *) &freg_buffer
, 8);
1721 if (fsr
[IPSW_REGNUM
])
1722 write_register (IPSW_REGNUM
,
1723 read_memory_integer (fsr
[IPSW_REGNUM
],
1724 DEPRECATED_REGISTER_SIZE
));
1726 if (fsr
[SAR_REGNUM
])
1727 write_register (SAR_REGNUM
,
1728 read_memory_integer (fsr
[SAR_REGNUM
],
1729 DEPRECATED_REGISTER_SIZE
));
1731 /* If the PC was explicitly saved, then just restore it. */
1732 if (fsr
[PCOQ_TAIL_REGNUM
])
1734 npc
= read_memory_integer (fsr
[PCOQ_TAIL_REGNUM
],
1735 DEPRECATED_REGISTER_SIZE
);
1736 write_register (PCOQ_TAIL_REGNUM
, npc
);
1738 /* Else use the value in %rp to set the new PC. */
1741 npc
= read_register (RP_REGNUM
);
1745 write_register (DEPRECATED_FP_REGNUM
, read_memory_integer (fp
, DEPRECATED_REGISTER_SIZE
));
1747 if (fsr
[IPSW_REGNUM
]) /* call dummy */
1748 write_register (SP_REGNUM
, fp
- 48);
1750 write_register (SP_REGNUM
, fp
);
1752 /* The PC we just restored may be inside a return trampoline. If so
1753 we want to restart the inferior and run it through the trampoline.
1755 Do this by setting a momentary breakpoint at the location the
1756 trampoline returns to.
1758 Don't skip through the trampoline if we're popping a dummy frame. */
1759 target_pc
= SKIP_TRAMPOLINE_CODE (npc
& ~0x3) & ~0x3;
1760 if (target_pc
&& !fsr
[IPSW_REGNUM
])
1762 struct symtab_and_line sal
;
1763 struct breakpoint
*breakpoint
;
1764 struct cleanup
*old_chain
;
1766 /* Set up our breakpoint. Set it to be silent as the MI code
1767 for "return_command" will print the frame we returned to. */
1768 sal
= find_pc_line (target_pc
, 0);
1770 breakpoint
= set_momentary_breakpoint (sal
, null_frame_id
, bp_finish
);
1771 breakpoint
->silent
= 1;
1773 /* So we can clean things up. */
1774 old_chain
= make_cleanup_delete_breakpoint (breakpoint
);
1776 /* Start up the inferior. */
1777 clear_proceed_status ();
1778 proceed_to_finish
= 1;
1779 proceed ((CORE_ADDR
) -1, TARGET_SIGNAL_DEFAULT
, 0);
1781 /* Perform our cleanups. */
1782 do_cleanups (old_chain
);
1784 flush_cached_frames ();
1787 /* After returning to a dummy on the stack, restore the instruction
1788 queue space registers. */
1791 restore_pc_queue (CORE_ADDR
*fsr
)
1793 CORE_ADDR pc
= read_pc ();
1794 CORE_ADDR new_pc
= read_memory_integer (fsr
[PCOQ_HEAD_REGNUM
],
1795 TARGET_PTR_BIT
/ 8);
1796 struct target_waitstatus w
;
1799 /* Advance past break instruction in the call dummy. */
1800 write_register (PCOQ_HEAD_REGNUM
, pc
+ 4);
1801 write_register (PCOQ_TAIL_REGNUM
, pc
+ 8);
1803 /* HPUX doesn't let us set the space registers or the space
1804 registers of the PC queue through ptrace. Boo, hiss.
1805 Conveniently, the call dummy has this sequence of instructions
1810 So, load up the registers and single step until we are in the
1813 write_register (21, read_memory_integer (fsr
[PCSQ_HEAD_REGNUM
],
1814 DEPRECATED_REGISTER_SIZE
));
1815 write_register (22, new_pc
);
1817 for (insn_count
= 0; insn_count
< 3; insn_count
++)
1819 /* FIXME: What if the inferior gets a signal right now? Want to
1820 merge this into wait_for_inferior (as a special kind of
1821 watchpoint? By setting a breakpoint at the end? Is there
1822 any other choice? Is there *any* way to do this stuff with
1823 ptrace() or some equivalent?). */
1825 target_wait (inferior_ptid
, &w
);
1827 if (w
.kind
== TARGET_WAITKIND_SIGNALLED
)
1829 stop_signal
= w
.value
.sig
;
1830 terminal_ours_for_output ();
1831 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1832 target_signal_to_name (stop_signal
),
1833 target_signal_to_string (stop_signal
));
1834 gdb_flush (gdb_stdout
);
1838 target_terminal_ours ();
1839 target_fetch_registers (-1);
1844 #ifdef PA20W_CALLING_CONVENTIONS
1846 /* This function pushes a stack frame with arguments as part of the
1847 inferior function calling mechanism.
1849 This is the version for the PA64, in which later arguments appear
1850 at higher addresses. (The stack always grows towards higher
1853 We simply allocate the appropriate amount of stack space and put
1854 arguments into their proper slots. The call dummy code will copy
1855 arguments into registers as needed by the ABI.
1857 This ABI also requires that the caller provide an argument pointer
1858 to the callee, so we do that too. */
1861 hppa_push_arguments (int nargs
, struct value
**args
, CORE_ADDR sp
,
1862 int struct_return
, CORE_ADDR struct_addr
)
1864 /* array of arguments' offsets */
1865 int *offset
= (int *) alloca (nargs
* sizeof (int));
1867 /* array of arguments' lengths: real lengths in bytes, not aligned to
1869 int *lengths
= (int *) alloca (nargs
* sizeof (int));
1871 /* The value of SP as it was passed into this function after
1873 CORE_ADDR orig_sp
= DEPRECATED_STACK_ALIGN (sp
);
1875 /* The number of stack bytes occupied by the current argument. */
1878 /* The total number of bytes reserved for the arguments. */
1879 int cum_bytes_reserved
= 0;
1881 /* Similarly, but aligned. */
1882 int cum_bytes_aligned
= 0;
1885 /* Iterate over each argument provided by the user. */
1886 for (i
= 0; i
< nargs
; i
++)
1888 struct type
*arg_type
= VALUE_TYPE (args
[i
]);
1890 /* Integral scalar values smaller than a register are padded on
1891 the left. We do this by promoting them to full-width,
1892 although the ABI says to pad them with garbage. */
1893 if (is_integral_type (arg_type
)
1894 && TYPE_LENGTH (arg_type
) < DEPRECATED_REGISTER_SIZE
)
1896 args
[i
] = value_cast ((TYPE_UNSIGNED (arg_type
)
1897 ? builtin_type_unsigned_long
1898 : builtin_type_long
),
1900 arg_type
= VALUE_TYPE (args
[i
]);
1903 lengths
[i
] = TYPE_LENGTH (arg_type
);
1905 /* Align the size of the argument to the word size for this
1907 bytes_reserved
= (lengths
[i
] + DEPRECATED_REGISTER_SIZE
- 1) & -DEPRECATED_REGISTER_SIZE
;
1909 offset
[i
] = cum_bytes_reserved
;
1911 /* Aggregates larger than eight bytes (the only types larger
1912 than eight bytes we have) are aligned on a 16-byte boundary,
1913 possibly padded on the right with garbage. This may leave an
1914 empty word on the stack, and thus an unused register, as per
1916 if (bytes_reserved
> 8)
1918 /* Round up the offset to a multiple of two slots. */
1919 int new_offset
= ((offset
[i
] + 2*DEPRECATED_REGISTER_SIZE
-1)
1920 & -(2*DEPRECATED_REGISTER_SIZE
));
1922 /* Note the space we've wasted, if any. */
1923 bytes_reserved
+= new_offset
- offset
[i
];
1924 offset
[i
] = new_offset
;
1927 cum_bytes_reserved
+= bytes_reserved
;
1930 /* CUM_BYTES_RESERVED already accounts for all the arguments
1931 passed by the user. However, the ABIs mandate minimum stack space
1932 allocations for outgoing arguments.
1934 The ABIs also mandate minimum stack alignments which we must
1936 cum_bytes_aligned
= DEPRECATED_STACK_ALIGN (cum_bytes_reserved
);
1937 sp
+= max (cum_bytes_aligned
, REG_PARM_STACK_SPACE
);
1939 /* Now write each of the args at the proper offset down the stack. */
1940 for (i
= 0; i
< nargs
; i
++)
1941 write_memory (orig_sp
+ offset
[i
], VALUE_CONTENTS (args
[i
]), lengths
[i
]);
1943 /* If a structure has to be returned, set up register 28 to hold its
1946 write_register (28, struct_addr
);
1948 /* For the PA64 we must pass a pointer to the outgoing argument list.
1949 The ABI mandates that the pointer should point to the first byte of
1950 storage beyond the register flushback area.
1952 However, the call dummy expects the outgoing argument pointer to
1953 be passed in register %r4. */
1954 write_register (4, orig_sp
+ REG_PARM_STACK_SPACE
);
1956 /* ?!? This needs further work. We need to set up the global data
1957 pointer for this procedure. This assumes the same global pointer
1958 for every procedure. The call dummy expects the dp value to
1959 be passed in register %r6. */
1960 write_register (6, read_register (27));
1962 /* The stack will have 64 bytes of additional space for a frame marker. */
1968 /* This function pushes a stack frame with arguments as part of the
1969 inferior function calling mechanism.
1971 This is the version of the function for the 32-bit PA machines, in
1972 which later arguments appear at lower addresses. (The stack always
1973 grows towards higher addresses.)
1975 We simply allocate the appropriate amount of stack space and put
1976 arguments into their proper slots. The call dummy code will copy
1977 arguments into registers as needed by the ABI. */
1980 hppa_push_arguments (int nargs
, struct value
**args
, CORE_ADDR sp
,
1981 int struct_return
, CORE_ADDR struct_addr
)
1983 /* array of arguments' offsets */
1984 int *offset
= (int *) alloca (nargs
* sizeof (int));
1986 /* array of arguments' lengths: real lengths in bytes, not aligned to
1988 int *lengths
= (int *) alloca (nargs
* sizeof (int));
1990 /* The number of stack bytes occupied by the current argument. */
1993 /* The total number of bytes reserved for the arguments. */
1994 int cum_bytes_reserved
= 0;
1996 /* Similarly, but aligned. */
1997 int cum_bytes_aligned
= 0;
2000 /* Iterate over each argument provided by the user. */
2001 for (i
= 0; i
< nargs
; i
++)
2003 lengths
[i
] = TYPE_LENGTH (VALUE_TYPE (args
[i
]));
2005 /* Align the size of the argument to the word size for this
2007 bytes_reserved
= (lengths
[i
] + DEPRECATED_REGISTER_SIZE
- 1) & -DEPRECATED_REGISTER_SIZE
;
2009 offset
[i
] = (cum_bytes_reserved
2010 + (lengths
[i
] > 4 ? bytes_reserved
: lengths
[i
]));
2012 /* If the argument is a double word argument, then it needs to be
2013 double word aligned. */
2014 if ((bytes_reserved
== 2 * DEPRECATED_REGISTER_SIZE
)
2015 && (offset
[i
] % 2 * DEPRECATED_REGISTER_SIZE
))
2018 /* BYTES_RESERVED is already aligned to the word, so we put
2019 the argument at one word more down the stack.
2021 This will leave one empty word on the stack, and one unused
2022 register as mandated by the ABI. */
2023 new_offset
= ((offset
[i
] + 2 * DEPRECATED_REGISTER_SIZE
- 1)
2024 & -(2 * DEPRECATED_REGISTER_SIZE
));
2026 if ((new_offset
- offset
[i
]) >= 2 * DEPRECATED_REGISTER_SIZE
)
2028 bytes_reserved
+= DEPRECATED_REGISTER_SIZE
;
2029 offset
[i
] += DEPRECATED_REGISTER_SIZE
;
2033 cum_bytes_reserved
+= bytes_reserved
;
2037 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2038 by the user. However, the ABI mandates minimum stack space
2039 allocations for outgoing arguments.
2041 The ABI also mandates minimum stack alignments which we must
2043 cum_bytes_aligned
= DEPRECATED_STACK_ALIGN (cum_bytes_reserved
);
2044 sp
+= max (cum_bytes_aligned
, REG_PARM_STACK_SPACE
);
2046 /* Now write each of the args at the proper offset down the stack.
2047 ?!? We need to promote values to a full register instead of skipping
2048 words in the stack. */
2049 for (i
= 0; i
< nargs
; i
++)
2050 write_memory (sp
- offset
[i
], VALUE_CONTENTS (args
[i
]), lengths
[i
]);
2052 /* If a structure has to be returned, set up register 28 to hold its
2055 write_register (28, struct_addr
);
2057 /* The stack will have 32 bytes of additional space for a frame marker. */
2063 /* elz: this function returns a value which is built looking at the given address.
2064 It is called from call_function_by_hand, in case we need to return a
2065 value which is larger than 64 bits, and it is stored in the stack rather than
2066 in the registers r28 and r29 or fr4.
2067 This function does the same stuff as value_being_returned in values.c, but
2068 gets the value from the stack rather than from the buffer where all the
2069 registers were saved when the function called completed. */
2070 /* FIXME: cagney/2003-09-27: This function is no longer needed. The
2071 inferior function call code now directly handles the case described
2074 hppa_value_returned_from_stack (struct type
*valtype
, CORE_ADDR addr
)
2078 val
= allocate_value (valtype
);
2079 CHECK_TYPEDEF (valtype
);
2080 target_read_memory (addr
, VALUE_CONTENTS_RAW (val
), TYPE_LENGTH (valtype
));
2087 /* elz: Used to lookup a symbol in the shared libraries.
2088 This function calls shl_findsym, indirectly through a
2089 call to __d_shl_get. __d_shl_get is in end.c, which is always
2090 linked in by the hp compilers/linkers.
2091 The call to shl_findsym cannot be made directly because it needs
2092 to be active in target address space.
2093 inputs: - minimal symbol pointer for the function we want to look up
2094 - address in target space of the descriptor for the library
2095 where we want to look the symbol up.
2096 This address is retrieved using the
2097 som_solib_get_solib_by_pc function (somsolib.c).
2098 output: - real address in the library of the function.
2099 note: the handle can be null, in which case shl_findsym will look for
2100 the symbol in all the loaded shared libraries.
