ffcbf32b6b4b1186d824628b465a8c14deaa26f7
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 87, 89, 90, 91, 92, 93, 94, 95, 96, 1999
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "bfd.h"
28 #include "inferior.h"
29 #include "value.h"
30
31 /* For argument passing to the inferior */
32 #include "symtab.h"
33
34 #ifdef USG
35 #include <sys/types.h>
36 #endif
37
38 #include <dl.h>
39 #include <sys/param.h>
40 #include <signal.h>
41
42 #include <sys/ptrace.h>
43 #include <machine/save_state.h>
44
45 #ifdef COFF_ENCAPSULATE
46 #include "a.out.encap.h"
47 #else
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include "gdb_stat.h"
53 #include "wait.h"
54
55 #include "gdbcore.h"
56 #include "gdbcmd.h"
57 #include "target.h"
58 #include "symfile.h"
59 #include "objfiles.h"
60
61 /* To support detection of the pseudo-initial frame
62 that threads have. */
63 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
64 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
65
66 static int extract_5_load PARAMS ((unsigned int));
67
68 static unsigned extract_5R_store PARAMS ((unsigned int));
69
70 static unsigned extract_5r_store PARAMS ((unsigned int));
71
72 static void find_dummy_frame_regs PARAMS ((struct frame_info *,
73 struct frame_saved_regs *));
74
75 static int find_proc_framesize PARAMS ((CORE_ADDR));
76
77 static int find_return_regnum PARAMS ((CORE_ADDR));
78
79 struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
80
81 static int extract_17 PARAMS ((unsigned int));
82
83 static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
84
85 static int extract_21 PARAMS ((unsigned));
86
87 static unsigned deposit_14 PARAMS ((int, unsigned int));
88
89 static int extract_14 PARAMS ((unsigned));
90
91 static void unwind_command PARAMS ((char *, int));
92
93 static int low_sign_extend PARAMS ((unsigned int, unsigned int));
94
95 static int sign_extend PARAMS ((unsigned int, unsigned int));
96
97 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
98
99 static int hppa_alignof PARAMS ((struct type *));
100
101 /* To support multi-threading and stepping. */
102 int hppa_prepare_to_proceed PARAMS (());
103
104 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
105
106 static int is_branch PARAMS ((unsigned long));
107
108 static int inst_saves_gr PARAMS ((unsigned long));
109
110 static int inst_saves_fr PARAMS ((unsigned long));
111
112 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
113
114 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
115
116 static int compare_unwind_entries PARAMS ((const void *, const void *));
117
118 static void read_unwind_info PARAMS ((struct objfile *));
119
120 static void internalize_unwinds PARAMS ((struct objfile *,
121 struct unwind_table_entry *,
122 asection *, unsigned int,
123 unsigned int, CORE_ADDR));
124 static void pa_print_registers PARAMS ((char *, int, int));
125 static void pa_strcat_registers PARAMS ((char *, int, int, GDB_FILE *));
126 static void pa_register_look_aside PARAMS ((char *, int, long *));
127 static void pa_print_fp_reg PARAMS ((int));
128 static void pa_strcat_fp_reg PARAMS ((int, GDB_FILE *, enum precision_type));
129 static void record_text_segment_lowaddr PARAMS ((bfd *, asection *, void *));
130
131 typedef struct
132 {
133 struct minimal_symbol *msym;
134 CORE_ADDR solib_handle;
135 CORE_ADDR return_val;
136 }
137 args_for_find_stub;
138
139 static int cover_find_stub_with_shl_get (PTR);
140
141 static int is_pa_2 = 0; /* False */
142
143 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
144 extern int hp_som_som_object_present;
145
146 /* In breakpoint.c */
147 extern int exception_catchpoints_are_fragile;
148
149 /* This is defined in valops.c. */
150 extern value_ptr
151 find_function_in_inferior PARAMS ((char *));
152
153 /* Should call_function allocate stack space for a struct return? */
154 int
155 hppa_use_struct_convention (gcc_p, type)
156 int gcc_p;
157 struct type *type;
158 {
159 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
160 }
161 \f
162
163 /* Routines to extract various sized constants out of hppa
164 instructions. */
165
166 /* This assumes that no garbage lies outside of the lower bits of
167 value. */
168
169 static int
170 sign_extend (val, bits)
171 unsigned val, bits;
172 {
173 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
174 }
175
176 /* For many immediate values the sign bit is the low bit! */
177
178 static int
179 low_sign_extend (val, bits)
180 unsigned val, bits;
181 {
182 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
183 }
184
185 /* extract the immediate field from a ld{bhw}s instruction */
186
187 static int
188 extract_5_load (word)
189 unsigned word;
190 {
191 return low_sign_extend (word >> 16 & MASK_5, 5);
192 }
193
194 /* extract the immediate field from a break instruction */
195
196 static unsigned
197 extract_5r_store (word)
198 unsigned word;
199 {
200 return (word & MASK_5);
201 }
202
203 /* extract the immediate field from a {sr}sm instruction */
204
205 static unsigned
206 extract_5R_store (word)
207 unsigned word;
208 {
209 return (word >> 16 & MASK_5);
210 }
211
212 /* extract a 14 bit immediate field */
213
214 static int
215 extract_14 (word)
216 unsigned word;
217 {
218 return low_sign_extend (word & MASK_14, 14);
219 }
220
221 /* deposit a 14 bit constant in a word */
222
223 static unsigned
224 deposit_14 (opnd, word)
225 int opnd;
226 unsigned word;
227 {
228 unsigned sign = (opnd < 0 ? 1 : 0);
229
230 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
231 }
232
233 /* extract a 21 bit constant */
234
235 static int
236 extract_21 (word)
237 unsigned word;
238 {
239 int val;
240
241 word &= MASK_21;
242 word <<= 11;
243 val = GET_FIELD (word, 20, 20);
244 val <<= 11;
245 val |= GET_FIELD (word, 9, 19);
246 val <<= 2;
247 val |= GET_FIELD (word, 5, 6);
248 val <<= 5;
249 val |= GET_FIELD (word, 0, 4);
250 val <<= 2;
251 val |= GET_FIELD (word, 7, 8);
252 return sign_extend (val, 21) << 11;
253 }
254
255 /* deposit a 21 bit constant in a word. Although 21 bit constants are
256 usually the top 21 bits of a 32 bit constant, we assume that only
257 the low 21 bits of opnd are relevant */
258
259 static unsigned
260 deposit_21 (opnd, word)
261 unsigned opnd, word;
262 {
263 unsigned val = 0;
264
265 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
266 val <<= 2;
267 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
268 val <<= 2;
269 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
270 val <<= 11;
271 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
272 val <<= 1;
273 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
274 return word | val;
275 }
276
277 /* extract a 17 bit constant from branch instructions, returning the
278 19 bit signed value. */
279
280 static int
281 extract_17 (word)
282 unsigned word;
283 {
284 return sign_extend (GET_FIELD (word, 19, 28) |
285 GET_FIELD (word, 29, 29) << 10 |
286 GET_FIELD (word, 11, 15) << 11 |
287 (word & 0x1) << 16, 17) << 2;
288 }
289 \f
290
291 /* Compare the start address for two unwind entries returning 1 if
292 the first address is larger than the second, -1 if the second is
293 larger than the first, and zero if they are equal. */
294
295 static int
296 compare_unwind_entries (arg1, arg2)
297 const void *arg1;
298 const void *arg2;
299 {
300 const struct unwind_table_entry *a = arg1;
301 const struct unwind_table_entry *b = arg2;
302
303 if (a->region_start > b->region_start)
304 return 1;
305 else if (a->region_start < b->region_start)
306 return -1;
307 else
308 return 0;
309 }
310
311 static CORE_ADDR low_text_segment_address;
312
313 static void
314 record_text_segment_lowaddr (abfd, section, ignored)
315 bfd *abfd ATTRIBUTE_UNUSED;
316 asection *section;
317 PTR ignored ATTRIBUTE_UNUSED;
318 {
319 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
320 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
321 && section->vma < low_text_segment_address)
322 low_text_segment_address = section->vma;
323 }
324
325 static void
326 internalize_unwinds (objfile, table, section, entries, size, text_offset)
327 struct objfile *objfile;
328 struct unwind_table_entry *table;
329 asection *section;
330 unsigned int entries, size;
331 CORE_ADDR text_offset;
332 {
333 /* We will read the unwind entries into temporary memory, then
334 fill in the actual unwind table. */
335 if (size > 0)
336 {
337 unsigned long tmp;
338 unsigned i;
339 char *buf = alloca (size);
340
341 low_text_segment_address = -1;
342
343 /* If addresses are 64 bits wide, then unwinds are supposed to
344 be segment relative offsets instead of absolute addresses.
345
346 Note that when loading a shared library (text_offset != 0) the
347 unwinds are already relative to the text_offset that will be
348 passed in. */
349 if (TARGET_PTR_BIT == 64 && text_offset == 0)
350 {
351 bfd_map_over_sections (objfile->obfd,
352 record_text_segment_lowaddr, (PTR) NULL);
353
354 /* ?!? Mask off some low bits. Should this instead subtract
355 out the lowest section's filepos or something like that?
356 This looks very hokey to me. */
357 low_text_segment_address &= ~0xfff;
358 text_offset += low_text_segment_address;
359 }
360
361 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
362
363 /* Now internalize the information being careful to handle host/target
364 endian issues. */
365 for (i = 0; i < entries; i++)
366 {
367 table[i].region_start = bfd_get_32 (objfile->obfd,
368 (bfd_byte *) buf);
369 table[i].region_start += text_offset;
370 buf += 4;
371 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
372 table[i].region_end += text_offset;
373 buf += 4;
374 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
375 buf += 4;
376 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
377 table[i].Millicode = (tmp >> 30) & 0x1;
378 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
379 table[i].Region_description = (tmp >> 27) & 0x3;
380 table[i].reserved1 = (tmp >> 26) & 0x1;
381 table[i].Entry_SR = (tmp >> 25) & 0x1;
382 table[i].Entry_FR = (tmp >> 21) & 0xf;
383 table[i].Entry_GR = (tmp >> 16) & 0x1f;
384 table[i].Args_stored = (tmp >> 15) & 0x1;
385 table[i].Variable_Frame = (tmp >> 14) & 0x1;
386 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
387 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
388 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
389 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
390 table[i].Ada_Region = (tmp >> 9) & 0x1;
391 table[i].cxx_info = (tmp >> 8) & 0x1;
392 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
393 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
394 table[i].reserved2 = (tmp >> 5) & 0x1;
395 table[i].Save_SP = (tmp >> 4) & 0x1;
396 table[i].Save_RP = (tmp >> 3) & 0x1;
397 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
398 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
399 table[i].Cleanup_defined = tmp & 0x1;
400 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
401 buf += 4;
402 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
403 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
404 table[i].Large_frame = (tmp >> 29) & 0x1;
405 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
406 table[i].reserved4 = (tmp >> 27) & 0x1;
407 table[i].Total_frame_size = tmp & 0x7ffffff;
408
409 /* Stub unwinds are handled elsewhere. */
410 table[i].stub_unwind.stub_type = 0;
411 table[i].stub_unwind.padding = 0;
412 }
413 }
414 }
415
416 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
417 the object file. This info is used mainly by find_unwind_entry() to find
418 out the stack frame size and frame pointer used by procedures. We put
419 everything on the psymbol obstack in the objfile so that it automatically
420 gets freed when the objfile is destroyed. */
421
422 static void
423 read_unwind_info (objfile)
424 struct objfile *objfile;
425 {
426 asection *unwind_sec, *stub_unwind_sec;
427 unsigned unwind_size, stub_unwind_size, total_size;
428 unsigned index, unwind_entries;
429 unsigned stub_entries, total_entries;
430 CORE_ADDR text_offset;
431 struct obj_unwind_info *ui;
432 obj_private_data_t *obj_private;
433
434 text_offset = ANOFFSET (objfile->section_offsets, 0);
435 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
436 sizeof (struct obj_unwind_info));
437
438 ui->table = NULL;
439 ui->cache = NULL;
440 ui->last = -1;
441
442 /* For reasons unknown the HP PA64 tools generate multiple unwinder
443 sections in a single executable. So we just iterate over every
444 section in the BFD looking for unwinder sections intead of trying
445 to do a lookup with bfd_get_section_by_name.
446
447 First determine the total size of the unwind tables so that we
448 can allocate memory in a nice big hunk. */
449 total_entries = 0;
450 for (unwind_sec = objfile->obfd->sections;
451 unwind_sec;
452 unwind_sec = unwind_sec->next)
453 {
454 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
455 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
456 {
457 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
458 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
459
460 total_entries += unwind_entries;
461 }
462 }
463
464 /* Now compute the size of the stub unwinds. Note the ELF tools do not
465 use stub unwinds at the curren time. */
466 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
467
468 if (stub_unwind_sec)
469 {
470 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
471 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
472 }
473 else
474 {
475 stub_unwind_size = 0;
476 stub_entries = 0;
477 }
478
479 /* Compute total number of unwind entries and their total size. */
480 total_entries += stub_entries;
481 total_size = total_entries * sizeof (struct unwind_table_entry);
482
483 /* Allocate memory for the unwind table. */
484 ui->table = (struct unwind_table_entry *)
485 obstack_alloc (&objfile->psymbol_obstack, total_size);
486 ui->last = total_entries - 1;
487
488 /* Now read in each unwind section and internalize the standard unwind
489 entries. */
490 index = 0;
491 for (unwind_sec = objfile->obfd->sections;
492 unwind_sec;
493 unwind_sec = unwind_sec->next)
494 {
495 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
496 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
497 {
498 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
499 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
500
501 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
502 unwind_entries, unwind_size, text_offset);
503 index += unwind_entries;
504 }
505 }
506
507 /* Now read in and internalize the stub unwind entries. */
508 if (stub_unwind_size > 0)
509 {
510 unsigned int i;
511 char *buf = alloca (stub_unwind_size);
512
513 /* Read in the stub unwind entries. */
514 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
515 0, stub_unwind_size);
516
517 /* Now convert them into regular unwind entries. */
518 for (i = 0; i < stub_entries; i++, index++)
519 {
520 /* Clear out the next unwind entry. */
521 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
522
523 /* Convert offset & size into region_start and region_end.
524 Stuff away the stub type into "reserved" fields. */
525 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
526 (bfd_byte *) buf);
527 ui->table[index].region_start += text_offset;
528 buf += 4;
529 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
530 (bfd_byte *) buf);
531 buf += 2;
532 ui->table[index].region_end
533 = ui->table[index].region_start + 4 *
534 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
535 buf += 2;
536 }
537
538 }
539
540 /* Unwind table needs to be kept sorted. */
541 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
542 compare_unwind_entries);
543
544 /* Keep a pointer to the unwind information. */
545 if (objfile->obj_private == NULL)
546 {
547 obj_private = (obj_private_data_t *)
548 obstack_alloc (&objfile->psymbol_obstack,
549 sizeof (obj_private_data_t));
550 obj_private->unwind_info = NULL;
551 obj_private->so_info = NULL;
552 obj_private->dp = 0;
553
554 objfile->obj_private = (PTR) obj_private;
555 }
556 obj_private = (obj_private_data_t *) objfile->obj_private;
557 obj_private->unwind_info = ui;
558 }
559
560 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
561 of the objfiles seeking the unwind table entry for this PC. Each objfile
562 contains a sorted list of struct unwind_table_entry. Since we do a binary
563 search of the unwind tables, we depend upon them to be sorted. */
564
565 struct unwind_table_entry *
566 find_unwind_entry (pc)
567 CORE_ADDR pc;
568 {
569 int first, middle, last;
570 struct objfile *objfile;
571
572 /* A function at address 0? Not in HP-UX! */
573 if (pc == (CORE_ADDR) 0)
574 return NULL;
575
576 ALL_OBJFILES (objfile)
577 {
578 struct obj_unwind_info *ui;
579 ui = NULL;
580 if (objfile->obj_private)
581 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
582
583 if (!ui)
584 {
585 read_unwind_info (objfile);
586 if (objfile->obj_private == NULL)
587 error ("Internal error reading unwind information.");
588 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
589 }
590
591 /* First, check the cache */
592
593 if (ui->cache
594 && pc >= ui->cache->region_start
595 && pc <= ui->cache->region_end)
596 return ui->cache;
597
598 /* Not in the cache, do a binary search */
599
600 first = 0;
601 last = ui->last;
602
603 while (first <= last)
604 {
605 middle = (first + last) / 2;
606 if (pc >= ui->table[middle].region_start
607 && pc <= ui->table[middle].region_end)
608 {
609 ui->cache = &ui->table[middle];
610 return &ui->table[middle];
611 }
612
613 if (pc < ui->table[middle].region_start)
614 last = middle - 1;
615 else
616 first = middle + 1;
617 }
618 } /* ALL_OBJFILES() */
619 return NULL;
620 }
621
622 /* Return the adjustment necessary to make for addresses on the stack
623 as presented by hpread.c.
624
625 This is necessary because of the stack direction on the PA and the
626 bizarre way in which someone (?) decided they wanted to handle
627 frame pointerless code in GDB. */
628 int
629 hpread_adjust_stack_address (func_addr)
630 CORE_ADDR func_addr;
631 {
632 struct unwind_table_entry *u;
633
634 u = find_unwind_entry (func_addr);
635 if (!u)
636 return 0;
637 else
638 return u->Total_frame_size << 3;
639 }
640
641 /* Called to determine if PC is in an interrupt handler of some
642 kind. */
643
644 static int
645 pc_in_interrupt_handler (pc)
646 CORE_ADDR pc;
647 {
648 struct unwind_table_entry *u;
649 struct minimal_symbol *msym_us;
650
651 u = find_unwind_entry (pc);
652 if (!u)
653 return 0;
654
655 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
656 its frame isn't a pure interrupt frame. Deal with this. */
657 msym_us = lookup_minimal_symbol_by_pc (pc);
658
659 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
660 }
661
662 /* Called when no unwind descriptor was found for PC. Returns 1 if it
663 appears that PC is in a linker stub.
