* hppa-tdep.c: Remove all uses of use_unwind and `set use_unwind'
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39 #include <sys/ioctl.h>
40
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
43 #else
44 #include <a.out.h>
45 #endif
46 #ifndef N_SET_MAGIC
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include <sys/stat.h>
53 #include <machine/psl.h>
54 #include "wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65
66 \f
67 /* Routines to extract various sized constants out of hppa
68 instructions. */
69
70 /* This assumes that no garbage lies outside of the lower bits of
71 value. */
72
73 int
74 sign_extend (val, bits)
75 unsigned val, bits;
76 {
77 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
78 }
79
80 /* For many immediate values the sign bit is the low bit! */
81
82 int
83 low_sign_extend (val, bits)
84 unsigned val, bits;
85 {
86 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
87 }
88 /* extract the immediate field from a ld{bhw}s instruction */
89
90 unsigned
91 get_field (val, from, to)
92 unsigned val, from, to;
93 {
94 val = val >> 31 - to;
95 return val & ((1 << 32 - from) - 1);
96 }
97
98 unsigned
99 set_field (val, from, to, new_val)
100 unsigned *val, from, to;
101 {
102 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
103 return *val = *val & mask | (new_val << (31 - from));
104 }
105
106 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
107
108 extract_3 (word)
109 unsigned word;
110 {
111 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
112 }
113
114 extract_5_load (word)
115 unsigned word;
116 {
117 return low_sign_extend (word >> 16 & MASK_5, 5);
118 }
119
120 /* extract the immediate field from a st{bhw}s instruction */
121
122 int
123 extract_5_store (word)
124 unsigned word;
125 {
126 return low_sign_extend (word & MASK_5, 5);
127 }
128
129 /* extract the immediate field from a break instruction */
130
131 unsigned
132 extract_5r_store (word)
133 unsigned word;
134 {
135 return (word & MASK_5);
136 }
137
138 /* extract the immediate field from a {sr}sm instruction */
139
140 unsigned
141 extract_5R_store (word)
142 unsigned word;
143 {
144 return (word >> 16 & MASK_5);
145 }
146
147 /* extract an 11 bit immediate field */
148
149 int
150 extract_11 (word)
151 unsigned word;
152 {
153 return low_sign_extend (word & MASK_11, 11);
154 }
155
156 /* extract a 14 bit immediate field */
157
158 int
159 extract_14 (word)
160 unsigned word;
161 {
162 return low_sign_extend (word & MASK_14, 14);
163 }
164
165 /* deposit a 14 bit constant in a word */
166
167 unsigned
168 deposit_14 (opnd, word)
169 int opnd;
170 unsigned word;
171 {
172 unsigned sign = (opnd < 0 ? 1 : 0);
173
174 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
175 }
176
177 /* extract a 21 bit constant */
178
179 int
180 extract_21 (word)
181 unsigned word;
182 {
183 int val;
184
185 word &= MASK_21;
186 word <<= 11;
187 val = GET_FIELD (word, 20, 20);
188 val <<= 11;
189 val |= GET_FIELD (word, 9, 19);
190 val <<= 2;
191 val |= GET_FIELD (word, 5, 6);
192 val <<= 5;
193 val |= GET_FIELD (word, 0, 4);
194 val <<= 2;
195 val |= GET_FIELD (word, 7, 8);
196 return sign_extend (val, 21) << 11;
197 }
198
199 /* deposit a 21 bit constant in a word. Although 21 bit constants are
200 usually the top 21 bits of a 32 bit constant, we assume that only
201 the low 21 bits of opnd are relevant */
202
203 unsigned
204 deposit_21 (opnd, word)
205 unsigned opnd, word;
206 {
207 unsigned val = 0;
208
209 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
210 val <<= 2;
211 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
212 val <<= 2;
213 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
214 val <<= 11;
215 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
216 val <<= 1;
217 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
218 return word | val;
219 }
220
221 /* extract a 12 bit constant from branch instructions */
222
223 int
224 extract_12 (word)
225 unsigned word;
226 {
227 return sign_extend (GET_FIELD (word, 19, 28) |
228 GET_FIELD (word, 29, 29) << 10 |