2101 files to look at if you need reference on this stuff:
2102 dld.c, dld_shl_findsym.c
2104 man entry for shl_findsym */
2107 find_stub_with_shl_get (struct minimal_symbol
*function
, CORE_ADDR handle
)
2109 struct symbol
*get_sym
, *symbol2
;
2110 struct minimal_symbol
*buff_minsym
, *msymbol
;
2112 struct value
**args
;
2113 struct value
*funcval
;
2116 int x
, namelen
, err_value
, tmp
= -1;
2117 CORE_ADDR endo_buff_addr
, value_return_addr
, errno_return_addr
;
2118 CORE_ADDR stub_addr
;
2121 args
= alloca (sizeof (struct value
*) * 8); /* 6 for the arguments and one null one??? */
2122 funcval
= find_function_in_inferior ("__d_shl_get");
2123 get_sym
= lookup_symbol ("__d_shl_get", NULL
, VAR_DOMAIN
, NULL
, NULL
);
2124 buff_minsym
= lookup_minimal_symbol ("__buffer", NULL
, NULL
);
2125 msymbol
= lookup_minimal_symbol ("__shldp", NULL
, NULL
);
2126 symbol2
= lookup_symbol ("__shldp", NULL
, VAR_DOMAIN
, NULL
, NULL
);
2127 endo_buff_addr
= SYMBOL_VALUE_ADDRESS (buff_minsym
);
2128 namelen
= strlen (DEPRECATED_SYMBOL_NAME (function
));
2129 value_return_addr
= endo_buff_addr
+ namelen
;
2130 ftype
= check_typedef (SYMBOL_TYPE (get_sym
));
2133 if ((x
= value_return_addr
% 64) != 0)
2134 value_return_addr
= value_return_addr
+ 64 - x
;
2136 errno_return_addr
= value_return_addr
+ 64;
2139 /* set up stuff needed by __d_shl_get in buffer in end.o */
2141 target_write_memory (endo_buff_addr
, DEPRECATED_SYMBOL_NAME (function
), namelen
);
2143 target_write_memory (value_return_addr
, (char *) &tmp
, 4);
2145 target_write_memory (errno_return_addr
, (char *) &tmp
, 4);
2147 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol
),
2148 (char *) &handle
, 4);
2150 /* now prepare the arguments for the call */
2152 args
[0] = value_from_longest (TYPE_FIELD_TYPE (ftype
, 0), 12);
2153 args
[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 1), SYMBOL_VALUE_ADDRESS (msymbol
));
2154 args
[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 2), endo_buff_addr
);
2155 args
[3] = value_from_longest (TYPE_FIELD_TYPE (ftype
, 3), TYPE_PROCEDURE
);
2156 args
[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 4), value_return_addr
);
2157 args
[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 5), errno_return_addr
);
2159 /* now call the function */
2161 val
= call_function_by_hand (funcval
, 6, args
);
2163 /* now get the results */
2165 target_read_memory (errno_return_addr
, (char *) &err_value
, sizeof (err_value
));
2167 target_read_memory (value_return_addr
, (char *) &stub_addr
, sizeof (stub_addr
));
2169 error ("call to __d_shl_get failed, error code is %d", err_value
);
2174 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2176 cover_find_stub_with_shl_get (void *args_untyped
)
2178 args_for_find_stub
*args
= args_untyped
;
2179 args
->return_val
= find_stub_with_shl_get (args
->msym
, args
->solib_handle
);
2183 /* Insert the specified number of args and function address
2184 into a call sequence of the above form stored at DUMMYNAME.
2186 On the hppa we need to call the stack dummy through $$dyncall.
2187 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2188 argument, real_pc, which is the location where gdb should start up
2189 the inferior to do the function call.
2191 This has to work across several versions of hpux, bsd, osf1. It has to
2192 work regardless of what compiler was used to build the inferior program.
2193 It should work regardless of whether or not end.o is available. It has
2194 to work even if gdb can not call into the dynamic loader in the inferior
2195 to query it for symbol names and addresses.
2197 Yes, all those cases should work. Luckily code exists to handle most
2198 of them. The complexity is in selecting exactly what scheme should
2199 be used to perform the inferior call.
2201 At the current time this routine is known not to handle cases where
2202 the program was linked with HP's compiler without including end.o.
2204 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2207 hppa_fix_call_dummy (char *dummy
, CORE_ADDR pc
, CORE_ADDR fun
, int nargs
,
2208 struct value
**args
, struct type
*type
, int gcc_p
)
2210 CORE_ADDR dyncall_addr
;
2211 struct minimal_symbol
*msymbol
;
2212 struct minimal_symbol
*trampoline
;
2213 int flags
= read_register (FLAGS_REGNUM
);
2214 struct unwind_table_entry
*u
= NULL
;
2215 CORE_ADDR new_stub
= 0;
2216 CORE_ADDR solib_handle
= 0;
2218 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2219 passed an import stub, not a PLABEL. It is also necessary to set %r19
2220 (the PIC register) before performing the call.
2222 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2223 are calling the target directly. When using __d_plt_call we want to
2224 use a PLABEL instead of an import stub. */
2225 int using_gcc_plt_call
= 1;
2227 #ifdef GDB_TARGET_IS_HPPA_20W
2228 /* We currently use completely different code for the PA2.0W inferior
2229 function call sequences. This needs to be cleaned up. */
2231 CORE_ADDR pcsqh
, pcsqt
, pcoqh
, pcoqt
, sr5
;
2232 struct target_waitstatus w
;
2236 struct objfile
*objfile
;
2238 /* We can not modify the PC space queues directly, so we start
2239 up the inferior and execute a couple instructions to set the
2240 space queues so that they point to the call dummy in the stack. */
2241 pcsqh
= read_register (PCSQ_HEAD_REGNUM
);
2242 sr5
= read_register (SR5_REGNUM
);
2245 pcoqh
= read_register (PCOQ_HEAD_REGNUM
);
2246 pcoqt
= read_register (PCOQ_TAIL_REGNUM
);
2247 if (target_read_memory (pcoqh
, buf
, 4) != 0)
2248 error ("Couldn't modify space queue\n");
2249 inst1
= extract_unsigned_integer (buf
, 4);
2251 if (target_read_memory (pcoqt
, buf
, 4) != 0)
2252 error ("Couldn't modify space queue\n");
2253 inst2
= extract_unsigned_integer (buf
, 4);
2256 *((int *) buf
) = 0xe820d000;
2257 if (target_write_memory (pcoqh
, buf
, 4) != 0)
2258 error ("Couldn't modify space queue\n");
2261 *((int *) buf
) = 0x08000240;
2262 if (target_write_memory (pcoqt
, buf
, 4) != 0)
2264 *((int *) buf
) = inst1
;
2265 target_write_memory (pcoqh
, buf
, 4);
2266 error ("Couldn't modify space queue\n");
2269 write_register (1, pc
);
2271 /* Single step twice, the BVE instruction will set the space queue
2272 such that it points to the PC value written immediately above
2273 (ie the call dummy). */
2275 target_wait (inferior_ptid
, &w
);
2277 target_wait (inferior_ptid
, &w
);
2279 /* Restore the two instructions at the old PC locations. */
2280 *((int *) buf
) = inst1
;
2281 target_write_memory (pcoqh
, buf
, 4);
2282 *((int *) buf
) = inst2
;
2283 target_write_memory (pcoqt
, buf
, 4);
2286 /* The call dummy wants the ultimate destination address initially
2288 write_register (5, fun
);
2290 /* We need to see if this objfile has a different DP value than our
2291 own (it could be a shared library for example). */
2292 ALL_OBJFILES (objfile
)
2294 struct obj_section
*s
;
2295 obj_private_data_t
*obj_private
;
2297 /* See if FUN is in any section within this shared library. */
2298 for (s
= objfile
->sections
; s
< objfile
->sections_end
; s
++)
2299 if (s
->addr
<= fun
&& fun
< s
->endaddr
)
2302 if (s
>= objfile
->sections_end
)
2305 obj_private
= (obj_private_data_t
*) objfile
->obj_private
;
2307 /* The DP value may be different for each objfile. But within an
2308 objfile each function uses the same dp value. Thus we do not need
2309 to grope around the opd section looking for dp values.
2311 ?!? This is not strictly correct since we may be in a shared library
2312 and want to call back into the main program. To make that case
2313 work correctly we need to set obj_private->dp for the main program's
2314 objfile, then remove this conditional. */
2315 if (obj_private
->dp
)
2316 write_register (27, obj_private
->dp
);
2323 #ifndef GDB_TARGET_IS_HPPA_20W
2324 /* Prefer __gcc_plt_call over the HP supplied routine because
2325 __gcc_plt_call works for any number of arguments. */
2327 if (lookup_minimal_symbol ("__gcc_plt_call", NULL
, NULL
) == NULL
)
2328 using_gcc_plt_call
= 0;
2330 msymbol
= lookup_minimal_symbol ("$$dyncall", NULL
, NULL
);
2331 if (msymbol
== NULL
)
2332 error ("Can't find an address for $$dyncall trampoline");
2334 dyncall_addr
= SYMBOL_VALUE_ADDRESS (msymbol
);
2336 /* FUN could be a procedure label, in which case we have to get
2337 its real address and the value of its GOT/DP if we plan to
2338 call the routine via gcc_plt_call. */
2339 if ((fun
& 0x2) && using_gcc_plt_call
)
2341 /* Get the GOT/DP value for the target function. It's
2342 at *(fun+4). Note the call dummy is *NOT* allowed to
2343 trash %r19 before calling the target function. */
2344 write_register (19, read_memory_integer ((fun
& ~0x3) + 4,
2345 DEPRECATED_REGISTER_SIZE
));
2347 /* Now get the real address for the function we are calling, it's
2349 fun
= (CORE_ADDR
) read_memory_integer (fun
& ~0x3,
2350 TARGET_PTR_BIT
/ 8);
2355 #ifndef GDB_TARGET_IS_PA_ELF
2356 /* FUN could be an export stub, the real address of a function, or
2357 a PLABEL. When using gcc's PLT call routine we must call an import
2358 stub rather than the export stub or real function for lazy binding
2361 If we are using the gcc PLT call routine, then we need to
2362 get the import stub for the target function. */
2363 if (using_gcc_plt_call
&& som_solib_get_got_by_pc (fun
))
2365 struct objfile
*objfile
;
2366 struct minimal_symbol
*funsymbol
, *stub_symbol
;
2367 CORE_ADDR newfun
= 0;
2369 funsymbol
= lookup_minimal_symbol_by_pc (fun
);
2371 error ("Unable to find minimal symbol for target function.\n");
2373 /* Search all the object files for an import symbol with the
2375 ALL_OBJFILES (objfile
)
2378 = lookup_minimal_symbol_solib_trampoline
2379 (DEPRECATED_SYMBOL_NAME (funsymbol
), NULL
, objfile
);
2382 stub_symbol
= lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol
),
2385 /* Found a symbol with the right name. */
2388 struct unwind_table_entry
*u
;
2389 /* It must be a shared library trampoline. */
2390 if (MSYMBOL_TYPE (stub_symbol
) != mst_solib_trampoline
)
2393 /* It must also be an import stub. */
2394 u
= find_unwind_entry (SYMBOL_VALUE (stub_symbol
));
2396 || (u
->stub_unwind
.stub_type
!= IMPORT
2397 #ifdef GDB_NATIVE_HPUX_11
2398 /* Sigh. The hpux 10.20 dynamic linker will blow
2399 chunks if we perform a call to an unbound function
2400 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2401 linker will blow chunks if we do not call the
2402 unbound function via the IMPORT_SHLIB stub.
2404 We currently have no way to select bevahior on just
2405 the target. However, we only support HPUX/SOM in
2406 native mode. So we conditinalize on a native
2407 #ifdef. Ugly. Ugly. Ugly */
2408 && u
->stub_unwind
.stub_type
!= IMPORT_SHLIB
2413 /* OK. Looks like the correct import stub. */
2414 newfun
= SYMBOL_VALUE (stub_symbol
);
2417 /* If we found an IMPORT stub, then we want to stop
2418 searching now. If we found an IMPORT_SHLIB, we want
2419 to continue the search in the hopes that we will find
2421 if (u
->stub_unwind
.stub_type
== IMPORT
)
2426 /* Ouch. We did not find an import stub. Make an attempt to
2427 do the right thing instead of just croaking. Most of the
2428 time this will actually work. */
2430 write_register (19, som_solib_get_got_by_pc (fun
));
2432 u
= find_unwind_entry (fun
);
2434 && (u
->stub_unwind
.stub_type
== IMPORT
2435 || u
->stub_unwind
.stub_type
== IMPORT_SHLIB
))
2436 trampoline
= lookup_minimal_symbol ("__gcc_plt_call", NULL
, NULL
);
2438 /* If we found the import stub in the shared library, then we have
2439 to set %r19 before we call the stub. */
2440 if (u
&& u
->stub_unwind
.stub_type
== IMPORT_SHLIB
)
2441 write_register (19, som_solib_get_got_by_pc (fun
));
2446 /* If we are calling into another load module then have sr4export call the
2447 magic __d_plt_call routine which is linked in from end.o.
2449 You can't use _sr4export to make the call as the value in sp-24 will get
2450 fried and you end up returning to the wrong location. You can't call the
2451 target as the code to bind the PLT entry to a function can't return to a
2454 Also, query the dynamic linker in the inferior to provide a suitable
2455 PLABEL for the target function. */
2456 if (!using_gcc_plt_call
)
2460 /* Get a handle for the shared library containing FUN. Given the
2461 handle we can query the shared library for a PLABEL. */
2462 solib_handle
= som_solib_get_solib_by_pc (fun
);
2466 struct minimal_symbol
*fmsymbol
= lookup_minimal_symbol_by_pc (fun
);
2468 trampoline
= lookup_minimal_symbol ("__d_plt_call", NULL
, NULL
);
2470 if (trampoline
== NULL
)
2472 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2475 /* This is where sr4export will jump to. */
2476 new_fun
= SYMBOL_VALUE_ADDRESS (trampoline
);
2478 /* If the function is in a shared library, then call __d_shl_get to
2479 get a PLABEL for the target function. */
2480 new_stub
= find_stub_with_shl_get (fmsymbol
, solib_handle
);
2483 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol
));
2485 /* We have to store the address of the stub in __shlib_funcptr. */
2486 msymbol
= lookup_minimal_symbol ("__shlib_funcptr", NULL
,
2487 (struct objfile
*) NULL
);
2489 if (msymbol
== NULL
)
2490 error ("Can't find an address for __shlib_funcptr");
2491 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol
),
2492 (char *) &new_stub
, 4);
2494 /* We want sr4export to call __d_plt_call, so we claim it is
2495 the final target. Clear trampoline. */
2501 /* Store upper 21 bits of function address into ldil. fun will either be
2502 the final target (most cases) or __d_plt_call when calling into a shared
2503 library and __gcc_plt_call is not available. */
2504 store_unsigned_integer
2505 (&dummy
[FUNC_LDIL_OFFSET
],
2507 deposit_21 (fun
>> 11,
2508 extract_unsigned_integer (&dummy
[FUNC_LDIL_OFFSET
],
2509 INSTRUCTION_SIZE
)));
2511 /* Store lower 11 bits of function address into ldo */
2512 store_unsigned_integer
2513 (&dummy
[FUNC_LDO_OFFSET
],
2515 deposit_14 (fun
& MASK_11
,
2516 extract_unsigned_integer (&dummy
[FUNC_LDO_OFFSET
],
2517 INSTRUCTION_SIZE
)));
2518 #ifdef SR4EXPORT_LDIL_OFFSET
2521 CORE_ADDR trampoline_addr
;
2523 /* We may still need sr4export's address too. */
2525 if (trampoline
== NULL
)
2527 msymbol
= lookup_minimal_symbol ("_sr4export", NULL
, NULL
);
2528 if (msymbol
== NULL
)
2529 error ("Can't find an address for _sr4export trampoline");
2531 trampoline_addr
= SYMBOL_VALUE_ADDRESS (msymbol
);
2534 trampoline_addr
= SYMBOL_VALUE_ADDRESS (trampoline
);
2537 /* Store upper 21 bits of trampoline's address into ldil */
2538 store_unsigned_integer
2539 (&dummy
[SR4EXPORT_LDIL_OFFSET
],
2541 deposit_21 (trampoline_addr
>> 11,
2542 extract_unsigned_integer (&dummy
[SR4EXPORT_LDIL_OFFSET
],
2543 INSTRUCTION_SIZE
)));
2545 /* Store lower 11 bits of trampoline's address into ldo */
2546 store_unsigned_integer
2547 (&dummy
[SR4EXPORT_LDO_OFFSET
],
2549 deposit_14 (trampoline_addr
& MASK_11
,
2550 extract_unsigned_integer (&dummy
[SR4EXPORT_LDO_OFFSET
],
2551 INSTRUCTION_SIZE
)));
2555 write_register (22, pc
);
2557 /* If we are in a syscall, then we should call the stack dummy
2558 directly. $$dyncall is not needed as the kernel sets up the
2559 space id registers properly based on the value in %r31. In
2560 fact calling $$dyncall will not work because the value in %r22
2561 will be clobbered on the syscall exit path.