664
665 ?!? Need to handle stubs which appear in PA64 code. */
666
667 static int
668 pc_in_linker_stub (pc)
669 CORE_ADDR pc;
670 {
671 int found_magic_instruction = 0;
672 int i;
673 char buf[4];
674
675 /* If unable to read memory, assume pc is not in a linker stub. */
676 if (target_read_memory (pc, buf, 4) != 0)
677 return 0;
678
679 /* We are looking for something like
680
681 ; $$dyncall jams RP into this special spot in the frame (RP')
682 ; before calling the "call stub"
683 ldw -18(sp),rp
684
685 ldsid (rp),r1 ; Get space associated with RP into r1
686 mtsp r1,sp ; Move it into space register 0
687 be,n 0(sr0),rp) ; back to your regularly scheduled program */
688
689 /* Maximum known linker stub size is 4 instructions. Search forward
690 from the given PC, then backward. */
691 for (i = 0; i < 4; i++)
692 {
693 /* If we hit something with an unwind, stop searching this direction. */
694
695 if (find_unwind_entry (pc + i * 4) != 0)
696 break;
697
698 /* Check for ldsid (rp),r1 which is the magic instruction for a
699 return from a cross-space function call. */
700 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
701 {
702 found_magic_instruction = 1;
703 break;
704 }
705 /* Add code to handle long call/branch and argument relocation stubs
706 here. */
707 }
708
709 if (found_magic_instruction != 0)
710 return 1;
711
712 /* Now look backward. */
713 for (i = 0; i < 4; i++)
714 {
715 /* If we hit something with an unwind, stop searching this direction. */
716
717 if (find_unwind_entry (pc - i * 4) != 0)
718 break;
719
720 /* Check for ldsid (rp),r1 which is the magic instruction for a
721 return from a cross-space function call. */
722 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
723 {
724 found_magic_instruction = 1;
725 break;
726 }
727 /* Add code to handle long call/branch and argument relocation stubs
728 here. */
729 }
730 return found_magic_instruction;
731 }
732
733 static int
734 find_return_regnum (pc)
735 CORE_ADDR pc;
736 {
737 struct unwind_table_entry *u;
738
739 u = find_unwind_entry (pc);
740
741 if (!u)
742 return RP_REGNUM;
743
744 if (u->Millicode)
745 return 31;
746
747 return RP_REGNUM;
748 }
749
750 /* Return size of frame, or -1 if we should use a frame pointer. */
751 static int
752 find_proc_framesize (pc)
753 CORE_ADDR pc;
754 {
755 struct unwind_table_entry *u;
756 struct minimal_symbol *msym_us;
757
758 /* This may indicate a bug in our callers... */
759 if (pc == (CORE_ADDR) 0)
760 return -1;
761
762 u = find_unwind_entry (pc);
763
764 if (!u)
765 {
766 if (pc_in_linker_stub (pc))
767 /* Linker stubs have a zero size frame. */
768 return 0;
769 else
770 return -1;
771 }
772
773 msym_us = lookup_minimal_symbol_by_pc (pc);
774
775 /* If Save_SP is set, and we're not in an interrupt or signal caller,
776 then we have a frame pointer. Use it. */
777 if (u->Save_SP && !pc_in_interrupt_handler (pc)
778 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
779 return -1;
780
781 return u->Total_frame_size << 3;
782 }
783
784 /* Return offset from sp at which rp is saved, or 0 if not saved. */
785 static int rp_saved PARAMS ((CORE_ADDR));
786
787 static int
788 rp_saved (pc)
789 CORE_ADDR pc;
790 {
791 struct unwind_table_entry *u;
792
793 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
794 if (pc == (CORE_ADDR) 0)
795 return 0;
796
797 u = find_unwind_entry (pc);
798
799 if (!u)
800 {
801 if (pc_in_linker_stub (pc))
802 /* This is the so-called RP'. */
803 return -24;
804 else
805 return 0;
806 }
807
808 if (u->Save_RP)
809 return (TARGET_PTR_BIT == 64 ? -16 : -20);
810 else if (u->stub_unwind.stub_type != 0)
811 {
812 switch (u->stub_unwind.stub_type)
813 {
814 case EXPORT:
815 case IMPORT:
816 return -24;
817 case PARAMETER_RELOCATION:
818 return -8;
819 default:
820 return 0;
821 }
822 }
823 else
824 return 0;
825 }
826 \f
827 int
828 frameless_function_invocation (frame)
829 struct frame_info *frame;
830 {
831 struct unwind_table_entry *u;
832
833 u = find_unwind_entry (frame->pc);
834
835 if (u == 0)
836 return 0;
837
838 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
839 }
840
841 CORE_ADDR
842 saved_pc_after_call (frame)
843 struct frame_info *frame;
844 {
845 int ret_regnum;
846 CORE_ADDR pc;
847 struct unwind_table_entry *u;
848
849 ret_regnum = find_return_regnum (get_frame_pc (frame));
850 pc = read_register (ret_regnum) & ~0x3;
851
852 /* If PC is in a linker stub, then we need to dig the address
853 the stub will return to out of the stack. */
854 u = find_unwind_entry (pc);
855 if (u && u->stub_unwind.stub_type != 0)
856 return FRAME_SAVED_PC (frame);
857 else
858 return pc;
859 }
860 \f
861 CORE_ADDR
862 hppa_frame_saved_pc (frame)
863 struct frame_info *frame;
864 {
865 CORE_ADDR pc = get_frame_pc (frame);
866 struct unwind_table_entry *u;
867 CORE_ADDR old_pc;
868 int spun_around_loop = 0;
869 int rp_offset = 0;
870
871 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
872 at the base of the frame in an interrupt handler. Registers within
873 are saved in the exact same order as GDB numbers registers. How
874 convienent. */
875 if (pc_in_interrupt_handler (pc))
876 return read_memory_integer (frame->frame + PC_REGNUM * 4,
877 TARGET_PTR_BIT / 8) & ~0x3;
878
879 if ((frame->pc >= frame->frame
880 && frame->pc <= (frame->frame
881 /* A call dummy is sized in words, but it is
882 actually a series of instructions. Account
883 for that scaling factor. */
884 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
885 * CALL_DUMMY_LENGTH)
886 /* Similarly we have to account for 64bit
887 wide register saves. */
888 + (32 * REGISTER_SIZE)
889 /* We always consider FP regs 8 bytes long. */
890 + (NUM_REGS - FP0_REGNUM) * 8
891 /* Similarly we have to account for 64bit
892 wide register saves. */
893 + (6 * REGISTER_SIZE))))
894 {
895 return read_memory_integer ((frame->frame
896 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
897 TARGET_PTR_BIT / 8) & ~0x3;
898 }
899
900 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
901 /* Deal with signal handler caller frames too. */
902 if (frame->signal_handler_caller)
903 {
904 CORE_ADDR rp;
905 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
906 return rp & ~0x3;
907 }
908 #endif
909
910 if (frameless_function_invocation (frame))
911 {
912 int ret_regnum;
913
914 ret_regnum = find_return_regnum (pc);
915
916 /* If the next frame is an interrupt frame or a signal
917 handler caller, then we need to look in the saved
918 register area to get the return pointer (the values
919 in the registers may not correspond to anything useful). */
920 if (frame->next
921 && (frame->next->signal_handler_caller
922 || pc_in_interrupt_handler (frame->next->pc)))
923 {
924 struct frame_saved_regs saved_regs;
925
926 get_frame_saved_regs (frame->next, &saved_regs);
927 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
928 TARGET_PTR_BIT / 8) & 0x2)
929 {
930 pc = read_memory_integer (saved_regs.regs[31],
931 TARGET_PTR_BIT / 8) & ~0x3;
932
933 /* Syscalls are really two frames. The syscall stub itself
934 with a return pointer in %rp and the kernel call with
935 a return pointer in %r31. We return the %rp variant
936 if %r31 is the same as frame->pc. */
937 if (pc == frame->pc)
938 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
939 TARGET_PTR_BIT / 8) & ~0x3;
940 }
941 else
942 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
943 TARGET_PTR_BIT / 8) & ~0x3;
944 }
945 else
946 pc = read_register (ret_regnum) & ~0x3;
947 }
948 else
949 {
950 spun_around_loop = 0;
951 old_pc = pc;
952
953 restart:
954 rp_offset = rp_saved (pc);
955
956 /* Similar to code in frameless function case. If the next
957 frame is a signal or interrupt handler, then dig the right
958 information out of the saved register info. */
959 if (rp_offset == 0
960 && frame->next
961 && (frame->next->signal_handler_caller
962 || pc_in_interrupt_handler (frame->next->pc)))
963 {
964 struct frame_saved_regs saved_regs;
965
966 get_frame_saved_regs (frame->next, &saved_regs);
967 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
968 TARGET_PTR_BIT / 8) & 0x2)
969 {
970 pc = read_memory_integer (saved_regs.regs[31],
971 TARGET_PTR_BIT / 8) & ~0x3;
972
973 /* Syscalls are really two frames. The syscall stub itself
974 with a return pointer in %rp and the kernel call with
975 a return pointer in %r31. We return the %rp variant
976 if %r31 is the same as frame->pc. */
977 if (pc == frame->pc)
978 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
979 TARGET_PTR_BIT / 8) & ~0x3;
980 }
981 else
982 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
983 TARGET_PTR_BIT / 8) & ~0x3;
984 }
985 else if (rp_offset == 0)
986 {
987 old_pc = pc;
988 pc = read_register (RP_REGNUM) & ~0x3;
989 }
990 else
991 {
992 old_pc = pc;
993 pc = read_memory_integer (frame->frame + rp_offset,
994 TARGET_PTR_BIT / 8) & ~0x3;
995 }
996 }
997
998 /* If PC is inside a linker stub, then dig out the address the stub
999 will return to.
1000
1001 Don't do this for long branch stubs. Why? For some unknown reason
1002 _start is marked as a long branch stub in hpux10. */
1003 u = find_unwind_entry (pc);
1004 if (u && u->stub_unwind.stub_type != 0
1005 && u->stub_unwind.stub_type != LONG_BRANCH)
1006 {
1007 unsigned int insn;
1008
1009 /* If this is a dynamic executable, and we're in a signal handler,
1010 then the call chain will eventually point us into the stub for
1011 _sigreturn. Unlike most cases, we'll be pointed to the branch
1012 to the real sigreturn rather than the code after the real branch!.
1013
1014 Else, try to dig the address the stub will return to in the normal
1015 fashion. */
1016 insn = read_memory_integer (pc, 4);
1017 if ((insn & 0xfc00e000) == 0xe8000000)
1018 return (pc + extract_17 (insn) + 8) & ~0x3;
1019 else
1020 {
1021 if (old_pc == pc)
1022 spun_around_loop++;
1023
1024 if (spun_around_loop > 1)
1025 {
1026 /* We're just about to go around the loop again with
1027 no more hope of success. Die. */
1028 error ("Unable to find return pc for this frame");
1029 }
1030 else
1031 goto restart;
1032 }
1033 }
1034
1035 return pc;
1036 }
1037 \f
1038 /* We need to correct the PC and the FP for the outermost frame when we are
1039 in a system call. */
1040
1041 void
1042 init_extra_frame_info (fromleaf, frame)
1043 int fromleaf;
1044 struct frame_info *frame;
1045 {
1046 int flags;
1047 int framesize;
1048
1049 if (frame->next && !fromleaf)
1050 return;
1051
1052 /* If the next frame represents a frameless function invocation
1053 then we have to do some adjustments that are normally done by
1054 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1055 if (fromleaf)
1056 {
1057 /* Find the framesize of *this* frame without peeking at the PC
1058 in the current frame structure (it isn't set yet). */
1059 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1060
1061 /* Now adjust our base frame accordingly. If we have a frame pointer
1062 use it, else subtract the size of this frame from the current
1063 frame. (we always want frame->frame to point at the lowest address
1064 in the frame). */
1065 if (framesize == -1)
1066 frame->frame = TARGET_READ_FP ();
1067 else
1068 frame->frame -= framesize;
1069 return;
1070 }
1071
1072 flags = read_register (FLAGS_REGNUM);
1073 if (flags & 2) /* In system call? */
1074 frame->pc = read_register (31) & ~0x3;
1075
1076 /* The outermost frame is always derived from PC-framesize
1077
1078 One might think frameless innermost frames should have
1079 a frame->frame that is the same as the parent's frame->frame.
1080 That is wrong; frame->frame in that case should be the *high*
1081 address of the parent's frame. It's complicated as hell to
1082 explain, but the parent *always* creates some stack space for
1083 the child. So the child actually does have a frame of some
1084 sorts, and its base is the high address in its parent's frame. */
1085 framesize = find_proc_framesize (frame->pc);
1086 if (framesize == -1)
1087 frame->frame = TARGET_READ_FP ();
1088 else
1089 frame->frame = read_register (SP_REGNUM) - framesize;
1090 }
1091 \f
1092 /* Given a GDB frame, determine the address of the calling function's frame.
1093 This will be used to create a new GDB frame struct, and then
1094 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1095
1096 This may involve searching through prologues for several functions
1097 at boundaries where GCC calls HP C code, or where code which has
1098 a frame pointer calls code without a frame pointer. */
1099
1100 CORE_ADDR
1101 frame_chain (frame)
1102 struct frame_info *frame;
1103 {
1104 int my_framesize, caller_framesize;
1105 struct unwind_table_entry *u;
1106 CORE_ADDR frame_base;
1107 struct frame_info *tmp_frame;
1108
1109 /* A frame in the current frame list, or zero. */
1110 struct frame_info *saved_regs_frame = 0;
1111 /* Where the registers were saved in saved_regs_frame.
1112 If saved_regs_frame is zero, this is garbage. */
1113 struct frame_saved_regs saved_regs;
1114
1115 CORE_ADDR caller_pc;
1116
1117 struct minimal_symbol *min_frame_symbol;
1118 struct symbol *frame_symbol;
1119 char *frame_symbol_name;
1120
1121 /* If this is a threaded application, and we see the
1122 routine "__pthread_exit", treat it as the stack root
1123 for this thread. */
1124 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1125 frame_symbol = find_pc_function (frame->pc);
1126
1127 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1128 {
1129 /* The test above for "no user function name" would defend
1130 against the slim likelihood that a user might define a
1131 routine named "__pthread_exit" and then try to debug it.
1132
1133 If it weren't commented out, and you tried to debug the
1134 pthread library itself, you'd get errors.
1135
1136 So for today, we don't make that check. */
1137 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1138 if (frame_symbol_name != 0)
1139 {
1140 if (0 == strncmp (frame_symbol_name,
1141 THREAD_INITIAL_FRAME_SYMBOL,
1142 THREAD_INITIAL_FRAME_SYM_LEN))
1143 {
1144 /* Pretend we've reached the bottom of the stack. */
1145 return (CORE_ADDR) 0;
1146 }
1147 }
1148 } /* End of hacky code for threads. */
1149
1150 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1151 are easy; at *sp we have a full save state strucutre which we can
1152 pull the old stack pointer from. Also see frame_saved_pc for
1153 code to dig a saved PC out of the save state structure. */
1154 if (pc_in_interrupt_handler (frame->pc))
1155 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1156 TARGET_PTR_BIT / 8);
1157 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1158 else if (frame->signal_handler_caller)
1159 {
1160 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1161 }
1162 #endif
1163 else
1164 frame_base = frame->frame;
1165
1166 /* Get frame sizes for the current frame and the frame of the
1167 caller. */
1168 my_framesize = find_proc_framesize (frame->pc);
1169 caller_pc = FRAME_SAVED_PC (frame);
1170
1171 /* If we can't determine the caller's PC, then it's not likely we can
1172 really determine anything meaningful about its frame. We'll consider
1173 this to be stack bottom. */
1174 if (caller_pc == (CORE_ADDR) 0)
1175 return (CORE_ADDR) 0;
1176
1177 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
1178
1179 /* If caller does not have a frame pointer, then its frame
1180 can be found at current_frame - caller_framesize. */
1181 if (caller_framesize != -1)
1182 {
1183 return frame_base - caller_framesize;
1184 }
1185 /* Both caller and callee have frame pointers and are GCC compiled
1186 (SAVE_SP bit in unwind descriptor is on for both functions.
1187 The previous frame pointer is found at the top of the current frame. */
1188 if (caller_framesize == -1 && my_framesize == -1)
1189 {
1190 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1191 }
1192 /* Caller has a frame pointer, but callee does not. This is a little
1193 more difficult as GCC and HP C lay out locals and callee register save
1194 areas very differently.
1195
1196 The previous frame pointer could be in a register, or in one of
1197 several areas on the stack.
1198
1199 Walk from the current frame to the innermost frame examining
1200 unwind descriptors to determine if %r3 ever gets saved into the
1201 stack. If so return whatever value got saved into the stack.
1202 If it was never saved in the stack, then the value in %r3 is still
1203 valid, so use it.
1204
1205 We use information from unwind descriptors to determine if %r3
1206 is saved into the stack (Entry_GR field has this information). */
1207
1208 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
1209 {
1210 u = find_unwind_entry (tmp_frame->pc);
1211
1212 if (!u)
1213 {
1214 /* We could find this information by examining prologues. I don't
1215 think anyone has actually written any tools (not even "strip")
1216 which leave them out of an executable, so maybe this is a moot
1217 point. */
1218 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1219 code that doesn't have unwind entries. For example, stepping into
1220 the dynamic linker will give you a PC that has none. Thus, I've
1221 disabled this warning. */
1222 #if 0
1223 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1224 #endif
1225 return (CORE_ADDR) 0;
1226 }
1227
1228 if (u->Save_SP
1229 || tmp_frame->signal_handler_caller
1230 || pc_in_interrupt_handler (tmp_frame->pc))
1231 break;
1232
1233 /* Entry_GR specifies the number of callee-saved general registers
1234 saved in the stack. It starts at %r3, so %r3 would be 1. */
1235 if (u->Entry_GR >= 1)
1236 {
1237 /* The unwind entry claims that r3 is saved here. However,
1238 in optimized code, GCC often doesn't actually save r3.
1239 We'll discover this if we look at the prologue. */
1240 get_frame_saved_regs (tmp_frame, &saved_regs);
1241 saved_regs_frame = tmp_frame;
1242
1243 /* If we have an address for r3, that's good. */
1244 if (saved_regs.regs[FP_REGNUM])
1245 break;
1246 }
1247 }
1248
1249 if (tmp_frame)
1250 {
1251 /* We may have walked down the chain into a function with a frame
1252 pointer. */
1253 if (u->Save_SP
1254 && !tmp_frame->signal_handler_caller
1255 && !pc_in_interrupt_handler (tmp_frame->pc))
1256 {
1257 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
1258 }
1259 /* %r3 was saved somewhere in the stack. Dig it out. */
1260 else
1261 {
1262 /* Sick.
1263
1264 For optimization purposes many kernels don't have the
1265 callee saved registers into the save_state structure upon
1266 entry into the kernel for a syscall; the optimization
1267 is usually turned off if the process is being traced so
1268 that the debugger can get full register state for the
1269 process.
