* blockframe.c (find_pc_partial_function): Inhibit mst_trampoline
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include <sys/stat.h>
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60 static int hppa_alignof PARAMS ((struct type *));
61
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
65
66 static int is_branch PARAMS ((unsigned long));
67
68 static int inst_saves_gr PARAMS ((unsigned long));
69
70 static int inst_saves_fr PARAMS ((unsigned long));
71
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
73
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
75
76 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
77 const struct unwind_table_entry *));
78
79 static void read_unwind_info PARAMS ((struct objfile *));
80
81 static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
84 unsigned int, CORE_ADDR));
85
86 \f
87 /* Routines to extract various sized constants out of hppa
88 instructions. */
89
90 /* This assumes that no garbage lies outside of the lower bits of
91 value. */
92
93 int
94 sign_extend (val, bits)
95 unsigned val, bits;
96 {
97 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
98 }
99
100 /* For many immediate values the sign bit is the low bit! */
101
102 int
103 low_sign_extend (val, bits)
104 unsigned val, bits;
105 {
106 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
107 }
108 /* extract the immediate field from a ld{bhw}s instruction */
109
110 unsigned
111 get_field (val, from, to)
112 unsigned val, from, to;
113 {
114 val = val >> 31 - to;
115 return val & ((1 << 32 - from) - 1);
116 }
117
118 unsigned
119 set_field (val, from, to, new_val)
120 unsigned *val, from, to;
121 {
122 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
123 return *val = *val & mask | (new_val << (31 - from));
124 }
125
126 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
127
128 extract_3 (word)
129 unsigned word;
130 {
131 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
132 }
133
134 extract_5_load (word)
135 unsigned word;
136 {
137 return low_sign_extend (word >> 16 & MASK_5, 5);
138 }
139
140 /* extract the immediate field from a st{bhw}s instruction */
141
142 int
143 extract_5_store (word)
144 unsigned word;
145 {
146 return low_sign_extend (word & MASK_5, 5);
147 }
148
149 /* extract the immediate field from a break instruction */
150
151 unsigned
152 extract_5r_store (word)
153 unsigned word;
154 {
155 return (word & MASK_5);
156 }
157
158 /* extract the immediate field from a {sr}sm instruction */
159
160 unsigned
161 extract_5R_store (word)
162 unsigned word;
163 {
164 return (word >> 16 & MASK_5);
165 }
166
167 /* extract an 11 bit immediate field */
168
169 int
170 extract_11 (word)
171 unsigned word;
172 {
173 return low_sign_extend (word & MASK_11, 11);
174 }
175
176 /* extract a 14 bit immediate field */
177
178 int
179 extract_14 (word)
180 unsigned word;
181 {
182 return low_sign_extend (word & MASK_14, 14);
183 }
184
185 /* deposit a 14 bit constant in a word */
186
187 unsigned
188 deposit_14 (opnd, word)
189 int opnd;
190 unsigned word;
191 {
192 unsigned sign = (opnd < 0 ? 1 : 0);
193
194 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
195 }
196
197 /* extract a 21 bit constant */
198
199 int
200 extract_21 (word)
201 unsigned word;
202 {
203 int val;
204
205 word &= MASK_21;
206 word <<= 11;
207 val = GET_FIELD (word, 20, 20);
208 val <<= 11;
209 val |= GET_FIELD (word, 9, 19);
210 val <<= 2;
211 val |= GET_FIELD (word, 5, 6);
212 val <<= 5;
213 val |= GET_FIELD (word, 0, 4);
214 val <<= 2;
215 val |= GET_FIELD (word, 7, 8);
216 return sign_extend (val, 21) << 11;
217 }
218
219 /* deposit a 21 bit constant in a word. Although 21 bit constants are
220 usually the top 21 bits of a 32 bit constant, we assume that only
221 the low 21 bits of opnd are relevant */
222
223 unsigned
224 deposit_21 (opnd, word)
225 unsigned opnd, word;
226 {
227 unsigned val = 0;
228
229 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
230 val <<= 2;
231 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
234 val <<= 11;
235 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
236 val <<= 1;
237 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
238 return word | val;
239 }
240
241 /* extract a 12 bit constant from branch instructions */
242
243 int
244 extract_12 (word)
245 unsigned word;
246 {
247 return sign_extend (GET_FIELD (word, 19, 28) |
248 GET_FIELD (word, 29, 29) << 10 |
249 (word & 0x1) << 11, 12) << 2;
250 }
251
252 /* extract a 17 bit constant from branch instructions, returning the
253 19 bit signed value. */
254
255 int
256 extract_17 (word)
257 unsigned word;
258 {
259 return sign_extend (GET_FIELD (word, 19, 28) |
260 GET_FIELD (word, 29, 29) << 10 |
261 GET_FIELD (word, 11, 15) << 11 |
262 (word & 0x1) << 16, 17) << 2;
263 }
264 \f
265
266 /* Compare the start address for two unwind entries returning 1 if
267 the first address is larger than the second, -1 if the second is
268 larger than the first, and zero if they are equal. */
269
270 static int
271 compare_unwind_entries (a, b)
272 const struct unwind_table_entry *a;
273 const struct unwind_table_entry *b;
274 {
275 if (a->region_start > b->region_start)
276 return 1;
277 else if (a->region_start < b->region_start)
278 return -1;
279 else
280 return 0;
281 }
282
283 static void
284 internalize_unwinds (objfile, table, section, entries, size, text_offset)
285 struct objfile *objfile;
286 struct unwind_table_entry *table;
287 asection *section;
288 unsigned int entries, size;
289 CORE_ADDR text_offset;
290 {
291 /* We will read the unwind entries into temporary memory, then
292 fill in the actual unwind table. */
293 if (size > 0)
294 {
295 unsigned long tmp;
296 unsigned i;
297 char *buf = alloca (size);
298
299 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
300
301 /* Now internalize the information being careful to handle host/target
302 endian issues. */
303 for (i = 0; i < entries; i++)
304 {
305 table[i].region_start = bfd_get_32 (objfile->obfd,
306 (bfd_byte *)buf);
307 table[i].region_start += text_offset;
308 buf += 4;
309 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
310 table[i].region_end += text_offset;
311 buf += 4;
312 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
313 buf += 4;
314 table[i].Cannot_unwind = (tmp >> 31) & 0x1;;
315 table[i].Millicode = (tmp >> 30) & 0x1;
316 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
317 table[i].Region_description = (tmp >> 27) & 0x3;
318 table[i].reserved1 = (tmp >> 26) & 0x1;
319 table[i].Entry_SR = (tmp >> 25) & 0x1;
320 table[i].Entry_FR = (tmp >> 21) & 0xf;
321 table[i].Entry_GR = (tmp >> 16) & 0x1f;
322 table[i].Args_stored = (tmp >> 15) & 0x1;
323 table[i].Variable_Frame = (tmp >> 14) & 0x1;
324 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
325 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
326 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
327 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
328 table[i].Ada_Region = (tmp >> 9) & 0x1;
329 table[i].reserved2 = (tmp >> 5) & 0xf;
330 table[i].Save_SP = (tmp >> 4) & 0x1;
331 table[i].Save_RP = (tmp >> 3) & 0x1;
332 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
333 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
334 table[i].Cleanup_defined = tmp & 0x1;
335 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
336 buf += 4;
337 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
338 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
339 table[i].Large_frame = (tmp >> 29) & 0x1;
340 table[i].reserved4 = (tmp >> 27) & 0x3;
341 table[i].Total_frame_size = tmp & 0x7ffffff;
342 }
343 }
344 }
345
346 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
347 the object file. This info is used mainly by find_unwind_entry() to find
348 out the stack frame size and frame pointer used by procedures. We put
349 everything on the psymbol obstack in the objfile so that it automatically
350 gets freed when the objfile is destroyed. */
351
352 static void
353 read_unwind_info (objfile)
354 struct objfile *objfile;
355 {
356 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
357 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
358 unsigned index, unwind_entries, elf_unwind_entries;
359 unsigned stub_entries, total_entries;
360 CORE_ADDR text_offset;
361 struct obj_unwind_info *ui;
362
363 text_offset = ANOFFSET (objfile->section_offsets, 0);
364 ui = obstack_alloc (&objfile->psymbol_obstack,
365 sizeof (struct obj_unwind_info));
366
367 ui->table = NULL;
368 ui->cache = NULL;
369 ui->last = -1;
370
371 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
372 section in ELF at the moment. */
373 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
374 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
375 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
376
377 /* Get sizes and unwind counts for all sections. */
378 if (unwind_sec)
379 {
380 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
381 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
382 }
383 else
384 {
385 unwind_size = 0;
386 unwind_entries = 0;
387 }
388
389 if (elf_unwind_sec)
390 {
391 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
392 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
393 }
394 else
395 {
396 elf_unwind_size = 0;
397 elf_unwind_entries = 0;
398 }
399
400 if (stub_unwind_sec)
401 {
402 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
403 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
404 }
405 else
406 {
407 stub_unwind_size = 0;
408 stub_entries = 0;
409 }
410
411 /* Compute total number of unwind entries and their total size. */
412 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
413 total_size = total_entries * sizeof (struct unwind_table_entry);
414
415 /* Allocate memory for the unwind table. */
416 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
417 ui->last = total_entries - 1;
418
419 /* Internalize the standard unwind entries. */
420 index = 0;
421 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
422 unwind_entries, unwind_size, text_offset);
423 index += unwind_entries;
424 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
425 elf_unwind_entries, elf_unwind_size, text_offset);
426 index += elf_unwind_entries;
427
428 /* Now internalize the stub unwind entries. */
429 if (stub_unwind_size > 0)
430 {
431 unsigned int i;
432 char *buf = alloca (stub_unwind_size);
433
434 /* Read in the stub unwind entries. */
435 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
436 0, stub_unwind_size);
437
438 /* Now convert them into regular unwind entries. */
439 for (i = 0; i < stub_entries; i++, index++)
440 {
441 /* Clear out the next unwind entry. */
442 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
443
444 /* Convert offset & size into region_start and region_end.