2563 Similarly if the current PC is in a shared library. Note however,
2564 this scheme won't work if the shared library isn't mapped into
2565 the same space as the stack. */
2568 #ifndef GDB_TARGET_IS_PA_ELF
2569 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid
)))
2573 return dyncall_addr
;
2577 /* If the pid is in a syscall, then the FP register is not readable.
2578 We'll return zero in that case, rather than attempting to read it
2579 and cause a warning. */
2582 hppa_read_fp (int pid
)
2584 int flags
= read_register (FLAGS_REGNUM
);
2588 return (CORE_ADDR
) 0;
2591 /* This is the only site that may directly read_register () the FP
2592 register. All others must use deprecated_read_fp (). */
2593 return read_register (DEPRECATED_FP_REGNUM
);
2597 hppa_target_read_fp (void)
2599 return hppa_read_fp (PIDGET (inferior_ptid
));
2602 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2606 hppa_target_read_pc (ptid_t ptid
)
2608 int flags
= read_register_pid (FLAGS_REGNUM
, ptid
);
2610 /* The following test does not belong here. It is OS-specific, and belongs
2612 /* Test SS_INSYSCALL */
2614 return read_register_pid (31, ptid
) & ~0x3;
2616 return read_register_pid (PC_REGNUM
, ptid
) & ~0x3;
2619 /* Write out the PC. If currently in a syscall, then also write the new
2620 PC value into %r31. */
2623 hppa_target_write_pc (CORE_ADDR v
, ptid_t ptid
)
2625 int flags
= read_register_pid (FLAGS_REGNUM
, ptid
);
2627 /* The following test does not belong here. It is OS-specific, and belongs
2629 /* If in a syscall, then set %r31. Also make sure to get the
2630 privilege bits set correctly. */
2631 /* Test SS_INSYSCALL */
2633 write_register_pid (31, v
| 0x3, ptid
);
2635 write_register_pid (PC_REGNUM
, v
, ptid
);
2636 write_register_pid (DEPRECATED_NPC_REGNUM
, v
+ 4, ptid
);
2639 /* return the alignment of a type in bytes. Structures have the maximum
2640 alignment required by their fields. */
2643 hppa_alignof (struct type
*type
)
2645 int max_align
, align
, i
;
2646 CHECK_TYPEDEF (type
);
2647 switch (TYPE_CODE (type
))
2652 return TYPE_LENGTH (type
);
2653 case TYPE_CODE_ARRAY
:
2654 return hppa_alignof (TYPE_FIELD_TYPE (type
, 0));
2655 case TYPE_CODE_STRUCT
:
2656 case TYPE_CODE_UNION
:
2658 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
2660 /* Bit fields have no real alignment. */
2661 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2662 if (!TYPE_FIELD_BITSIZE (type
, i
)) /* elz: this should be bitsize */
2664 align
= hppa_alignof (TYPE_FIELD_TYPE (type
, i
));
2665 max_align
= max (max_align
, align
);
2674 /* Print the register regnum, or all registers if regnum is -1 */
2677 pa_do_registers_info (int regnum
, int fpregs
)
2679 char *raw_regs
= alloca (DEPRECATED_REGISTER_BYTES
);
2682 /* Make a copy of gdb's save area (may cause actual
2683 reads from the target). */
2684 for (i
= 0; i
< NUM_REGS
; i
++)
2685 frame_register_read (deprecated_selected_frame
, i
,
2686 raw_regs
+ DEPRECATED_REGISTER_BYTE (i
));
2689 pa_print_registers (raw_regs
, regnum
, fpregs
);
2690 else if (regnum
< FP4_REGNUM
)
2694 /* Why is the value not passed through "extract_signed_integer"
2695 as in "pa_print_registers" below? */
2696 pa_register_look_aside (raw_regs
, regnum
, ®_val
[0]);
2700 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum
), reg_val
[1]);
2704 /* Fancy % formats to prevent leading zeros. */
2705 if (reg_val
[0] == 0)
2706 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum
), reg_val
[1]);
2708 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum
),
2709 reg_val
[0], reg_val
[1]);
2713 /* Note that real floating point values only start at
2714 FP4_REGNUM. FP0 and up are just status and error
2715 registers, which have integral (bit) values. */
2716 pa_print_fp_reg (regnum
);
2719 /********** new function ********************/
2721 pa_do_strcat_registers_info (int regnum
, int fpregs
, struct ui_file
*stream
,
2722 enum precision_type precision
)
2724 char *raw_regs
= alloca (DEPRECATED_REGISTER_BYTES
);
2727 /* Make a copy of gdb's save area (may cause actual
2728 reads from the target). */
2729 for (i
= 0; i
< NUM_REGS
; i
++)
2730 frame_register_read (deprecated_selected_frame
, i
,
2731 raw_regs
+ DEPRECATED_REGISTER_BYTE (i
));
2734 pa_strcat_registers (raw_regs
, regnum
, fpregs
, stream
);
2736 else if (regnum
< FP4_REGNUM
)
2740 /* Why is the value not passed through "extract_signed_integer"
2741 as in "pa_print_registers" below? */
2742 pa_register_look_aside (raw_regs
, regnum
, ®_val
[0]);
2746 fprintf_unfiltered (stream
, "%s %lx", REGISTER_NAME (regnum
), reg_val
[1]);
2750 /* Fancy % formats to prevent leading zeros. */
2751 if (reg_val
[0] == 0)
2752 fprintf_unfiltered (stream
, "%s %lx", REGISTER_NAME (regnum
),
2755 fprintf_unfiltered (stream
, "%s %lx%8.8lx", REGISTER_NAME (regnum
),
2756 reg_val
[0], reg_val
[1]);
2760 /* Note that real floating point values only start at
2761 FP4_REGNUM. FP0 and up are just status and error
2762 registers, which have integral (bit) values. */
2763 pa_strcat_fp_reg (regnum
, stream
, precision
);
2766 /* If this is a PA2.0 machine, fetch the real 64-bit register
2767 value. Otherwise use the info from gdb's saved register area.
2769 Note that reg_val is really expected to be an array of longs,
2770 with two elements. */
2772 pa_register_look_aside (char *raw_regs
, int regnum
, long *raw_val
)
2774 static int know_which
= 0; /* False */
2777 unsigned int offset
;
2782 char buf
[MAX_REGISTER_SIZE
];
2787 if (CPU_PA_RISC2_0
== sysconf (_SC_CPU_VERSION
))
2792 know_which
= 1; /* True */
2800 raw_val
[1] = *(long *) (raw_regs
+ DEPRECATED_REGISTER_BYTE (regnum
));
2804 /* Code below copied from hppah-nat.c, with fixes for wide
2805 registers, using different area of save_state, etc. */
2806 if (regnum
== FLAGS_REGNUM
|| regnum
>= FP0_REGNUM
||
2807 !HAVE_STRUCT_SAVE_STATE_T
|| !HAVE_STRUCT_MEMBER_SS_WIDE
)
2809 /* Use narrow regs area of save_state and default macro. */
2810 offset
= U_REGS_OFFSET
;
2811 regaddr
= register_addr (regnum
, offset
);
2816 /* Use wide regs area, and calculate registers as 8 bytes wide.
2818 We'd like to do this, but current version of "C" doesn't
2821 offset = offsetof(save_state_t, ss_wide);
2823 Note that to avoid "C" doing typed pointer arithmetic, we
2824 have to cast away the type in our offset calculation:
2825 otherwise we get an offset of 1! */
2827 /* NB: save_state_t is not available before HPUX 9.
2828 The ss_wide field is not available previous to HPUX 10.20,
2829 so to avoid compile-time warnings, we only compile this for
2830 PA 2.0 processors. This control path should only be followed
2831 if we're debugging a PA 2.0 processor, so this should not cause
2834 /* #if the following code out so that this file can still be
2835 compiled on older HPUX boxes (< 10.20) which don't have
2836 this structure/structure member. */
2837 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2840 offset
= ((int) &temp
.ss_wide
) - ((int) &temp
);
2841 regaddr
= offset
+ regnum
* 8;
2846 for (i
= start
; i
< 2; i
++)
2849 raw_val
[i
] = call_ptrace (PT_RUREGS
, PIDGET (inferior_ptid
),
2850 (PTRACE_ARG3_TYPE
) regaddr
, 0);
2853 /* Warning, not error, in case we are attached; sometimes the
2854 kernel doesn't let us at the registers. */
2855 char *err
= safe_strerror (errno
);
2856 char *msg
= alloca (strlen (err
) + 128);
2857 sprintf (msg
, "reading register %s: %s", REGISTER_NAME (regnum
), err
);
2862 regaddr
+= sizeof (long);
2865 if (regnum
== PCOQ_HEAD_REGNUM
|| regnum
== PCOQ_TAIL_REGNUM
)
2866 raw_val
[1] &= ~0x3; /* I think we're masking out space bits */
2872 /* "Info all-reg" command */
2875 pa_print_registers (char *raw_regs
, int regnum
, int fpregs
)
2878 /* Alas, we are compiled so that "long long" is 32 bits */
2881 int rows
= 48, columns
= 2;
2883 for (i
= 0; i
< rows
; i
++)
2885 for (j
= 0; j
< columns
; j
++)
2887 /* We display registers in column-major order. */
2888 int regnum
= i
+ j
* rows
;
2890 /* Q: Why is the value passed through "extract_signed_integer",
2891 while above, in "pa_do_registers_info" it isn't?
2893 pa_register_look_aside (raw_regs
, regnum
, &raw_val
[0]);
2895 /* Even fancier % formats to prevent leading zeros
2896 and still maintain the output in columns. */
2899 /* Being big-endian, on this machine the low bits
2900 (the ones we want to look at) are in the second longword. */
2901 long_val
= extract_signed_integer (&raw_val
[1], 4);
2902 printf_filtered ("%10.10s: %8lx ",
2903 REGISTER_NAME (regnum
), long_val
);
2907 /* raw_val = extract_signed_integer(&raw_val, 8); */
2908 if (raw_val
[0] == 0)
2909 printf_filtered ("%10.10s: %8lx ",
2910 REGISTER_NAME (regnum
), raw_val
[1]);
2912 printf_filtered ("%10.10s: %8lx%8.8lx ",
2913 REGISTER_NAME (regnum
),
2914 raw_val
[0], raw_val
[1]);
2917 printf_unfiltered ("\n");
2921 for (i
= FP4_REGNUM
; i
< NUM_REGS
; i
++) /* FP4_REGNUM == 72 */
2922 pa_print_fp_reg (i
);
2925 /************* new function ******************/
2927 pa_strcat_registers (char *raw_regs
, int regnum
, int fpregs
,
2928 struct ui_file
*stream
)
2931 long raw_val
[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2933 enum precision_type precision
;
2935 precision
= unspecified_precision
;
2937 for (i
= 0; i
< 18; i
++)
2939 for (j
= 0; j
< 4; j
++)
2941 /* Q: Why is the value passed through "extract_signed_integer",
2942 while above, in "pa_do_registers_info" it isn't?
2944 pa_register_look_aside (raw_regs
, i
+ (j
* 18), &raw_val
[0]);
2946 /* Even fancier % formats to prevent leading zeros
2947 and still maintain the output in columns. */
2950 /* Being big-endian, on this machine the low bits
2951 (the ones we want to look at) are in the second longword. */
2952 long_val
= extract_signed_integer (&raw_val
[1], 4);
2953 fprintf_filtered (stream
, "%8.8s: %8lx ",
2954 REGISTER_NAME (i
+ (j
* 18)), long_val
);
2958 /* raw_val = extract_signed_integer(&raw_val, 8); */
2959 if (raw_val
[0] == 0)
2960 fprintf_filtered (stream
, "%8.8s: %8lx ",
2961 REGISTER_NAME (i
+ (j
* 18)), raw_val
[1]);
2963 fprintf_filtered (stream
, "%8.8s: %8lx%8.8lx ",
2964 REGISTER_NAME (i
+ (j
* 18)), raw_val
[0],
2968 fprintf_unfiltered (stream
, "\n");
2972 for (i
= FP4_REGNUM
; i
< NUM_REGS
; i
++) /* FP4_REGNUM == 72 */
2973 pa_strcat_fp_reg (i
, stream
, precision
);
2977 pa_print_fp_reg (int i
)
2979 char raw_buffer
[MAX_REGISTER_SIZE
];
2980 char virtual_buffer
[MAX_REGISTER_SIZE
];
2982 /* Get 32bits of data. */
2983 frame_register_read (deprecated_selected_frame
, i
, raw_buffer
);
2985 /* Put it in the buffer. No conversions are ever necessary. */
2986 memcpy (virtual_buffer
, raw_buffer
, REGISTER_RAW_SIZE (i
));
2988 fputs_filtered (REGISTER_NAME (i
), gdb_stdout
);
2989 print_spaces_filtered (8 - strlen (REGISTER_NAME (i
)), gdb_stdout
);
2990 fputs_filtered ("(single precision) ", gdb_stdout
);
2992 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i
), virtual_buffer
, 0, 0, gdb_stdout
, 0,
2993 1, 0, Val_pretty_default
);
2994 printf_filtered ("\n");
2996 /* If "i" is even, then this register can also be a double-precision
2997 FP register. Dump it out as such. */
3000 /* Get the data in raw format for the 2nd half. */
3001 frame_register_read (deprecated_selected_frame
, i
+ 1, raw_buffer
);
3003 /* Copy it into the appropriate part of the virtual buffer. */
3004 memcpy (virtual_buffer
+ REGISTER_RAW_SIZE (i
), raw_buffer
,
3005 REGISTER_RAW_SIZE (i
));
3007 /* Dump it as a double. */
3008 fputs_filtered (REGISTER_NAME (i
), gdb_stdout
);
3009 print_spaces_filtered (8 - strlen (REGISTER_NAME (i
)), gdb_stdout
);
3010 fputs_filtered ("(double precision) ", gdb_stdout
);
3012 val_print (builtin_type_double
, virtual_buffer
, 0, 0, gdb_stdout
, 0,
3013 1, 0, Val_pretty_default
);
3014 printf_filtered ("\n");
3018 /*************** new function ***********************/
3020 pa_strcat_fp_reg (int i
, struct ui_file
*stream
, enum precision_type precision
)
3022 char raw_buffer
[MAX_REGISTER_SIZE
];
3023 char virtual_buffer
[MAX_REGISTER_SIZE
];
3025 fputs_filtered (REGISTER_NAME (i
), stream
);
3026 print_spaces_filtered (8 - strlen (REGISTER_NAME (i
)), stream
);
3028 /* Get 32bits of data. */
3029 frame_register_read (deprecated_selected_frame
, i
, raw_buffer
);
3031 /* Put it in the buffer. No conversions are ever necessary. */
3032 memcpy (virtual_buffer
, raw_buffer
, REGISTER_RAW_SIZE (i
));
3034 if (precision
== double_precision
&& (i
% 2) == 0)
3037 char raw_buf
[MAX_REGISTER_SIZE
];
3039 /* Get the data in raw format for the 2nd half. */
3040 frame_register_read (deprecated_selected_frame
, i
+ 1, raw_buf
);
3042 /* Copy it into the appropriate part of the virtual buffer. */
3043 memcpy (virtual_buffer
+ REGISTER_RAW_SIZE (i
), raw_buf
, REGISTER_RAW_SIZE (i
));
3045 val_print (builtin_type_double
, virtual_buffer
, 0, 0, stream
, 0,
3046 1, 0, Val_pretty_default
);
3051 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i
), virtual_buffer
, 0, 0, stream
, 0,
3052 1, 0, Val_pretty_default
);
3057 /* Return one if PC is in the call path of a trampoline, else return zero.