1270
1271 This scheme works well except for two cases:
1272
1273 * Attaching to a process when the process is in the
1274 kernel performing a system call (debugger can't get
1275 full register state for the inferior process since
1276 the process wasn't being traced when it entered the
1277 system call).
1278
1279 * Register state is not complete if the system call
1280 causes the process to core dump.
1281
1282
1283 The following heinous code is an attempt to deal with
1284 the lack of register state in a core dump. It will
1285 fail miserably if the function which performs the
1286 system call has a variable sized stack frame. */
1287
1288 if (tmp_frame != saved_regs_frame)
1289 get_frame_saved_regs (tmp_frame, &saved_regs);
1290
1291 /* Abominable hack. */
1292 if (current_target.to_has_execution == 0
1293 && ((saved_regs.regs[FLAGS_REGNUM]
1294 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1295 TARGET_PTR_BIT / 8)
1296 & 0x2))
1297 || (saved_regs.regs[FLAGS_REGNUM] == 0
1298 && read_register (FLAGS_REGNUM) & 0x2)))
1299 {
1300 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1301 if (!u)
1302 {
1303 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1304 TARGET_PTR_BIT / 8);
1305 }
1306 else
1307 {
1308 return frame_base - (u->Total_frame_size << 3);
1309 }
1310 }
1311
1312 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1313 TARGET_PTR_BIT / 8);
1314 }
1315 }
1316 else
1317 {
1318 /* Get the innermost frame. */
1319 tmp_frame = frame;
1320 while (tmp_frame->next != NULL)
1321 tmp_frame = tmp_frame->next;
1322
1323 if (tmp_frame != saved_regs_frame)
1324 get_frame_saved_regs (tmp_frame, &saved_regs);
1325
1326 /* Abominable hack. See above. */
1327 if (current_target.to_has_execution == 0
1328 && ((saved_regs.regs[FLAGS_REGNUM]
1329 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1330 TARGET_PTR_BIT / 8)
1331 & 0x2))
1332 || (saved_regs.regs[FLAGS_REGNUM] == 0
1333 && read_register (FLAGS_REGNUM) & 0x2)))
1334 {
1335 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1336 if (!u)
1337 {
1338 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1339 TARGET_PTR_BIT / 8);
1340 }
1341 else
1342 {
1343 return frame_base - (u->Total_frame_size << 3);
1344 }
1345 }
1346
1347 /* The value in %r3 was never saved into the stack (thus %r3 still
1348 holds the value of the previous frame pointer). */
1349 return TARGET_READ_FP ();
1350 }
1351 }
1352 \f
1353
1354 /* To see if a frame chain is valid, see if the caller looks like it
1355 was compiled with gcc. */
1356
1357 int
1358 hppa_frame_chain_valid (chain, thisframe)
1359 CORE_ADDR chain;
1360 struct frame_info *thisframe;
1361 {
1362 struct minimal_symbol *msym_us;
1363 struct minimal_symbol *msym_start;
1364 struct unwind_table_entry *u, *next_u = NULL;
1365 struct frame_info *next;
1366
1367 if (!chain)
1368 return 0;
1369
1370 u = find_unwind_entry (thisframe->pc);
1371
1372 if (u == NULL)
1373 return 1;
1374
1375 /* We can't just check that the same of msym_us is "_start", because
1376 someone idiotically decided that they were going to make a Ltext_end
1377 symbol with the same address. This Ltext_end symbol is totally
1378 indistinguishable (as nearly as I can tell) from the symbol for a function
1379 which is (legitimately, since it is in the user's namespace)
1380 named Ltext_end, so we can't just ignore it. */
1381 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1382 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1383 if (msym_us
1384 && msym_start
1385 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1386 return 0;
1387
1388 /* Grrrr. Some new idiot decided that they don't want _start for the
1389 PRO configurations; $START$ calls main directly.... Deal with it. */
1390 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1391 if (msym_us
1392 && msym_start
1393 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1394 return 0;
1395
1396 next = get_next_frame (thisframe);
1397 if (next)
1398 next_u = find_unwind_entry (next->pc);
1399
1400 /* If this frame does not save SP, has no stack, isn't a stub,
1401 and doesn't "call" an interrupt routine or signal handler caller,
1402 then its not valid. */
1403 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1404 || (thisframe->next && thisframe->next->signal_handler_caller)
1405 || (next_u && next_u->HP_UX_interrupt_marker))
1406 return 1;
1407
1408 if (pc_in_linker_stub (thisframe->pc))
1409 return 1;
1410
1411 return 0;
1412 }
1413
1414 /*
1415 These functions deal with saving and restoring register state
1416 around a function call in the inferior. They keep the stack
1417 double-word aligned; eventually, on an hp700, the stack will have
1418 to be aligned to a 64-byte boundary. */
1419
1420 void
1421 push_dummy_frame (inf_status)
1422 struct inferior_status *inf_status;
1423 {
1424 CORE_ADDR sp, pc, pcspace;
1425 register int regnum;
1426 CORE_ADDR int_buffer;
1427 double freg_buffer;
1428
1429 /* Oh, what a hack. If we're trying to perform an inferior call
1430 while the inferior is asleep, we have to make sure to clear
1431 the "in system call" bit in the flag register (the call will
1432 start after the syscall returns, so we're no longer in the system
1433 call!) This state is kept in "inf_status", change it there.
1434
1435 We also need a number of horrid hacks to deal with lossage in the
1436 PC queue registers (apparently they're not valid when the in syscall
1437 bit is set). */
1438 pc = target_read_pc (inferior_pid);
1439 int_buffer = read_register (FLAGS_REGNUM);
1440 if (int_buffer & 0x2)
1441 {
1442 unsigned int sid;
1443 int_buffer &= ~0x2;
1444 write_inferior_status_register (inf_status, 0, int_buffer);
1445 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1446 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
1447 sid = (pc >> 30) & 0x3;
1448 if (sid == 0)
1449 pcspace = read_register (SR4_REGNUM);
1450 else
1451 pcspace = read_register (SR4_REGNUM + 4 + sid);
1452 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1453 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
1454 }
1455 else
1456 pcspace = read_register (PCSQ_HEAD_REGNUM);
1457
1458 /* Space for "arguments"; the RP goes in here. */
1459 sp = read_register (SP_REGNUM) + 48;
1460 int_buffer = read_register (RP_REGNUM) | 0x3;
1461
1462 /* The 32bit and 64bit ABIs save the return pointer into different
1463 stack slots. */
1464 if (REGISTER_SIZE == 8)
1465 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1466 else
1467 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
1468
1469 int_buffer = TARGET_READ_FP ();
1470 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
1471
1472 write_register (FP_REGNUM, sp);
1473
1474 sp += 2 * REGISTER_SIZE;
1475
1476 for (regnum = 1; regnum < 32; regnum++)
1477 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1478 sp = push_word (sp, read_register (regnum));
1479
1480 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1481 if (REGISTER_SIZE != 8)
1482 sp += 4;
1483
1484 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1485 {
1486 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1487 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1488 }
1489 sp = push_word (sp, read_register (IPSW_REGNUM));
1490 sp = push_word (sp, read_register (SAR_REGNUM));
1491 sp = push_word (sp, pc);
1492 sp = push_word (sp, pcspace);
1493 sp = push_word (sp, pc + 4);
1494 sp = push_word (sp, pcspace);
1495 write_register (SP_REGNUM, sp);
1496 }
1497
1498 static void
1499 find_dummy_frame_regs (frame, frame_saved_regs)
1500 struct frame_info *frame;
1501 struct frame_saved_regs *frame_saved_regs;
1502 {
1503 CORE_ADDR fp = frame->frame;
1504 int i;
1505
1506 /* The 32bit and 64bit ABIs save RP into different locations. */
1507 if (REGISTER_SIZE == 8)
1508 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1509 else
1510 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1511
1512 frame_saved_regs->regs[FP_REGNUM] = fp;
1513
1514 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1515
1516 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
1517 {
1518 if (i != FP_REGNUM)
1519 {
1520 frame_saved_regs->regs[i] = fp;
1521 fp += REGISTER_SIZE;
1522 }
1523 }
1524
1525 /* This is not necessary or desirable for the 64bit ABI. */
1526 if (REGISTER_SIZE != 8)
1527 fp += 4;
1528
1529 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1530 frame_saved_regs->regs[i] = fp;
1531
1532 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1533 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1534 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1535 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1536 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1537 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
1538 }
1539
1540 void
1541 hppa_pop_frame ()
1542 {
1543 register struct frame_info *frame = get_current_frame ();
1544 register CORE_ADDR fp, npc, target_pc;
1545 register int regnum;
1546 struct frame_saved_regs fsr;
1547 double freg_buffer;
1548
1549 fp = FRAME_FP (frame);
1550 get_frame_saved_regs (frame, &fsr);
1551
1552 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1553 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1554 restore_pc_queue (&fsr);
1555 #endif
1556
1557 for (regnum = 31; regnum > 0; regnum--)
1558 if (fsr.regs[regnum])
1559 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1560 REGISTER_SIZE));
1561
1562 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1563 if (fsr.regs[regnum])
1564 {
1565 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1566 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1567 }
1568
1569 if (fsr.regs[IPSW_REGNUM])
1570 write_register (IPSW_REGNUM,
1571 read_memory_integer (fsr.regs[IPSW_REGNUM],
1572 REGISTER_SIZE));
1573
1574 if (fsr.regs[SAR_REGNUM])
1575 write_register (SAR_REGNUM,
1576 read_memory_integer (fsr.regs[SAR_REGNUM],
1577 REGISTER_SIZE));
1578
1579 /* If the PC was explicitly saved, then just restore it. */
1580 if (fsr.regs[PCOQ_TAIL_REGNUM])
1581 {
1582 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1583 REGISTER_SIZE);
1584 write_register (PCOQ_TAIL_REGNUM, npc);
1585 }
1586 /* Else use the value in %rp to set the new PC. */
1587 else
1588 {
1589 npc = read_register (RP_REGNUM);
1590 write_pc (npc);
1591 }
1592
1593 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
1594
1595 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1596 write_register (SP_REGNUM, fp - 48);
1597 else
1598 write_register (SP_REGNUM, fp);
1599
1600 /* The PC we just restored may be inside a return trampoline. If so
1601 we want to restart the inferior and run it through the trampoline.
1602
1603 Do this by setting a momentary breakpoint at the location the
1604 trampoline returns to.
1605
1606 Don't skip through the trampoline if we're popping a dummy frame. */
1607 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1608 if (target_pc && !fsr.regs[IPSW_REGNUM])
1609 {
1610 struct symtab_and_line sal;
1611 struct breakpoint *breakpoint;
1612 struct cleanup *old_chain;
1613
1614 /* Set up our breakpoint. Set it to be silent as the MI code
1615 for "return_command" will print the frame we returned to. */
1616 sal = find_pc_line (target_pc, 0);
1617 sal.pc = target_pc;
1618 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1619 breakpoint->silent = 1;
1620
1621 /* So we can clean things up. */
1622 old_chain = make_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint);
1623
1624 /* Start up the inferior. */
1625 clear_proceed_status ();
1626 proceed_to_finish = 1;
1627 proceed ((CORE_ADDR) - 1, TARGET_SIGNAL_DEFAULT, 0);
1628
1629 /* Perform our cleanups. */
1630 do_cleanups (old_chain);
1631 }
1632 flush_cached_frames ();
1633 }
1634
1635 /* After returning to a dummy on the stack, restore the instruction
1636 queue space registers. */
1637
1638 static int
1639 restore_pc_queue (fsr)
1640 struct frame_saved_regs *fsr;
1641 {
1642 CORE_ADDR pc = read_pc ();
1643 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1644 TARGET_PTR_BIT / 8);
1645 struct target_waitstatus w;
1646 int insn_count;
1647
1648 /* Advance past break instruction in the call dummy. */
1649 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1650 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1651
1652 /* HPUX doesn't let us set the space registers or the space
1653 registers of the PC queue through ptrace. Boo, hiss.
1654 Conveniently, the call dummy has this sequence of instructions
1655 after the break:
1656 mtsp r21, sr0
1657 ble,n 0(sr0, r22)
1658
1659 So, load up the registers and single step until we are in the
1660 right place. */
1661
1662 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1663 REGISTER_SIZE));
1664 write_register (22, new_pc);
1665
1666 for (insn_count = 0; insn_count < 3; insn_count++)
1667 {
1668 /* FIXME: What if the inferior gets a signal right now? Want to
1669 merge this into wait_for_inferior (as a special kind of
1670 watchpoint? By setting a breakpoint at the end? Is there
1671 any other choice? Is there *any* way to do this stuff with
1672 ptrace() or some equivalent?). */
1673 resume (1, 0);
1674 target_wait (inferior_pid, &w);
1675
1676 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1677 {
1678 stop_signal = w.value.sig;
1679 terminal_ours_for_output ();
1680 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1681 target_signal_to_name (stop_signal),
1682 target_signal_to_string (stop_signal));
1683 gdb_flush (gdb_stdout);
1684 return 0;
1685 }
1686 }
1687 target_terminal_ours ();
1688 target_fetch_registers (-1);
1689 return 1;
1690 }
1691
1692
1693 #ifdef PA20W_CALLING_CONVENTIONS
1694
1695 /* This function pushes a stack frame with arguments as part of the
1696 inferior function calling mechanism.
1697
1698 This is the version for the PA64, in which later arguments appear
1699 at higher addresses. (The stack always grows towards higher
1700 addresses.)
1701
1702 We simply allocate the appropriate amount of stack space and put
1703 arguments into their proper slots. The call dummy code will copy
1704 arguments into registers as needed by the ABI.
1705
1706 This ABI also requires that the caller provide an argument pointer
1707 to the callee, so we do that too. */
1708
1709 CORE_ADDR
1710 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1711 int nargs;
1712 value_ptr *args;
1713 CORE_ADDR sp;
1714 int struct_return;
1715 CORE_ADDR struct_addr;
1716 {
1717 /* array of arguments' offsets */
1718 int *offset = (int *) alloca (nargs * sizeof (int));
1719
1720 /* array of arguments' lengths: real lengths in bytes, not aligned to
1721 word size */
1722 int *lengths = (int *) alloca (nargs * sizeof (int));
1723
1724 /* The value of SP as it was passed into this function after
1725 aligning. */
1726 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1727
1728 /* The number of stack bytes occupied by the current argument. */
1729 int bytes_reserved;
1730
1731 /* The total number of bytes reserved for the arguments. */
1732 int cum_bytes_reserved = 0;
1733
1734 /* Similarly, but aligned. */
1735 int cum_bytes_aligned = 0;
1736 int i;
1737
1738 /* Iterate over each argument provided by the user. */
1739 for (i = 0; i < nargs; i++)
1740 {
1741 struct type *arg_type = VALUE_TYPE (args[i]);
1742
1743 /* Integral scalar values smaller than a register are padded on
1744 the left. We do this by promoting them to full-width,
1745 although the ABI says to pad them with garbage. */
1746 if (is_integral_type (arg_type)
1747 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1748 {
1749 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1750 ? builtin_type_unsigned_long
1751 : builtin_type_long),
1752 args[i]);
1753 arg_type = VALUE_TYPE (args[i]);
1754 }
1755
1756 lengths[i] = TYPE_LENGTH (arg_type);
1757
1758 /* Align the size of the argument to the word size for this
1759 target. */
1760 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1761
1762 offset[i] = cum_bytes_reserved;
1763
1764 /* Aggregates larger than eight bytes (the only types larger
1765 than eight bytes we have) are aligned on a 16-byte boundary,
1766 possibly padded on the right with garbage. This may leave an
1767 empty word on the stack, and thus an unused register, as per
1768 the ABI. */
1769 if (bytes_reserved > 8)
1770 {
1771 /* Round up the offset to a multiple of two slots. */
1772 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1773 & -(2*REGISTER_SIZE));
1774
1775 /* Note the space we've wasted, if any. */
1776 bytes_reserved += new_offset - offset[i];
1777 offset[i] = new_offset;
1778 }
1779
1780 cum_bytes_reserved += bytes_reserved;
1781 }
1782
1783 /* CUM_BYTES_RESERVED already accounts for all the arguments
1784 passed by the user. However, the ABIs mandate minimum stack space
1785 allocations for outgoing arguments.
1786
1787 The ABIs also mandate minimum stack alignments which we must
1788 preserve. */
1789 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1790 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1791
1792 /* Now write each of the args at the proper offset down the stack. */
1793 for (i = 0; i < nargs; i++)
1794 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1795
1796 /* If a structure has to be returned, set up register 28 to hold its
1797 address */
1798 if (struct_return)
1799 write_register (28, struct_addr);
1800
1801 /* For the PA64 we must pass a pointer to the outgoing argument list.
1802 The ABI mandates that the pointer should point to the first byte of
1803 storage beyond the register flushback area.
1804
1805 However, the call dummy expects the outgoing argument pointer to
1806 be passed in register %r4. */
1807 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1808
1809 /* ?!? This needs further work. We need to set up the global data
1810 pointer for this procedure. This assumes the same global pointer
1811 for every procedure. The call dummy expects the dp value to
1812 be passed in register %r6. */
1813 write_register (6, read_register (27));
1814
1815 /* The stack will have 64 bytes of additional space for a frame marker. */
1816 return sp + 64;
1817 }
1818
1819 #else
1820
1821 /* This function pushes a stack frame with arguments as part of the
1822 inferior function calling mechanism.
1823
1824 This is the version of the function for the 32-bit PA machines, in
1825 which later arguments appear at lower addresses. (The stack always
1826 grows towards higher addresses.)
1827
1828 We simply allocate the appropriate amount of stack space and put
1829 arguments into their proper slots. The call dummy code will copy
1830 arguments into registers as needed by the ABI. */
1831
1832 CORE_ADDR
1833 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1834 int nargs;
1835 value_ptr *args;
1836 CORE_ADDR sp;
1837 int struct_return;
1838 CORE_ADDR struct_addr;
1839 {
1840 /* array of arguments' offsets */
1841 int *offset = (int *) alloca (nargs * sizeof (int));
1842
1843 /* array of arguments' lengths: real lengths in bytes, not aligned to
1844 word size */
1845 int *lengths = (int *) alloca (nargs * sizeof (int));
1846
1847 /* The number of stack bytes occupied by the current argument. */
1848 int bytes_reserved;
1849
1850 /* The total number of bytes reserved for the arguments. */
1851 int cum_bytes_reserved = 0;
1852
1853 /* Similarly, but aligned. */
1854 int cum_bytes_aligned = 0;
1855 int i;
1856
1857 /* Iterate over each argument provided by the user. */
1858 for (i = 0; i < nargs; i++)
1859 {
1860 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1861
1862 /* Align the size of the argument to the word size for this
1863 target. */
1864 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1865
1866 offset[i] = cum_bytes_reserved + lengths[i];
1867
1868 /* If the argument is a double word argument, then it needs to be
1869 double word aligned. */
1870 if ((bytes_reserved == 2 * REGISTER_SIZE)
1871 && (offset[i] % 2 * REGISTER_SIZE))
1872 {
1873 int new_offset = 0;
1874 /* BYTES_RESERVED is already aligned to the word, so we put
1875 the argument at one word more down the stack.