445 Stuff away the stub type into "reserved" fields. */
446 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
447 (bfd_byte *) buf);
448 ui->table[index].region_start += text_offset;
449 buf += 4;
450 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
451 (bfd_byte *) buf);
452 buf += 2;
453 ui->table[index].region_end
454 = ui->table[index].region_start + 4 *
455 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
456 buf += 2;
457 }
458
459 }
460
461 /* Unwind table needs to be kept sorted. */
462 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
463 compare_unwind_entries);
464
465 /* Keep a pointer to the unwind information. */
466 objfile->obj_private = (PTR) ui;
467 }
468
469 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
470 of the objfiles seeking the unwind table entry for this PC. Each objfile
471 contains a sorted list of struct unwind_table_entry. Since we do a binary
472 search of the unwind tables, we depend upon them to be sorted. */
473
474 static struct unwind_table_entry *
475 find_unwind_entry(pc)
476 CORE_ADDR pc;
477 {
478 int first, middle, last;
479 struct objfile *objfile;
480
481 ALL_OBJFILES (objfile)
482 {
483 struct obj_unwind_info *ui;
484
485 ui = OBJ_UNWIND_INFO (objfile);
486
487 if (!ui)
488 {
489 read_unwind_info (objfile);
490 ui = OBJ_UNWIND_INFO (objfile);
491 }
492
493 /* First, check the cache */
494
495 if (ui->cache
496 && pc >= ui->cache->region_start
497 && pc <= ui->cache->region_end)
498 return ui->cache;
499
500 /* Not in the cache, do a binary search */
501
502 first = 0;
503 last = ui->last;
504
505 while (first <= last)
506 {
507 middle = (first + last) / 2;
508 if (pc >= ui->table[middle].region_start
509 && pc <= ui->table[middle].region_end)
510 {
511 ui->cache = &ui->table[middle];
512 return &ui->table[middle];
513 }
514
515 if (pc < ui->table[middle].region_start)
516 last = middle - 1;
517 else
518 first = middle + 1;
519 }
520 } /* ALL_OBJFILES() */
521 return NULL;
522 }
523
524 /* start-sanitize-hpread */
525 /* Return the adjustment necessary to make for addresses on the stack
526 as presented by hpread.c.
527
528 This is necessary because of the stack direction on the PA and the
529 bizarre way in which someone (?) decided they wanted to handle
530 frame pointerless code in GDB. */
531 int
532 hpread_adjust_stack_address (func_addr)
533 CORE_ADDR func_addr;
534 {
535 struct unwind_table_entry *u;
536
537 u = find_unwind_entry (func_addr);
538 if (!u)
539 return 0;
540 else
541 return u->Total_frame_size << 3;
542 }
543 /* end-sanitize-hpread */
544
545 /* Called to determine if PC is in an interrupt handler of some
546 kind. */
547
548 static int
549 pc_in_interrupt_handler (pc)
550 CORE_ADDR pc;
551 {
552 struct unwind_table_entry *u;
553 struct minimal_symbol *msym_us;
554
555 u = find_unwind_entry (pc);
556 if (!u)
557 return 0;
558
559 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
560 its frame isn't a pure interrupt frame. Deal with this. */
561 msym_us = lookup_minimal_symbol_by_pc (pc);
562
563 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
564 }
565
566 /* Called when no unwind descriptor was found for PC. Returns 1 if it
567 appears that PC is in a linker stub. */
568
569 static int
570 pc_in_linker_stub (pc)
571 CORE_ADDR pc;
572 {
573 int found_magic_instruction = 0;
574 int i;
575 char buf[4];
576
577 /* If unable to read memory, assume pc is not in a linker stub. */
578 if (target_read_memory (pc, buf, 4) != 0)
579 return 0;
580
581 /* We are looking for something like
582
583 ; $$dyncall jams RP into this special spot in the frame (RP')
584 ; before calling the "call stub"
585 ldw -18(sp),rp
586
587 ldsid (rp),r1 ; Get space associated with RP into r1
588 mtsp r1,sp ; Move it into space register 0
589 be,n 0(sr0),rp) ; back to your regularly scheduled program
590 */
591
592 /* Maximum known linker stub size is 4 instructions. Search forward
593 from the given PC, then backward. */
594 for (i = 0; i < 4; i++)
595 {
596 /* If we hit something with an unwind, stop searching this direction. */
597
598 if (find_unwind_entry (pc + i * 4) != 0)
599 break;
600
601 /* Check for ldsid (rp),r1 which is the magic instruction for a
602 return from a cross-space function call. */
603 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
604 {
605 found_magic_instruction = 1;
606 break;
607 }
608 /* Add code to handle long call/branch and argument relocation stubs
609 here. */
610 }
611
612 if (found_magic_instruction != 0)
613 return 1;
614
615 /* Now look backward. */
616 for (i = 0; i < 4; i++)
617 {
618 /* If we hit something with an unwind, stop searching this direction. */
619
620 if (find_unwind_entry (pc - i * 4) != 0)
621 break;
622
623 /* Check for ldsid (rp),r1 which is the magic instruction for a
624 return from a cross-space function call. */
625 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
626 {
627 found_magic_instruction = 1;
628 break;
629 }
630 /* Add code to handle long call/branch and argument relocation stubs
631 here. */
632 }
633 return found_magic_instruction;
634 }
635
636 static int
637 find_return_regnum(pc)
638 CORE_ADDR pc;
639 {
640 struct unwind_table_entry *u;
641
642 u = find_unwind_entry (pc);
643
644 if (!u)
645 return RP_REGNUM;
646
647 if (u->Millicode)
648 return 31;
649
650 return RP_REGNUM;
651 }
652
653 /* Return size of frame, or -1 if we should use a frame pointer. */
654 int
655 find_proc_framesize (pc)
656 CORE_ADDR pc;
657 {
658 struct unwind_table_entry *u;
659 struct minimal_symbol *msym_us;
660
661 u = find_unwind_entry (pc);
662
663 if (!u)
664 {
665 if (pc_in_linker_stub (pc))
666 /* Linker stubs have a zero size frame. */
667 return 0;
668 else
669 return -1;
670 }
671
672 msym_us = lookup_minimal_symbol_by_pc (pc);
673
674 /* If Save_SP is set, and we're not in an interrupt or signal caller,
675 then we have a frame pointer. Use it. */
676 if (u->Save_SP && !pc_in_interrupt_handler (pc)
677 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
678 return -1;
679
680 return u->Total_frame_size << 3;
681 }
682
683 /* Return offset from sp at which rp is saved, or 0 if not saved. */
684 static int rp_saved PARAMS ((CORE_ADDR));
685
686 static int
687 rp_saved (pc)
688 CORE_ADDR pc;
689 {
690 struct unwind_table_entry *u;
691
692 u = find_unwind_entry (pc);
693
694 if (!u)
695 {
696 if (pc_in_linker_stub (pc))
697 /* This is the so-called RP'. */
698 return -24;
699 else
700 return 0;
701 }
702
703 if (u->Save_RP)
704 return -20;
705 else if (u->stub_type != 0)
706 {
707 switch (u->stub_type)
708 {
709 case EXPORT:
710 case IMPORT:
711 return -24;
712 case PARAMETER_RELOCATION:
713 return -8;
714 default:
715 return 0;
716 }
717 }
718 else
719 return 0;
720 }
721 \f
722 int
723 frameless_function_invocation (frame)
724 struct frame_info *frame;
725 {
726 struct unwind_table_entry *u;
727
728 u = find_unwind_entry (frame->pc);
729
730 if (u == 0)
731 return 0;
732
733 return (u->Total_frame_size == 0 && u->stub_type == 0);
734 }
735
736 CORE_ADDR
737 saved_pc_after_call (frame)
738 struct frame_info *frame;
739 {
740 int ret_regnum;
741 CORE_ADDR pc;
742 struct unwind_table_entry *u;
743
744 ret_regnum = find_return_regnum (get_frame_pc (frame));
745 pc = read_register (ret_regnum) & ~0x3;
746
747 /* If PC is in a linker stub, then we need to dig the address
748 the stub will return to out of the stack. */
749 u = find_unwind_entry (pc);
750 if (u && u->stub_type != 0)
751 return frame_saved_pc (frame);
752 else