3059 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3060 just shared library trampolines (import, export). */
3063 hppa_in_solib_call_trampoline (CORE_ADDR pc
, char *name
)
3065 struct minimal_symbol
*minsym
;
3066 struct unwind_table_entry
*u
;
3067 static CORE_ADDR dyncall
= 0;
3068 static CORE_ADDR sr4export
= 0;
3070 #ifdef GDB_TARGET_IS_HPPA_20W
3071 /* PA64 has a completely different stub/trampoline scheme. Is it
3072 better? Maybe. It's certainly harder to determine with any
3073 certainty that we are in a stub because we can not refer to the
3076 The heuristic is simple. Try to lookup the current PC value in th
3077 minimal symbol table. If that fails, then assume we are not in a
3080 Then see if the PC value falls within the section bounds for the
3081 section containing the minimal symbol we found in the first
3082 step. If it does, then assume we are not in a stub and return.
3084 Finally peek at the instructions to see if they look like a stub. */
3086 struct minimal_symbol
*minsym
;
3091 minsym
= lookup_minimal_symbol_by_pc (pc
);
3095 sec
= SYMBOL_BFD_SECTION (minsym
);
3098 && sec
->vma
+ sec
->_cooked_size
< pc
)
3101 /* We might be in a stub. Peek at the instructions. Stubs are 3
3102 instructions long. */
3103 insn
= read_memory_integer (pc
, 4);
3105 /* Find out where we think we are within the stub. */
3106 if ((insn
& 0xffffc00e) == 0x53610000)
3108 else if ((insn
& 0xffffffff) == 0xe820d000)
3110 else if ((insn
& 0xffffc00e) == 0x537b0000)
3115 /* Now verify each insn in the range looks like a stub instruction. */
3116 insn
= read_memory_integer (addr
, 4);
3117 if ((insn
& 0xffffc00e) != 0x53610000)
3120 /* Now verify each insn in the range looks like a stub instruction. */
3121 insn
= read_memory_integer (addr
+ 4, 4);
3122 if ((insn
& 0xffffffff) != 0xe820d000)
3125 /* Now verify each insn in the range looks like a stub instruction. */
3126 insn
= read_memory_integer (addr
+ 8, 4);
3127 if ((insn
& 0xffffc00e) != 0x537b0000)
3130 /* Looks like a stub. */
3135 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3138 /* First see if PC is in one of the two C-library trampolines. */
3141 minsym
= lookup_minimal_symbol ("$$dyncall", NULL
, NULL
);
3143 dyncall
= SYMBOL_VALUE_ADDRESS (minsym
);
3150 minsym
= lookup_minimal_symbol ("_sr4export", NULL
, NULL
);
3152 sr4export
= SYMBOL_VALUE_ADDRESS (minsym
);
3157 if (pc
== dyncall
|| pc
== sr4export
)
3160 minsym
= lookup_minimal_symbol_by_pc (pc
);
3161 if (minsym
&& strcmp (DEPRECATED_SYMBOL_NAME (minsym
), ".stub") == 0)
3164 /* Get the unwind descriptor corresponding to PC, return zero
3165 if no unwind was found. */
3166 u
= find_unwind_entry (pc
);
3170 /* If this isn't a linker stub, then return now. */
3171 if (u
->stub_unwind
.stub_type
== 0)
3174 /* By definition a long-branch stub is a call stub. */
3175 if (u
->stub_unwind
.stub_type
== LONG_BRANCH
)
3178 /* The call and return path execute the same instructions within
3179 an IMPORT stub! So an IMPORT stub is both a call and return
3181 if (u
->stub_unwind
.stub_type
== IMPORT
)
3184 /* Parameter relocation stubs always have a call path and may have a
3186 if (u
->stub_unwind
.stub_type
== PARAMETER_RELOCATION
3187 || u
->stub_unwind
.stub_type
== EXPORT
)
3191 /* Search forward from the current PC until we hit a branch
3192 or the end of the stub. */
3193 for (addr
= pc
; addr
<= u
->region_end
; addr
+= 4)
3197 insn
= read_memory_integer (addr
, 4);
3199 /* Does it look like a bl? If so then it's the call path, if
3200 we find a bv or be first, then we're on the return path. */
3201 if ((insn
& 0xfc00e000) == 0xe8000000)
3203 else if ((insn
& 0xfc00e001) == 0xe800c000
3204 || (insn
& 0xfc000000) == 0xe0000000)
3208 /* Should never happen. */
3209 warning ("Unable to find branch in parameter relocation stub.\n");
3213 /* Unknown stub type. For now, just return zero. */
3217 /* Return one if PC is in the return path of a trampoline, else return zero.
3219 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3220 just shared library trampolines (import, export). */
3223 hppa_in_solib_return_trampoline (CORE_ADDR pc
, char *name
)
3225 struct unwind_table_entry
*u
;
3227 /* Get the unwind descriptor corresponding to PC, return zero
3228 if no unwind was found. */
3229 u
= find_unwind_entry (pc
);
3233 /* If this isn't a linker stub or it's just a long branch stub, then
3235 if (u
->stub_unwind
.stub_type
== 0 || u
->stub_unwind
.stub_type
== LONG_BRANCH
)
3238 /* The call and return path execute the same instructions within
3239 an IMPORT stub! So an IMPORT stub is both a call and return
3241 if (u
->stub_unwind
.stub_type
== IMPORT
)
3244 /* Parameter relocation stubs always have a call path and may have a
3246 if (u
->stub_unwind
.stub_type
== PARAMETER_RELOCATION
3247 || u
->stub_unwind
.stub_type
== EXPORT
)
3251 /* Search forward from the current PC until we hit a branch
3252 or the end of the stub. */
3253 for (addr
= pc
; addr
<= u
->region_end
; addr
+= 4)
3257 insn
= read_memory_integer (addr
, 4);
3259 /* Does it look like a bl? If so then it's the call path, if
3260 we find a bv or be first, then we're on the return path. */
3261 if ((insn
& 0xfc00e000) == 0xe8000000)
3263 else if ((insn
& 0xfc00e001) == 0xe800c000
3264 || (insn
& 0xfc000000) == 0xe0000000)
3268 /* Should never happen. */
3269 warning ("Unable to find branch in parameter relocation stub.\n");
3273 /* Unknown stub type. For now, just return zero. */
3278 /* Figure out if PC is in a trampoline, and if so find out where
3279 the trampoline will jump to. If not in a trampoline, return zero.
3281 Simple code examination probably is not a good idea since the code
3282 sequences in trampolines can also appear in user code.
3284 We use unwinds and information from the minimal symbol table to
3285 determine when we're in a trampoline. This won't work for ELF
3286 (yet) since it doesn't create stub unwind entries. Whether or
3287 not ELF will create stub unwinds or normal unwinds for linker
3288 stubs is still being debated.
3290 This should handle simple calls through dyncall or sr4export,
3291 long calls, argument relocation stubs, and dyncall/sr4export
3292 calling an argument relocation stub. It even handles some stubs
3293 used in dynamic executables. */
3296 hppa_skip_trampoline_code (CORE_ADDR pc
)
3299 long prev_inst
, curr_inst
, loc
;
3300 static CORE_ADDR dyncall
= 0;
3301 static CORE_ADDR dyncall_external
= 0;
3302 static CORE_ADDR sr4export
= 0;
3303 struct minimal_symbol
*msym
;
3304 struct unwind_table_entry
*u
;
3306 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3311 msym
= lookup_minimal_symbol ("$$dyncall", NULL
, NULL
);
3313 dyncall
= SYMBOL_VALUE_ADDRESS (msym
);
3318 if (!dyncall_external
)
3320 msym
= lookup_minimal_symbol ("$$dyncall_external", NULL
, NULL
);
3322 dyncall_external
= SYMBOL_VALUE_ADDRESS (msym
);
3324 dyncall_external
= -1;
3329 msym
= lookup_minimal_symbol ("_sr4export", NULL
, NULL
);
3331 sr4export
= SYMBOL_VALUE_ADDRESS (msym
);
3336 /* Addresses passed to dyncall may *NOT* be the actual address
3337 of the function. So we may have to do something special. */
3340 pc
= (CORE_ADDR
) read_register (22);
3342 /* If bit 30 (counting from the left) is on, then pc is the address of
3343 the PLT entry for this function, not the address of the function
3344 itself. Bit 31 has meaning too, but only for MPE. */
3346 pc
= (CORE_ADDR
) read_memory_integer (pc
& ~0x3, TARGET_PTR_BIT
/ 8);
3348 if (pc
== dyncall_external
)
3350 pc
= (CORE_ADDR
) read_register (22);
3351 pc
= (CORE_ADDR
) read_memory_integer (pc
& ~0x3, TARGET_PTR_BIT
/ 8);
3353 else if (pc
== sr4export
)
3354 pc
= (CORE_ADDR
) (read_register (22));
3356 /* Get the unwind descriptor corresponding to PC, return zero
3357 if no unwind was found. */
3358 u
= find_unwind_entry (pc
);
3362 /* If this isn't a linker stub, then return now. */
3363 /* elz: attention here! (FIXME) because of a compiler/linker
3364 error, some stubs which should have a non zero stub_unwind.stub_type
3365 have unfortunately a value of zero. So this function would return here
3366 as if we were not in a trampoline. To fix this, we go look at the partial
3367 symbol information, which reports this guy as a stub.
3368 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3369 partial symbol information is also wrong sometimes. This is because
3370 when it is entered (somread.c::som_symtab_read()) it can happen that
3371 if the type of the symbol (from the som) is Entry, and the symbol is
3372 in a shared library, then it can also be a trampoline. This would
3373 be OK, except that I believe the way they decide if we are ina shared library
3374 does not work. SOOOO..., even if we have a regular function w/o trampolines
3375 its minimal symbol can be assigned type mst_solib_trampoline.
3376 Also, if we find that the symbol is a real stub, then we fix the unwind
3377 descriptor, and define the stub type to be EXPORT.
3378 Hopefully this is correct most of the times. */
3379 if (u
->stub_unwind
.stub_type
== 0)
3382 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3383 we can delete all the code which appears between the lines */
3384 /*--------------------------------------------------------------------------*/
3385 msym
= lookup_minimal_symbol_by_pc (pc
);
3387 if (msym
== NULL
|| MSYMBOL_TYPE (msym
) != mst_solib_trampoline
)
3388 return orig_pc
== pc
? 0 : pc
& ~0x3;
3390 else if (msym
!= NULL
&& MSYMBOL_TYPE (msym
) == mst_solib_trampoline
)
3392 struct objfile
*objfile
;
3393 struct minimal_symbol
*msymbol
;
3394 int function_found
= 0;
3396 /* go look if there is another minimal symbol with the same name as
3397 this one, but with type mst_text. This would happen if the msym
3398 is an actual trampoline, in which case there would be another
3399 symbol with the same name corresponding to the real function */
3401 ALL_MSYMBOLS (objfile
, msymbol
)
3403 if (MSYMBOL_TYPE (msymbol
) == mst_text
3404 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol
), DEPRECATED_SYMBOL_NAME (msym
)))
3412 /* the type of msym is correct (mst_solib_trampoline), but
3413 the unwind info is wrong, so set it to the correct value */
3414 u
->stub_unwind
.stub_type
= EXPORT
;
3416 /* the stub type info in the unwind is correct (this is not a
3417 trampoline), but the msym type information is wrong, it
3418 should be mst_text. So we need to fix the msym, and also
3419 get out of this function */
3421 MSYMBOL_TYPE (msym
) = mst_text
;
3422 return orig_pc
== pc
? 0 : pc
& ~0x3;
3426 /*--------------------------------------------------------------------------*/
3429 /* It's a stub. Search for a branch and figure out where it goes.
3430 Note we have to handle multi insn branch sequences like ldil;ble.
3431 Most (all?) other branches can be determined by examining the contents
3432 of certain registers and the stack. */
3439 /* Make sure we haven't walked outside the range of this stub. */
3440 if (u
!= find_unwind_entry (loc
))
3442 warning ("Unable to find branch in linker stub");
3443 return orig_pc
== pc
? 0 : pc
& ~0x3;
3446 prev_inst
= curr_inst
;
3447 curr_inst
= read_memory_integer (loc
, 4);
3449 /* Does it look like a branch external using %r1? Then it's the
3450 branch from the stub to the actual function. */
3451 if ((curr_inst
& 0xffe0e000) == 0xe0202000)
3453 /* Yup. See if the previous instruction loaded
3454 a value into %r1. If so compute and return the jump address. */
3455 if ((prev_inst
& 0xffe00000) == 0x20200000)
3456 return (extract_21 (prev_inst
) + extract_17 (curr_inst
)) & ~0x3;
3459 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3460 return orig_pc
== pc
? 0 : pc
& ~0x3;
3464 /* Does it look like a be 0(sr0,%r21)? OR
3465 Does it look like a be, n 0(sr0,%r21)? OR
3466 Does it look like a bve (r21)? (this is on PA2.0)
3467 Does it look like a bve, n(r21)? (this is also on PA2.0)
3468 That's the branch from an
3469 import stub to an export stub.
3471 It is impossible to determine the target of the branch via
3472 simple examination of instructions and/or data (consider
3473 that the address in the plabel may be the address of the
3474 bind-on-reference routine in the dynamic loader).