1876
1877 This will leave one empty word on the stack, and one unused
1878 register as mandated by the ABI. */
1879 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1880 & -(2 * REGISTER_SIZE));
1881
1882 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
1883 {
1884 bytes_reserved += REGISTER_SIZE;
1885 offset[i] += REGISTER_SIZE;
1886 }
1887 }
1888
1889 cum_bytes_reserved += bytes_reserved;
1890
1891 }
1892
1893 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1894 by the user. However, the ABI mandates minimum stack space
1895 allocations for outgoing arguments.
1896
1897 The ABI also mandates minimum stack alignments which we must
1898 preserve. */
1899 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1900 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1901
1902 /* Now write each of the args at the proper offset down the stack.
1903 ?!? We need to promote values to a full register instead of skipping
1904 words in the stack. */
1905 for (i = 0; i < nargs; i++)
1906 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1907
1908 /* If a structure has to be returned, set up register 28 to hold its
1909 address */
1910 if (struct_return)
1911 write_register (28, struct_addr);
1912
1913 /* The stack will have 32 bytes of additional space for a frame marker. */
1914 return sp + 32;
1915 }
1916
1917 #endif
1918
1919 /* elz: this function returns a value which is built looking at the given address.
1920 It is called from call_function_by_hand, in case we need to return a
1921 value which is larger than 64 bits, and it is stored in the stack rather than
1922 in the registers r28 and r29 or fr4.
1923 This function does the same stuff as value_being_returned in values.c, but
1924 gets the value from the stack rather than from the buffer where all the
1925 registers were saved when the function called completed. */
1926 value_ptr
1927 hppa_value_returned_from_stack (valtype, addr)
1928 register struct type *valtype;
1929 CORE_ADDR addr;
1930 {
1931 register value_ptr val;
1932
1933 val = allocate_value (valtype);
1934 CHECK_TYPEDEF (valtype);
1935 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1936
1937 return val;
1938 }
1939
1940
1941
1942 /* elz: Used to lookup a symbol in the shared libraries.
1943 This function calls shl_findsym, indirectly through a
1944 call to __d_shl_get. __d_shl_get is in end.c, which is always
1945 linked in by the hp compilers/linkers.
1946 The call to shl_findsym cannot be made directly because it needs
1947 to be active in target address space.
1948 inputs: - minimal symbol pointer for the function we want to look up
1949 - address in target space of the descriptor for the library
1950 where we want to look the symbol up.
1951 This address is retrieved using the
1952 som_solib_get_solib_by_pc function (somsolib.c).
1953 output: - real address in the library of the function.
1954 note: the handle can be null, in which case shl_findsym will look for
1955 the symbol in all the loaded shared libraries.
1956 files to look at if you need reference on this stuff:
1957 dld.c, dld_shl_findsym.c
1958 end.c
1959 man entry for shl_findsym */
1960
1961 CORE_ADDR
1962 find_stub_with_shl_get (function, handle)
1963 struct minimal_symbol *function;
1964 CORE_ADDR handle;
1965 {
1966 struct symbol *get_sym, *symbol2;
1967 struct minimal_symbol *buff_minsym, *msymbol;
1968 struct type *ftype;
1969 value_ptr *args;
1970 value_ptr funcval, val;
1971
1972 int x, namelen, err_value, tmp = -1;
1973 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1974 CORE_ADDR stub_addr;
1975
1976
1977 args = (value_ptr *) alloca (sizeof (value_ptr) * 8); /* 6 for the arguments and one null one??? */
1978 funcval = find_function_in_inferior ("__d_shl_get");
1979 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1980 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1981 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1982 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1983 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1984 namelen = strlen (SYMBOL_NAME (function));
1985 value_return_addr = endo_buff_addr + namelen;
1986 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1987
1988 /* do alignment */
1989 if ((x = value_return_addr % 64) != 0)
1990 value_return_addr = value_return_addr + 64 - x;
1991
1992 errno_return_addr = value_return_addr + 64;
1993
1994
1995 /* set up stuff needed by __d_shl_get in buffer in end.o */
1996
1997 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1998
1999 target_write_memory (value_return_addr, (char *) &tmp, 4);
2000
2001 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2002
2003 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2004 (char *) &handle, 4);
2005
2006 /* now prepare the arguments for the call */
2007
2008 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2009 args[1] = value_from_longest (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2010 args[2] = value_from_longest (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2011 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2012 args[4] = value_from_longest (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2013 args[5] = value_from_longest (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2014
2015 /* now call the function */
2016
2017 val = call_function_by_hand (funcval, 6, args);
2018
2019 /* now get the results */
2020
2021 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2022
2023 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2024 if (stub_addr <= 0)
2025 error ("call to __d_shl_get failed, error code is %d", err_value);
2026
2027 return (stub_addr);
2028 }
2029
2030 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2031 static int
2032 cover_find_stub_with_shl_get (PTR args_untyped)
2033 {
2034 args_for_find_stub *args = args_untyped;
2035 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2036 return 0;
2037 }
2038
2039 /* Insert the specified number of args and function address
2040 into a call sequence of the above form stored at DUMMYNAME.
2041
2042 On the hppa we need to call the stack dummy through $$dyncall.
2043 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
2044 real_pc, which is the location where gdb should start up the
2045 inferior to do the function call.
2046
2047 This has to work across several versions of hpux, bsd, osf1. It has to
2048 work regardless of what compiler was used to build the inferior program.
2049 It should work regardless of whether or not end.o is available. It has
2050 to work even if gdb can not call into the dynamic loader in the inferior
2051 to query it for symbol names and addresses.
2052
2053 Yes, all those cases should work. Luckily code exists to handle most
2054 of them. The complexity is in selecting exactly what scheme should
2055 be used to perform the inferior call.
2056
2057 At the current time this routine is known not to handle cases where
2058 the program was linked with HP's compiler without including end.o.
2059
2060 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2061
2062 CORE_ADDR
2063 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
2064 char *dummy;
2065 CORE_ADDR pc;
2066 CORE_ADDR fun;
2067 int nargs;
2068 value_ptr *args;
2069 struct type *type;
2070 int gcc_p;
2071 {
2072 CORE_ADDR dyncall_addr;
2073 struct minimal_symbol *msymbol;
2074 struct minimal_symbol *trampoline;
2075 int flags = read_register (FLAGS_REGNUM);
2076 struct unwind_table_entry *u = NULL;
2077 CORE_ADDR new_stub = 0;
2078 CORE_ADDR solib_handle = 0;
2079
2080 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2081 passed an import stub, not a PLABEL. It is also necessary to set %r19
2082 (the PIC register) before performing the call.
2083
2084 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2085 are calling the target directly. When using __d_plt_call we want to
2086 use a PLABEL instead of an import stub. */
2087 int using_gcc_plt_call = 1;
2088
2089 #ifdef GDB_TARGET_IS_HPPA_20W
2090 /* We currently use completely different code for the PA2.0W inferior
2091 function call sequences. This needs to be cleaned up. */
2092 {
2093 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2094 struct target_waitstatus w;
2095 int inst1, inst2;
2096 char buf[4];
2097 int status;
2098 struct objfile *objfile;
2099
2100 /* We can not modify the PC space queues directly, so we start
2101 up the inferior and execute a couple instructions to set the
2102 space queues so that they point to the call dummy in the stack. */
2103 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2104 sr5 = read_register (SR5_REGNUM);
2105 if (1)
2106 {
2107 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2108 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2109 if (target_read_memory (pcoqh, buf, 4) != 0)
2110 error ("Couldn't modify space queue\n");
2111 inst1 = extract_unsigned_integer (buf, 4);
2112
2113 if (target_read_memory (pcoqt, buf, 4) != 0)
2114 error ("Couldn't modify space queue\n");
2115 inst2 = extract_unsigned_integer (buf, 4);
2116
2117 /* BVE (r1) */
2118 *((int *) buf) = 0xe820d000;
2119 if (target_write_memory (pcoqh, buf, 4) != 0)
2120 error ("Couldn't modify space queue\n");
2121
2122 /* NOP */
2123 *((int *) buf) = 0x08000240;
2124 if (target_write_memory (pcoqt, buf, 4) != 0)
2125 {
2126 *((int *) buf) = inst1;
2127 target_write_memory (pcoqh, buf, 4);
2128 error ("Couldn't modify space queue\n");
2129 }
2130
2131 write_register (1, pc);
2132
2133 /* Single step twice, the BVE instruction will set the space queue
2134 such that it points to the PC value written immediately above
2135 (ie the call dummy). */
2136 resume (1, 0);
2137 target_wait (inferior_pid, &w);
2138 resume (1, 0);
2139 target_wait (inferior_pid, &w);
2140
2141 /* Restore the two instructions at the old PC locations. */
2142 *((int *) buf) = inst1;
2143 target_write_memory (pcoqh, buf, 4);
2144 *((int *) buf) = inst2;
2145 target_write_memory (pcoqt, buf, 4);
2146 }
2147
2148 /* The call dummy wants the ultimate destination address initially
2149 in register %r5. */
2150 write_register (5, fun);
2151
2152 /* We need to see if this objfile has a different DP value than our
2153 own (it could be a shared library for example). */
2154 ALL_OBJFILES (objfile)
2155 {
2156 struct obj_section *s;
2157 obj_private_data_t *obj_private;
2158
2159 /* See if FUN is in any section within this shared library. */
2160 for (s = objfile->sections; s < objfile->sections_end; s++)
2161 if (s->addr <= fun && fun < s->endaddr)
2162 break;
2163
2164 if (s >= objfile->sections_end)
2165 continue;
2166
2167 obj_private = (obj_private_data_t *) objfile->obj_private;
2168
2169 /* The DP value may be different for each objfile. But within an
2170 objfile each function uses the same dp value. Thus we do not need
2171 to grope around the opd section looking for dp values.
2172
2173 ?!? This is not strictly correct since we may be in a shared library
2174 and want to call back into the main program. To make that case
2175 work correctly we need to set obj_private->dp for the main program's
2176 objfile, then remove this conditional. */
2177 if (obj_private->dp)
2178 write_register (27, obj_private->dp);
2179 break;
2180 }
2181 return pc;
2182 }
2183 #endif
2184
2185 #ifndef GDB_TARGET_IS_HPPA_20W
2186 /* Prefer __gcc_plt_call over the HP supplied routine because
2187 __gcc_plt_call works for any number of arguments. */
2188 trampoline = NULL;
2189 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2190 using_gcc_plt_call = 0;
2191
2192 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2193 if (msymbol == NULL)
2194 error ("Can't find an address for $$dyncall trampoline");
2195
2196 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2197
2198 /* FUN could be a procedure label, in which case we have to get
2199 its real address and the value of its GOT/DP if we plan to
2200 call the routine via gcc_plt_call. */
2201 if ((fun & 0x2) && using_gcc_plt_call)
2202 {
2203 /* Get the GOT/DP value for the target function. It's
2204 at *(fun+4). Note the call dummy is *NOT* allowed to
2205 trash %r19 before calling the target function. */
2206 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2207 REGISTER_SIZE));
2208
2209 /* Now get the real address for the function we are calling, it's
2210 at *fun. */
2211 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2212 TARGET_PTR_BIT / 8);
2213 }
2214 else
2215 {
2216
2217 #ifndef GDB_TARGET_IS_PA_ELF
2218 /* FUN could be an export stub, the real address of a function, or
2219 a PLABEL. When using gcc's PLT call routine we must call an import
2220 stub rather than the export stub or real function for lazy binding
2221 to work correctly
2222
2223 /* If we are using the gcc PLT call routine, then we need to
2224 get the import stub for the target function. */
2225 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2226 {
2227 struct objfile *objfile;
2228 struct minimal_symbol *funsymbol, *stub_symbol;
2229 CORE_ADDR newfun = 0;
2230
2231 funsymbol = lookup_minimal_symbol_by_pc (fun);
2232 if (!funsymbol)
2233 error ("Unable to find minimal symbol for target fucntion.\n");
2234
2235 /* Search all the object files for an import symbol with the
2236 right name. */
2237 ALL_OBJFILES (objfile)
2238 {
2239 stub_symbol
2240 = lookup_minimal_symbol_solib_trampoline
2241 (SYMBOL_NAME (funsymbol), NULL, objfile);
2242
2243 if (!stub_symbol)
2244 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2245 NULL, objfile);
2246
2247 /* Found a symbol with the right name. */
2248 if (stub_symbol)
2249 {
2250 struct unwind_table_entry *u;
2251 /* It must be a shared library trampoline. */
2252 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2253 continue;
2254
2255 /* It must also be an import stub. */
2256 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2257 if (!u
2258 || (u->stub_unwind.stub_type != IMPORT)
2259 && u->stub_unwind.stub_type != IMPORT_SHLIB)
2260 continue;
2261
2262 /* OK. Looks like the correct import stub. */
2263 newfun = SYMBOL_VALUE (stub_symbol);
2264 fun = newfun;
2265 }
2266 }
2267
2268 /* Ouch. We did not find an import stub. Make an attempt to
2269 do the right thing instead of just croaking. Most of the
2270 time this will actually work. */
2271 if (newfun == 0)
2272 write_register (19, som_solib_get_got_by_pc (fun));
2273
2274 u = find_unwind_entry (fun);
2275 if (u
2276 && (u->stub_unwind.stub_type == IMPORT
2277 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2278 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2279
2280 /* If we found the import stub in the shared library, then we have
2281 to set %r19 before we call the stub. */
2282 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2283 write_register (19, som_solib_get_got_by_pc (fun));
2284 }
2285 #endif
2286 }
2287
2288 /* If we are calling into another load module then have sr4export call the
2289 magic __d_plt_call routine which is linked in from end.o.
2290
2291 You can't use _sr4export to make the call as the value in sp-24 will get
2292 fried and you end up returning to the wrong location. You can't call the
2293 target as the code to bind the PLT entry to a function can't return to a
2294 stack address.
2295
2296 Also, query the dynamic linker in the inferior to provide a suitable
2297 PLABEL for the target function. */
2298 if (!using_gcc_plt_call)
2299 {
2300 CORE_ADDR new_fun;
2301
2302 /* Get a handle for the shared library containing FUN. Given the
2303 handle we can query the shared library for a PLABEL. */
2304 solib_handle = som_solib_get_solib_by_pc (fun);
2305
2306 if (solib_handle)
2307 {
2308 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2309
2310 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2311
2312 if (trampoline == NULL)
2313 {
2314 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2315 }
2316
2317 /* This is where sr4export will jump to. */
2318 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2319
2320 /* If the function is in a shared library, then call __d_shl_get to
2321 get a PLABEL for the target function. */
2322 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2323
2324 if (new_stub == 0)
2325 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
2326
2327 /* We have to store the address of the stub in __shlib_funcptr. */
2328 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2329 (struct objfile *) NULL);
2330
2331 if (msymbol == NULL)
2332 error ("Can't find an address for __shlib_funcptr");
2333 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2334 (char *) &new_stub, 4);
2335
2336 /* We want sr4export to call __d_plt_call, so we claim it is
2337 the final target. Clear trampoline. */
2338 fun = new_fun;
2339 trampoline = NULL;
2340 }
2341 }
2342
2343 /* Store upper 21 bits of function address into ldil. fun will either be
2344 the final target (most cases) or __d_plt_call when calling into a shared
2345 library and __gcc_plt_call is not available. */
2346 store_unsigned_integer
2347 (&dummy[FUNC_LDIL_OFFSET],
2348 INSTRUCTION_SIZE,
2349 deposit_21 (fun >> 11,
2350 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2351 INSTRUCTION_SIZE)));
2352
2353 /* Store lower 11 bits of function address into ldo */
2354 store_unsigned_integer
2355 (&dummy[FUNC_LDO_OFFSET],
2356 INSTRUCTION_SIZE,
2357 deposit_14 (fun & MASK_11,
2358 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2359 INSTRUCTION_SIZE)));
2360 #ifdef SR4EXPORT_LDIL_OFFSET
2361
2362 {
2363 CORE_ADDR trampoline_addr;
2364
2365 /* We may still need sr4export's address too. */
2366
2367 if (trampoline == NULL)
2368 {
2369 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2370 if (msymbol == NULL)
2371 error ("Can't find an address for _sr4export trampoline");
2372
2373 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2374 }
2375 else
2376 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2377
2378
2379 /* Store upper 21 bits of trampoline's address into ldil */
2380 store_unsigned_integer
2381 (&dummy[SR4EXPORT_LDIL_OFFSET],
2382 INSTRUCTION_SIZE,
2383 deposit_21 (trampoline_addr >> 11,
2384 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2385 INSTRUCTION_SIZE)));
2386
2387 /* Store lower 11 bits of trampoline's address into ldo */
2388 store_unsigned_integer
2389 (&dummy[SR4EXPORT_LDO_OFFSET],
2390 INSTRUCTION_SIZE,
2391 deposit_14 (trampoline_addr & MASK_11,
2392 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2393 INSTRUCTION_SIZE)));
2394 }
2395 #endif
2396
2397 write_register (22, pc);
2398
2399 /* If we are in a syscall, then we should call the stack dummy
2400 directly. $$dyncall is not needed as the kernel sets up the
2401 space id registers properly based on the value in %r31. In
2402 fact calling $$dyncall will not work because the value in %r22
2403 will be clobbered on the syscall exit path.
2404
2405 Similarly if the current PC is in a shared library. Note however,
2406 this scheme won't work if the shared library isn't mapped into
2407 the same space as the stack. */
2408 if (flags & 2)
2409 return pc;
2410 #ifndef GDB_TARGET_IS_PA_ELF
2411 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
2412 return pc;
2413 #endif
2414 else
2415 return dyncall_addr;
2416 #endif
2417 }
2418
2419
2420
2421
2422 /* If the pid is in a syscall, then the FP register is not readable.