229 (word & 0x1) << 11, 12) << 2;
230 }
231
232 /* extract a 17 bit constant from branch instructions, returning the
233 19 bit signed value. */
234
235 int
236 extract_17 (word)
237 unsigned word;
238 {
239 return sign_extend (GET_FIELD (word, 19, 28) |
240 GET_FIELD (word, 29, 29) << 10 |
241 GET_FIELD (word, 11, 15) << 11 |
242 (word & 0x1) << 16, 17) << 2;
243 }
244 \f
245 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
246 of the objfiles seeking the unwind table entry for this PC. Each objfile
247 contains a sorted list of struct unwind_table_entry. Since we do a binary
248 search of the unwind tables, we depend upon them to be sorted. */
249
250 static struct unwind_table_entry *
251 find_unwind_entry(pc)
252 CORE_ADDR pc;
253 {
254 int first, middle, last;
255 struct objfile *objfile;
256
257 ALL_OBJFILES (objfile)
258 {
259 struct obj_unwind_info *ui;
260
261 ui = OBJ_UNWIND_INFO (objfile);
262
263 if (!ui)
264 continue;
265
266 /* First, check the cache */
267
268 if (ui->cache
269 && pc >= ui->cache->region_start
270 && pc <= ui->cache->region_end)
271 return ui->cache;
272
273 /* Not in the cache, do a binary search */
274
275 first = 0;
276 last = ui->last;
277
278 while (first <= last)
279 {
280 middle = (first + last) / 2;
281 if (pc >= ui->table[middle].region_start
282 && pc <= ui->table[middle].region_end)
283 {
284 ui->cache = &ui->table[middle];
285 return &ui->table[middle];
286 }
287
288 if (pc < ui->table[middle].region_start)
289 last = middle - 1;
290 else
291 first = middle + 1;
292 }
293 } /* ALL_OBJFILES() */
294 return NULL;
295 }
296
297 /* Called when no unwind descriptor was found for PC. Returns 1 if it
298 appears that PC is in a linker stub. */
299 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
300
301 static int
302 pc_in_linker_stub (pc)
303 CORE_ADDR pc;
304 {
305 int found_magic_instruction = 0;
306 int i;
307 char buf[4];
308
309 /* If unable to read memory, assume pc is not in a linker stub. */
310 if (target_read_memory (pc, buf, 4) != 0)
311 return 0;
312
313 /* We are looking for something like
314
315 ; $$dyncall jams RP into this special spot in the frame (RP')
316 ; before calling the "call stub"
317 ldw -18(sp),rp
318
319 ldsid (rp),r1 ; Get space associated with RP into r1
320 mtsp r1,sp ; Move it into space register 0
321 be,n 0(sr0),rp) ; back to your regularly scheduled program
322 */
323
324 /* Maximum known linker stub size is 4 instructions. Search forward
325 from the given PC, then backward. */
326 for (i = 0; i < 4; i++)
327 {
328 /* If we hit something with an unwind, stop searching this direction. */
329
330 if (find_unwind_entry (pc + i * 4) != 0)
331 break;
332
333 /* Check for ldsid (rp),r1 which is the magic instruction for a
334 return from a cross-space function call. */
335 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
336 {
337 found_magic_instruction = 1;
338 break;
339 }
340 /* Add code to handle long call/branch and argument relocation stubs
341 here. */
342 }
343
344 if (found_magic_instruction != 0)
345 return 1;
346
347 /* Now look backward. */
348 for (i = 0; i < 4; i++)
349 {
350 /* If we hit something with an unwind, stop searching this direction. */
351
352 if (find_unwind_entry (pc - i * 4) != 0)
353 break;
354
355 /* Check for ldsid (rp),r1 which is the magic instruction for a
356 return from a cross-space function call. */
357 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
358 {
359 found_magic_instruction = 1;
360 break;
361 }
362 /* Add code to handle long call/branch and argument relocation stubs
363 here. */
364 }
365 return found_magic_instruction;
366 }
367
368 static int
369 find_return_regnum(pc)
370 CORE_ADDR pc;
371 {
372 struct unwind_table_entry *u;
373
374 u = find_unwind_entry (pc);
375
376 if (!u)
377 return RP_REGNUM;
378
379 if (u->Millicode)
380 return 31;
381
382 return RP_REGNUM;
383 }
384
385 /* Return size of frame, or -1 if we should use a frame pointer. */
386 int
387 find_proc_framesize(pc)
388 CORE_ADDR pc;
389 {
390 struct unwind_table_entry *u;