3476 So we have try an alternative approach.
3478 Get the name of the symbol at our current location; it should
3479 be a stub symbol with the same name as the symbol in the
3482 Then lookup a minimal symbol with the same name; we should
3483 get the minimal symbol for the target routine in the shared
3484 library as those take precedence of import/export stubs. */
3485 if ((curr_inst
== 0xe2a00000) ||
3486 (curr_inst
== 0xe2a00002) ||
3487 (curr_inst
== 0xeaa0d000) ||
3488 (curr_inst
== 0xeaa0d002))
3490 struct minimal_symbol
*stubsym
, *libsym
;
3492 stubsym
= lookup_minimal_symbol_by_pc (loc
);
3493 if (stubsym
== NULL
)
3495 warning ("Unable to find symbol for 0x%lx", loc
);
3496 return orig_pc
== pc
? 0 : pc
& ~0x3;
3499 libsym
= lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym
), NULL
, NULL
);
3502 warning ("Unable to find library symbol for %s\n",
3503 DEPRECATED_SYMBOL_NAME (stubsym
));
3504 return orig_pc
== pc
? 0 : pc
& ~0x3;
3507 return SYMBOL_VALUE (libsym
);
3510 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3511 branch from the stub to the actual function. */
3513 else if ((curr_inst
& 0xffe0e000) == 0xe8400000
3514 || (curr_inst
& 0xffe0e000) == 0xe8000000
3515 || (curr_inst
& 0xffe0e000) == 0xe800A000)
3516 return (loc
+ extract_17 (curr_inst
) + 8) & ~0x3;
3518 /* Does it look like bv (rp)? Note this depends on the
3519 current stack pointer being the same as the stack
3520 pointer in the stub itself! This is a branch on from the
3521 stub back to the original caller. */
3522 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3523 else if ((curr_inst
& 0xffe0f000) == 0xe840c000)
3525 /* Yup. See if the previous instruction loaded
3527 if (prev_inst
== 0x4bc23ff1)
3528 return (read_memory_integer
3529 (read_register (SP_REGNUM
) - 8, 4)) & ~0x3;
3532 warning ("Unable to find restore of %%rp before bv (%%rp).");
3533 return orig_pc
== pc
? 0 : pc
& ~0x3;
3537 /* elz: added this case to capture the new instruction
3538 at the end of the return part of an export stub used by
3539 the PA2.0: BVE, n (rp) */
3540 else if ((curr_inst
& 0xffe0f000) == 0xe840d000)
3542 return (read_memory_integer
3543 (read_register (SP_REGNUM
) - 24, TARGET_PTR_BIT
/ 8)) & ~0x3;
3546 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3547 the original caller from the stub. Used in dynamic executables. */
3548 else if (curr_inst
== 0xe0400002)
3550 /* The value we jump to is sitting in sp - 24. But that's
3551 loaded several instructions before the be instruction.
3552 I guess we could check for the previous instruction being
3553 mtsp %r1,%sr0 if we want to do sanity checking. */
3554 return (read_memory_integer
3555 (read_register (SP_REGNUM
) - 24, TARGET_PTR_BIT
/ 8)) & ~0x3;
3558 /* Haven't found the branch yet, but we're still in the stub.
3565 /* For the given instruction (INST), return any adjustment it makes
3566 to the stack pointer or zero for no adjustment.
3568 This only handles instructions commonly found in prologues. */
3571 prologue_inst_adjust_sp (unsigned long inst
)
3573 /* This must persist across calls. */
3574 static int save_high21
;
3576 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3577 if ((inst
& 0xffffc000) == 0x37de0000)
3578 return extract_14 (inst
);
3581 if ((inst
& 0xffe00000) == 0x6fc00000)
3582 return extract_14 (inst
);
3584 /* std,ma X,D(sp) */
3585 if ((inst
& 0xffe00008) == 0x73c00008)
3586 return (inst
& 0x1 ? -1 << 13 : 0) | (((inst
>> 4) & 0x3ff) << 3);
3588 /* addil high21,%r1; ldo low11,(%r1),%r30)
3589 save high bits in save_high21 for later use. */
3590 if ((inst
& 0xffe00000) == 0x28200000)
3592 save_high21
= extract_21 (inst
);
3596 if ((inst
& 0xffff0000) == 0x343e0000)
3597 return save_high21
+ extract_14 (inst
);
3599 /* fstws as used by the HP compilers. */
3600 if ((inst
& 0xffffffe0) == 0x2fd01220)
3601 return extract_5_load (inst
);
3603 /* No adjustment. */
3607 /* Return nonzero if INST is a branch of some kind, else return zero. */
3610 is_branch (unsigned long inst
)
3639 /* Return the register number for a GR which is saved by INST or
3640 zero it INST does not save a GR. */
3643 inst_saves_gr (unsigned long inst
)
3645 /* Does it look like a stw? */
3646 if ((inst
>> 26) == 0x1a || (inst
>> 26) == 0x1b
3647 || (inst
>> 26) == 0x1f
3648 || ((inst
>> 26) == 0x1f
3649 && ((inst
>> 6) == 0xa)))
3650 return extract_5R_store (inst
);
3652 /* Does it look like a std? */
3653 if ((inst
>> 26) == 0x1c
3654 || ((inst
>> 26) == 0x03
3655 && ((inst
>> 6) & 0xf) == 0xb))
3656 return extract_5R_store (inst
);
3658 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3659 if ((inst
>> 26) == 0x1b)
3660 return extract_5R_store (inst
);
3662 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3664 if ((inst
>> 26) == 0x19 || (inst
>> 26) == 0x18
3665 || ((inst
>> 26) == 0x3
3666 && (((inst
>> 6) & 0xf) == 0x8
3667 || (inst
>> 6) & 0xf) == 0x9))
3668 return extract_5R_store (inst
);
3673 /* Return the register number for a FR which is saved by INST or
3674 zero it INST does not save a FR.
3676 Note we only care about full 64bit register stores (that's the only
3677 kind of stores the prologue will use).
3679 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3682 inst_saves_fr (unsigned long inst
)
3684 /* is this an FSTD ? */
3685 if ((inst
& 0xfc00dfc0) == 0x2c001200)
3686 return extract_5r_store (inst
);
3687 if ((inst
& 0xfc000002) == 0x70000002)
3688 return extract_5R_store (inst
);
3689 /* is this an FSTW ? */
3690 if ((inst
& 0xfc00df80) == 0x24001200)
3691 return extract_5r_store (inst
);
3692 if ((inst
& 0xfc000002) == 0x7c000000)
3693 return extract_5R_store (inst
);
3697 /* Advance PC across any function entry prologue instructions
3698 to reach some "real" code.
3700 Use information in the unwind table to determine what exactly should
3701 be in the prologue. */
3705 skip_prologue_hard_way (CORE_ADDR pc
)
3708 CORE_ADDR orig_pc
= pc
;
3709 unsigned long inst
, stack_remaining
, save_gr
, save_fr
, save_rp
, save_sp
;
3710 unsigned long args_stored
, status
, i
, restart_gr
, restart_fr
;
3711 struct unwind_table_entry
*u
;
3717 u
= find_unwind_entry (pc
);
3721 /* If we are not at the beginning of a function, then return now. */
3722 if ((pc
& ~0x3) != u
->region_start
)
3725 /* This is how much of a frame adjustment we need to account for. */
3726 stack_remaining
= u
->Total_frame_size
<< 3;
3728 /* Magic register saves we want to know about. */
3729 save_rp
= u
->Save_RP
;
3730 save_sp
= u
->Save_SP
;
3732 /* An indication that args may be stored into the stack. Unfortunately
3733 the HPUX compilers tend to set this in cases where no args were
3737 /* Turn the Entry_GR field into a bitmask. */
3739 for (i
= 3; i
< u
->Entry_GR
+ 3; i
++)
3741 /* Frame pointer gets saved into a special location. */
3742 if (u
->Save_SP
&& i
== DEPRECATED_FP_REGNUM
)
3745 save_gr
|= (1 << i
);
3747 save_gr
&= ~restart_gr
;
3749 /* Turn the Entry_FR field into a bitmask too. */
3751 for (i
= 12; i
< u
->Entry_FR
+ 12; i
++)
3752 save_fr
|= (1 << i
);
3753 save_fr
&= ~restart_fr
;
3755 /* Loop until we find everything of interest or hit a branch.
3757 For unoptimized GCC code and for any HP CC code this will never ever
3758 examine any user instructions.
3760 For optimzied GCC code we're faced with problems. GCC will schedule
3761 its prologue and make prologue instructions available for delay slot
3762 filling. The end result is user code gets mixed in with the prologue
3763 and a prologue instruction may be in the delay slot of the first branch
3766 Some unexpected things are expected with debugging optimized code, so
3767 we allow this routine to walk past user instructions in optimized
3769 while (save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0
3772 unsigned int reg_num
;
3773 unsigned long old_stack_remaining
, old_save_gr
, old_save_fr
;
3774 unsigned long old_save_rp
, old_save_sp
, next_inst
;
3776 /* Save copies of all the triggers so we can compare them later
3778 old_save_gr
= save_gr
;
3779 old_save_fr
= save_fr
;
3780 old_save_rp
= save_rp
;
3781 old_save_sp
= save_sp
;
3782 old_stack_remaining
= stack_remaining
;
3784 status
= target_read_memory (pc
, buf
, 4);
3785 inst
= extract_unsigned_integer (buf
, 4);
3791 /* Note the interesting effects of this instruction. */
3792 stack_remaining
-= prologue_inst_adjust_sp (inst
);
3794 /* There are limited ways to store the return pointer into the
3796 if (inst
== 0x6bc23fd9 || inst
== 0x0fc212c1)
3799 /* These are the only ways we save SP into the stack. At this time
3800 the HP compilers never bother to save SP into the stack. */
3801 if ((inst
& 0xffffc000) == 0x6fc10000
3802 || (inst
& 0xffffc00c) == 0x73c10008)
3805 /* Are we loading some register with an offset from the argument
3807 if ((inst
& 0xffe00000) == 0x37a00000
3808 || (inst
& 0xffffffe0) == 0x081d0240)
3814 /* Account for general and floating-point register saves. */
3815 reg_num
= inst_saves_gr (inst
);
3816 save_gr
&= ~(1 << reg_num
);
3818 /* Ugh. Also account for argument stores into the stack.
3819 Unfortunately args_stored only tells us that some arguments
3820 where stored into the stack. Not how many or what kind!
3822 This is a kludge as on the HP compiler sets this bit and it
3823 never does prologue scheduling. So once we see one, skip past
3824 all of them. We have similar code for the fp arg stores below.
3826 FIXME. Can still die if we have a mix of GR and FR argument
3828 if (reg_num
>= (TARGET_PTR_BIT
== 64 ? 19 : 23) && reg_num
<= 26)
3830 while (reg_num
>= (TARGET_PTR_BIT
== 64 ? 19 : 23) && reg_num
<= 26)
3833 status
= target_read_memory (pc
, buf
, 4);
3834 inst
= extract_unsigned_integer (buf
, 4);
3837 reg_num
= inst_saves_gr (inst
);
3843 reg_num
= inst_saves_fr (inst
);
3844 save_fr
&= ~(1 << reg_num
);
3846 status
= target_read_memory (pc
+ 4, buf
, 4);
3847 next_inst
= extract_unsigned_integer (buf
, 4);
3853 /* We've got to be read to handle the ldo before the fp register
3855 if ((inst
& 0xfc000000) == 0x34000000
3856 && inst_saves_fr (next_inst
) >= 4
3857 && inst_saves_fr (next_inst
) <= (TARGET_PTR_BIT
== 64 ? 11 : 7))
3859 /* So we drop into the code below in a reasonable state. */
3860 reg_num
= inst_saves_fr (next_inst
);
3864 /* Ugh. Also account for argument stores into the stack.
3865 This is a kludge as on the HP compiler sets this bit and it
3866 never does prologue scheduling. So once we see one, skip past
3868 if (reg_num
>= 4 && reg_num
<= (TARGET_PTR_BIT
== 64 ? 11 : 7))
3870 while (reg_num
>= 4 && reg_num
<= (TARGET_PTR_BIT
== 64 ? 11 : 7))
3873 status
= target_read_memory (pc
, buf
, 4);
3874 inst
= extract_unsigned_integer (buf
, 4);
3877 if ((inst
& 0xfc000000) != 0x34000000)
3879 status
= target_read_memory (pc
+ 4, buf
, 4);
3880 next_inst
= extract_unsigned_integer (buf
, 4);
3883 reg_num
= inst_saves_fr (next_inst
);
3889 /* Quit if we hit any kind of branch. This can happen if a prologue
3890 instruction is in the delay slot of the first call/branch. */
3891 if (is_branch (inst
))
3894 /* What a crock. The HP compilers set args_stored even if no
3895 arguments were stored into the stack (boo hiss). This could
3896 cause this code to then skip a bunch of user insns (up to the
3899 To combat this we try to identify when args_stored was bogusly
3900 set and clear it. We only do this when args_stored is nonzero,
3901 all other resources are accounted for, and nothing changed on
3904 && !(save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0)
3905 && old_save_gr
== save_gr
&& old_save_fr
== save_fr
3906 && old_save_rp
== save_rp
&& old_save_sp
== save_sp
3907 && old_stack_remaining
== stack_remaining
)
3914 /* We've got a tenative location for the end of the prologue. However
3915 because of limitations in the unwind descriptor mechanism we may
3916 have went too far into user code looking for the save of a register
3917 that does not exist. So, if there registers we expected to be saved
3918 but never were, mask them out and restart.
3920 This should only happen in optimized code, and should be very rare. */
3921 if (save_gr
|| (save_fr
&& !(restart_fr
|| restart_gr
)))
3924 restart_gr
= save_gr
;
3925 restart_fr
= save_fr
;
3933 /* Return the address of the PC after the last prologue instruction if
3934 we can determine it from the debug symbols. Else return zero. */
3937 after_prologue (CORE_ADDR pc
)
3939 struct symtab_and_line sal
;
3940 CORE_ADDR func_addr
, func_end
;
3943 /* If we can not find the symbol in the partial symbol table, then
3944 there is no hope we can determine the function's start address
3946 if (!find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
3949 /* Get the line associated with FUNC_ADDR. */
3950 sal
= find_pc_line (func_addr
, 0);
3952 /* There are only two cases to consider. First, the end of the source line
3953 is within the function bounds. In that case we return the end of the
3954 source line. Second is the end of the source line extends beyond the
3955 bounds of the current function. We need to use the slow code to
3956 examine instructions in that case.
3958 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3959 the wrong thing to do. In fact, it should be entirely possible for this
3960 function to always return zero since the slow instruction scanning code
3961 is supposed to *always* work. If it does not, then it is a bug. */
3962 if (sal
.end
< func_end
)
3968 /* To skip prologues, I use this predicate. Returns either PC itself
3969 if the code at PC does not look like a function prologue; otherwise
3970 returns an address that (if we're lucky) follows the prologue. If
3971 LENIENT, then we must skip everything which is involved in setting
3972 up the frame (it's OK to skip more, just so long as we don't skip
3973 anything which might clobber the registers which are being saved.
3974 Currently we must not skip more on the alpha, but we might the lenient
3978 hppa_skip_prologue (CORE_ADDR pc
)
3982 CORE_ADDR post_prologue_pc
;
3985 /* See if we can determine the end of the prologue via the symbol table.
3986 If so, then return either PC, or the PC after the prologue, whichever
3989 post_prologue_pc
= after_prologue (pc
);
3991 /* If after_prologue returned a useful address, then use it. Else
3992 fall back on the instruction skipping code.