753 return pc;
754 }
755 \f
756 CORE_ADDR
757 frame_saved_pc (frame)
758 struct frame_info *frame;
759 {
760 CORE_ADDR pc = get_frame_pc (frame);
761 struct unwind_table_entry *u;
762
763 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
764 at the base of the frame in an interrupt handler. Registers within
765 are saved in the exact same order as GDB numbers registers. How
766 convienent. */
767 if (pc_in_interrupt_handler (pc))
768 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
769
770 /* Deal with signal handler caller frames too. */
771 if (frame->signal_handler_caller)
772 {
773 CORE_ADDR rp;
774 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
775 return rp & ~0x3;
776 }
777
778 if (frameless_function_invocation (frame))
779 {
780 int ret_regnum;
781
782 ret_regnum = find_return_regnum (pc);
783
784 /* If the next frame is an interrupt frame or a signal
785 handler caller, then we need to look in the saved
786 register area to get the return pointer (the values
787 in the registers may not correspond to anything useful). */
788 if (frame->next
789 && (frame->next->signal_handler_caller
790 || pc_in_interrupt_handler (frame->next->pc)))
791 {
792 struct frame_saved_regs saved_regs;
793
794 get_frame_saved_regs (frame->next, &saved_regs);
795 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
796 {
797 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
798
799 /* Syscalls are really two frames. The syscall stub itself
800 with a return pointer in %rp and the kernel call with
801 a return pointer in %r31. We return the %rp variant
802 if %r31 is the same as frame->pc. */
803 if (pc == frame->pc)
804 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
805 }
806 else
807 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
808 }
809 else
810 pc = read_register (ret_regnum) & ~0x3;
811 }
812 else
813 {
814 int rp_offset;
815
816 restart:
817 rp_offset = rp_saved (pc);
818 /* Similar to code in frameless function case. If the next
819 frame is a signal or interrupt handler, then dig the right
820 information out of the saved register info. */
821 if (rp_offset == 0
822 && frame->next
823 && (frame->next->signal_handler_caller
824 || pc_in_interrupt_handler (frame->next->pc)))
825 {
826 struct frame_saved_regs saved_regs;
827
828 get_frame_saved_regs (frame->next, &saved_regs);
829 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
830 {
831 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
832
833 /* Syscalls are really two frames. The syscall stub itself
834 with a return pointer in %rp and the kernel call with
835 a return pointer in %r31. We return the %rp variant
836 if %r31 is the same as frame->pc. */
837 if (pc == frame->pc)
838 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
839 }
840 else
841 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
842 }
843 else if (rp_offset == 0)
844 pc = read_register (RP_REGNUM) & ~0x3;
845 else
846 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
847 }
848
849 /* If PC is inside a linker stub, then dig out the address the stub
850 will return to. */
851 u = find_unwind_entry (pc);
852 if (u && u->stub_type != 0)
853 goto restart;
854
855 return pc;
856 }
857 \f
858 /* We need to correct the PC and the FP for the outermost frame when we are
859 in a system call. */
860
861 void
862 init_extra_frame_info (fromleaf, frame)
863 int fromleaf;
864 struct frame_info *frame;
865 {
866 int flags;
867 int framesize;
868
869 if (frame->next && !fromleaf)
870 return;
871
872 /* If the next frame represents a frameless function invocation
873 then we have to do some adjustments that are normally done by
874 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
875 if (fromleaf)
876 {
877 /* Find the framesize of *this* frame without peeking at the PC
878 in the current frame structure (it isn't set yet). */
879 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
880
881 /* Now adjust our base frame accordingly. If we have a frame pointer
882 use it, else subtract the size of this frame from the current
883 frame. (we always want frame->frame to point at the lowest address
884 in the frame). */
885 if (framesize == -1)
886 frame->frame = read_register (FP_REGNUM);
887 else
888 frame->frame -= framesize;
889 return;
890 }
891
892 flags = read_register (FLAGS_REGNUM);
893 if (flags & 2) /* In system call? */
894 frame->pc = read_register (31) & ~0x3;
895
896 /* The outermost frame is always derived from PC-framesize
897
898 One might think frameless innermost frames should have
899 a frame->frame that is the same as the parent's frame->frame.
900 That is wrong; frame->frame in that case should be the *high*
901 address of the parent's frame. It's complicated as hell to
902 explain, but the parent *always* creates some stack space for
903 the child. So the child actually does have a frame of some
904 sorts, and its base is the high address in its parent's frame. */
905 framesize = find_proc_framesize(frame->pc);
906 if (framesize == -1)
907 frame->frame = read_register (FP_REGNUM);
908 else
909 frame->frame = read_register (SP_REGNUM) - framesize;
910 }
911 \f
912 /* Given a GDB frame, determine the address of the calling function's frame.
913 This will be used to create a new GDB frame struct, and then
914 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
915
916 This may involve searching through prologues for several functions
917 at boundaries where GCC calls HP C code, or where code which has
918 a frame pointer calls code without a frame pointer. */
919
920 CORE_ADDR
921 frame_chain (frame)
922 struct frame_info *frame;
923 {
924 int my_framesize, caller_framesize;
925 struct unwind_table_entry *u;
926 CORE_ADDR frame_base;
927
928 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
929 are easy; at *sp we have a full save state strucutre which we can
930 pull the old stack pointer from. Also see frame_saved_pc for
931 code to dig a saved PC out of the save state structure. */
932 if (pc_in_interrupt_handler (frame->pc))
933 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
934 else if (frame->signal_handler_caller)
935 {
936 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
937 }
938 else
939 frame_base = frame->frame;
940
941 /* Get frame sizes for the current frame and the frame of the
942 caller. */
943 my_framesize = find_proc_framesize (frame->pc);
944 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
945
946 /* If caller does not have a frame pointer, then its frame
947 can be found at current_frame - caller_framesize. */
948 if (caller_framesize != -1)
949 return frame_base - caller_framesize;
950
951 /* Both caller and callee have frame pointers and are GCC compiled
952 (SAVE_SP bit in unwind descriptor is on for both functions.
953 The previous frame pointer is found at the top of the current frame. */
954 if (caller_framesize == -1 && my_framesize == -1)
955 return read_memory_integer (frame_base, 4);
956
957 /* Caller has a frame pointer, but callee does not. This is a little
958 more difficult as GCC and HP C lay out locals and callee register save
959 areas very differently.
960
961 The previous frame pointer could be in a register, or in one of
962 several areas on the stack.
963
964 Walk from the current frame to the innermost frame examining
965 unwind descriptors to determine if %r3 ever gets saved into the
966 stack. If so return whatever value got saved into the stack.
967 If it was never saved in the stack, then the value in %r3 is still
968 valid, so use it.