2423 We'll return zero in that case, rather than attempting to read it
2424 and cause a warning. */
2425 CORE_ADDR
2426 target_read_fp (pid)
2427 int pid;
2428 {
2429 int flags = read_register (FLAGS_REGNUM);
2430
2431 if (flags & 2)
2432 {
2433 return (CORE_ADDR) 0;
2434 }
2435
2436 /* This is the only site that may directly read_register () the FP
2437 register. All others must use TARGET_READ_FP (). */
2438 return read_register (FP_REGNUM);
2439 }
2440
2441
2442 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2443 bits. */
2444
2445 CORE_ADDR
2446 target_read_pc (pid)
2447 int pid;
2448 {
2449 int flags = read_register_pid (FLAGS_REGNUM, pid);
2450
2451 /* The following test does not belong here. It is OS-specific, and belongs
2452 in native code. */
2453 /* Test SS_INSYSCALL */
2454 if (flags & 2)
2455 return read_register_pid (31, pid) & ~0x3;
2456
2457 return read_register_pid (PC_REGNUM, pid) & ~0x3;
2458 }
2459
2460 /* Write out the PC. If currently in a syscall, then also write the new
2461 PC value into %r31. */
2462
2463 void
2464 target_write_pc (v, pid)
2465 CORE_ADDR v;
2466 int pid;
2467 {
2468 int flags = read_register_pid (FLAGS_REGNUM, pid);
2469
2470 /* The following test does not belong here. It is OS-specific, and belongs
2471 in native code. */
2472 /* If in a syscall, then set %r31. Also make sure to get the
2473 privilege bits set correctly. */
2474 /* Test SS_INSYSCALL */
2475 if (flags & 2)
2476 write_register_pid (31, v | 0x3, pid);
2477
2478 write_register_pid (PC_REGNUM, v, pid);
2479 write_register_pid (NPC_REGNUM, v + 4, pid);
2480 }
2481
2482 /* return the alignment of a type in bytes. Structures have the maximum
2483 alignment required by their fields. */
2484
2485 static int
2486 hppa_alignof (type)
2487 struct type *type;
2488 {
2489 int max_align, align, i;
2490 CHECK_TYPEDEF (type);
2491 switch (TYPE_CODE (type))
2492 {
2493 case TYPE_CODE_PTR:
2494 case TYPE_CODE_INT:
2495 case TYPE_CODE_FLT:
2496 return TYPE_LENGTH (type);
2497 case TYPE_CODE_ARRAY:
2498 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2499 case TYPE_CODE_STRUCT:
2500 case TYPE_CODE_UNION:
2501 max_align = 1;
2502 for (i = 0; i < TYPE_NFIELDS (type); i++)
2503 {
2504 /* Bit fields have no real alignment. */
2505 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2506 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2507 {
2508 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2509 max_align = max (max_align, align);
2510 }
2511 }
2512 return max_align;
2513 default:
2514 return 4;
2515 }
2516 }
2517
2518 /* Print the register regnum, or all registers if regnum is -1 */
2519
2520 void
2521 pa_do_registers_info (regnum, fpregs)
2522 int regnum;
2523 int fpregs;
2524 {
2525 char raw_regs[REGISTER_BYTES];
2526 int i;
2527
2528 /* Make a copy of gdb's save area (may cause actual
2529 reads from the target). */
2530 for (i = 0; i < NUM_REGS; i++)
2531 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2532
2533 if (regnum == -1)
2534 pa_print_registers (raw_regs, regnum, fpregs);
2535 else if (regnum < FP4_REGNUM)
2536 {
2537 long reg_val[2];
2538
2539 /* Why is the value not passed through "extract_signed_integer"
2540 as in "pa_print_registers" below? */
2541 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2542
2543 if (!is_pa_2)
2544 {
2545 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2546 }
2547 else
2548 {
2549 /* Fancy % formats to prevent leading zeros. */
2550 if (reg_val[0] == 0)
2551 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2552 else
2553 printf_unfiltered ("%s %x%8.8x\n", REGISTER_NAME (regnum),
2554 reg_val[0], reg_val[1]);
2555 }
2556 }
2557 else
2558 /* Note that real floating point values only start at
2559 FP4_REGNUM. FP0 and up are just status and error
2560 registers, which have integral (bit) values. */
2561 pa_print_fp_reg (regnum);
2562 }
2563
2564 /********** new function ********************/
2565 void
2566 pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
2567 int regnum;
2568 int fpregs;
2569 GDB_FILE *stream;
2570 enum precision_type precision;
2571 {
2572 char raw_regs[REGISTER_BYTES];
2573 int i;
2574
2575 /* Make a copy of gdb's save area (may cause actual
2576 reads from the target). */
2577 for (i = 0; i < NUM_REGS; i++)
2578 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2579
2580 if (regnum == -1)
2581 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2582
2583 else if (regnum < FP4_REGNUM)
2584 {
2585 long reg_val[2];
2586
2587 /* Why is the value not passed through "extract_signed_integer"
2588 as in "pa_print_registers" below? */
2589 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2590
2591 if (!is_pa_2)
2592 {
2593 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum), reg_val[1]);
2594 }
2595 else
2596 {
2597 /* Fancy % formats to prevent leading zeros. */
2598 if (reg_val[0] == 0)
2599 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum),
2600 reg_val[1]);
2601 else
2602 fprintf_unfiltered (stream, "%s %x%8.8x", REGISTER_NAME (regnum),
2603 reg_val[0], reg_val[1]);
2604 }
2605 }
2606 else
2607 /* Note that real floating point values only start at
2608 FP4_REGNUM. FP0 and up are just status and error
2609 registers, which have integral (bit) values. */
2610 pa_strcat_fp_reg (regnum, stream, precision);
2611 }
2612
2613 /* If this is a PA2.0 machine, fetch the real 64-bit register
2614 value. Otherwise use the info from gdb's saved register area.
2615
2616 Note that reg_val is really expected to be an array of longs,
2617 with two elements. */
2618 static void
2619 pa_register_look_aside (raw_regs, regnum, raw_val)
2620 char *raw_regs;
2621 int regnum;
2622 long *raw_val;
2623 {
2624 static int know_which = 0; /* False */
2625
2626 int regaddr;
2627 unsigned int offset;
2628 register int i;
2629 int start;
2630
2631
2632 char buf[MAX_REGISTER_RAW_SIZE];
2633 long long reg_val;
2634
2635 if (!know_which)
2636 {
2637 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2638 {
2639 is_pa_2 = (1 == 1);
2640 }
2641
2642 know_which = 1; /* True */
2643 }
2644
2645 raw_val[0] = 0;
2646 raw_val[1] = 0;
2647
2648 if (!is_pa_2)
2649 {
2650 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2651 return;
2652 }
2653
2654 /* Code below copied from hppah-nat.c, with fixes for wide
2655 registers, using different area of save_state, etc. */
2656 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2657 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2658 {
2659 /* Use narrow regs area of save_state and default macro. */
2660 offset = U_REGS_OFFSET;
2661 regaddr = register_addr (regnum, offset);
2662 start = 1;
2663 }
2664 else
2665 {
2666 /* Use wide regs area, and calculate registers as 8 bytes wide.
2667
2668 We'd like to do this, but current version of "C" doesn't
2669 permit "offsetof":
2670
2671 offset = offsetof(save_state_t, ss_wide);
2672
2673 Note that to avoid "C" doing typed pointer arithmetic, we
2674 have to cast away the type in our offset calculation:
2675 otherwise we get an offset of 1! */
2676
2677 /* NB: save_state_t is not available before HPUX 9.
2678 The ss_wide field is not available previous to HPUX 10.20,
2679 so to avoid compile-time warnings, we only compile this for
2680 PA 2.0 processors. This control path should only be followed
2681 if we're debugging a PA 2.0 processor, so this should not cause
2682 problems. */
2683
2684 /* #if the following code out so that this file can still be
2685 compiled on older HPUX boxes (< 10.20) which don't have
2686 this structure/structure member. */
2687 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2688 save_state_t temp;
2689
2690 offset = ((int) &temp.ss_wide) - ((int) &temp);
2691 regaddr = offset + regnum * 8;
2692 start = 0;
2693 #endif
2694 }
2695
2696 for (i = start; i < 2; i++)
2697 {
2698 errno = 0;
2699 raw_val[i] = call_ptrace (PT_RUREGS, inferior_pid,
2700 (PTRACE_ARG3_TYPE) regaddr, 0);
2701 if (errno != 0)
2702 {
2703 /* Warning, not error, in case we are attached; sometimes the
2704 kernel doesn't let us at the registers. */
2705 char *err = safe_strerror (errno);
2706 char *msg = alloca (strlen (err) + 128);
2707 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2708 warning (msg);
2709 goto error_exit;
2710 }
2711
2712 regaddr += sizeof (long);
2713 }
2714
2715 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2716 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2717
2718 error_exit:
2719 ;
2720 }
2721
2722 /* "Info all-reg" command */
2723
2724 static void
2725 pa_print_registers (raw_regs, regnum, fpregs)
2726 char *raw_regs;
2727 int regnum;
2728 int fpregs;
2729 {
2730 int i, j;
2731 /* Alas, we are compiled so that "long long" is 32 bits */
2732 long raw_val[2];
2733 long long_val;
2734 int rows = 48, columns = 2;
2735
2736 for (i = 0; i < rows; i++)
2737 {
2738 for (j = 0; j < columns; j++)
2739 {
2740 /* We display registers in column-major order. */
2741 int regnum = i + j * rows;
2742
2743 /* Q: Why is the value passed through "extract_signed_integer",
2744 while above, in "pa_do_registers_info" it isn't?
2745 A: ? */
2746 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2747
2748 /* Even fancier % formats to prevent leading zeros
2749 and still maintain the output in columns. */
2750 if (!is_pa_2)
2751 {
2752 /* Being big-endian, on this machine the low bits
2753 (the ones we want to look at) are in the second longword. */
2754 long_val = extract_signed_integer (&raw_val[1], 4);
2755 printf_filtered ("%10.10s: %8x ",
2756 REGISTER_NAME (regnum), long_val);
2757 }
2758 else
2759 {
2760 /* raw_val = extract_signed_integer(&raw_val, 8); */
2761 if (raw_val[0] == 0)
2762 printf_filtered ("%10.10s: %8x ",
2763 REGISTER_NAME (regnum), raw_val[1]);
2764 else
2765 printf_filtered ("%10.10s: %8x%8.8x ",
2766 REGISTER_NAME (regnum),
2767 raw_val[0], raw_val[1]);
2768 }
2769 }
2770 printf_unfiltered ("\n");
2771 }
2772
2773 if (fpregs)
2774 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2775 pa_print_fp_reg (i);
2776 }
2777
2778 /************* new function ******************/
2779 static void
2780 pa_strcat_registers (raw_regs, regnum, fpregs, stream)
2781 char *raw_regs;
2782 int regnum;
2783 int fpregs;
2784 GDB_FILE *stream;
2785 {
2786 int i, j;
2787 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2788 long long_val;
2789 enum precision_type precision;
2790
2791 precision = unspecified_precision;
2792
2793 for (i = 0; i < 18; i++)
2794 {
2795 for (j = 0; j < 4; j++)
2796 {
2797 /* Q: Why is the value passed through "extract_signed_integer",
2798 while above, in "pa_do_registers_info" it isn't?
2799 A: ? */
2800 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2801
2802 /* Even fancier % formats to prevent leading zeros
2803 and still maintain the output in columns. */
2804 if (!is_pa_2)
2805 {
2806 /* Being big-endian, on this machine the low bits
2807 (the ones we want to look at) are in the second longword. */
2808 long_val = extract_signed_integer (&raw_val[1], 4);
2809 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)), long_val);
2810 }
2811 else
2812 {
2813 /* raw_val = extract_signed_integer(&raw_val, 8); */
2814 if (raw_val[0] == 0)
2815 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)),
2816 raw_val[1]);
2817 else
2818 fprintf_filtered (stream, "%8.8s: %8x%8.8x ", REGISTER_NAME (i + (j * 18)),
2819 raw_val[0], raw_val[1]);
2820 }
2821 }
2822 fprintf_unfiltered (stream, "\n");
2823 }
2824
2825 if (fpregs)
2826 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2827 pa_strcat_fp_reg (i, stream, precision);
2828 }
2829
2830 static void
2831 pa_print_fp_reg (i)
2832 int i;
2833 {
2834 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2835 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2836
2837 /* Get 32bits of data. */
2838 read_relative_register_raw_bytes (i, raw_buffer);
2839
2840 /* Put it in the buffer. No conversions are ever necessary. */
2841 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2842
2843 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2844 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2845 fputs_filtered ("(single precision) ", gdb_stdout);
2846
2847 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2848 1, 0, Val_pretty_default);
2849 printf_filtered ("\n");
2850
2851 /* If "i" is even, then this register can also be a double-precision
2852 FP register. Dump it out as such. */
2853 if ((i % 2) == 0)
2854 {
2855 /* Get the data in raw format for the 2nd half. */
2856 read_relative_register_raw_bytes (i + 1, raw_buffer);
2857
2858 /* Copy it into the appropriate part of the virtual buffer. */
2859 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2860 REGISTER_RAW_SIZE (i));
2861
2862 /* Dump it as a double. */
2863 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2864 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2865 fputs_filtered ("(double precision) ", gdb_stdout);
2866
2867 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2868 1, 0, Val_pretty_default);
2869 printf_filtered ("\n");
2870 }
2871 }
2872
2873 /*************** new function ***********************/
2874 static void
2875 pa_strcat_fp_reg (i, stream, precision)
2876 int i;
2877 GDB_FILE *stream;
2878 enum precision_type precision;
2879 {
2880 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2881 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2882
2883 fputs_filtered (REGISTER_NAME (i), stream);
2884 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2885
2886 /* Get 32bits of data. */
2887 read_relative_register_raw_bytes (i, raw_buffer);
2888
2889 /* Put it in the buffer. No conversions are ever necessary. */
2890 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2891
2892 if (precision == double_precision && (i % 2) == 0)
2893 {
2894
2895 char raw_buf[MAX_REGISTER_RAW_SIZE];
2896
2897 /* Get the data in raw format for the 2nd half. */
2898 read_relative_register_raw_bytes (i + 1, raw_buf);
2899
2900 /* Copy it into the appropriate part of the virtual buffer. */
2901 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2902
2903 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2904 1, 0, Val_pretty_default);
2905
2906 }
2907 else
2908 {
2909 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2910 1, 0, Val_pretty_default);
2911 }
2912
2913 }
2914
2915 /* Return one if PC is in the call path of a trampoline, else return zero.
2916
2917 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2918 just shared library trampolines (import, export). */
2919
2920 int
2921 in_solib_call_trampoline (pc, name)
2922 CORE_ADDR pc;
2923 char *name;
2924 {
2925 struct minimal_symbol *minsym;
2926 struct unwind_table_entry *u;
2927 static CORE_ADDR dyncall = 0;
2928 static CORE_ADDR sr4export = 0;
2929
2930 #ifdef GDB_TARGET_IS_HPPA_20W
2931 /* PA64 has a completely different stub/trampoline scheme. Is it
2932 better? Maybe. It's certainly harder to determine with any
2933 certainty that we are in a stub because we can not refer to the
2934 unwinders to help.
2935
2936 The heuristic is simple. Try to lookup the current PC value in th
2937 minimal symbol table. If that fails, then assume we are not in a
2938 stub and return.
2939
2940 Then see if the PC value falls within the section bounds for the
2941 section containing the minimal symbol we found in the first
2942 step. If it does, then assume we are not in a stub and return.
2943
2944 Finally peek at the instructions to see if they look like a stub. */
2945 {
2946 struct minimal_symbol *minsym;
2947 asection *sec;
2948 CORE_ADDR addr;
2949 int insn, i;
2950
2951 minsym = lookup_minimal_symbol_by_pc (pc);
2952 if (! minsym)
2953 return 0;
2954
2955 sec = SYMBOL_BFD_SECTION (minsym);
2956
2957 if (sec->vma <= pc
2958 && sec->vma + sec->_cooked_size < pc)
2959 return 0;
2960
2961 /* We might be in a stub. Peek at the instructions. Stubs are 3
2962 instructions long. */
2963 insn = read_memory_integer (pc, 4);
2964
2965 /* Find out where we we think we are within the stub. */
2966 if ((insn & 0xffffc00e) == 0x53610000)
2967 addr = pc;
2968 else if ((insn & 0xffffffff) == 0xe820d000)
2969 addr = pc - 4;
2970 else if ((insn & 0xffffc00e) == 0x537b0000)
2971 addr = pc - 8;
2972 else
2973 return 0;
2974
2975 /* Now verify each insn in the range looks like a stub instruction. */
2976 insn = read_memory_integer (addr, 4);
2977 if ((insn & 0xffffc00e) != 0x53610000)
2978 return 0;
2979
2980 /* Now verify each insn in the range looks like a stub instruction. */
2981 insn = read_memory_integer (addr + 4, 4);
2982 if ((insn & 0xffffffff) != 0xe820d000)
2983 return 0;
2984
2985 /* Now verify each insn in the range looks like a stub instruction. */
2986 insn = read_memory_integer (addr + 8, 4);
2987 if ((insn & 0xffffc00e) != 0x537b0000)
2988 return 0;
2989
2990 /* Looks like a stub. */
2991 return 1;
2992 }
2993 #endif
2994
2995 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2996 new exec file */
2997
2998 /* First see if PC is in one of the two C-library trampolines. */
2999 if (!dyncall)
3000 {
3001 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3002 if (minsym)
3003 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3004 else
3005 dyncall = -1;
3006 }
3007
3008 if (!sr4export)
3009 {
3010 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3011 if (minsym)
3012 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3013 else
3014 sr4export = -1;
3015 }
3016
3017 if (pc == dyncall || pc == sr4export)
3018 return 1;
3019
3020 minsym = lookup_minimal_symbol_by_pc (pc);
3021 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
3022 return 1;
3023
3024 /* Get the unwind descriptor corresponding to PC, return zero
3025 if no unwind was found. */
3026 u = find_unwind_entry (pc);
3027 if (!u)
3028 return 0;
3029
3030 /* If this isn't a linker stub, then return now. */
3031 if (u->stub_unwind.stub_type == 0)
3032 return 0;
3033
3034 /* By definition a long-branch stub is a call stub. */
3035 if (u->stub_unwind.stub_type == LONG_BRANCH)
3036 return 1;
3037
3038 /* The call and return path execute the same instructions within
3039 an IMPORT stub! So an IMPORT stub is both a call and return
3040 trampoline. */
3041 if (u->stub_unwind.stub_type == IMPORT)
3042 return 1;
3043
3044 /* Parameter relocation stubs always have a call path and may have a
3045 return path. */
3046 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3047 || u->stub_unwind.stub_type == EXPORT)
3048 {
3049 CORE_ADDR addr;
3050
3051 /* Search forward from the current PC until we hit a branch
3052 or the end of the stub. */
3053 for (addr = pc; addr <= u->region_end; addr += 4)
3054 {
3055 unsigned long insn;
3056
3057 insn = read_memory_integer (addr, 4);
3058
3059 /* Does it look like a bl? If so then it's the call path, if
3060 we find a bv or be first, then we're on the return path. */
3061 if ((insn & 0xfc00e000) == 0xe8000000)
3062 return 1;
3063 else if ((insn & 0xfc00e001) == 0xe800c000
3064 || (insn & 0xfc000000) == 0xe0000000)
3065 return 0;
3066 }
3067
3068 /* Should never happen. */
3069 warning ("Unable to find branch in parameter relocation stub.\n");
3070 return 0;
3071 }
3072
3073 /* Unknown stub type. For now, just return zero. */
3074 return 0;
3075 }
3076
3077 /* Return one if PC is in the return path of a trampoline, else return zero.