3994 Some folks have claimed this causes problems because the breakpoint
3995 may be the first instruction of the prologue. If that happens, then
3996 the instruction skipping code has a bug that needs to be fixed. */
3997 if (post_prologue_pc
!= 0)
3998 return max (pc
, post_prologue_pc
);
4000 return (skip_prologue_hard_way (pc
));
4003 /* Put here the code to store, into the SAVED_REGS, the addresses of
4004 the saved registers of frame described by FRAME_INFO. This
4005 includes special registers such as pc and fp saved in special ways
4006 in the stack frame. sp is even more special: the address we return
4007 for it IS the sp for the next frame. */
4010 hppa_frame_find_saved_regs (struct frame_info
*frame_info
,
4011 CORE_ADDR frame_saved_regs
[])
4014 struct unwind_table_entry
*u
;
4015 unsigned long inst
, stack_remaining
, save_gr
, save_fr
, save_rp
, save_sp
;
4019 int final_iteration
;
4021 /* Zero out everything. */
4022 memset (frame_saved_regs
, '\0', SIZEOF_FRAME_SAVED_REGS
);
4024 /* Call dummy frames always look the same, so there's no need to
4025 examine the dummy code to determine locations of saved registers;
4026 instead, let find_dummy_frame_regs fill in the correct offsets
4027 for the saved registers. */
4028 if ((get_frame_pc (frame_info
) >= get_frame_base (frame_info
)
4029 && (get_frame_pc (frame_info
)
4030 <= (get_frame_base (frame_info
)
4031 /* A call dummy is sized in words, but it is actually a
4032 series of instructions. Account for that scaling
4034 + ((DEPRECATED_REGISTER_SIZE
/ INSTRUCTION_SIZE
)
4035 * DEPRECATED_CALL_DUMMY_LENGTH
)
4036 /* Similarly we have to account for 64bit wide register
4038 + (32 * DEPRECATED_REGISTER_SIZE
)
4039 /* We always consider FP regs 8 bytes long. */
4040 + (NUM_REGS
- FP0_REGNUM
) * 8
4041 /* Similarly we have to account for 64bit wide register
4043 + (6 * DEPRECATED_REGISTER_SIZE
)))))
4044 find_dummy_frame_regs (frame_info
, frame_saved_regs
);
4046 /* Interrupt handlers are special too. They lay out the register
4047 state in the exact same order as the register numbers in GDB. */
4048 if (pc_in_interrupt_handler (get_frame_pc (frame_info
)))
4050 for (i
= 0; i
< NUM_REGS
; i
++)
4052 /* SP is a little special. */
4054 frame_saved_regs
[SP_REGNUM
]
4055 = read_memory_integer (get_frame_base (frame_info
) + SP_REGNUM
* 4,
4056 TARGET_PTR_BIT
/ 8);
4058 frame_saved_regs
[i
] = get_frame_base (frame_info
) + i
* 4;
4063 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4064 /* Handle signal handler callers. */
4065 if ((get_frame_type (frame_info
) == SIGTRAMP_FRAME
))
4067 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info
, frame_saved_regs
);
4072 /* Get the starting address of the function referred to by the PC
4074 pc
= get_frame_func (frame_info
);
4077 u
= find_unwind_entry (pc
);
4081 /* This is how much of a frame adjustment we need to account for. */
4082 stack_remaining
= u
->Total_frame_size
<< 3;
4084 /* Magic register saves we want to know about. */
4085 save_rp
= u
->Save_RP
;
4086 save_sp
= u
->Save_SP
;
4088 /* Turn the Entry_GR field into a bitmask. */
4090 for (i
= 3; i
< u
->Entry_GR
+ 3; i
++)
4092 /* Frame pointer gets saved into a special location. */
4093 if (u
->Save_SP
&& i
== DEPRECATED_FP_REGNUM
)
4096 save_gr
|= (1 << i
);
4099 /* Turn the Entry_FR field into a bitmask too. */
4101 for (i
= 12; i
< u
->Entry_FR
+ 12; i
++)
4102 save_fr
|= (1 << i
);
4104 /* The frame always represents the value of %sp at entry to the
4105 current function (and is thus equivalent to the "saved" stack
4107 frame_saved_regs
[SP_REGNUM
] = get_frame_base (frame_info
);
4109 /* Loop until we find everything of interest or hit a branch.
4111 For unoptimized GCC code and for any HP CC code this will never ever
4112 examine any user instructions.
4114 For optimized GCC code we're faced with problems. GCC will schedule
4115 its prologue and make prologue instructions available for delay slot
4116 filling. The end result is user code gets mixed in with the prologue
4117 and a prologue instruction may be in the delay slot of the first branch
4120 Some unexpected things are expected with debugging optimized code, so
4121 we allow this routine to walk past user instructions in optimized
4123 final_iteration
= 0;
4124 while ((save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0)
4125 && pc
<= get_frame_pc (frame_info
))
4127 status
= target_read_memory (pc
, buf
, 4);
4128 inst
= extract_unsigned_integer (buf
, 4);
4134 /* Note the interesting effects of this instruction. */
4135 stack_remaining
-= prologue_inst_adjust_sp (inst
);
4137 /* There are limited ways to store the return pointer into the
4139 if (inst
== 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4142 frame_saved_regs
[RP_REGNUM
] = get_frame_base (frame_info
) - 20;
4144 else if (inst
== 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4147 frame_saved_regs
[RP_REGNUM
] = get_frame_base (frame_info
) - 16;
4150 /* Note if we saved SP into the stack. This also happens to indicate
4151 the location of the saved frame pointer. */
4152 if ( (inst
& 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4153 || (inst
& 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4155 frame_saved_regs
[DEPRECATED_FP_REGNUM
] = get_frame_base (frame_info
);
4159 /* Account for general and floating-point register saves. */
4160 reg
= inst_saves_gr (inst
);
4161 if (reg
>= 3 && reg
<= 18
4162 && (!u
->Save_SP
|| reg
!= DEPRECATED_FP_REGNUM
))
4164 save_gr
&= ~(1 << reg
);
4166 /* stwm with a positive displacement is a *post modify*. */
4167 if ((inst
>> 26) == 0x1b
4168 && extract_14 (inst
) >= 0)
4169 frame_saved_regs
[reg
] = get_frame_base (frame_info
);
4170 /* A std has explicit post_modify forms. */
4171 else if ((inst
& 0xfc00000c0) == 0x70000008)
4172 frame_saved_regs
[reg
] = get_frame_base (frame_info
);
4177 if ((inst
>> 26) == 0x1c)
4178 offset
= (inst
& 0x1 ? -1 << 13 : 0) | (((inst
>> 4) & 0x3ff) << 3);
4179 else if ((inst
>> 26) == 0x03)
4180 offset
= low_sign_extend (inst
& 0x1f, 5);
4182 offset
= extract_14 (inst
);
4184 /* Handle code with and without frame pointers. */
4186 frame_saved_regs
[reg
]
4187 = get_frame_base (frame_info
) + offset
;
4189 frame_saved_regs
[reg
]
4190 = (get_frame_base (frame_info
) + (u
->Total_frame_size
<< 3)
4196 /* GCC handles callee saved FP regs a little differently.
4198 It emits an instruction to put the value of the start of
4199 the FP store area into %r1. It then uses fstds,ma with
4200 a basereg of %r1 for the stores.
4202 HP CC emits them at the current stack pointer modifying
4203 the stack pointer as it stores each register. */
4205 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4206 if ((inst
& 0xffffc000) == 0x34610000
4207 || (inst
& 0xffffc000) == 0x37c10000)
4208 fp_loc
= extract_14 (inst
);
4210 reg
= inst_saves_fr (inst
);
4211 if (reg
>= 12 && reg
<= 21)
4213 /* Note +4 braindamage below is necessary because the FP status
4214 registers are internally 8 registers rather than the expected
4216 save_fr
&= ~(1 << reg
);
4219 /* 1st HP CC FP register store. After this instruction
4220 we've set enough state that the GCC and HPCC code are
4221 both handled in the same manner. */
4222 frame_saved_regs
[reg
+ FP4_REGNUM
+ 4] = get_frame_base (frame_info
);
4227 frame_saved_regs
[reg
+ FP0_REGNUM
+ 4]
4228 = get_frame_base (frame_info
) + fp_loc
;
4233 /* Quit if we hit any kind of branch the previous iteration. */
4234 if (final_iteration
)
4237 /* We want to look precisely one instruction beyond the branch
4238 if we have not found everything yet. */
4239 if (is_branch (inst
))
4240 final_iteration
= 1;
4247 /* XXX - deprecated. This is a compatibility function for targets
4248 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4249 /* Find the addresses in which registers are saved in FRAME. */
4252 hppa_frame_init_saved_regs (struct frame_info
*frame
)
4254 if (deprecated_get_frame_saved_regs (frame
) == NULL
)
4255 frame_saved_regs_zalloc (frame
);
4256 hppa_frame_find_saved_regs (frame
, deprecated_get_frame_saved_regs (frame
));
4259 /* Exception handling support for the HP-UX ANSI C++ compiler.
4260 The compiler (aCC) provides a callback for exception events;
4261 GDB can set a breakpoint on this callback and find out what
4262 exception event has occurred. */
4264 /* The name of the hook to be set to point to the callback function */
4265 static char HP_ACC_EH_notify_hook
[] = "__eh_notify_hook";
4266 /* The name of the function to be used to set the hook value */
4267 static char HP_ACC_EH_set_hook_value
[] = "__eh_set_hook_value";
4268 /* The name of the callback function in end.o */
4269 static char HP_ACC_EH_notify_callback
[] = "__d_eh_notify_callback";
4270 /* Name of function in end.o on which a break is set (called by above) */
4271 static char HP_ACC_EH_break
[] = "__d_eh_break";
4272 /* Name of flag (in end.o) that enables catching throws */
4273 static char HP_ACC_EH_catch_throw
[] = "__d_eh_catch_throw";
4274 /* Name of flag (in end.o) that enables catching catching */
4275 static char HP_ACC_EH_catch_catch
[] = "__d_eh_catch_catch";
4276 /* The enum used by aCC */
4284 /* Is exception-handling support available with this executable? */
4285 static int hp_cxx_exception_support
= 0;
4286 /* Has the initialize function been run? */
4287 int hp_cxx_exception_support_initialized
= 0;
4288 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4289 extern int exception_support_initialized
;
4290 /* Address of __eh_notify_hook */
4291 static CORE_ADDR eh_notify_hook_addr
= 0;
4292 /* Address of __d_eh_notify_callback */
4293 static CORE_ADDR eh_notify_callback_addr
= 0;
4294 /* Address of __d_eh_break */
4295 static CORE_ADDR eh_break_addr
= 0;
4296 /* Address of __d_eh_catch_catch */
4297 static CORE_ADDR eh_catch_catch_addr
= 0;
4298 /* Address of __d_eh_catch_throw */
4299 static CORE_ADDR eh_catch_throw_addr
= 0;
4300 /* Sal for __d_eh_break */
4301 static struct symtab_and_line
*break_callback_sal
= 0;
4303 /* Code in end.c expects __d_pid to be set in the inferior,
4304 otherwise __d_eh_notify_callback doesn't bother to call
4305 __d_eh_break! So we poke the pid into this symbol
4310 setup_d_pid_in_inferior (void)
4313 struct minimal_symbol
*msymbol
;
4314 char buf
[4]; /* FIXME 32x64? */
4316 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4317 msymbol
= lookup_minimal_symbol ("__d_pid", NULL
, symfile_objfile
);
4318 if (msymbol
== NULL
)
4320 warning ("Unable to find __d_pid symbol in object file.");
4321 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4325 anaddr
= SYMBOL_VALUE_ADDRESS (msymbol
);
4326 store_unsigned_integer (buf
, 4, PIDGET (inferior_ptid
)); /* FIXME 32x64? */
4327 if (target_write_memory (anaddr
, buf
, 4)) /* FIXME 32x64? */
4329 warning ("Unable to write __d_pid");
4330 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4336 /* Initialize exception catchpoint support by looking for the
4337 necessary hooks/callbacks in end.o, etc., and set the hook value to
4338 point to the required debug function
4344 initialize_hp_cxx_exception_support (void)
4346 struct symtabs_and_lines sals
;
4347 struct cleanup
*old_chain
;
4348 struct cleanup
*canonical_strings_chain
= NULL
;
4351 char *addr_end
= NULL
;
4352 char **canonical
= (char **) NULL
;
4354 struct symbol
*sym
= NULL
;
4355 struct minimal_symbol
*msym
= NULL
;
4356 struct objfile
*objfile
;
4357 asection
*shlib_info
;
4359 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4360 recursion is a possibility because finding the hook for exception
4361 callbacks involves making a call in the inferior, which means
4362 re-inserting breakpoints which can re-invoke this code */
4364 static int recurse
= 0;
4367 hp_cxx_exception_support_initialized
= 0;
4368 exception_support_initialized
= 0;
4372 hp_cxx_exception_support
= 0;
4374 /* First check if we have seen any HP compiled objects; if not,
4375 it is very unlikely that HP's idiosyncratic callback mechanism
4376 for exception handling debug support will be available!
4377 This will percolate back up to breakpoint.c, where our callers
4378 will decide to try the g++ exception-handling support instead. */
4379 if (!hp_som_som_object_present
)
4382 /* We have a SOM executable with SOM debug info; find the hooks */
4384 /* First look for the notify hook provided by aCC runtime libs */
4385 /* If we find this symbol, we conclude that the executable must
4386 have HP aCC exception support built in. If this symbol is not
4387 found, even though we're a HP SOM-SOM file, we may have been
4388 built with some other compiler (not aCC). This results percolates
4389 back up to our callers in breakpoint.c which can decide to
4390 try the g++ style of exception support instead.
4391 If this symbol is found but the other symbols we require are
4392 not found, there is something weird going on, and g++ support
4393 should *not* be tried as an alternative.
4395 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4396 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4398 /* libCsup has this hook; it'll usually be non-debuggable */
4399 msym
= lookup_minimal_symbol (HP_ACC_EH_notify_hook
, NULL
, NULL
);
4402 eh_notify_hook_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4403 hp_cxx_exception_support
= 1;
4407 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook
);
4408 warning ("Executable may not have been compiled debuggable with HP aCC.");
4409 warning ("GDB will be unable to intercept exception events.");
4410 eh_notify_hook_addr
= 0;
4411 hp_cxx_exception_support
= 0;
4415 /* Next look for the notify callback routine in end.o */
4416 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4417 msym
= lookup_minimal_symbol (HP_ACC_EH_notify_callback
, NULL
, NULL
);
4420 eh_notify_callback_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4421 hp_cxx_exception_support
= 1;
4425 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback
);
4426 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4427 warning ("GDB will be unable to intercept exception events.");
4428 eh_notify_callback_addr
= 0;
4432 #ifndef GDB_TARGET_IS_HPPA_20W
4433 /* Check whether the executable is dynamically linked or archive bound */
4434 /* With an archive-bound executable we can use the raw addresses we find
4435 for the callback function, etc. without modification. For an executable
4436 with shared libraries, we have to do more work to find the plabel, which
4437 can be the target of a call through $$dyncall from the aCC runtime support
4438 library (libCsup) which is linked shared by default by aCC. */
4439 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4440 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4441 shlib_info
= bfd_get_section_by_name (symfile_objfile
->obfd
, "$SHLIB_INFO$");
4442 if (shlib_info
&& (bfd_section_size (symfile_objfile
->obfd
, shlib_info
) != 0))
4444 /* The minsym we have has the local code address, but that's not the
4445 plabel that can be used by an inter-load-module call. */
4446 /* Find solib handle for main image (which has end.o), and use that
4447 and the min sym as arguments to __d_shl_get() (which does the equivalent
4448 of shl_findsym()) to find the plabel. */
4450 args_for_find_stub args
;
4451 static char message
[] = "Error while finding exception callback hook:\n";
4453 args
.solib_handle
= som_solib_get_solib_by_pc (eh_notify_callback_addr
);
4455 args
.return_val
= 0;
4458 catch_errors (cover_find_stub_with_shl_get
, &args
, message
,
4460 eh_notify_callback_addr
= args
.return_val
;
4463 exception_catchpoints_are_fragile
= 1;
4465 if (!eh_notify_callback_addr
)
4467 /* We can get here either if there is no plabel in the export list
4468 for the main image, or if something strange happened (?) */
4469 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4470 warning ("GDB will not be able to intercept exception events.");
4475 exception_catchpoints_are_fragile
= 0;
4478 /* Now, look for the breakpointable routine in end.o */
4479 /* This should also be available in the SOM symbol dict. if end.o linked in */
4480 msym
= lookup_minimal_symbol (HP_ACC_EH_break
, NULL
, NULL
);
4483 eh_break_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4484 hp_cxx_exception_support
= 1;
4488 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break
);
4489 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4490 warning ("GDB will be unable to intercept exception events.");
4495 /* Next look for the catch enable flag provided in end.o */
4496 sym
= lookup_symbol (HP_ACC_EH_catch_catch
, (struct block
*) NULL
,
4497 VAR_DOMAIN
, 0, (struct symtab
**) NULL
);
4498 if (sym
) /* sometimes present in debug info */
4500 eh_catch_catch_addr
= SYMBOL_VALUE_ADDRESS (sym
);
4501 hp_cxx_exception_support
= 1;
4504 /* otherwise look in SOM symbol dict. */
4506 msym
= lookup_minimal_symbol (HP_ACC_EH_catch_catch
, NULL
, NULL
);
4509 eh_catch_catch_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4510 hp_cxx_exception_support
= 1;
4514 warning ("Unable to enable interception of exception catches.");
4515 warning ("Executable may not have been compiled debuggable with HP aCC.");
4516 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4521 /* Next look for the catch enable flag provided end.o */
4522 sym
= lookup_symbol (HP_ACC_EH_catch_catch
, (struct block
*) NULL
,
4523 VAR_DOMAIN
, 0, (struct symtab
**) NULL
);
4524 if (sym
) /* sometimes present in debug info */
4526 eh_catch_throw_addr
= SYMBOL_VALUE_ADDRESS (sym
);
4527 hp_cxx_exception_support
= 1;
4530 /* otherwise look in SOM symbol dict. */
4532 msym
= lookup_minimal_symbol (HP_ACC_EH_catch_throw
, NULL
, NULL
);
4535 eh_catch_throw_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4536 hp_cxx_exception_support
= 1;
4540 warning ("Unable to enable interception of exception throws.");
4541 warning ("Executable may not have been compiled debuggable with HP aCC.");
4542 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4548 hp_cxx_exception_support
= 2; /* everything worked so far */
4549 hp_cxx_exception_support_initialized
= 1;
4550 exception_support_initialized
= 1;
4555 /* Target operation for enabling or disabling interception of
4557 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4558 ENABLE is either 0 (disable) or 1 (enable).