969
970 We use information from unwind descriptors to determine if %r3
971 is saved into the stack (Entry_GR field has this information). */
972
973 while (frame)
974 {
975 u = find_unwind_entry (frame->pc);
976
977 if (!u)
978 {
979 /* We could find this information by examining prologues. I don't
980 think anyone has actually written any tools (not even "strip")
981 which leave them out of an executable, so maybe this is a moot
982 point. */
983 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
984 return 0;
985 }
986
987 /* Entry_GR specifies the number of callee-saved general registers
988 saved in the stack. It starts at %r3, so %r3 would be 1. */
989 if (u->Entry_GR >= 1 || u->Save_SP
990 || frame->signal_handler_caller
991 || pc_in_interrupt_handler (frame->pc))
992 break;
993 else
994 frame = frame->next;
995 }
996
997 if (frame)
998 {
999 /* We may have walked down the chain into a function with a frame
1000 pointer. */
1001 if (u->Save_SP
1002 && !frame->signal_handler_caller
1003 && !pc_in_interrupt_handler (frame->pc))
1004 return read_memory_integer (frame->frame, 4);
1005 /* %r3 was saved somewhere in the stack. Dig it out. */
1006 else
1007 {
1008 struct frame_saved_regs saved_regs;
1009
1010 get_frame_saved_regs (frame, &saved_regs);
1011 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1012 }
1013 }
1014 else
1015 {
1016 /* The value in %r3 was never saved into the stack (thus %r3 still
1017 holds the value of the previous frame pointer). */
1018 return read_register (FP_REGNUM);
1019 }
1020 }
1021
1022 \f
1023 /* To see if a frame chain is valid, see if the caller looks like it
1024 was compiled with gcc. */
1025
1026 int
1027 frame_chain_valid (chain, thisframe)
1028 CORE_ADDR chain;
1029 struct frame_info *thisframe;
1030 {
1031 struct minimal_symbol *msym_us;
1032 struct minimal_symbol *msym_start;
1033 struct unwind_table_entry *u, *next_u = NULL;
1034 struct frame_info *next;
1035
1036 if (!chain)
1037 return 0;
1038
1039 u = find_unwind_entry (thisframe->pc);
1040
1041 if (u == NULL)
1042 return 1;
1043
1044 /* We can't just check that the same of msym_us is "_start", because
1045 someone idiotically decided that they were going to make a Ltext_end
1046 symbol with the same address. This Ltext_end symbol is totally
1047 indistinguishable (as nearly as I can tell) from the symbol for a function
1048 which is (legitimately, since it is in the user's namespace)
1049 named Ltext_end, so we can't just ignore it. */
1050 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1051 msym_start = lookup_minimal_symbol ("_start", NULL);
1052 if (msym_us
1053 && msym_start
1054 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1055 return 0;
1056
1057 next = get_next_frame (thisframe);
1058 if (next)
1059 next_u = find_unwind_entry (next->pc);
1060
1061 /* If this frame does not save SP, has no stack, isn't a stub,
1062 and doesn't "call" an interrupt routine or signal handler caller,
1063 then its not valid. */
1064 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1065 || (thisframe->next && thisframe->next->signal_handler_caller)
1066 || (next_u && next_u->HP_UX_interrupt_marker))
1067 return 1;
1068
1069 if (pc_in_linker_stub (thisframe->pc))
1070 return 1;
1071
1072 return 0;
1073 }
1074
1075 /*
1076 * These functions deal with saving and restoring register state
1077 * around a function call in the inferior. They keep the stack
1078 * double-word aligned; eventually, on an hp700, the stack will have
1079 * to be aligned to a 64-byte boundary.
1080 */
1081
1082 int
1083 push_dummy_frame ()
1084 {
1085 register CORE_ADDR sp;
1086 register int regnum;
1087 int int_buffer;
1088 double freg_buffer;
1089
1090 /* Space for "arguments"; the RP goes in here. */
1091 sp = read_register (SP_REGNUM) + 48;
1092 int_buffer = read_register (RP_REGNUM) | 0x3;
1093 write_memory (sp - 20, (char *)&int_buffer, 4);
1094
1095 int_buffer = read_register (FP_REGNUM);
1096 write_memory (sp, (char *)&int_buffer, 4);
1097
1098 write_register (FP_REGNUM, sp);
1099
1100 sp += 8;
1101
1102 for (regnum = 1; regnum < 32; regnum++)
1103 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1104 sp = push_word (sp, read_register (regnum));
1105
1106 sp += 4;
1107
1108 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1109 {
1110 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1111 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1112 }
1113 sp = push_word (sp, read_register (IPSW_REGNUM));
1114 sp = push_word (sp, read_register (SAR_REGNUM));
1115 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
1116 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
1117 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
1118 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
1119 write_register (SP_REGNUM, sp);
1120 }
1121
1122 find_dummy_frame_regs (frame, frame_saved_regs)
1123 struct frame_info *frame;
1124 struct frame_saved_regs *frame_saved_regs;
1125 {
1126 CORE_ADDR fp = frame->frame;
1127 int i;
1128
1129 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1130 frame_saved_regs->regs[FP_REGNUM] = fp;
1131 frame_saved_regs->regs[1] = fp + 8;
1132
1133 for (fp += 12, i = 3; i < 32; i++)
1134 {
1135 if (i != FP_REGNUM)
1136 {
1137 frame_saved_regs->regs[i] = fp;
1138 fp += 4;
1139 }
1140 }
1141
1142 fp += 4;
1143 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1144 frame_saved_regs->regs[i] = fp;
1145
1146 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1147 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1148 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1149 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1150 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1151 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1152 }
1153
1154 int
1155 hppa_pop_frame ()
1156 {
1157 register struct frame_info *frame = get_current_frame ();
1158 register CORE_ADDR fp;
1159 register int regnum;
1160 struct frame_saved_regs fsr;
1161 double freg_buffer;
1162
1163 fp = FRAME_FP (frame);
1164 get_frame_saved_regs (frame, &fsr);
1165
1166 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1167 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1168 restore_pc_queue (&fsr);
1169 #endif
1170
1171 for (regnum = 31; regnum > 0; regnum--)
1172 if (fsr.regs[regnum])
1173 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1174
1175 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1176 if (fsr.regs[regnum])
1177 {
1178 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1179 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1180 }
1181
1182 if (fsr.regs[IPSW_REGNUM])
1183 write_register (IPSW_REGNUM,
1184 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1185
1186 if (fsr.regs[SAR_REGNUM])
1187 write_register (SAR_REGNUM,
1188 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1189
1190 /* If the PC was explicitly saved, then just restore it. */
1191 if (fsr.regs[PCOQ_TAIL_REGNUM])
1192 write_register (PCOQ_TAIL_REGNUM,
1193 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
1194
1195 /* Else use the value in %rp to set the new PC. */
1196 else
1197 target_write_pc (read_register (RP_REGNUM), 0);
1198
1199 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1200
1201 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1202 write_register (SP_REGNUM, fp - 48);
1203 else
1204 write_register (SP_REGNUM, fp);
1205
1206 flush_cached_frames ();
1207 }
1208
1209 /*
1210 * After returning to a dummy on the stack, restore the instruction
1211 * queue space registers. */
1212
1213 static int
1214 restore_pc_queue (fsr)
1215 struct frame_saved_regs *fsr;
1216 {
1217 CORE_ADDR pc = read_pc ();
1218 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1219 int pid;
1220 struct target_waitstatus w;
1221 int insn_count;
1222
1223 /* Advance past break instruction in the call dummy. */
1224 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1225 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1226
1227 /*
1228 * HPUX doesn't let us set the space registers or the space
1229 * registers of the PC queue through ptrace. Boo, hiss.
1230 * Conveniently, the call dummy has this sequence of instructions
1231 * after the break:
1232 * mtsp r21, sr0
1233 * ble,n 0(sr0, r22)
1234 *
1235 * So, load up the registers and single step until we are in the
1236 * right place.