391
392 u = find_unwind_entry (pc);
393
394 if (!u)
395 {
396 if (pc_in_linker_stub (pc))
397 /* Linker stubs have a zero size frame. */
398 return 0;
399 else
400 return -1;
401 }
402
403 if (u->Save_SP)
404 /* If this bit is set, it means there is a frame pointer and we should
405 use it. */
406 return -1;
407
408 return u->Total_frame_size << 3;
409 }
410
411 /* Return offset from sp at which rp is saved, or 0 if not saved. */
412 static int rp_saved PARAMS ((CORE_ADDR));
413
414 static int
415 rp_saved (pc)
416 CORE_ADDR pc;
417 {
418 struct unwind_table_entry *u;
419
420 u = find_unwind_entry (pc);
421
422 if (!u)
423 {
424 if (pc_in_linker_stub (pc))
425 /* This is the so-called RP'. */
426 return -24;
427 else
428 return 0;
429 }
430
431 if (u->Save_RP)
432 return -20;
433 else
434 return 0;
435 }
436 \f
437 int
438 frameless_function_invocation (frame)
439 FRAME frame;
440 {
441 struct unwind_table_entry *u;
442
443 u = find_unwind_entry (frame->pc);
444
445 if (u == 0)
446 return frameless_look_for_prologue (frame);
447
448 return (u->Total_frame_size == 0);
449 }
450
451 CORE_ADDR
452 saved_pc_after_call (frame)
453 FRAME frame;
454 {
455 int ret_regnum;
456
457 ret_regnum = find_return_regnum (get_frame_pc (frame));
458
459 return read_register (ret_regnum) & ~0x3;
460 }
461 \f
462 CORE_ADDR
463 frame_saved_pc (frame)
464 FRAME frame;
465 {
466 CORE_ADDR pc = get_frame_pc (frame);
467
468 if (frameless_function_invocation (frame))
469 {
470 int ret_regnum;
471
472 ret_regnum = find_return_regnum (pc);
473
474 return read_register (ret_regnum) & ~0x3;
475 }
476 else
477 {
478 int rp_offset = rp_saved (pc);
479
480 if (rp_offset == 0)
481 return read_register (RP_REGNUM) & ~0x3;
482 else
483 return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
484 }
485 }
486 \f
487 /* We need to correct the PC and the FP for the outermost frame when we are
488 in a system call. */
489
490 void
491 init_extra_frame_info (fromleaf, frame)
492 int fromleaf;
493 struct frame_info *frame;
494 {
495 int flags;
496 int framesize;
497
498 if (frame->next) /* Only do this for outermost frame */
499 return;
500
501 flags = read_register (FLAGS_REGNUM);
502 if (flags & 2) /* In system call? */
503 frame->pc = read_register (31) & ~0x3;
504
505 /* The outermost frame is always derived from PC-framesize */
506 framesize = find_proc_framesize(frame->pc);
507 if (framesize == -1)
508 frame->frame = read_register (FP_REGNUM);
509 else
510 frame->frame = read_register (SP_REGNUM) - framesize;
511
512 if (!frameless_function_invocation (frame)) /* Frameless? */
513 return; /* No, quit now */
514
515 /* For frameless functions, we need to look at the caller's frame */
516 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
517 if (framesize != -1)
518 frame->frame -= framesize;
519 }
520 \f
521 FRAME_ADDR
522 frame_chain (frame)
523 struct frame_info *frame;
524 {
525 int framesize;
526
527 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
528
529 if (framesize != -1)
530 return frame->frame - framesize;
531
532 return read_memory_integer (frame->frame, 4);
533 }
534 \f
535 /* To see if a frame chain is valid, see if the caller looks like it
536 was compiled with gcc. */
537
538 int
539 frame_chain_valid (chain, thisframe)
540 FRAME_ADDR chain;
541 FRAME thisframe;
542 {
543 struct minimal_symbol *msym;
544 struct unwind_table_entry *u;
545
546 if (!chain)
547 return 0;
548
549 u = find_unwind_entry (thisframe->pc);
550
551 msym = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
552 if (msym
553 && (strcmp (SYMBOL_NAME (msym), "_start") == 0))
554 return 0;
555
556 if (u == NULL)
557 return 1;
558
559 if (u->Save_SP || u->Total_frame_size)
560 return 1;
561
562 if (pc_in_linker_stub (thisframe->pc))
563 return 1;
564
565 return 0;
566 }
567
568 /*
569 * These functions deal with saving and restoring register state
570 * around a function call in the inferior. They keep the stack
571 * double-word aligned; eventually, on an hp700, the stack will have
572 * to be aligned to a 64-byte boundary.