4559 Return value is NULL if no support found;
4560 -1 if something went wrong,
4561 or a pointer to a symtab/line struct if the breakpointable
4562 address was found. */
4564 struct symtab_and_line
*
4565 child_enable_exception_callback (enum exception_event_kind kind
, int enable
)
4569 if (!exception_support_initialized
|| !hp_cxx_exception_support_initialized
)
4570 if (!initialize_hp_cxx_exception_support ())
4573 switch (hp_cxx_exception_support
)
4576 /* Assuming no HP support at all */
4579 /* HP support should be present, but something went wrong */
4580 return (struct symtab_and_line
*) -1; /* yuck! */
4581 /* there may be other cases in the future */
4584 /* Set the EH hook to point to the callback routine */
4585 store_unsigned_integer (buf
, 4, enable
? eh_notify_callback_addr
: 0); /* FIXME 32x64 problem */
4586 /* pai: (temp) FIXME should there be a pack operation first? */
4587 if (target_write_memory (eh_notify_hook_addr
, buf
, 4)) /* FIXME 32x64 problem */
4589 warning ("Could not write to target memory for exception event callback.");
4590 warning ("Interception of exception events may not work.");
4591 return (struct symtab_and_line
*) -1;
4595 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4596 if (PIDGET (inferior_ptid
) > 0)
4598 if (setup_d_pid_in_inferior ())
4599 return (struct symtab_and_line
*) -1;
4603 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4604 return (struct symtab_and_line
*) -1;
4610 case EX_EVENT_THROW
:
4611 store_unsigned_integer (buf
, 4, enable
? 1 : 0);
4612 if (target_write_memory (eh_catch_throw_addr
, buf
, 4)) /* FIXME 32x64? */
4614 warning ("Couldn't enable exception throw interception.");
4615 return (struct symtab_and_line
*) -1;
4618 case EX_EVENT_CATCH
:
4619 store_unsigned_integer (buf
, 4, enable
? 1 : 0);
4620 if (target_write_memory (eh_catch_catch_addr
, buf
, 4)) /* FIXME 32x64? */
4622 warning ("Couldn't enable exception catch interception.");
4623 return (struct symtab_and_line
*) -1;
4627 error ("Request to enable unknown or unsupported exception event.");
4630 /* Copy break address into new sal struct, malloc'ing if needed. */
4631 if (!break_callback_sal
)
4633 break_callback_sal
= (struct symtab_and_line
*) xmalloc (sizeof (struct symtab_and_line
));
4635 init_sal (break_callback_sal
);
4636 break_callback_sal
->symtab
= NULL
;
4637 break_callback_sal
->pc
= eh_break_addr
;
4638 break_callback_sal
->line
= 0;
4639 break_callback_sal
->end
= eh_break_addr
;
4641 return break_callback_sal
;
4644 /* Record some information about the current exception event */
4645 static struct exception_event_record current_ex_event
;
4646 /* Convenience struct */
4647 static struct symtab_and_line null_symtab_and_line
=
4650 /* Report current exception event. Returns a pointer to a record
4651 that describes the kind of the event, where it was thrown from,
4652 and where it will be caught. More information may be reported
4654 struct exception_event_record
*
4655 child_get_current_exception_event (void)
4657 CORE_ADDR event_kind
;
4658 CORE_ADDR throw_addr
;
4659 CORE_ADDR catch_addr
;
4660 struct frame_info
*fi
, *curr_frame
;
4663 curr_frame
= get_current_frame ();
4665 return (struct exception_event_record
*) NULL
;
4667 /* Go up one frame to __d_eh_notify_callback, because at the
4668 point when this code is executed, there's garbage in the
4669 arguments of __d_eh_break. */
4670 fi
= find_relative_frame (curr_frame
, &level
);
4672 return (struct exception_event_record
*) NULL
;
4676 /* Read in the arguments */
4677 /* __d_eh_notify_callback() is called with 3 arguments:
4678 1. event kind catch or throw
4679 2. the target address if known
4680 3. a flag -- not sure what this is. pai/1997-07-17 */
4681 event_kind
= read_register (ARG0_REGNUM
);
4682 catch_addr
= read_register (ARG1_REGNUM
);
4684 /* Now go down to a user frame */
4685 /* For a throw, __d_eh_break is called by
4686 __d_eh_notify_callback which is called by
4687 __notify_throw which is called
4689 For a catch, __d_eh_break is called by
4690 __d_eh_notify_callback which is called by
4691 <stackwalking stuff> which is called by
4692 __throw__<stuff> or __rethrow_<stuff> which is called
4694 /* FIXME: Don't use such magic numbers; search for the frames */
4695 level
= (event_kind
== EX_EVENT_THROW
) ? 3 : 4;
4696 fi
= find_relative_frame (curr_frame
, &level
);
4698 return (struct exception_event_record
*) NULL
;
4701 throw_addr
= get_frame_pc (fi
);
4703 /* Go back to original (top) frame */
4704 select_frame (curr_frame
);
4706 current_ex_event
.kind
= (enum exception_event_kind
) event_kind
;
4707 current_ex_event
.throw_sal
= find_pc_line (throw_addr
, 1);
4708 current_ex_event
.catch_sal
= find_pc_line (catch_addr
, 1);
4710 return ¤t_ex_event
;
4713 /* Instead of this nasty cast, add a method pvoid() that prints out a
4714 host VOID data type (remember %p isn't portable). */
4717 hppa_pointer_to_address_hack (void *ptr
)
4719 gdb_assert (sizeof (ptr
) == TYPE_LENGTH (builtin_type_void_data_ptr
));
4720 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr
, &ptr
);
4724 unwind_command (char *exp
, int from_tty
)
4727 struct unwind_table_entry
*u
;
4729 /* If we have an expression, evaluate it and use it as the address. */
4731 if (exp
!= 0 && *exp
!= 0)
4732 address
= parse_and_eval_address (exp
);
4736 u
= find_unwind_entry (address
);
4740 printf_unfiltered ("Can't find unwind table entry for %s\n", exp
);
4744 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4745 paddr_nz (hppa_pointer_to_address_hack (u
)));
4747 printf_unfiltered ("\tregion_start = ");
4748 print_address (u
->region_start
, gdb_stdout
);
4750 printf_unfiltered ("\n\tregion_end = ");
4751 print_address (u
->region_end
, gdb_stdout
);
4753 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4755 printf_unfiltered ("\n\tflags =");
4756 pif (Cannot_unwind
);
4758 pif (Millicode_save_sr0
);
4761 pif (Variable_Frame
);
4762 pif (Separate_Package_Body
);
4763 pif (Frame_Extension_Millicode
);
4764 pif (Stack_Overflow_Check
);
4765 pif (Two_Instruction_SP_Increment
);
4769 pif (Save_MRP_in_frame
);
4770 pif (extn_ptr_defined
);
4771 pif (Cleanup_defined
);
4772 pif (MPE_XL_interrupt_marker
);
4773 pif (HP_UX_interrupt_marker
);
4776 putchar_unfiltered ('\n');
4778 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4780 pin (Region_description
);
4783 pin (Total_frame_size
);
4787 hppa_skip_permanent_breakpoint (void)
4789 /* To step over a breakpoint instruction on the PA takes some
4790 fiddling with the instruction address queue.
4792 When we stop at a breakpoint, the IA queue front (the instruction
4793 we're executing now) points at the breakpoint instruction, and
4794 the IA queue back (the next instruction to execute) points to
4795 whatever instruction we would execute after the breakpoint, if it
4796 were an ordinary instruction. This is the case even if the
4797 breakpoint is in the delay slot of a branch instruction.
4799 Clearly, to step past the breakpoint, we need to set the queue
4800 front to the back. But what do we put in the back? What
4801 instruction comes after that one? Because of the branch delay
4802 slot, the next insn is always at the back + 4. */
4803 write_register (PCOQ_HEAD_REGNUM
, read_register (PCOQ_TAIL_REGNUM
));
4804 write_register (PCSQ_HEAD_REGNUM
, read_register (PCSQ_TAIL_REGNUM
));
4806 write_register (PCOQ_TAIL_REGNUM
, read_register (PCOQ_TAIL_REGNUM
) + 4);
4807 /* We can leave the tail's space the same, since there's no jump. */
4810 /* Copy the function value from VALBUF into the proper location
4811 for a function return.
4813 Called only in the context of the "return" command. */
4816 hppa32_store_return_value (struct type
*type
, char *valbuf
)
4818 /* For software floating point, the return value goes into the
4819 integer registers. But we do not have any flag to key this on,
4820 so we always store the value into the integer registers.
4822 If its a float value, then we also store it into the floating
4824 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28)
4825 + (TYPE_LENGTH (type
) > 4
4826 ? (8 - TYPE_LENGTH (type
))
4827 : (4 - TYPE_LENGTH (type
))),
4828 valbuf
, TYPE_LENGTH (type
));
4829 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
4830 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP4_REGNUM
),
4831 valbuf
, TYPE_LENGTH (type
));
4834 /* Same as hppa32_store_return_value(), but for the PA64 ABI. */
4837 hppa64_store_return_value (struct type
*type
, char *valbuf
)
4839 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
4840 deprecated_write_register_bytes
4841 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM
)
4842 + DEPRECATED_REGISTER_SIZE
- TYPE_LENGTH (type
),
4843 valbuf
, TYPE_LENGTH (type
));
4844 else if (is_integral_type(type
))
4845 deprecated_write_register_bytes
4846 (DEPRECATED_REGISTER_BYTE (28)
4847 + DEPRECATED_REGISTER_SIZE
- TYPE_LENGTH (type
),
4848 valbuf
, TYPE_LENGTH (type
));
4849 else if (TYPE_LENGTH (type
) <= 8)
4850 deprecated_write_register_bytes
4851 (DEPRECATED_REGISTER_BYTE (28),valbuf
, TYPE_LENGTH (type
));
4852 else if (TYPE_LENGTH (type
) <= 16)
4854 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf
, 8);
4855 deprecated_write_register_bytes
4856 (DEPRECATED_REGISTER_BYTE (29), valbuf
+ 8, TYPE_LENGTH (type
) - 8);
4860 /* Copy the function's return value into VALBUF.
4862 This function is called only in the context of "target function calls",
4863 ie. when the debugger forces a function to be called in the child, and
4864 when the debugger forces a fucntion to return prematurely via the
4865 "return" command. */
4868 hppa32_extract_return_value (struct type
*type
, char *regbuf
, char *valbuf
)
4870 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
4871 memcpy (valbuf
, regbuf
+ DEPRECATED_REGISTER_BYTE (FP4_REGNUM
), TYPE_LENGTH (type
));
4875 + DEPRECATED_REGISTER_BYTE (28)
4876 + (TYPE_LENGTH (type
) > 4
4877 ? (8 - TYPE_LENGTH (type
))
4878 : (4 - TYPE_LENGTH (type
)))),
4879 TYPE_LENGTH (type
));
4882 /* Same as hppa32_extract_return_value but for the PA64 ABI case. */
4885 hppa64_extract_return_value (struct type
*type
, char *regbuf
, char *valbuf
)
4887 /* RM: Floats are returned in FR4R, doubles in FR4.
4888 Integral values are in r28, padded on the left.
4889 Aggregates less that 65 bits are in r28, right padded.
4890 Aggregates upto 128 bits are in r28 and r29, right padded. */
4891 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
4893 regbuf
+ DEPRECATED_REGISTER_BYTE (FP4_REGNUM
)
4894 + DEPRECATED_REGISTER_SIZE
- TYPE_LENGTH (type
),
4895 TYPE_LENGTH (type
));
4896 else if (is_integral_type(type
))
4898 regbuf
+ DEPRECATED_REGISTER_BYTE (28)
4899 + DEPRECATED_REGISTER_SIZE
- TYPE_LENGTH (type
),
4900 TYPE_LENGTH (type
));
4901 else if (TYPE_LENGTH (type
) <= 8)
4902 memcpy (valbuf
, regbuf
+ DEPRECATED_REGISTER_BYTE (28),
4903 TYPE_LENGTH (type
));
4904 else if (TYPE_LENGTH (type
) <= 16)
4906 memcpy (valbuf
, regbuf
+ DEPRECATED_REGISTER_BYTE (28), 8);
4907 memcpy (valbuf
+ 8, regbuf
+ DEPRECATED_REGISTER_BYTE (29),
4908 TYPE_LENGTH (type
) - 8);
4913 hppa_reg_struct_has_addr (int gcc_p
, struct type
*type
)
4915 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4916 via a pointer regardless of its type or the compiler used. */
4917 return (TYPE_LENGTH (type
) > 8);
4921 hppa_inner_than (CORE_ADDR lhs
, CORE_ADDR rhs
)
4923 /* Stack grows upward */
4928 hppa32_stack_align (CORE_ADDR sp
)
4930 /* elz: adjust the quantity to the next highest value which is
4931 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4932 On hppa the sp must always be kept 64-bit aligned */
4933 return ((sp
% 8) ? (sp
+ 7) & -8 : sp
);
4937 hppa64_stack_align (CORE_ADDR sp
)
4939 /* The PA64 ABI mandates a 16 byte stack alignment. */
4940 return ((sp
% 16) ? (sp
+ 15) & -16 : sp
);
4944 hppa_pc_requires_run_before_use (CORE_ADDR pc
)
4946 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4948 An example of this occurs when an a.out is linked against a foo.sl.