1237 */
1238
1239 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1240 write_register (22, new_pc);
1241
1242 for (insn_count = 0; insn_count < 3; insn_count++)
1243 {
1244 /* FIXME: What if the inferior gets a signal right now? Want to
1245 merge this into wait_for_inferior (as a special kind of
1246 watchpoint? By setting a breakpoint at the end? Is there
1247 any other choice? Is there *any* way to do this stuff with
1248 ptrace() or some equivalent?). */
1249 resume (1, 0);
1250 target_wait (inferior_pid, &w);
1251
1252 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1253 {
1254 stop_signal = w.value.sig;
1255 terminal_ours_for_output ();
1256 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1257 target_signal_to_name (stop_signal),
1258 target_signal_to_string (stop_signal));
1259 gdb_flush (gdb_stdout);
1260 return 0;
1261 }
1262 }
1263 target_terminal_ours ();
1264 target_fetch_registers (-1);
1265 return 1;
1266 }
1267
1268 CORE_ADDR
1269 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1270 int nargs;
1271 value_ptr *args;
1272 CORE_ADDR sp;
1273 int struct_return;
1274 CORE_ADDR struct_addr;
1275 {
1276 /* array of arguments' offsets */
1277 int *offset = (int *)alloca(nargs * sizeof (int));
1278 int cum = 0;
1279 int i, alignment;
1280
1281 for (i = 0; i < nargs; i++)
1282 {
1283 /* Coerce chars to int & float to double if necessary */
1284 args[i] = value_arg_coerce (args[i]);
1285
1286 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1287
1288 /* value must go at proper alignment. Assume alignment is a
1289 power of two.*/
1290 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1291 if (cum % alignment)
1292 cum = (cum + alignment) & -alignment;
1293 offset[i] = -cum;
1294 }
1295 sp += max ((cum + 7) & -8, 16);
1296
1297 for (i = 0; i < nargs; i++)
1298 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1299 TYPE_LENGTH (VALUE_TYPE (args[i])));
1300
1301 if (struct_return)
1302 write_register (28, struct_addr);
1303 return sp + 32;
1304 }
1305
1306 /*
1307 * Insert the specified number of args and function address
1308 * into a call sequence of the above form stored at DUMMYNAME.
1309 *
1310 * On the hppa we need to call the stack dummy through $$dyncall.
1311 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1312 * real_pc, which is the location where gdb should start up the
1313 * inferior to do the function call.
1314 */
1315
1316 CORE_ADDR
1317 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1318 char *dummy;
1319 CORE_ADDR pc;
1320 CORE_ADDR fun;
1321 int nargs;
1322 value_ptr *args;
1323 struct type *type;
1324 int gcc_p;
1325 {
1326 CORE_ADDR dyncall_addr, sr4export_addr;
1327 struct minimal_symbol *msymbol;
1328 int flags = read_register (FLAGS_REGNUM);
1329 struct unwind_table_entry *u;
1330
1331 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1332 if (msymbol == NULL)
1333 error ("Can't find an address for $$dyncall trampoline");
1334
1335 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1336
1337 /* FUN could be a procedure label, in which case we have to get
1338 its real address and the value of its GOT/DP. */
1339 if (fun & 0x2)
1340 {
1341 /* Get the GOT/DP value for the target function. It's
1342 at *(fun+4). Note the call dummy is *NOT* allowed to
1343 trash %r19 before calling the target function. */
1344 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1345
1346 /* Now get the real address for the function we are calling, it's
1347 at *fun. */
1348 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1349 }
1350
1351 /* If we are calling an import stub (eg calling into a dynamic library)
1352 then have sr4export call the magic __d_plt_call routine which is linked
1353 in from end.o. (You can't use _sr4export to call the import stub as
1354 the value in sp-24 will get fried and you end up returning to the
1355 wrong location. You can't call the import stub directly as the code
1356 to bind the PLT entry to a function can't return to a stack address.) */
1357 u = find_unwind_entry (fun);
1358 if (u && u->stub_type == IMPORT)
1359 {
1360 CORE_ADDR new_fun;
1361 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1362 if (msymbol == NULL)
1363 error ("Can't find an address for __d_plt_call trampoline");
1364
1365 /* This is where sr4export will jump to. */
1366 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1367
1368 /* We have to store the address of the stub in __shlib_funcptr. */
1369 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1370 (struct objfile *)NULL);
1371 if (msymbol == NULL)
1372 error ("Can't find an address for __shlib_funcptr");
1373
1374 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1375 fun = new_fun;
1376
1377 }
1378
1379 /* We still need sr4export's address too. */
1380 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1381 if (msymbol == NULL)
1382 error ("Can't find an address for _sr4export trampoline");
1383
1384 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1385
1386 store_unsigned_integer
1387 (&dummy[9*REGISTER_SIZE],
1388 REGISTER_SIZE,
1389 deposit_21 (fun >> 11,
1390 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1391 REGISTER_SIZE)));
1392 store_unsigned_integer
1393 (&dummy[10*REGISTER_SIZE],
1394 REGISTER_SIZE,
1395 deposit_14 (fun & MASK_11,
1396 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1397 REGISTER_SIZE)));
1398 store_unsigned_integer
1399 (&dummy[12*REGISTER_SIZE],
1400 REGISTER_SIZE,
1401 deposit_21 (sr4export_addr >> 11,
1402 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1403 REGISTER_SIZE)));
1404 store_unsigned_integer
1405 (&dummy[13*REGISTER_SIZE],
1406 REGISTER_SIZE,
1407 deposit_14 (sr4export_addr & MASK_11,
1408 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1409 REGISTER_SIZE)));
1410
1411 write_register (22, pc);
1412
1413 /* If we are in a syscall, then we should call the stack dummy
1414 directly. $$dyncall is not needed as the kernel sets up the
1415 space id registers properly based on the value in %r31. In
1416 fact calling $$dyncall will not work because the value in %r22
1417 will be clobbered on the syscall exit path. */
1418 if (flags & 2)
1419 return pc;
1420 else
1421 return dyncall_addr;
1422
1423 }
1424
1425 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1426 bits. */
1427
1428 CORE_ADDR
1429 target_read_pc (pid)
1430 int pid;
1431 {
1432 int flags = read_register (FLAGS_REGNUM);
1433
1434 if (flags & 2)
1435 return read_register (31) & ~0x3;
1436 return read_register (PC_REGNUM) & ~0x3;
1437 }
1438
1439 /* Write out the PC. If currently in a syscall, then also write the new
1440 PC value into %r31. */
1441
1442 void
1443 target_write_pc (v, pid)
1444 CORE_ADDR v;
1445 int pid;
1446 {
1447 int flags = read_register (FLAGS_REGNUM);
1448
1449 /* If in a syscall, then set %r31. Also make sure to get the
1450 privilege bits set correctly. */
1451 if (flags & 2)
1452 write_register (31, (long) (v | 0x3));
1453
1454 write_register (PC_REGNUM, (long) v);
1455 write_register (NPC_REGNUM, (long) v + 4);
1456 }
1457
1458 /* return the alignment of a type in bytes. Structures have the maximum
1459 alignment required by their fields. */
1460
1461 static int
1462 hppa_alignof (arg)
1463 struct type *arg;
1464 {
1465 int max_align, align, i;
1466 switch (TYPE_CODE (arg))
1467 {
1468 case TYPE_CODE_PTR:
1469 case TYPE_CODE_INT:
1470 case TYPE_CODE_FLT:
1471 return TYPE_LENGTH (arg);
1472 case TYPE_CODE_ARRAY:
1473 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1474 case TYPE_CODE_STRUCT:
1475 case TYPE_CODE_UNION:
1476 max_align = 2;
1477 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1478 {
1479 /* Bit fields have no real alignment. */
1480 if (!TYPE_FIELD_BITPOS (arg, i))
1481 {
1482 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1483 max_align = max (max_align, align);
1484 }
1485 }
1486 return max_align;
1487 default:
1488 return 4;
1489 }
1490 }
1491
1492 /* Print the register regnum, or all registers if regnum is -1 */
1493
1494 pa_do_registers_info (regnum, fpregs)
1495 int regnum;
1496 int fpregs;
1497 {
1498 char raw_regs [REGISTER_BYTES];
1499 int i;
1500
1501 for (i = 0; i < NUM_REGS; i++)
1502 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1503 if (regnum == -1)
1504 pa_print_registers (raw_regs, regnum, fpregs);
1505 else if (regnum < FP0_REGNUM)
1506 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1507 REGISTER_BYTE (regnum)));
1508 else
1509 pa_print_fp_reg (regnum);