3078
3079 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3080 just shared library trampolines (import, export). */
3081
3082 int
3083 in_solib_return_trampoline (pc, name)
3084 CORE_ADDR pc;
3085 char *name;
3086 {
3087 struct unwind_table_entry *u;
3088
3089 /* Get the unwind descriptor corresponding to PC, return zero
3090 if no unwind was found. */
3091 u = find_unwind_entry (pc);
3092 if (!u)
3093 return 0;
3094
3095 /* If this isn't a linker stub or it's just a long branch stub, then
3096 return zero. */
3097 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3098 return 0;
3099
3100 /* The call and return path execute the same instructions within
3101 an IMPORT stub! So an IMPORT stub is both a call and return
3102 trampoline. */
3103 if (u->stub_unwind.stub_type == IMPORT)
3104 return 1;
3105
3106 /* Parameter relocation stubs always have a call path and may have a
3107 return path. */
3108 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3109 || u->stub_unwind.stub_type == EXPORT)
3110 {
3111 CORE_ADDR addr;
3112
3113 /* Search forward from the current PC until we hit a branch
3114 or the end of the stub. */
3115 for (addr = pc; addr <= u->region_end; addr += 4)
3116 {
3117 unsigned long insn;
3118
3119 insn = read_memory_integer (addr, 4);
3120
3121 /* Does it look like a bl? If so then it's the call path, if
3122 we find a bv or be first, then we're on the return path. */
3123 if ((insn & 0xfc00e000) == 0xe8000000)
3124 return 0;
3125 else if ((insn & 0xfc00e001) == 0xe800c000
3126 || (insn & 0xfc000000) == 0xe0000000)
3127 return 1;
3128 }
3129
3130 /* Should never happen. */
3131 warning ("Unable to find branch in parameter relocation stub.\n");
3132 return 0;
3133 }
3134
3135 /* Unknown stub type. For now, just return zero. */
3136 return 0;
3137
3138 }
3139
3140 /* Figure out if PC is in a trampoline, and if so find out where
3141 the trampoline will jump to. If not in a trampoline, return zero.
3142
3143 Simple code examination probably is not a good idea since the code
3144 sequences in trampolines can also appear in user code.
3145
3146 We use unwinds and information from the minimal symbol table to
3147 determine when we're in a trampoline. This won't work for ELF
3148 (yet) since it doesn't create stub unwind entries. Whether or
3149 not ELF will create stub unwinds or normal unwinds for linker
3150 stubs is still being debated.
3151
3152 This should handle simple calls through dyncall or sr4export,
3153 long calls, argument relocation stubs, and dyncall/sr4export
3154 calling an argument relocation stub. It even handles some stubs
3155 used in dynamic executables. */
3156
3157 CORE_ADDR
3158 skip_trampoline_code (pc, name)
3159 CORE_ADDR pc;
3160 char *name;
3161 {
3162 long orig_pc = pc;
3163 long prev_inst, curr_inst, loc;
3164 static CORE_ADDR dyncall = 0;
3165 static CORE_ADDR dyncall_external = 0;
3166 static CORE_ADDR sr4export = 0;
3167 struct minimal_symbol *msym;
3168 struct unwind_table_entry *u;
3169
3170 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3171 new exec file */
3172
3173 if (!dyncall)
3174 {
3175 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3176 if (msym)
3177 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3178 else
3179 dyncall = -1;
3180 }
3181
3182 if (!dyncall_external)
3183 {
3184 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3185 if (msym)
3186 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3187 else
3188 dyncall_external = -1;
3189 }
3190
3191 if (!sr4export)
3192 {
3193 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3194 if (msym)
3195 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3196 else
3197 sr4export = -1;
3198 }
3199
3200 /* Addresses passed to dyncall may *NOT* be the actual address
3201 of the function. So we may have to do something special. */
3202 if (pc == dyncall)
3203 {
3204 pc = (CORE_ADDR) read_register (22);
3205
3206 /* If bit 30 (counting from the left) is on, then pc is the address of
3207 the PLT entry for this function, not the address of the function
3208 itself. Bit 31 has meaning too, but only for MPE. */
3209 if (pc & 0x2)
3210 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3211 }
3212 if (pc == dyncall_external)
3213 {
3214 pc = (CORE_ADDR) read_register (22);
3215 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3216 }
3217 else if (pc == sr4export)
3218 pc = (CORE_ADDR) (read_register (22));
3219
3220 /* Get the unwind descriptor corresponding to PC, return zero
3221 if no unwind was found. */
3222 u = find_unwind_entry (pc);
3223 if (!u)
3224 return 0;
3225
3226 /* If this isn't a linker stub, then return now. */
3227 /* elz: attention here! (FIXME) because of a compiler/linker
3228 error, some stubs which should have a non zero stub_unwind.stub_type
3229 have unfortunately a value of zero. So this function would return here
3230 as if we were not in a trampoline. To fix this, we go look at the partial
3231 symbol information, which reports this guy as a stub.
3232 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3233 partial symbol information is also wrong sometimes. This is because
3234 when it is entered (somread.c::som_symtab_read()) it can happen that
3235 if the type of the symbol (from the som) is Entry, and the symbol is
3236 in a shared library, then it can also be a trampoline. This would
3237 be OK, except that I believe the way they decide if we are ina shared library
3238 does not work. SOOOO..., even if we have a regular function w/o trampolines
3239 its minimal symbol can be assigned type mst_solib_trampoline.
3240 Also, if we find that the symbol is a real stub, then we fix the unwind
3241 descriptor, and define the stub type to be EXPORT.
3242 Hopefully this is correct most of the times. */
3243 if (u->stub_unwind.stub_type == 0)
3244 {
3245
3246 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3247 we can delete all the code which appears between the lines */
3248 /*--------------------------------------------------------------------------*/
3249 msym = lookup_minimal_symbol_by_pc (pc);
3250
3251 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3252 return orig_pc == pc ? 0 : pc & ~0x3;
3253
3254 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3255 {
3256 struct objfile *objfile;
3257 struct minimal_symbol *msymbol;
3258 int function_found = 0;
3259
3260 /* go look if there is another minimal symbol with the same name as
3261 this one, but with type mst_text. This would happen if the msym
3262 is an actual trampoline, in which case there would be another
3263 symbol with the same name corresponding to the real function */
3264
3265 ALL_MSYMBOLS (objfile, msymbol)
3266 {
3267 if (MSYMBOL_TYPE (msymbol) == mst_text
3268 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3269 {
3270 function_found = 1;
3271 break;
3272 }
3273 }
3274
3275 if (function_found)
3276 /* the type of msym is correct (mst_solib_trampoline), but
3277 the unwind info is wrong, so set it to the correct value */
3278 u->stub_unwind.stub_type = EXPORT;
3279 else
3280 /* the stub type info in the unwind is correct (this is not a
3281 trampoline), but the msym type information is wrong, it
3282 should be mst_text. So we need to fix the msym, and also
3283 get out of this function */
3284 {
3285 MSYMBOL_TYPE (msym) = mst_text;
3286 return orig_pc == pc ? 0 : pc & ~0x3;
3287 }
3288 }
3289
3290 /*--------------------------------------------------------------------------*/
3291 }
3292
3293 /* It's a stub. Search for a branch and figure out where it goes.
3294 Note we have to handle multi insn branch sequences like ldil;ble.
3295 Most (all?) other branches can be determined by examining the contents
3296 of certain registers and the stack. */
3297
3298 loc = pc;
3299 curr_inst = 0;
3300 prev_inst = 0;
3301 while (1)
3302 {
3303 /* Make sure we haven't walked outside the range of this stub. */
3304 if (u != find_unwind_entry (loc))
3305 {
3306 warning ("Unable to find branch in linker stub");
3307 return orig_pc == pc ? 0 : pc & ~0x3;
3308 }
3309
3310 prev_inst = curr_inst;
3311 curr_inst = read_memory_integer (loc, 4);
3312
3313 /* Does it look like a branch external using %r1? Then it's the
3314 branch from the stub to the actual function. */
3315 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3316 {
3317 /* Yup. See if the previous instruction loaded
3318 a value into %r1. If so compute and return the jump address. */
3319 if ((prev_inst & 0xffe00000) == 0x20200000)
3320 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3321 else
3322 {
3323 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3324 return orig_pc == pc ? 0 : pc & ~0x3;
3325 }
3326 }
3327
3328 /* Does it look like a be 0(sr0,%r21)? OR
3329 Does it look like a be, n 0(sr0,%r21)? OR
3330 Does it look like a bve (r21)? (this is on PA2.0)
3331 Does it look like a bve, n(r21)? (this is also on PA2.0)
3332 That's the branch from an
3333 import stub to an export stub.
3334
3335 It is impossible to determine the target of the branch via
3336 simple examination of instructions and/or data (consider
3337 that the address in the plabel may be the address of the
3338 bind-on-reference routine in the dynamic loader).
3339
3340 So we have try an alternative approach.
3341
3342 Get the name of the symbol at our current location; it should
3343 be a stub symbol with the same name as the symbol in the
3344 shared library.
3345
3346 Then lookup a minimal symbol with the same name; we should
3347 get the minimal symbol for the target routine in the shared
3348 library as those take precedence of import/export stubs. */
3349 if ((curr_inst == 0xe2a00000) ||
3350 (curr_inst == 0xe2a00002) ||
3351 (curr_inst == 0xeaa0d000) ||
3352 (curr_inst == 0xeaa0d002))
3353 {
3354 struct minimal_symbol *stubsym, *libsym;
3355
3356 stubsym = lookup_minimal_symbol_by_pc (loc);
3357 if (stubsym == NULL)
3358 {
3359 warning ("Unable to find symbol for 0x%x", loc);
3360 return orig_pc == pc ? 0 : pc & ~0x3;
3361 }
3362
3363 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3364 if (libsym == NULL)
3365 {
3366 warning ("Unable to find library symbol for %s\n",
3367 SYMBOL_NAME (stubsym));
3368 return orig_pc == pc ? 0 : pc & ~0x3;
3369 }
3370
3371 return SYMBOL_VALUE (libsym);
3372 }
3373
3374 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3375 branch from the stub to the actual function. */
3376 /*elz */
3377 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3378 || (curr_inst & 0xffe0e000) == 0xe8000000
3379 || (curr_inst & 0xffe0e000) == 0xe800A000)
3380 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3381
3382 /* Does it look like bv (rp)? Note this depends on the
3383 current stack pointer being the same as the stack
3384 pointer in the stub itself! This is a branch on from the
3385 stub back to the original caller. */
3386 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3387 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3388 {
3389 /* Yup. See if the previous instruction loaded
3390 rp from sp - 8. */
3391 if (prev_inst == 0x4bc23ff1)
3392 return (read_memory_integer
3393 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3394 else
3395 {
3396 warning ("Unable to find restore of %%rp before bv (%%rp).");
3397 return orig_pc == pc ? 0 : pc & ~0x3;
3398 }
3399 }
3400
3401 /* elz: added this case to capture the new instruction
3402 at the end of the return part of an export stub used by
3403 the PA2.0: BVE, n (rp) */
3404 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3405 {
3406 return (read_memory_integer
3407 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3408 }
3409
3410 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3411 the original caller from the stub. Used in dynamic executables. */
3412 else if (curr_inst == 0xe0400002)
3413 {
3414 /* The value we jump to is sitting in sp - 24. But that's
3415 loaded several instructions before the be instruction.
3416 I guess we could check for the previous instruction being
3417 mtsp %r1,%sr0 if we want to do sanity checking. */
3418 return (read_memory_integer
3419 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3420 }
3421
3422 /* Haven't found the branch yet, but we're still in the stub.
3423 Keep looking. */
3424 loc += 4;
3425 }
3426 }
3427
3428
3429 /* For the given instruction (INST), return any adjustment it makes
3430 to the stack pointer or zero for no adjustment.
3431
3432 This only handles instructions commonly found in prologues. */
3433
3434 static int
3435 prologue_inst_adjust_sp (inst)
3436 unsigned long inst;
3437 {
3438 /* This must persist across calls. */
3439 static int save_high21;
3440
3441 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3442 if ((inst & 0xffffc000) == 0x37de0000)
3443 return extract_14 (inst);
3444
3445 /* stwm X,D(sp) */
3446 if ((inst & 0xffe00000) == 0x6fc00000)
3447 return extract_14 (inst);
3448
3449 /* std,ma X,D(sp) */
3450 if ((inst & 0xffe00008) == 0x73c00008)
3451 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3452
3453 /* addil high21,%r1; ldo low11,(%r1),%r30)
3454 save high bits in save_high21 for later use. */
3455 if ((inst & 0xffe00000) == 0x28200000)
3456 {
3457 save_high21 = extract_21 (inst);
3458 return 0;
3459 }
3460
3461 if ((inst & 0xffff0000) == 0x343e0000)
3462 return save_high21 + extract_14 (inst);
3463
3464 /* fstws as used by the HP compilers. */
3465 if ((inst & 0xffffffe0) == 0x2fd01220)
3466 return extract_5_load (inst);
3467
3468 /* No adjustment. */
3469 return 0;
3470 }
3471
3472 /* Return nonzero if INST is a branch of some kind, else return zero. */
3473
3474 static int
3475 is_branch (inst)
3476 unsigned long inst;
3477 {
3478 switch (inst >> 26)
3479 {
3480 case 0x20:
3481 case 0x21:
3482 case 0x22:
3483 case 0x23:
3484 case 0x27:
3485 case 0x28:
3486 case 0x29:
3487 case 0x2a:
3488 case 0x2b:
3489 case 0x2f:
3490 case 0x30:
3491 case 0x31:
3492 case 0x32:
3493 case 0x33:
3494 case 0x38:
3495 case 0x39:
3496 case 0x3a:
3497 case 0x3b:
3498 return 1;
3499
3500 default:
3501 return 0;
3502 }
3503 }
3504
3505 /* Return the register number for a GR which is saved by INST or
3506 zero it INST does not save a GR. */
3507
3508 static int
3509 inst_saves_gr (inst)
3510 unsigned long inst;
3511 {
3512 /* Does it look like a stw? */
3513 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3514 || (inst >> 26) == 0x1f
3515 || ((inst >> 26) == 0x1f
3516 && ((inst >> 6) == 0xa)))
3517 return extract_5R_store (inst);
3518
3519 /* Does it look like a std? */
3520 if ((inst >> 26) == 0x1c
3521 || ((inst >> 26) == 0x03
3522 && ((inst >> 6) & 0xf) == 0xb))
3523 return extract_5R_store (inst);
3524
3525 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3526 if ((inst >> 26) == 0x1b)
3527 return extract_5R_store (inst);
3528
3529 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3530 too. */
3531 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3532 || ((inst >> 26) == 0x3
3533 && (((inst >> 6) & 0xf) == 0x8
3534 || (inst >> 6) & 0xf) == 0x9))
3535 return extract_5R_store (inst);
3536
3537 return 0;
3538 }
3539
3540 /* Return the register number for a FR which is saved by INST or
3541 zero it INST does not save a FR.
3542
3543 Note we only care about full 64bit register stores (that's the only
3544 kind of stores the prologue will use).
3545
3546 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3547
3548 static int
3549 inst_saves_fr (inst)
3550 unsigned long inst;
3551 {
3552 /* is this an FSTD ? */
3553 if ((inst & 0xfc00dfc0) == 0x2c001200)
3554 return extract_5r_store (inst);
3555 if ((inst & 0xfc000002) == 0x70000002)
3556 return extract_5R_store (inst);
3557 /* is this an FSTW ? */
3558 if ((inst & 0xfc00df80) == 0x24001200)
3559 return extract_5r_store (inst);
3560 if ((inst & 0xfc000002) == 0x7c000000)
3561 return extract_5R_store (inst);
3562 return 0;
3563 }
3564
3565 /* Advance PC across any function entry prologue instructions
3566 to reach some "real" code.
3567
3568 Use information in the unwind table to determine what exactly should
3569 be in the prologue. */
3570
3571
3572 CORE_ADDR
3573 skip_prologue_hard_way (pc)
3574 CORE_ADDR pc;
3575 {
3576 char buf[4];
3577 CORE_ADDR orig_pc = pc;
3578 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3579 unsigned long args_stored, status, i, restart_gr, restart_fr;
3580 struct unwind_table_entry *u;
3581
3582 restart_gr = 0;
3583 restart_fr = 0;
3584
3585 restart:
3586 u = find_unwind_entry (pc);
3587 if (!u)
3588 return pc;
3589
3590 /* If we are not at the beginning of a function, then return now. */
3591 if ((pc & ~0x3) != u->region_start)
3592 return pc;
3593
3594 /* This is how much of a frame adjustment we need to account for. */
3595 stack_remaining = u->Total_frame_size << 3;
3596
3597 /* Magic register saves we want to know about. */
3598 save_rp = u->Save_RP;
3599 save_sp = u->Save_SP;
3600
3601 /* An indication that args may be stored into the stack. Unfortunately
3602 the HPUX compilers tend to set this in cases where no args were
3603 stored too!. */
3604 args_stored = 1;
3605
3606 /* Turn the Entry_GR field into a bitmask. */
3607 save_gr = 0;
3608 for (i = 3; i < u->Entry_GR + 3; i++)
3609 {
3610 /* Frame pointer gets saved into a special location. */
3611 if (u->Save_SP && i == FP_REGNUM)
3612 continue;
3613
3614 save_gr |= (1 << i);
3615 }
3616 save_gr &= ~restart_gr;
3617
3618 /* Turn the Entry_FR field into a bitmask too. */
3619 save_fr = 0;
3620 for (i = 12; i < u->Entry_FR + 12; i++)
3621 save_fr |= (1 << i);
3622 save_fr &= ~restart_fr;
3623
3624 /* Loop until we find everything of interest or hit a branch.