573 */
574
575 int
576 push_dummy_frame ()
577 {
578 register CORE_ADDR sp;
579 register int regnum;
580 int int_buffer;
581 double freg_buffer;
582
583 /* Space for "arguments"; the RP goes in here. */
584 sp = read_register (SP_REGNUM) + 48;
585 int_buffer = read_register (RP_REGNUM) | 0x3;
586 write_memory (sp - 20, (char *)&int_buffer, 4);
587
588 int_buffer = read_register (FP_REGNUM);
589 write_memory (sp, (char *)&int_buffer, 4);
590
591 write_register (FP_REGNUM, sp);
592
593 sp += 8;
594
595 for (regnum = 1; regnum < 32; regnum++)
596 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
597 sp = push_word (sp, read_register (regnum));
598
599 sp += 4;
600
601 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
602 {
603 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
604 sp = push_bytes (sp, (char *)&freg_buffer, 8);
605 }
606 sp = push_word (sp, read_register (IPSW_REGNUM));
607 sp = push_word (sp, read_register (SAR_REGNUM));
608 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
609 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
610 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
611 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
612 write_register (SP_REGNUM, sp);
613 }
614
615 find_dummy_frame_regs (frame, frame_saved_regs)
616 struct frame_info *frame;
617 struct frame_saved_regs *frame_saved_regs;
618 {
619 CORE_ADDR fp = frame->frame;
620 int i;
621
622 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
623 frame_saved_regs->regs[FP_REGNUM] = fp;
624 frame_saved_regs->regs[1] = fp + 8;
625
626 for (fp += 12, i = 3; i < 32; i++)
627 {
628 if (i != FP_REGNUM)
629 {
630 frame_saved_regs->regs[i] = fp;
631 fp += 4;
632 }
633 }
634
635 fp += 4;
636 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
637 frame_saved_regs->regs[i] = fp;
638
639 frame_saved_regs->regs[IPSW_REGNUM] = fp;
640 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
641 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
642 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
643 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
644 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
645 }
646
647 int
648 hppa_pop_frame ()
649 {
650 register FRAME frame = get_current_frame ();
651 register CORE_ADDR fp;
652 register int regnum;
653 struct frame_saved_regs fsr;
654 struct frame_info *fi;
655 double freg_buffer;
656
657 fi = get_frame_info (frame);
658 fp = fi->frame;
659 get_frame_saved_regs (fi, &fsr);
660
661 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
662 restore_pc_queue (&fsr);
663
664 for (regnum = 31; regnum > 0; regnum--)
665 if (fsr.regs[regnum])
666 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
667
668 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
669 if (fsr.regs[regnum])
670 {
671 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
672 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
673 }
674
675 if (fsr.regs[IPSW_REGNUM])
676 write_register (IPSW_REGNUM,
677 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
678
679 if (fsr.regs[SAR_REGNUM])
680 write_register (SAR_REGNUM,
681 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
682
683 if (fsr.regs[PCOQ_TAIL_REGNUM])
684 write_register (PCOQ_TAIL_REGNUM,
685 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
686
687 write_register (FP_REGNUM, read_memory_integer (fp, 4));
688
689 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
690 write_register (SP_REGNUM, fp - 48);
691 else
692 write_register (SP_REGNUM, fp);
693
694 flush_cached_frames ();
695 set_current_frame (create_new_frame (read_register (FP_REGNUM),
696 read_pc ()));
697 }
698
699 /*
700 * After returning to a dummy on the stack, restore the instruction
701 * queue space registers. */
702
703 static int
704 restore_pc_queue (fsr)
705 struct frame_saved_regs *fsr;
706 {
707 CORE_ADDR pc = read_pc ();
708 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
709 int pid;
710 WAITTYPE w;
711 int insn_count;
712
713 /* Advance past break instruction in the call dummy. */
714 write_register (PCOQ_HEAD_REGNUM, pc + 4);
715 write_register (PCOQ_TAIL_REGNUM, pc + 8);
716
717 /*
718 * HPUX doesn't let us set the space registers or the space
719 * registers of the PC queue through ptrace. Boo, hiss.
720 * Conveniently, the call dummy has this sequence of instructions
721 * after the break:
722 * mtsp r21, sr0
723 * ble,n 0(sr0, r22)
724 *
725 * So, load up the registers and single step until we are in the
726 * right place.