1510 }
1511
1512 pa_print_registers (raw_regs, regnum, fpregs)
1513 char *raw_regs;
1514 int regnum;
1515 int fpregs;
1516 {
1517 int i;
1518
1519 for (i = 0; i < 18; i++)
1520 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1521 reg_names[i],
1522 *(int *)(raw_regs + REGISTER_BYTE (i)),
1523 reg_names[i + 18],
1524 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1525 reg_names[i + 36],
1526 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1527 reg_names[i + 54],
1528 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1529
1530 if (fpregs)
1531 for (i = 72; i < NUM_REGS; i++)
1532 pa_print_fp_reg (i);
1533 }
1534
1535 pa_print_fp_reg (i)
1536 int i;
1537 {
1538 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1539 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1540
1541 /* Get 32bits of data. */
1542 read_relative_register_raw_bytes (i, raw_buffer);
1543
1544 /* Put it in the buffer. No conversions are ever necessary. */
1545 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1546
1547 fputs_filtered (reg_names[i], gdb_stdout);
1548 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1549 fputs_filtered ("(single precision) ", gdb_stdout);
1550
1551 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1552 1, 0, Val_pretty_default);
1553 printf_filtered ("\n");
1554
1555 /* If "i" is even, then this register can also be a double-precision
1556 FP register. Dump it out as such. */
1557 if ((i % 2) == 0)
1558 {
1559 /* Get the data in raw format for the 2nd half. */
1560 read_relative_register_raw_bytes (i + 1, raw_buffer);
1561
1562 /* Copy it into the appropriate part of the virtual buffer. */
1563 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1564 REGISTER_RAW_SIZE (i));
1565
1566 /* Dump it as a double. */
1567 fputs_filtered (reg_names[i], gdb_stdout);
1568 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1569 fputs_filtered ("(double precision) ", gdb_stdout);
1570
1571 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1572 1, 0, Val_pretty_default);
1573 printf_filtered ("\n");
1574 }
1575 }
1576
1577 /* Return one if PC is in the call path of a shared library trampoline, else
1578 return zero. */
1579
1580 in_solib_call_trampoline (pc, name)
1581 CORE_ADDR pc;
1582 char *name;
1583 {
1584 struct minimal_symbol *minsym;
1585 struct unwind_table_entry *u;
1586
1587 /* Get the unwind descriptor corresponding to PC, return zero
1588 if no unwind was found. */
1589 u = find_unwind_entry (pc);
1590 if (!u)
1591 return 0;
1592
1593 /* If this isn't a linker stub, then return now. */
1594 if (u->stub_type != IMPORT
1595 && u->stub_type != EXPORT)
1596 return 0;
1597
1598 /* The call and return path execute the same instructions within
1599 an IMPORT stub! So an IMPORT stub is both a call and return
1600 trampoline. */
1601 if (u->stub_type == IMPORT)
1602 return 1;
1603
1604 /* The linker may group many EXPORT stubs into one unwind entry. So
1605 lookup the minimal symbol and use that as the beginning of this
1606 particular stub. */
1607 minsym = lookup_minimal_symbol_by_pc (pc);
1608 if (minsym == NULL)
1609 return 0;
1610
1611 /* Export stubs have distinct call and return paths. The first
1612 two instructions are the call path, following four are the
1613 return path. */
1614 return (pc >= SYMBOL_VALUE (minsym) && pc < SYMBOL_VALUE (minsym) + 8);
1615 }
1616
1617 /* Return one if PC is in the return path of a shared library trampoline,
1618 else return zero. */
1619
1620 in_solib_return_trampoline (pc, name)
1621 CORE_ADDR pc;
1622 char *name;
1623 {
1624 struct minimal_symbol *minsym;
1625 struct unwind_table_entry *u;
1626
1627 /* Get the unwind descriptor corresponding to PC, return zero
1628 if no unwind was found. */
1629 u = find_unwind_entry (pc);
1630 if (!u)
1631 return 0;
1632
1633 /* If this isn't a linker stub, then return now. */
1634 if (u->stub_type != IMPORT
1635 && u->stub_type != EXPORT)
1636 return 0;
1637
1638 /* The call and return path execute the same instructions within
1639 an IMPORT stub! So an IMPORT stub is both a call and return
1640 trampoline. */
1641 if (u->stub_type == IMPORT)
1642 return 1;
1643
1644 /* The linker may group many EXPORT stubs into one unwind entry. So
1645 lookup the minimal symbol and use that as the beginning of this
1646 particular stub. */
1647 minsym = lookup_minimal_symbol_by_pc (pc);
1648 if (minsym == NULL)
1649 return 0;
1650
1651 /* Export stubs have distinct call and return paths. The first
1652 two instructions are the call path, following four are the
1653 return path. */
1654 return (pc >= SYMBOL_VALUE (minsym) + 8 && pc < SYMBOL_VALUE (minsym) + 20);
1655 }
1656
1657 /* Figure out if PC is in a trampoline, and if so find out where
1658 the trampoline will jump to. If not in a trampoline, return zero.
1659
1660 Simple code examination probably is not a good idea since the code
1661 sequences in trampolines can also appear in user code.
1662
1663 We use unwinds and information from the minimal symbol table to
1664 determine when we're in a trampoline. This won't work for ELF
1665 (yet) since it doesn't create stub unwind entries. Whether or
1666 not ELF will create stub unwinds or normal unwinds for linker
1667 stubs is still being debated.
1668
1669 This should handle simple calls through dyncall or sr4export,
1670 long calls, argument relocation stubs, and dyncall/sr4export
1671 calling an argument relocation stub. It even handles some stubs
1672 used in dynamic executables. */
1673
1674 CORE_ADDR
1675 skip_trampoline_code (pc, name)
1676 CORE_ADDR pc;
1677 char *name;
1678 {
1679 long orig_pc = pc;
1680 long prev_inst, curr_inst, loc;
1681 static CORE_ADDR dyncall = 0;
1682 static CORE_ADDR sr4export = 0;
1683 struct minimal_symbol *msym;
1684 struct unwind_table_entry *u;
1685
1686 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1687 new exec file */
1688
1689 if (!dyncall)
1690 {
1691 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1692 if (msym)
1693 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1694 else
1695 dyncall = -1;
1696 }
1697
1698 if (!sr4export)
1699 {
1700 msym = lookup_minimal_symbol ("_sr4export", NULL);
1701 if (msym)
1702 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1703 else
1704 sr4export = -1;
1705 }
1706
1707 /* Addresses passed to dyncall may *NOT* be the actual address
1708 of the function. So we may have to do something special. */
1709 if (pc == dyncall)
1710 {
1711 pc = (CORE_ADDR) read_register (22);
1712
1713 /* If bit 30 (counting from the left) is on, then pc is the address of
1714 the PLT entry for this function, not the address of the function
1715 itself. Bit 31 has meaning too, but only for MPE. */
1716 if (pc & 0x2)
1717 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1718 }
1719 else if (pc == sr4export)
1720 pc = (CORE_ADDR) (read_register (22));
1721
1722 /* Get the unwind descriptor corresponding to PC, return zero
1723 if no unwind was found. */
1724 u = find_unwind_entry (pc);
1725 if (!u)
1726 return 0;
1727
1728 /* If this isn't a linker stub, then return now. */
1729 if (u->stub_type == 0)
1730 return orig_pc == pc ? 0 : pc & ~0x3;
1731
1732 /* It's a stub. Search for a branch and figure out where it goes.
1733 Note we have to handle multi insn branch sequences like ldil;ble.
1734 Most (all?) other branches can be determined by examining the contents
1735 of certain registers and the stack. */
1736 loc = pc;
1737 curr_inst = 0;
1738 prev_inst = 0;
1739 while (1)
1740 {
1741 /* Make sure we haven't walked outside the range of this stub. */
1742 if (u != find_unwind_entry (loc))
1743 {
1744 warning ("Unable to find branch in linker stub");
1745 return orig_pc == pc ? 0 : pc & ~0x3;
1746 }
1747
1748 prev_inst = curr_inst;
1749 curr_inst = read_memory_integer (loc, 4);
1750
1751 /* Does it look like a branch external using %r1? Then it's the
1752 branch from the stub to the actual function. */
1753 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1754 {
1755 /* Yup. See if the previous instruction loaded
1756 a value into %r1. If so compute and return the jump address. */
1757 if ((prev_inst & 0xffe00000) == 0x20200000)
1758 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1759 else
1760 {
1761 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1762 return orig_pc == pc ? 0 : pc & ~0x3;
1763 }
1764 }
1765
1766 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
1767 import stub to an export stub.