3625
3626 For unoptimized GCC code and for any HP CC code this will never ever
3627 examine any user instructions.
3628
3629 For optimzied GCC code we're faced with problems. GCC will schedule
3630 its prologue and make prologue instructions available for delay slot
3631 filling. The end result is user code gets mixed in with the prologue
3632 and a prologue instruction may be in the delay slot of the first branch
3633 or call.
3634
3635 Some unexpected things are expected with debugging optimized code, so
3636 we allow this routine to walk past user instructions in optimized
3637 GCC code. */
3638 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3639 || args_stored)
3640 {
3641 unsigned int reg_num;
3642 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3643 unsigned long old_save_rp, old_save_sp, next_inst;
3644
3645 /* Save copies of all the triggers so we can compare them later
3646 (only for HPC). */
3647 old_save_gr = save_gr;
3648 old_save_fr = save_fr;
3649 old_save_rp = save_rp;
3650 old_save_sp = save_sp;
3651 old_stack_remaining = stack_remaining;
3652
3653 status = target_read_memory (pc, buf, 4);
3654 inst = extract_unsigned_integer (buf, 4);
3655
3656 /* Yow! */
3657 if (status != 0)
3658 return pc;
3659
3660 /* Note the interesting effects of this instruction. */
3661 stack_remaining -= prologue_inst_adjust_sp (inst);
3662
3663 /* There are limited ways to store the return pointer into the
3664 stack. */
3665 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3666 save_rp = 0;
3667
3668 /* These are the only ways we save SP into the stack. At this time
3669 the HP compilers never bother to save SP into the stack. */
3670 if ((inst & 0xffffc000) == 0x6fc10000
3671 || (inst & 0xffffc00c) == 0x73c10008)
3672 save_sp = 0;
3673
3674 /* Account for general and floating-point register saves. */
3675 reg_num = inst_saves_gr (inst);
3676 save_gr &= ~(1 << reg_num);
3677
3678 /* Ugh. Also account for argument stores into the stack.
3679 Unfortunately args_stored only tells us that some arguments
3680 where stored into the stack. Not how many or what kind!
3681
3682 This is a kludge as on the HP compiler sets this bit and it
3683 never does prologue scheduling. So once we see one, skip past
3684 all of them. We have similar code for the fp arg stores below.
3685
3686 FIXME. Can still die if we have a mix of GR and FR argument
3687 stores! */
3688 if (reg_num >= 23 && reg_num <= 26)
3689 {
3690 while (reg_num >= 23 && reg_num <= 26)
3691 {
3692 pc += 4;
3693 status = target_read_memory (pc, buf, 4);
3694 inst = extract_unsigned_integer (buf, 4);
3695 if (status != 0)
3696 return pc;
3697 reg_num = inst_saves_gr (inst);
3698 }
3699 args_stored = 0;
3700 continue;
3701 }
3702
3703 reg_num = inst_saves_fr (inst);
3704 save_fr &= ~(1 << reg_num);
3705
3706 status = target_read_memory (pc + 4, buf, 4);
3707 next_inst = extract_unsigned_integer (buf, 4);
3708
3709 /* Yow! */
3710 if (status != 0)
3711 return pc;
3712
3713 /* We've got to be read to handle the ldo before the fp register
3714 save. */
3715 if ((inst & 0xfc000000) == 0x34000000
3716 && inst_saves_fr (next_inst) >= 4
3717 && inst_saves_fr (next_inst) <= 7)
3718 {
3719 /* So we drop into the code below in a reasonable state. */
3720 reg_num = inst_saves_fr (next_inst);
3721 pc -= 4;
3722 }
3723
3724 /* Ugh. Also account for argument stores into the stack.
3725 This is a kludge as on the HP compiler sets this bit and it
3726 never does prologue scheduling. So once we see one, skip past
3727 all of them. */
3728 if (reg_num >= 4 && reg_num <= 7)
3729 {
3730 while (reg_num >= 4 && reg_num <= 7)
3731 {
3732 pc += 8;
3733 status = target_read_memory (pc, buf, 4);
3734 inst = extract_unsigned_integer (buf, 4);
3735 if (status != 0)
3736 return pc;
3737 if ((inst & 0xfc000000) != 0x34000000)
3738 break;
3739 status = target_read_memory (pc + 4, buf, 4);
3740 next_inst = extract_unsigned_integer (buf, 4);
3741 if (status != 0)
3742 return pc;
3743 reg_num = inst_saves_fr (next_inst);
3744 }
3745 args_stored = 0;
3746 continue;
3747 }
3748
3749 /* Quit if we hit any kind of branch. This can happen if a prologue
3750 instruction is in the delay slot of the first call/branch. */
3751 if (is_branch (inst))
3752 break;
3753
3754 /* What a crock. The HP compilers set args_stored even if no
3755 arguments were stored into the stack (boo hiss). This could
3756 cause this code to then skip a bunch of user insns (up to the
3757 first branch).
3758
3759 To combat this we try to identify when args_stored was bogusly
3760 set and clear it. We only do this when args_stored is nonzero,
3761 all other resources are accounted for, and nothing changed on
3762 this pass. */
3763 if (args_stored
3764 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3765 && old_save_gr == save_gr && old_save_fr == save_fr
3766 && old_save_rp == save_rp && old_save_sp == save_sp
3767 && old_stack_remaining == stack_remaining)
3768 break;
3769
3770 /* Bump the PC. */
3771 pc += 4;
3772 }
3773
3774 /* We've got a tenative location for the end of the prologue. However
3775 because of limitations in the unwind descriptor mechanism we may
3776 have went too far into user code looking for the save of a register
3777 that does not exist. So, if there registers we expected to be saved
3778 but never were, mask them out and restart.
3779
3780 This should only happen in optimized code, and should be very rare. */
3781 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3782 {
3783 pc = orig_pc;
3784 restart_gr = save_gr;
3785 restart_fr = save_fr;
3786 goto restart;
3787 }
3788
3789 return pc;
3790 }
3791
3792
3793 /* Return the address of the PC after the last prologue instruction if
3794 we can determine it from the debug symbols. Else return zero. */
3795
3796 static CORE_ADDR
3797 after_prologue (pc)
3798 CORE_ADDR pc;
3799 {
3800 struct symtab_and_line sal;
3801 CORE_ADDR func_addr, func_end;
3802 struct symbol *f;
3803
3804 /* If we can not find the symbol in the partial symbol table, then
3805 there is no hope we can determine the function's start address
3806 with this code. */
3807 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3808 return 0;
3809
3810 /* Get the line associated with FUNC_ADDR. */
3811 sal = find_pc_line (func_addr, 0);
3812
3813 /* There are only two cases to consider. First, the end of the source line
3814 is within the function bounds. In that case we return the end of the
3815 source line. Second is the end of the source line extends beyond the
3816 bounds of the current function. We need to use the slow code to
3817 examine instructions in that case.
3818
3819 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3820 the wrong thing to do. In fact, it should be entirely possible for this
3821 function to always return zero since the slow instruction scanning code
3822 is supposed to *always* work. If it does not, then it is a bug. */
3823 if (sal.end < func_end)
3824 return sal.end;
3825 else
3826 return 0;
3827 }
3828
3829 /* To skip prologues, I use this predicate. Returns either PC itself
3830 if the code at PC does not look like a function prologue; otherwise
3831 returns an address that (if we're lucky) follows the prologue. If
3832 LENIENT, then we must skip everything which is involved in setting
3833 up the frame (it's OK to skip more, just so long as we don't skip
3834 anything which might clobber the registers which are being saved.
3835 Currently we must not skip more on the alpha, but we might the lenient
3836 stuff some day. */
3837
3838 CORE_ADDR
3839 hppa_skip_prologue (pc)
3840 CORE_ADDR pc;
3841 {
3842 unsigned long inst;
3843 int offset;
3844 CORE_ADDR post_prologue_pc;
3845 char buf[4];
3846
3847 /* See if we can determine the end of the prologue via the symbol table.
3848 If so, then return either PC, or the PC after the prologue, whichever
3849 is greater. */
3850
3851 post_prologue_pc = after_prologue (pc);
3852
3853 /* If after_prologue returned a useful address, then use it. Else
3854 fall back on the instruction skipping code.
3855
3856 Some folks have claimed this causes problems because the breakpoint
3857 may be the first instruction of the prologue. If that happens, then
3858 the instruction skipping code has a bug that needs to be fixed. */
3859 if (post_prologue_pc != 0)
3860 return max (pc, post_prologue_pc);
3861 else
3862 return (skip_prologue_hard_way (pc));
3863 }
3864
3865 /* Put here the code to store, into a struct frame_saved_regs,
3866 the addresses of the saved registers of frame described by FRAME_INFO.
3867 This includes special registers such as pc and fp saved in special
3868 ways in the stack frame. sp is even more special:
3869 the address we return for it IS the sp for the next frame. */
3870
3871 void
3872 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
3873 struct frame_info *frame_info;
3874 struct frame_saved_regs *frame_saved_regs;
3875 {
3876 CORE_ADDR pc;
3877 struct unwind_table_entry *u;
3878 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3879 int status, i, reg;
3880 char buf[4];
3881 int fp_loc = -1;
3882 int final_iteration;
3883
3884 /* Zero out everything. */
3885 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3886
3887 /* Call dummy frames always look the same, so there's no need to
3888 examine the dummy code to determine locations of saved registers;
3889 instead, let find_dummy_frame_regs fill in the correct offsets
3890 for the saved registers. */
3891 if ((frame_info->pc >= frame_info->frame
3892 && frame_info->pc <= (frame_info->frame
3893 /* A call dummy is sized in words, but it is
3894 actually a series of instructions. Account
3895 for that scaling factor. */
3896 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3897 * CALL_DUMMY_LENGTH)
3898 /* Similarly we have to account for 64bit
3899 wide register saves. */
3900 + (32 * REGISTER_SIZE)
3901 /* We always consider FP regs 8 bytes long. */
3902 + (NUM_REGS - FP0_REGNUM) * 8
3903 /* Similarly we have to account for 64bit
3904 wide register saves. */
3905 + (6 * REGISTER_SIZE))))
3906 find_dummy_frame_regs (frame_info, frame_saved_regs);
3907
3908 /* Interrupt handlers are special too. They lay out the register
3909 state in the exact same order as the register numbers in GDB. */
3910 if (pc_in_interrupt_handler (frame_info->pc))
3911 {
3912 for (i = 0; i < NUM_REGS; i++)
3913 {
3914 /* SP is a little special. */
3915 if (i == SP_REGNUM)
3916 frame_saved_regs->regs[SP_REGNUM]
3917 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3918 TARGET_PTR_BIT / 8);
3919 else
3920 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3921 }
3922 return;
3923 }
3924
3925 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3926 /* Handle signal handler callers. */
3927 if (frame_info->signal_handler_caller)
3928 {
3929 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3930 return;
3931 }
3932 #endif
3933
3934 /* Get the starting address of the function referred to by the PC
3935 saved in frame. */
3936 pc = get_pc_function_start (frame_info->pc);
3937
3938 /* Yow! */
3939 u = find_unwind_entry (pc);
3940 if (!u)
3941 return;
3942
3943 /* This is how much of a frame adjustment we need to account for. */
3944 stack_remaining = u->Total_frame_size << 3;
3945
3946 /* Magic register saves we want to know about. */
3947 save_rp = u->Save_RP;
3948 save_sp = u->Save_SP;
3949
3950 /* Turn the Entry_GR field into a bitmask. */
3951 save_gr = 0;
3952 for (i = 3; i < u->Entry_GR + 3; i++)
3953 {
3954 /* Frame pointer gets saved into a special location. */
3955 if (u->Save_SP && i == FP_REGNUM)
3956 continue;
3957
3958 save_gr |= (1 << i);
3959 }
3960
3961 /* Turn the Entry_FR field into a bitmask too. */
3962 save_fr = 0;
3963 for (i = 12; i < u->Entry_FR + 12; i++)
3964 save_fr |= (1 << i);
3965
3966 /* The frame always represents the value of %sp at entry to the
3967 current function (and is thus equivalent to the "saved" stack
3968 pointer. */
3969 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3970
3971 /* Loop until we find everything of interest or hit a branch.
3972
3973 For unoptimized GCC code and for any HP CC code this will never ever
3974 examine any user instructions.
3975
3976 For optimized GCC code we're faced with problems. GCC will schedule
3977 its prologue and make prologue instructions available for delay slot
3978 filling. The end result is user code gets mixed in with the prologue
3979 and a prologue instruction may be in the delay slot of the first branch
3980 or call.
3981
3982 Some unexpected things are expected with debugging optimized code, so
3983 we allow this routine to walk past user instructions in optimized
3984 GCC code. */
3985 final_iteration = 0;
3986 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3987 && pc <= frame_info->pc)
3988 {
3989 status = target_read_memory (pc, buf, 4);
3990 inst = extract_unsigned_integer (buf, 4);
3991
3992 /* Yow! */
3993 if (status != 0)
3994 return;
3995
3996 /* Note the interesting effects of this instruction. */
3997 stack_remaining -= prologue_inst_adjust_sp (inst);
3998
3999 /* There are limited ways to store the return pointer into the
4000 stack. */
4001 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4002 {
4003 save_rp = 0;
4004 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
4005 }
4006 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4007 {
4008 save_rp = 0;
4009 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
4010 }
4011
4012 /* Note if we saved SP into the stack. This also happens to indicate
4013 the location of the saved frame pointer. */
4014 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4015 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4016 {
4017 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
4018 save_sp = 0;
4019 }
4020
4021 /* Account for general and floating-point register saves. */
4022 reg = inst_saves_gr (inst);
4023 if (reg >= 3 && reg <= 18
4024 && (!u->Save_SP || reg != FP_REGNUM))
4025 {
4026 save_gr &= ~(1 << reg);
4027
4028 /* stwm with a positive displacement is a *post modify*. */
4029 if ((inst >> 26) == 0x1b
4030 && extract_14 (inst) >= 0)
4031 frame_saved_regs->regs[reg] = frame_info->frame;
4032 /* A std has explicit post_modify forms. */
4033 else if ((inst & 0xfc00000c0) == 0x70000008)
4034 frame_saved_regs->regs[reg] = frame_info->frame;
4035 else
4036 {
4037 CORE_ADDR offset;
4038
4039 if ((inst >> 26) == 0x1c)
4040 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4041 else if ((inst >> 26) == 0x03)
4042 offset = low_sign_extend (inst & 0x1f, 5);
4043 else
4044 offset = extract_14 (inst);
4045
4046 /* Handle code with and without frame pointers. */
4047 if (u->Save_SP)
4048 frame_saved_regs->regs[reg]
4049 = frame_info->frame + offset;
4050 else
4051 frame_saved_regs->regs[reg]
4052 = (frame_info->frame + (u->Total_frame_size << 3)
4053 + offset);
4054 }
4055 }
4056
4057
4058 /* GCC handles callee saved FP regs a little differently.
4059
4060 It emits an instruction to put the value of the start of
4061 the FP store area into %r1. It then uses fstds,ma with
4062 a basereg of %r1 for the stores.
4063
4064 HP CC emits them at the current stack pointer modifying
4065 the stack pointer as it stores each register. */
4066
4067 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4068 if ((inst & 0xffffc000) == 0x34610000
4069 || (inst & 0xffffc000) == 0x37c10000)
4070 fp_loc = extract_14 (inst);
4071
4072 reg = inst_saves_fr (inst);
4073 if (reg >= 12 && reg <= 21)
4074 {
4075 /* Note +4 braindamage below is necessary because the FP status
4076 registers are internally 8 registers rather than the expected
4077 4 registers. */
4078 save_fr &= ~(1 << reg);
4079 if (fp_loc == -1)
4080 {
4081 /* 1st HP CC FP register store. After this instruction
4082 we've set enough state that the GCC and HPCC code are
4083 both handled in the same manner. */
4084 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4085 fp_loc = 8;
4086 }
4087 else
4088 {
4089 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4090 = frame_info->frame + fp_loc;
4091 fp_loc += 8;
4092 }
4093 }
4094
4095 /* Quit if we hit any kind of branch the previous iteration.
4096 if (final_iteration)
4097 break;
4098
4099 /* We want to look precisely one instruction beyond the branch
4100 if we have not found everything yet. */
4101 if (is_branch (inst))
4102 final_iteration = 1;
4103
4104 /* Bump the PC. */
4105 pc += 4;
4106 }
4107 }
4108
4109
4110 /* Exception handling support for the HP-UX ANSI C++ compiler.
4111 The compiler (aCC) provides a callback for exception events;
4112 GDB can set a breakpoint on this callback and find out what
4113 exception event has occurred. */
4114
4115 /* The name of the hook to be set to point to the callback function */
4116 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4117 /* The name of the function to be used to set the hook value */
4118 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4119 /* The name of the callback function in end.o */
4120 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4121 /* Name of function in end.o on which a break is set (called by above) */
4122 static char HP_ACC_EH_break[] = "__d_eh_break";
4123 /* Name of flag (in end.o) that enables catching throws */
4124 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4125 /* Name of flag (in end.o) that enables catching catching */
4126 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4127 /* The enum used by aCC */
4128 typedef enum
4129 {
4130 __EH_NOTIFY_THROW,
4131 __EH_NOTIFY_CATCH
4132 }
4133 __eh_notification;
4134
4135 /* Is exception-handling support available with this executable? */
4136 static int hp_cxx_exception_support = 0;
4137 /* Has the initialize function been run? */
4138 int hp_cxx_exception_support_initialized = 0;
4139 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4140 extern int exception_support_initialized;
4141 /* Address of __eh_notify_hook */
4142 static CORE_ADDR eh_notify_hook_addr = 0;
4143 /* Address of __d_eh_notify_callback */
4144 static CORE_ADDR eh_notify_callback_addr = 0;
4145 /* Address of __d_eh_break */
4146 static CORE_ADDR eh_break_addr = 0;
4147 /* Address of __d_eh_catch_catch */
4148 static CORE_ADDR eh_catch_catch_addr = 0;
4149 /* Address of __d_eh_catch_throw */
4150 static CORE_ADDR eh_catch_throw_addr = 0;
4151 /* Sal for __d_eh_break */
4152 static struct symtab_and_line *break_callback_sal = 0;
4153
4154 /* Code in end.c expects __d_pid to be set in the inferior,
4155 otherwise __d_eh_notify_callback doesn't bother to call
4156 __d_eh_break! So we poke the pid into this symbol
4157 ourselves.