727 */
728
729 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
730 write_register (22, new_pc);
731
732 for (insn_count = 0; insn_count < 3; insn_count++)
733 {
734 resume (1, 0);
735 target_wait(&w);
736
737 if (!WIFSTOPPED (w))
738 {
739 stop_signal = WTERMSIG (w);
740 terminal_ours_for_output ();
741 printf ("\nProgram terminated with signal %d, %s\n",
742 stop_signal, safe_strsignal (stop_signal));
743 fflush (stdout);
744 return 0;
745 }
746 }
747 fetch_inferior_registers (-1);
748 return 1;
749 }
750
751 CORE_ADDR
752 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
753 int nargs;
754 value *args;
755 CORE_ADDR sp;
756 int struct_return;
757 CORE_ADDR struct_addr;
758 {
759 /* array of arguments' offsets */
760 int *offset = (int *)alloca(nargs * sizeof (int));
761 int cum = 0;
762 int i, alignment;
763
764 for (i = 0; i < nargs; i++)
765 {
766 /* Coerce chars to int & float to double if necessary */
767 args[i] = value_arg_coerce (args[i]);
768
769 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
770
771 /* value must go at proper alignment. Assume alignment is a
772 power of two.*/
773 alignment = hppa_alignof (VALUE_TYPE (args[i]));
774 if (cum % alignment)
775 cum = (cum + alignment) & -alignment;
776 offset[i] = -cum;
777 }
778 sp += max ((cum + 7) & -8, 16);
779
780 for (i = 0; i < nargs; i++)
781 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
782 TYPE_LENGTH (VALUE_TYPE (args[i])));
783
784 if (struct_return)
785 write_register (28, struct_addr);
786 return sp + 32;
787 }
788
789 /*
790 * Insert the specified number of args and function address
791 * into a call sequence of the above form stored at DUMMYNAME.
792 *
793 * On the hppa we need to call the stack dummy through $$dyncall.
794 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
795 * real_pc, which is the location where gdb should start up the
796 * inferior to do the function call.
797 */
798
799 CORE_ADDR
800 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
801 REGISTER_TYPE *dummy;
802 CORE_ADDR pc;
803 CORE_ADDR fun;
804 int nargs;
805 value *args;
806 struct type *type;
807 int gcc_p;
808 {
809 CORE_ADDR dyncall_addr, sr4export_addr;
810 struct minimal_symbol *msymbol;
811
812 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
813 if (msymbol == NULL)
814 error ("Can't find an address for $$dyncall trampoline");
815
816 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
817
818 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
819 if (msymbol == NULL)
820 error ("Can't find an address for _sr4export trampoline");
821
822 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
823
824 dummy[9] = deposit_21 (fun >> 11, dummy[9]);
825 dummy[10] = deposit_14 (fun & MASK_11, dummy[10]);
826 dummy[12] = deposit_21 (sr4export_addr >> 11, dummy[12]);
827 dummy[13] = deposit_14 (sr4export_addr & MASK_11, dummy[13]);
828
829 write_register (22, pc);
830
831 return dyncall_addr;
832 }
833
834 /* return the alignment of a type in bytes. Structures have the maximum
835 alignment required by their fields. */
836
837 static int
838 hppa_alignof (arg)
839 struct type *arg;
840 {
841 int max_align, align, i;
842 switch (TYPE_CODE (arg))
843 {
844 case TYPE_CODE_PTR:
845 case TYPE_CODE_INT:
846 case TYPE_CODE_FLT:
847 return TYPE_LENGTH (arg);
848 case TYPE_CODE_ARRAY:
849 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
850 case TYPE_CODE_STRUCT:
851 case TYPE_CODE_UNION:
852 max_align = 2;
853 for (i = 0; i < TYPE_NFIELDS (arg); i++)
854 {
855 /* Bit fields have no real alignment. */
856 if (!TYPE_FIELD_BITPOS (arg, i))
857 {
858 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
859 max_align = max (max_align, align);
860 }
861 }
862 return max_align;
863 default:
864 return 4;
865 }
866 }
867
868 /* Print the register regnum, or all registers if regnum is -1 */
869
870 pa_do_registers_info (regnum, fpregs)
871 int regnum;
872 int fpregs;
873 {
874 char raw_regs [REGISTER_BYTES];
875 int i;
876
877 for (i = 0; i < NUM_REGS; i++)
878 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
879 if (regnum == -1)
880 pa_print_registers (raw_regs, regnum, fpregs);
881 else if (regnum < FP0_REGNUM)