1768
1769 It is impossible to determine the target of the branch via
1770 simple examination of instructions and/or data (consider
1771 that the address in the plabel may be the address of the
1772 bind-on-reference routine in the dynamic loader).
1773
1774 So we have try an alternative approach.
1775
1776 Get the name of the symbol at our current location; it should
1777 be a stub symbol with the same name as the symbol in the
1778 shared library.
1779
1780 Then lookup a minimal symbol with the same name; we should
1781 get the minimal symbol for the target routine in the shared
1782 library as those take precedence of import/export stubs. */
1783 if (curr_inst == 0xe2a00000)
1784 {
1785 struct minimal_symbol *stubsym, *libsym;
1786
1787 stubsym = lookup_minimal_symbol_by_pc (loc);
1788 if (stubsym == NULL)
1789 {
1790 warning ("Unable to find symbol for 0x%x", loc);
1791 return orig_pc == pc ? 0 : pc & ~0x3;
1792 }
1793
1794 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL);
1795 if (libsym == NULL)
1796 {
1797 warning ("Unable to find library symbol for %s\n",
1798 SYMBOL_NAME (stubsym));
1799 return orig_pc == pc ? 0 : pc & ~0x3;
1800 }
1801
1802 return SYMBOL_VALUE (libsym);
1803 }
1804
1805 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1806 branch from the stub to the actual function. */
1807 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1808 || (curr_inst & 0xffe0e000) == 0xe8000000)
1809 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1810
1811 /* Does it look like bv (rp)? Note this depends on the
1812 current stack pointer being the same as the stack
1813 pointer in the stub itself! This is a branch on from the
1814 stub back to the original caller. */
1815 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1816 {
1817 /* Yup. See if the previous instruction loaded
1818 rp from sp - 8. */
1819 if (prev_inst == 0x4bc23ff1)
1820 return (read_memory_integer
1821 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1822 else
1823 {
1824 warning ("Unable to find restore of %%rp before bv (%%rp).");
1825 return orig_pc == pc ? 0 : pc & ~0x3;
1826 }
1827 }
1828
1829 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1830 the original caller from the stub. Used in dynamic executables. */
1831 else if (curr_inst == 0xe0400002)
1832 {
1833 /* The value we jump to is sitting in sp - 24. But that's
1834 loaded several instructions before the be instruction.
1835 I guess we could check for the previous instruction being
1836 mtsp %r1,%sr0 if we want to do sanity checking. */
1837 return (read_memory_integer
1838 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1839 }
1840
1841 /* Haven't found the branch yet, but we're still in the stub.
1842 Keep looking. */
1843 loc += 4;
1844 }
1845 }
1846
1847 /* For the given instruction (INST), return any adjustment it makes
1848 to the stack pointer or zero for no adjustment.
1849
1850 This only handles instructions commonly found in prologues. */
1851
1852 static int
1853 prologue_inst_adjust_sp (inst)
1854 unsigned long inst;
1855 {
1856 /* This must persist across calls. */
1857 static int save_high21;
1858
1859 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1860 if ((inst & 0xffffc000) == 0x37de0000)
1861 return extract_14 (inst);
1862
1863 /* stwm X,D(sp) */
1864 if ((inst & 0xffe00000) == 0x6fc00000)
1865 return extract_14 (inst);
1866
1867 /* addil high21,%r1; ldo low11,(%r1),%r30)
1868 save high bits in save_high21 for later use. */
1869 if ((inst & 0xffe00000) == 0x28200000)
1870 {
1871 save_high21 = extract_21 (inst);
1872 return 0;
1873 }
1874
1875 if ((inst & 0xffff0000) == 0x343e0000)
1876 return save_high21 + extract_14 (inst);
1877
1878 /* fstws as used by the HP compilers. */
1879 if ((inst & 0xffffffe0) == 0x2fd01220)
1880 return extract_5_load (inst);
1881
1882 /* No adjustment. */
1883 return 0;
1884 }
1885
1886 /* Return nonzero if INST is a branch of some kind, else return zero. */
1887
1888 static int
1889 is_branch (inst)
1890 unsigned long inst;
1891 {
1892 switch (inst >> 26)
1893 {
1894 case 0x20:
1895 case 0x21:
1896 case 0x22:
1897 case 0x23:
1898 case 0x28:
1899 case 0x29:
1900 case 0x2a:
1901 case 0x2b:
1902 case 0x30:
1903 case 0x31:
1904 case 0x32:
1905 case 0x33:
1906 case 0x38:
1907 case 0x39:
1908 case 0x3a:
1909 return 1;
1910
1911 default:
1912 return 0;
1913 }
1914 }
1915
1916 /* Return the register number for a GR which is saved by INST or
1917 zero it INST does not save a GR. */
1918
1919 static int
1920 inst_saves_gr (inst)
1921 unsigned long inst;
1922 {
1923 /* Does it look like a stw? */
1924 if ((inst >> 26) == 0x1a)
1925 return extract_5R_store (inst);
1926
1927 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1928 if ((inst >> 26) == 0x1b)
1929 return extract_5R_store (inst);
1930
1931 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1932 too. */
1933 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
1934 return extract_5R_store (inst);
1935
1936 return 0;
1937 }
1938
1939 /* Return the register number for a FR which is saved by INST or
1940 zero it INST does not save a FR.
1941
1942 Note we only care about full 64bit register stores (that's the only
1943 kind of stores the prologue will use).
1944
1945 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1946
1947 static int
1948 inst_saves_fr (inst)
1949 unsigned long inst;
1950 {
1951 if ((inst & 0xfc00dfc0) == 0x2c001200)
1952 return extract_5r_store (inst);
1953 return 0;
1954 }
1955
1956 /* Advance PC across any function entry prologue instructions
1957 to reach some "real" code.
1958
1959 Use information in the unwind table to determine what exactly should
1960 be in the prologue. */
1961
1962 CORE_ADDR
1963 skip_prologue (pc)
1964 CORE_ADDR pc;
1965 {
1966 char buf[4];
1967 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1968 unsigned long args_stored, status, i;
1969 struct unwind_table_entry *u;
1970
1971 u = find_unwind_entry (pc);
1972 if (!u)
1973 return pc;
1974
1975 /* If we are not at the beginning of a function, then return now. */
1976 if ((pc & ~0x3) != u->region_start)
1977 return pc;
1978
1979 /* This is how much of a frame adjustment we need to account for. */
1980 stack_remaining = u->Total_frame_size << 3;
1981
1982 /* Magic register saves we want to know about. */
1983 save_rp = u->Save_RP;
1984 save_sp = u->Save_SP;
1985
1986 /* An indication that args may be stored into the stack. Unfortunately
1987 the HPUX compilers tend to set this in cases where no args were
1988 stored too!. */
1989 args_stored = u->Args_stored;
1990
1991 /* Turn the Entry_GR field into a bitmask. */
1992 save_gr = 0;
1993 for (i = 3; i < u->Entry_GR + 3; i++)
1994 {
1995 /* Frame pointer gets saved into a special location. */
1996 if (u->Save_SP && i == FP_REGNUM)
1997 continue;
1998
1999 save_gr |= (1 << i);
2000 }
2001
2002 /* Turn the Entry_FR field into a bitmask too. */
2003 save_fr = 0;
2004 for (i = 12; i < u->Entry_FR + 12; i++)
2005 save_fr |= (1 << i);
2006
2007 /* Loop until we find everything of interest or hit a branch.
2008
2009 For unoptimized GCC code and for any HP CC code this will never ever
2010 examine any user instructions.
2011
2012 For optimzied GCC code we're faced with problems. GCC will schedule
2013 its prologue and make prologue instructions available for delay slot
2014 filling. The end result is user code gets mixed in with the prologue
2015 and a prologue instruction may be in the delay slot of the first branch
2016 or call.