4158 0 => success
4159 1 => failure */
4160 int
4161 setup_d_pid_in_inferior ()
4162 {
4163 CORE_ADDR anaddr;
4164 struct minimal_symbol *msymbol;
4165 char buf[4]; /* FIXME 32x64? */
4166
4167 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4168 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4169 if (msymbol == NULL)
4170 {
4171 warning ("Unable to find __d_pid symbol in object file.");
4172 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4173 return 1;
4174 }
4175
4176 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4177 store_unsigned_integer (buf, 4, inferior_pid); /* FIXME 32x64? */
4178 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4179 {
4180 warning ("Unable to write __d_pid");
4181 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4182 return 1;
4183 }
4184 return 0;
4185 }
4186
4187 /* Initialize exception catchpoint support by looking for the
4188 necessary hooks/callbacks in end.o, etc., and set the hook value to
4189 point to the required debug function
4190
4191 Return 0 => failure
4192 1 => success */
4193
4194 static int
4195 initialize_hp_cxx_exception_support ()
4196 {
4197 struct symtabs_and_lines sals;
4198 struct cleanup *old_chain;
4199 struct cleanup *canonical_strings_chain = NULL;
4200 int i;
4201 char *addr_start;
4202 char *addr_end = NULL;
4203 char **canonical = (char **) NULL;
4204 int thread = -1;
4205 struct symbol *sym = NULL;
4206 struct minimal_symbol *msym = NULL;
4207 struct objfile *objfile;
4208 asection *shlib_info;
4209
4210 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4211 recursion is a possibility because finding the hook for exception
4212 callbacks involves making a call in the inferior, which means
4213 re-inserting breakpoints which can re-invoke this code */
4214
4215 static int recurse = 0;
4216 if (recurse > 0)
4217 {
4218 hp_cxx_exception_support_initialized = 0;
4219 exception_support_initialized = 0;
4220 return 0;
4221 }
4222
4223 hp_cxx_exception_support = 0;
4224
4225 /* First check if we have seen any HP compiled objects; if not,
4226 it is very unlikely that HP's idiosyncratic callback mechanism
4227 for exception handling debug support will be available!
4228 This will percolate back up to breakpoint.c, where our callers
4229 will decide to try the g++ exception-handling support instead. */
4230 if (!hp_som_som_object_present)
4231 return 0;
4232
4233 /* We have a SOM executable with SOM debug info; find the hooks */
4234
4235 /* First look for the notify hook provided by aCC runtime libs */
4236 /* If we find this symbol, we conclude that the executable must
4237 have HP aCC exception support built in. If this symbol is not
4238 found, even though we're a HP SOM-SOM file, we may have been
4239 built with some other compiler (not aCC). This results percolates
4240 back up to our callers in breakpoint.c which can decide to
4241 try the g++ style of exception support instead.
4242 If this symbol is found but the other symbols we require are
4243 not found, there is something weird going on, and g++ support
4244 should *not* be tried as an alternative.
4245
4246 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4247 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4248
4249 /* libCsup has this hook; it'll usually be non-debuggable */
4250 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4251 if (msym)
4252 {
4253 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4254 hp_cxx_exception_support = 1;
4255 }
4256 else
4257 {
4258 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4259 warning ("Executable may not have been compiled debuggable with HP aCC.");
4260 warning ("GDB will be unable to intercept exception events.");
4261 eh_notify_hook_addr = 0;
4262 hp_cxx_exception_support = 0;
4263 return 0;
4264 }
4265
4266 /* Next look for the notify callback routine in end.o */
4267 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4268 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4269 if (msym)
4270 {
4271 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4272 hp_cxx_exception_support = 1;
4273 }
4274 else
4275 {
4276 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4277 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4278 warning ("GDB will be unable to intercept exception events.");
4279 eh_notify_callback_addr = 0;
4280 return 0;
4281 }
4282
4283 #ifndef GDB_TARGET_IS_HPPA_20W
4284 /* Check whether the executable is dynamically linked or archive bound */
4285 /* With an archive-bound executable we can use the raw addresses we find
4286 for the callback function, etc. without modification. For an executable
4287 with shared libraries, we have to do more work to find the plabel, which
4288 can be the target of a call through $$dyncall from the aCC runtime support
4289 library (libCsup) which is linked shared by default by aCC. */
4290 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4291 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4292 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4293 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4294 {
4295 /* The minsym we have has the local code address, but that's not the
4296 plabel that can be used by an inter-load-module call. */
4297 /* Find solib handle for main image (which has end.o), and use that
4298 and the min sym as arguments to __d_shl_get() (which does the equivalent
4299 of shl_findsym()) to find the plabel. */
4300
4301 args_for_find_stub args;
4302 static char message[] = "Error while finding exception callback hook:\n";
4303
4304 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4305 args.msym = msym;
4306 args.return_val = 0;
4307
4308 recurse++;
4309 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4310 RETURN_MASK_ALL);
4311 eh_notify_callback_addr = args.return_val;
4312 recurse--;
4313
4314 exception_catchpoints_are_fragile = 1;
4315
4316 if (!eh_notify_callback_addr)
4317 {
4318 /* We can get here either if there is no plabel in the export list
4319 for the main image, or if something strange happened (??) */
4320 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4321 warning ("GDB will not be able to intercept exception events.");
4322 return 0;
4323 }
4324 }
4325 else
4326 exception_catchpoints_are_fragile = 0;
4327 #endif
4328
4329 /* Now, look for the breakpointable routine in end.o */
4330 /* This should also be available in the SOM symbol dict. if end.o linked in */
4331 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4332 if (msym)
4333 {
4334 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4335 hp_cxx_exception_support = 1;
4336 }
4337 else
4338 {
4339 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4340 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4341 warning ("GDB will be unable to intercept exception events.");
4342 eh_break_addr = 0;
4343 return 0;
4344 }
4345
4346 /* Next look for the catch enable flag provided in end.o */
4347 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4348 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4349 if (sym) /* sometimes present in debug info */
4350 {
4351 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4352 hp_cxx_exception_support = 1;
4353 }
4354 else
4355 /* otherwise look in SOM symbol dict. */
4356 {
4357 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4358 if (msym)
4359 {
4360 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4361 hp_cxx_exception_support = 1;
4362 }
4363 else
4364 {
4365 warning ("Unable to enable interception of exception catches.");
4366 warning ("Executable may not have been compiled debuggable with HP aCC.");
4367 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4368 return 0;
4369 }
4370 }
4371
4372 /* Next look for the catch enable flag provided end.o */
4373 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4374 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4375 if (sym) /* sometimes present in debug info */
4376 {
4377 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4378 hp_cxx_exception_support = 1;
4379 }
4380 else
4381 /* otherwise look in SOM symbol dict. */
4382 {
4383 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4384 if (msym)
4385 {
4386 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4387 hp_cxx_exception_support = 1;
4388 }
4389 else
4390 {
4391 warning ("Unable to enable interception of exception throws.");
4392 warning ("Executable may not have been compiled debuggable with HP aCC.");
4393 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4394 return 0;
4395 }
4396 }
4397
4398 /* Set the flags */
4399 hp_cxx_exception_support = 2; /* everything worked so far */
4400 hp_cxx_exception_support_initialized = 1;
4401 exception_support_initialized = 1;
4402
4403 return 1;
4404 }
4405
4406 /* Target operation for enabling or disabling interception of
4407 exception events.
4408 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4409 ENABLE is either 0 (disable) or 1 (enable).
4410 Return value is NULL if no support found;
4411 -1 if something went wrong,
4412 or a pointer to a symtab/line struct if the breakpointable
4413 address was found. */
4414
4415 struct symtab_and_line *
4416 child_enable_exception_callback (kind, enable)
4417 enum exception_event_kind kind;
4418 int enable;
4419 {
4420 char buf[4];
4421
4422 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4423 if (!initialize_hp_cxx_exception_support ())
4424 return NULL;
4425
4426 switch (hp_cxx_exception_support)
4427 {
4428 case 0:
4429 /* Assuming no HP support at all */
4430 return NULL;
4431 case 1:
4432 /* HP support should be present, but something went wrong */
4433 return (struct symtab_and_line *) -1; /* yuck! */
4434 /* there may be other cases in the future */
4435 }
4436
4437 /* Set the EH hook to point to the callback routine */
4438 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4439 /* pai: (temp) FIXME should there be a pack operation first? */
4440 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4441 {
4442 warning ("Could not write to target memory for exception event callback.");
4443 warning ("Interception of exception events may not work.");
4444 return (struct symtab_and_line *) -1;
4445 }
4446 if (enable)
4447 {
4448 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4449 if (inferior_pid > 0)
4450 {
4451 if (setup_d_pid_in_inferior ())
4452 return (struct symtab_and_line *) -1;
4453 }
4454 else
4455 {
4456 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4457 return (struct symtab_and_line *) -1;
4458 }
4459 }
4460
4461 switch (kind)
4462 {
4463 case EX_EVENT_THROW:
4464 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4465 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4466 {
4467 warning ("Couldn't enable exception throw interception.");
4468 return (struct symtab_and_line *) -1;
4469 }
4470 break;
4471 case EX_EVENT_CATCH:
4472 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4473 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4474 {
4475 warning ("Couldn't enable exception catch interception.");
4476 return (struct symtab_and_line *) -1;
4477 }
4478 break;
4479 default:
4480 error ("Request to enable unknown or unsupported exception event.");
4481 }
4482
4483 /* Copy break address into new sal struct, malloc'ing if needed. */
4484 if (!break_callback_sal)
4485 {
4486 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4487 }
4488 INIT_SAL (break_callback_sal);
4489 break_callback_sal->symtab = NULL;
4490 break_callback_sal->pc = eh_break_addr;
4491 break_callback_sal->line = 0;
4492 break_callback_sal->end = eh_break_addr;
4493
4494 return break_callback_sal;
4495 }
4496
4497 /* Record some information about the current exception event */
4498 static struct exception_event_record current_ex_event;
4499 /* Convenience struct */
4500 static struct symtab_and_line null_symtab_and_line =
4501 {NULL, 0, 0, 0};
4502
4503 /* Report current exception event. Returns a pointer to a record
4504 that describes the kind of the event, where it was thrown from,
4505 and where it will be caught. More information may be reported
4506 in the future */
4507 struct exception_event_record *
4508 child_get_current_exception_event ()
4509 {
4510 CORE_ADDR event_kind;
4511 CORE_ADDR throw_addr;
4512 CORE_ADDR catch_addr;
4513 struct frame_info *fi, *curr_frame;
4514 int level = 1;
4515
4516 curr_frame = get_current_frame ();
4517 if (!curr_frame)
4518 return (struct exception_event_record *) NULL;
4519
4520 /* Go up one frame to __d_eh_notify_callback, because at the
4521 point when this code is executed, there's garbage in the
4522 arguments of __d_eh_break. */
4523 fi = find_relative_frame (curr_frame, &level);
4524 if (level != 0)
4525 return (struct exception_event_record *) NULL;
4526
4527 select_frame (fi, -1);
4528
4529 /* Read in the arguments */
4530 /* __d_eh_notify_callback() is called with 3 arguments:
4531 1. event kind catch or throw
4532 2. the target address if known
4533 3. a flag -- not sure what this is. pai/1997-07-17 */
4534 event_kind = read_register (ARG0_REGNUM);
4535 catch_addr = read_register (ARG1_REGNUM);
4536
4537 /* Now go down to a user frame */
4538 /* For a throw, __d_eh_break is called by
4539 __d_eh_notify_callback which is called by
4540 __notify_throw which is called
4541 from user code.
4542 For a catch, __d_eh_break is called by
4543 __d_eh_notify_callback which is called by
4544 <stackwalking stuff> which is called by
4545 __throw__<stuff> or __rethrow_<stuff> which is called
4546 from user code. */
4547 /* FIXME: Don't use such magic numbers; search for the frames */
4548 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4549 fi = find_relative_frame (curr_frame, &level);
4550 if (level != 0)
4551 return (struct exception_event_record *) NULL;
4552
4553 select_frame (fi, -1);
4554 throw_addr = fi->pc;
4555
4556 /* Go back to original (top) frame */
4557 select_frame (curr_frame, -1);
4558
4559 current_ex_event.kind = (enum exception_event_kind) event_kind;
4560 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4561 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4562
4563 return &current_ex_event;
4564 }
4565
4566 static void
4567 unwind_command (exp, from_tty)
4568 char *exp;
4569 int from_tty;
4570 {
4571 CORE_ADDR address;
4572 struct unwind_table_entry *u;
4573
4574 /* If we have an expression, evaluate it and use it as the address. */
4575
4576 if (exp != 0 && *exp != 0)
4577 address = parse_and_eval_address (exp);
4578 else
4579 return;
4580
4581 u = find_unwind_entry (address);
4582
4583 if (!u)
4584 {
4585 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4586 return;
4587 }
4588
4589 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
4590
4591 printf_unfiltered ("\tregion_start = ");
4592 print_address (u->region_start, gdb_stdout);
4593
4594 printf_unfiltered ("\n\tregion_end = ");
4595 print_address (u->region_end, gdb_stdout);
4596
4597 #ifdef __STDC__
4598 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4599 #else
4600 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
4601 #endif
4602
4603 printf_unfiltered ("\n\tflags =");
4604 pif (Cannot_unwind);
4605 pif (Millicode);
4606 pif (Millicode_save_sr0);
4607 pif (Entry_SR);
4608 pif (Args_stored);
4609 pif (Variable_Frame);
4610 pif (Separate_Package_Body);
4611 pif (Frame_Extension_Millicode);
4612 pif (Stack_Overflow_Check);
4613 pif (Two_Instruction_SP_Increment);
4614 pif (Ada_Region);
4615 pif (Save_SP);
4616 pif (Save_RP);
4617 pif (Save_MRP_in_frame);
4618 pif (extn_ptr_defined);
4619 pif (Cleanup_defined);
4620 pif (MPE_XL_interrupt_marker);
4621 pif (HP_UX_interrupt_marker);
4622 pif (Large_frame);
4623
4624 putchar_unfiltered ('\n');
4625
4626 #ifdef __STDC__
4627 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4628 #else
4629 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
4630 #endif
4631
4632 pin (Region_description);
4633 pin (Entry_FR);
4634 pin (Entry_GR);
4635 pin (Total_frame_size);
4636 }
4637
4638 #ifdef PREPARE_TO_PROCEED
4639
4640 /* If the user has switched threads, and there is a breakpoint
4641 at the old thread's pc location, then switch to that thread
4642 and return TRUE, else return FALSE and don't do a thread
4643 switch (or rather, don't seem to have done a thread switch).
4644
4645 Ptrace-based gdb will always return FALSE to the thread-switch
4646 query, and thus also to PREPARE_TO_PROCEED.
4647
4648 The important thing is whether there is a BPT instruction,
4649 not how many user breakpoints there are. So we have to worry
4650 about things like these:
4651
4652 o Non-bp stop -- NO
4653
4654 o User hits bp, no switch -- NO
4655
4656 o User hits bp, switches threads -- YES
4657
4658 o User hits bp, deletes bp, switches threads -- NO
4659
4660 o User hits bp, deletes one of two or more bps
4661 at that PC, user switches threads -- YES
4662
4663 o Plus, since we're buffering events, the user may have hit a
4664 breakpoint, deleted the breakpoint and then gotten another
4665 hit on that same breakpoint on another thread which
4666 actually hit before the delete. (FIXME in breakpoint.c
4667 so that "dead" breakpoints are ignored?) -- NO
4668
4669 For these reasons, we have to violate information hiding and
4670 call "breakpoint_here_p". If core gdb thinks there is a bpt
4671 here, that's what counts, as core gdb is the one which is
4672 putting the BPT instruction in and taking it out. */
4673 int
4674 hppa_prepare_to_proceed ()
4675 {
4676 pid_t old_thread;
4677 pid_t current_thread;
4678
4679 old_thread = hppa_switched_threads (inferior_pid);
4680 if (old_thread != 0)
4681 {
4682 /* Switched over from "old_thread". Try to do
4683 as little work as possible, 'cause mostly
4684 we're going to switch back. */
4685 CORE_ADDR new_pc;
4686 CORE_ADDR old_pc = read_pc ();
4687
4688 /* Yuk, shouldn't use global to specify current
4689 thread. But that's how gdb does it. */
4690 current_thread = inferior_pid;
4691 inferior_pid = old_thread;
4692
4693 new_pc = read_pc ();
4694 if (new_pc != old_pc /* If at same pc, no need */
4695 && breakpoint_here_p (new_pc))
4696 {
4697 /* User hasn't deleted the BP.
4698 Return TRUE, finishing switch to "old_thread". */
4699 flush_cached_frames ();
4700 registers_changed ();
4701 #if 0
4702 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4703 current_thread, inferior_pid);
4704 #endif
4705
4706 return 1;
4707 }
4708
4709 /* Otherwise switch back to the user-chosen thread. */
4710 inferior_pid = current_thread;
4711 new_pc = read_pc (); /* Re-prime register cache */
4712 }
4713
4714 return 0;
4715 }
4716 #endif /* PREPARE_TO_PROCEED */
4717
4718 void
4719 hppa_skip_permanent_breakpoint ()
4720 {
4721 /* To step over a breakpoint instruction on the PA takes some
4722 fiddling with the instruction address queue.
4723
4724 When we stop at a breakpoint, the IA queue front (the instruction
4725 we're executing now) points at the breakpoint instruction, and
4726 the IA queue back (the next instruction to execute) points to
4727 whatever instruction we would execute after the breakpoint, if it
4728 were an ordinary instruction. This is the case even if the
4729 breakpoint is in the delay slot of a branch instruction.
4730
4731 Clearly, to step past the breakpoint, we need to set the queue
4732 front to the back. But what do we put in the back? What
4733 instruction comes after that one? Because of the branch delay
4734 slot, the next insn is always at the back + 4. */
4735 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4736 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4737
4738 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4739 /* We can leave the tail's space the same, since there's no jump. */
4740 }
4741
4742 void
4743 _initialize_hppa_tdep ()
4744 {
4745 tm_print_insn = print_insn_hppa;
4746
4747 add_cmd ("unwind", class_maintenance, unwind_command,
4748 "Print unwind table entry at given address.",
4749 &maintenanceprintlist);
4750 }
This page took 0.174285 seconds and 3 git commands to generate.