882 printf ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
883 REGISTER_BYTE (regnum)));
884 else
885 pa_print_fp_reg (regnum);
886 }
887
888 pa_print_registers (raw_regs, regnum, fpregs)
889 char *raw_regs;
890 int regnum;
891 int fpregs;
892 {
893 int i;
894
895 for (i = 0; i < 18; i++)
896 printf ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
897 reg_names[i],
898 *(int *)(raw_regs + REGISTER_BYTE (i)),
899 reg_names[i + 18],
900 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
901 reg_names[i + 36],
902 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
903 reg_names[i + 54],
904 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
905
906 if (fpregs)
907 for (i = 72; i < NUM_REGS; i++)
908 pa_print_fp_reg (i);
909 }
910
911 pa_print_fp_reg (i)
912 int i;
913 {
914 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
915 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
916 REGISTER_TYPE val;
917
918 /* Get the data in raw format, then convert also to virtual format. */
919 read_relative_register_raw_bytes (i, raw_buffer);
920 REGISTER_CONVERT_TO_VIRTUAL (i, raw_buffer, virtual_buffer);
921
922 fputs_filtered (reg_names[i], stdout);
923 print_spaces_filtered (15 - strlen (reg_names[i]), stdout);
924
925 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, stdout, 0,
926 1, 0, Val_pretty_default);
927 printf_filtered ("\n");
928 }
929
930 /* Function calls that pass into a new compilation unit must pass through a
931 small piece of code that does long format (`external' in HPPA parlance)
932 jumps. We figure out where the trampoline is going to end up, and return
933 the PC of the final destination. If we aren't in a trampoline, we just
934 return NULL.
935
936 For computed calls, we just extract the new PC from r22. */
937
938 CORE_ADDR
939 skip_trampoline_code (pc, name)
940 CORE_ADDR pc;
941 char *name;
942 {
943 long inst0, inst1;
944 static CORE_ADDR dyncall = 0;
945 struct minimal_symbol *msym;
946
947 /* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
948
949 if (!dyncall)
950 {
951 msym = lookup_minimal_symbol ("$$dyncall", NULL);
952 if (msym)
953 dyncall = SYMBOL_VALUE_ADDRESS (msym);
954 else
955 dyncall = -1;
956 }
957
958 if (pc == dyncall)
959 return (CORE_ADDR)(read_register (22) & ~0x3);
960
961 inst0 = read_memory_integer (pc, 4);
962 inst1 = read_memory_integer (pc+4, 4);
963
964 if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
965 && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
966 pc = extract_21 (inst0) + extract_17 (inst1);
967 else
968 pc = (CORE_ADDR)NULL;
969
970 return pc;
971 }
972
973 /* Advance PC across any function entry prologue instructions
974 to reach some "real" code. */
975
976 /* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
977 for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
978
979 CORE_ADDR
980 skip_prologue(pc)
981 CORE_ADDR pc;
982 {
983 char buf[4];
984 unsigned long inst;
985 int status;
986
987 status = target_read_memory (pc, buf, 4);
988 inst = extract_unsigned_integer (buf, 4);
989 if (status != 0)
990 return pc;
991
992 if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */
993 {
994 if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */
995 pc += 16;
996 else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
997 pc += 8;
998 }
999 else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */
1000 pc += 12;
1001 else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
1002 pc += 4;
1003
1004 return pc;
1005 }
1006
1007 static void
1008 unwind_command (exp, from_tty)
1009 char *exp;
1010 int from_tty;
1011 {
1012 CORE_ADDR address;
1013 union
1014 {
1015 int *foo;
1016 struct unwind_table_entry *u;
1017 } xxx;
1018
1019 /* If we have an expression, evaluate it and use it as the address. */
1020
1021 if (exp != 0 && *exp != 0)
1022 address = parse_and_eval_address (exp);
1023 else
1024 return;
1025
1026 xxx.u = find_unwind_entry (address);
1027
1028 if (!xxx.u)
1029 {
1030 printf ("Can't find unwind table entry for PC 0x%x\n", address);
1031 return;
1032 }
1033
1034 printf ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
1035 xxx.foo[3]);
1036 }
This page took 0.066502 seconds and 5 git commands to generate.