4949 The foo.sl defines a global bar(), and the a.out declares a signature
4950 for bar(). However, the a.out doesn't directly call bar(), but passes
4951 its address in another call.
4953 If you have this scenario and attempt to "break bar" before running,
4954 gdb will find a minimal symbol for bar() in the a.out. But that
4955 symbol's address will be negative. What this appears to denote is
4956 an index backwards from the base of the procedure linkage table (PLT)
4957 into the data linkage table (DLT), the end of which is contiguous
4958 with the start of the PLT. This is clearly not a valid address for
4959 us to set a breakpoint on.
4961 Note that one must be careful in how one checks for a negative address.
4962 0xc0000000 is a legitimate address of something in a shared text
4963 segment, for example. Since I don't know what the possible range
4964 is of these "really, truly negative" addresses that come from the
4965 minimal symbols, I'm resorting to the gross hack of checking the
4966 top byte of the address for all 1's. Sigh. */
4968 return (!target_has_stack
&& (pc
& 0xFF000000));
4972 hppa_instruction_nullified (void)
4974 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4975 avoid the type cast. I'm leaving it as is for now as I'm doing
4976 semi-mechanical multiarching-related changes. */
4977 const int ipsw
= (int) read_register (IPSW_REGNUM
);
4978 const int flags
= (int) read_register (FLAGS_REGNUM
);
4980 return ((ipsw
& 0x00200000) && !(flags
& 0x2));
4984 hppa_register_raw_size (int reg_nr
)
4986 /* All registers have the same size. */
4987 return DEPRECATED_REGISTER_SIZE
;
4990 /* Index within the register vector of the first byte of the space i
4991 used for register REG_NR. */
4994 hppa_register_byte (int reg_nr
)
4996 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
4998 return reg_nr
* tdep
->bytes_per_address
;
5001 /* Return the GDB type object for the "standard" data type of data
5005 hppa32_register_virtual_type (int reg_nr
)
5007 if (reg_nr
< FP4_REGNUM
)
5008 return builtin_type_int
;
5010 return builtin_type_float
;
5013 /* Return the GDB type object for the "standard" data type of data
5014 in register N. hppa64 version. */
5017 hppa64_register_virtual_type (int reg_nr
)
5019 if (reg_nr
< FP4_REGNUM
)
5020 return builtin_type_unsigned_long_long
;
5022 return builtin_type_double
;
5025 /* Store the address of the place in which to copy the structure the
5026 subroutine will return. This is called from call_function. */
5029 hppa_store_struct_return (CORE_ADDR addr
, CORE_ADDR sp
)
5031 write_register (28, addr
);
5035 hppa_extract_struct_value_address (char *regbuf
)
5037 /* Extract from an array REGBUF containing the (raw) register state
5038 the address in which a function should return its structure value,
5039 as a CORE_ADDR (or an expression that can be used as one). */
5040 /* FIXME: brobecker 2002-12-26.
5041 The current implementation is historical, but we should eventually
5042 implement it in a more robust manner as it relies on the fact that
5043 the address size is equal to the size of an int* _on the host_...
5044 One possible implementation that crossed my mind is to use
5046 /* FIXME: cagney/2003-09-27: This function can probably go. ELZ
5047 writes: We cannot assume on the pa that r28 still contains the
5048 address of the returned structure. Usually this will be
5049 overwritten by the callee. */
5050 return (*(int *)(regbuf
+ DEPRECATED_REGISTER_BYTE (28)));
5053 /* Return True if REGNUM is not a register available to the user
5054 through ptrace(). */
5057 hppa_cannot_store_register (int regnum
)
5060 || regnum
== PCSQ_HEAD_REGNUM
5061 || (regnum
>= PCSQ_TAIL_REGNUM
&& regnum
< IPSW_REGNUM
)
5062 || (regnum
> IPSW_REGNUM
&& regnum
< FP4_REGNUM
));
5067 hppa_smash_text_address (CORE_ADDR addr
)
5069 /* The low two bits of the PC on the PA contain the privilege level.
5070 Some genius implementing a (non-GCC) compiler apparently decided
5071 this means that "addresses" in a text section therefore include a
5072 privilege level, and thus symbol tables should contain these bits.
5073 This seems like a bonehead thing to do--anyway, it seems to work
5074 for our purposes to just ignore those bits. */
5076 return (addr
&= ~0x3);
5079 /* Get the ith function argument for the current function. */
5081 hppa_fetch_pointer_argument (struct frame_info
*frame
, int argi
,
5085 get_frame_register (frame
, R0_REGNUM
+ 26 - argi
, &addr
);
5089 static struct gdbarch
*
5090 hppa_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
5092 struct gdbarch_tdep
*tdep
;
5093 struct gdbarch
*gdbarch
;
5095 /* Try to determine the ABI of the object we are loading. */
5096 if (info
.abfd
!= NULL
&& info
.osabi
== GDB_OSABI_UNKNOWN
)
5098 /* If it's a SOM file, assume it's HP/UX SOM. */
5099 if (bfd_get_flavour (info
.abfd
) == bfd_target_som_flavour
)
5100 info
.osabi
= GDB_OSABI_HPUX_SOM
;
5103 /* find a candidate among the list of pre-declared architectures. */
5104 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
5106 return (arches
->gdbarch
);
5108 /* If none found, then allocate and initialize one. */
5109 tdep
= XMALLOC (struct gdbarch_tdep
);
5110 gdbarch
= gdbarch_alloc (&info
, tdep
);
5112 /* Determine from the bfd_arch_info structure if we are dealing with
5113 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5114 then default to a 32bit machine. */
5115 if (info
.bfd_arch_info
!= NULL
)
5116 tdep
->bytes_per_address
=
5117 info
.bfd_arch_info
->bits_per_address
/ info
.bfd_arch_info
->bits_per_byte
;
5119 tdep
->bytes_per_address
= 4;
5121 /* Some parts of the gdbarch vector depend on whether we are running
5122 on a 32 bits or 64 bits target. */
5123 switch (tdep
->bytes_per_address
)
5126 set_gdbarch_num_regs (gdbarch
, hppa32_num_regs
);
5127 set_gdbarch_register_name (gdbarch
, hppa32_register_name
);
5128 set_gdbarch_deprecated_register_virtual_type
5129 (gdbarch
, hppa32_register_virtual_type
);
5130 set_gdbarch_deprecated_call_dummy_length
5131 (gdbarch
, hppa32_call_dummy_length
);
5132 set_gdbarch_deprecated_stack_align (gdbarch
, hppa32_stack_align
);
5133 set_gdbarch_deprecated_reg_struct_has_addr
5134 (gdbarch
, hppa_reg_struct_has_addr
);
5135 set_gdbarch_deprecated_extract_return_value
5136 (gdbarch
, hppa32_extract_return_value
);
5137 set_gdbarch_use_struct_convention
5138 (gdbarch
, hppa32_use_struct_convention
);
5139 set_gdbarch_deprecated_store_return_value
5140 (gdbarch
, hppa32_store_return_value
);
5143 set_gdbarch_num_regs (gdbarch
, hppa64_num_regs
);
5144 set_gdbarch_register_name (gdbarch
, hppa64_register_name
);
5145 set_gdbarch_deprecated_register_virtual_type
5146 (gdbarch
, hppa64_register_virtual_type
);
5147 set_gdbarch_deprecated_call_dummy_breakpoint_offset
5148 (gdbarch
, hppa64_call_dummy_breakpoint_offset
);
5149 set_gdbarch_deprecated_call_dummy_length
5150 (gdbarch
, hppa64_call_dummy_length
);
5151 set_gdbarch_deprecated_stack_align (gdbarch
, hppa64_stack_align
);
5152 set_gdbarch_deprecated_extract_return_value
5153 (gdbarch
, hppa64_extract_return_value
);
5154 set_gdbarch_use_struct_convention
5155 (gdbarch
, hppa64_use_struct_convention
);
5156 set_gdbarch_deprecated_store_return_value
5157 (gdbarch
, hppa64_store_return_value
);
5160 internal_error (__FILE__
, __LINE__
, "Unsupported address size: %d",
5161 tdep
->bytes_per_address
);
5164 /* The following gdbarch vector elements depend on other parts of this
5165 vector which have been set above, depending on the ABI. */
5166 set_gdbarch_deprecated_register_bytes
5167 (gdbarch
, gdbarch_num_regs (gdbarch
) * tdep
->bytes_per_address
);
5168 set_gdbarch_long_bit (gdbarch
, tdep
->bytes_per_address
* TARGET_CHAR_BIT
);
5169 set_gdbarch_long_long_bit (gdbarch
, 64);
5170 set_gdbarch_ptr_bit (gdbarch
, tdep
->bytes_per_address
* TARGET_CHAR_BIT
);
5172 /* The following gdbarch vector elements do not depend on the address
5173 size, or in any other gdbarch element previously set. */
5174 set_gdbarch_function_start_offset (gdbarch
, 0);
5175 set_gdbarch_skip_prologue (gdbarch
, hppa_skip_prologue
);
5176 set_gdbarch_skip_trampoline_code (gdbarch
, hppa_skip_trampoline_code
);
5177 set_gdbarch_in_solib_call_trampoline (gdbarch
, hppa_in_solib_call_trampoline
);
5178 set_gdbarch_in_solib_return_trampoline (gdbarch
,
5179 hppa_in_solib_return_trampoline
);
5180 set_gdbarch_deprecated_saved_pc_after_call (gdbarch
, hppa_saved_pc_after_call
);
5181 set_gdbarch_inner_than (gdbarch
, hppa_inner_than
);
5182 set_gdbarch_decr_pc_after_break (gdbarch
, 0);
5183 set_gdbarch_deprecated_register_size (gdbarch
, tdep
->bytes_per_address
);
5184 set_gdbarch_deprecated_fp_regnum (gdbarch
, 3);
5185 set_gdbarch_sp_regnum (gdbarch
, 30);
5186 set_gdbarch_fp0_regnum (gdbarch
, 64);
5187 set_gdbarch_pc_regnum (gdbarch
, PCOQ_HEAD_REGNUM
);
5188 set_gdbarch_deprecated_npc_regnum (gdbarch
, PCOQ_TAIL_REGNUM
);
5189 set_gdbarch_deprecated_register_raw_size (gdbarch
, hppa_register_raw_size
);
5190 set_gdbarch_deprecated_register_byte (gdbarch
, hppa_register_byte
);
5191 set_gdbarch_deprecated_register_virtual_size (gdbarch
, hppa_register_raw_size
);
5192 set_gdbarch_deprecated_max_register_raw_size (gdbarch
, tdep
->bytes_per_address
);
5193 set_gdbarch_deprecated_max_register_virtual_size (gdbarch
, 8);
5194 set_gdbarch_deprecated_store_struct_return (gdbarch
, hppa_store_struct_return
);
5195 set_gdbarch_deprecated_extract_struct_value_address
5196 (gdbarch
, hppa_extract_struct_value_address
);
5197 set_gdbarch_cannot_store_register (gdbarch
, hppa_cannot_store_register
);
5198 set_gdbarch_deprecated_init_extra_frame_info (gdbarch
, hppa_init_extra_frame_info
);
5199 set_gdbarch_deprecated_frame_chain (gdbarch
, hppa_frame_chain
);
5200 set_gdbarch_deprecated_frame_chain_valid (gdbarch
, hppa_frame_chain_valid
);
5201 set_gdbarch_frameless_function_invocation
5202 (gdbarch
, hppa_frameless_function_invocation
);
5203 set_gdbarch_deprecated_frame_saved_pc (gdbarch
, hppa_frame_saved_pc
);
5204 set_gdbarch_frame_args_skip (gdbarch
, 0);
5205 set_gdbarch_deprecated_push_dummy_frame (gdbarch
, hppa_push_dummy_frame
);
5206 set_gdbarch_deprecated_pop_frame (gdbarch
, hppa_pop_frame
);
5207 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5208 set_gdbarch_deprecated_push_arguments (gdbarch
, hppa_push_arguments
);
5209 set_gdbarch_addr_bits_remove (gdbarch
, hppa_smash_text_address
);
5210 set_gdbarch_smash_text_address (gdbarch
, hppa_smash_text_address
);
5211 set_gdbarch_believe_pcc_promotion (gdbarch
, 1);
5212 set_gdbarch_read_pc (gdbarch
, hppa_target_read_pc
);
5213 set_gdbarch_write_pc (gdbarch
, hppa_target_write_pc
);
5214 set_gdbarch_deprecated_target_read_fp (gdbarch
, hppa_target_read_fp
);
5216 /* Helper for function argument information. */
5217 set_gdbarch_fetch_pointer_argument (gdbarch
, hppa_fetch_pointer_argument
);
5219 set_gdbarch_print_insn (gdbarch
, print_insn_hppa
);
5221 /* When a hardware watchpoint triggers, we'll move the inferior past
5222 it by removing all eventpoints; stepping past the instruction
5223 that caused the trigger; reinserting eventpoints; and checking
5224 whether any watched location changed. */
5225 set_gdbarch_have_nonsteppable_watchpoint (gdbarch
, 1);
5227 /* Hook in ABI-specific overrides, if they have been registered. */
5228 gdbarch_init_osabi (info
, gdbarch
);
5234 hppa_dump_tdep (struct gdbarch
*current_gdbarch
, struct ui_file
*file
)
5236 /* Nothing to print for the moment. */
5240 _initialize_hppa_tdep (void)
5242 struct cmd_list_element
*c
;
5243 void break_at_finish_command (char *arg
, int from_tty
);
5244 void tbreak_at_finish_command (char *arg
, int from_tty
);
5245 void break_at_finish_at_depth_command (char *arg
, int from_tty
);
5247 gdbarch_register (bfd_arch_hppa
, hppa_gdbarch_init
, hppa_dump_tdep
);
5249 add_cmd ("unwind", class_maintenance
, unwind_command
,
5250 "Print unwind table entry at given address.",
5251 &maintenanceprintlist
);
5253 deprecate_cmd (add_com ("xbreak", class_breakpoint
,
5254 break_at_finish_command
,
5255 concat ("Set breakpoint at procedure exit. \n\
5256 Argument may be function name, or \"*\" and an address.\n\
5257 If function is specified, break at end of code for that function.\n\
5258 If an address is specified, break at the end of the function that contains \n\
5259 that exact address.\n",
5260 "With no arg, uses current execution address of selected stack frame.\n\
5261 This is useful for breaking on return to a stack frame.\n\
5263 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5265 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL
)), NULL
);
5266 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint
, 1), NULL
);
5267 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint
, 1), NULL
);
5268 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint
, 1), NULL
);
5269 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint
, 1), NULL
);
5271 deprecate_cmd (c
= add_com ("txbreak", class_breakpoint
,
5272 tbreak_at_finish_command
,
5273 "Set temporary breakpoint at procedure exit. Either there should\n\
5274 be no argument or the argument must be a depth.\n"), NULL
);
5275 set_cmd_completer (c
, location_completer
);
5278 deprecate_cmd (add_com ("bx", class_breakpoint
,
5279 break_at_finish_at_depth_command
,
5280 "Set breakpoint at procedure exit. Either there should\n\
5281 be no argument or the argument must be a depth.\n"), NULL
);