2017
2018 Some unexpected things are expected with debugging optimized code, so
2019 we allow this routine to walk past user instructions in optimized
2020 GCC code. */
2021 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2022 || args_stored)
2023 {
2024 unsigned int reg_num;
2025 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2026 unsigned long old_save_rp, old_save_sp, old_args_stored, next_inst;
2027
2028 /* Save copies of all the triggers so we can compare them later
2029 (only for HPC). */
2030 old_save_gr = save_gr;
2031 old_save_fr = save_fr;
2032 old_save_rp = save_rp;
2033 old_save_sp = save_sp;
2034 old_stack_remaining = stack_remaining;
2035
2036 status = target_read_memory (pc, buf, 4);
2037 inst = extract_unsigned_integer (buf, 4);
2038
2039 /* Yow! */
2040 if (status != 0)
2041 return pc;
2042
2043 /* Note the interesting effects of this instruction. */
2044 stack_remaining -= prologue_inst_adjust_sp (inst);
2045
2046 /* There is only one instruction used for saving RP into the stack. */
2047 if (inst == 0x6bc23fd9)
2048 save_rp = 0;
2049
2050 /* This is the only way we save SP into the stack. At this time
2051 the HP compilers never bother to save SP into the stack. */
2052 if ((inst & 0xffffc000) == 0x6fc10000)
2053 save_sp = 0;
2054
2055 /* Account for general and floating-point register saves. */
2056 reg_num = inst_saves_gr (inst);
2057 save_gr &= ~(1 << reg_num);
2058
2059 /* Ugh. Also account for argument stores into the stack.
2060 Unfortunately args_stored only tells us that some arguments
2061 where stored into the stack. Not how many or what kind!
2062
2063 This is a kludge as on the HP compiler sets this bit and it
2064 never does prologue scheduling. So once we see one, skip past
2065 all of them. We have similar code for the fp arg stores below.
2066
2067 FIXME. Can still die if we have a mix of GR and FR argument
2068 stores! */
2069 if (reg_num >= 23 && reg_num <= 26)
2070 {
2071 while (reg_num >= 23 && reg_num <= 26)
2072 {
2073 pc += 4;
2074 status = target_read_memory (pc, buf, 4);
2075 inst = extract_unsigned_integer (buf, 4);
2076 if (status != 0)
2077 return pc;
2078 reg_num = inst_saves_gr (inst);
2079 }
2080 args_stored = 0;
2081 continue;
2082 }
2083
2084 reg_num = inst_saves_fr (inst);
2085 save_fr &= ~(1 << reg_num);
2086
2087 status = target_read_memory (pc + 4, buf, 4);
2088 next_inst = extract_unsigned_integer (buf, 4);
2089
2090 /* Yow! */
2091 if (status != 0)
2092 return pc;
2093
2094 /* We've got to be read to handle the ldo before the fp register
2095 save. */
2096 if ((inst & 0xfc000000) == 0x34000000
2097 && inst_saves_fr (next_inst) >= 4
2098 && inst_saves_fr (next_inst) <= 7)
2099 {
2100 /* So we drop into the code below in a reasonable state. */
2101 reg_num = inst_saves_fr (next_inst);
2102 pc -= 4;
2103 }
2104
2105 /* Ugh. Also account for argument stores into the stack.
2106 This is a kludge as on the HP compiler sets this bit and it
2107 never does prologue scheduling. So once we see one, skip past
2108 all of them. */
2109 if (reg_num >= 4 && reg_num <= 7)
2110 {
2111 while (reg_num >= 4 && reg_num <= 7)
2112 {
2113 pc += 8;
2114 status = target_read_memory (pc, buf, 4);
2115 inst = extract_unsigned_integer (buf, 4);
2116 if (status != 0)
2117 return pc;
2118 if ((inst & 0xfc000000) != 0x34000000)
2119 break;
2120 status = target_read_memory (pc + 4, buf, 4);
2121 next_inst = extract_unsigned_integer (buf, 4);
2122 if (status != 0)
2123 return pc;
2124 reg_num = inst_saves_fr (next_inst);
2125 }
2126 args_stored = 0;
2127 continue;
2128 }
2129
2130 /* Quit if we hit any kind of branch. This can happen if a prologue
2131 instruction is in the delay slot of the first call/branch. */
2132 if (is_branch (inst))
2133 break;
2134
2135 /* What a crock. The HP compilers set args_stored even if no
2136 arguments were stored into the stack (boo hiss). This could
2137 cause this code to then skip a bunch of user insns (up to the
2138 first branch).
2139
2140 To combat this we try to identify when args_stored was bogusly
2141 set and clear it. We only do this when args_stored is nonzero,
2142 all other resources are accounted for, and nothing changed on
2143 this pass. */
2144 if (args_stored
2145 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2146 && old_save_gr == save_gr && old_save_fr == save_fr
2147 && old_save_rp == save_rp && old_save_sp == save_sp
2148 && old_stack_remaining == stack_remaining)
2149 break;
2150
2151 /* Bump the PC. */
2152 pc += 4;
2153 }
2154
2155 return pc;
2156 }
2157
2158 /* Put here the code to store, into a struct frame_saved_regs,
2159 the addresses of the saved registers of frame described by FRAME_INFO.
2160 This includes special registers such as pc and fp saved in special
2161 ways in the stack frame. sp is even more special:
2162 the address we return for it IS the sp for the next frame. */
2163
2164 void
2165 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2166 struct frame_info *frame_info;
2167 struct frame_saved_regs *frame_saved_regs;
2168 {
2169 CORE_ADDR pc;
2170 struct unwind_table_entry *u;
2171 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2172 int status, i, reg;
2173 char buf[4];
2174 int fp_loc = -1;
2175
2176 /* Zero out everything. */
2177 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2178
2179 /* Call dummy frames always look the same, so there's no need to
2180 examine the dummy code to determine locations of saved registers;
2181 instead, let find_dummy_frame_regs fill in the correct offsets
2182 for the saved registers. */
2183 if ((frame_info->pc >= frame_info->frame
2184 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2185 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2186 + 6 * 4)))
2187 find_dummy_frame_regs (frame_info, frame_saved_regs);
2188
2189 /* Interrupt handlers are special too. They lay out the register
2190 state in the exact same order as the register numbers in GDB. */
2191 if (pc_in_interrupt_handler (frame_info->pc))
2192 {
2193 for (i = 0; i < NUM_REGS; i++)
2194 {
2195 /* SP is a little special. */
2196 if (i == SP_REGNUM)
2197 frame_saved_regs->regs[SP_REGNUM]
2198 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2199 else
2200 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2201 }
2202 return;
2203 }
2204
2205 /* Handle signal handler callers. */
2206 if (frame_info->signal_handler_caller)
2207 {
2208 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2209 return;
2210 }
2211
2212 /* Get the starting address of the function referred to by the PC
2213 saved in frame. */
2214 pc = get_pc_function_start (frame_info->pc);
2215
2216 /* Yow! */
2217 u = find_unwind_entry (pc);
2218 if (!u)
2219 return;
2220
2221 /* This is how much of a frame adjustment we need to account for. */
2222 stack_remaining = u->Total_frame_size << 3;
2223
2224 /* Magic register saves we want to know about. */
2225 save_rp = u->Save_RP;
2226 save_sp = u->Save_SP;
2227
2228 /* Turn the Entry_GR field into a bitmask. */
2229 save_gr = 0;
2230 for (i = 3; i < u->Entry_GR + 3; i++)
2231 {
2232 /* Frame pointer gets saved into a special location. */
2233 if (u->Save_SP && i == FP_REGNUM)
2234 continue;
2235
2236 save_gr |= (1 << i);
2237 }
2238
2239 /* Turn the Entry_FR field into a bitmask too. */
2240 save_fr = 0;
2241 for (i = 12; i < u->Entry_FR + 12; i++)
2242 save_fr |= (1 << i);
2243
2244 /* The frame always represents the value of %sp at entry to the
2245 current function (and is thus equivalent to the "saved" stack
2246 pointer. */
2247 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2248
2249 /* Loop until we find everything of interest or hit a branch.
2250
2251 For unoptimized GCC code and for any HP CC code this will never ever
2252 examine any user instructions.
2253
2254 For optimzied GCC code we're faced with problems. GCC will schedule
2255 its prologue and make prologue instructions available for delay slot
2256 filling. The end result is user code gets mixed in with the prologue
2257 and a prologue instruction may be in the delay slot of the first branch
2258 or call.
2259
2260 Some unexpected things are expected with debugging optimized code, so
2261 we allow this routine to walk past user instructions in optimized
2262 GCC code. */
2263 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2264 {
2265 status = target_read_memory (pc, buf, 4);
2266 inst = extract_unsigned_integer (buf, 4);
2267
2268 /* Yow! */
2269 if (status != 0)
2270 return;
2271
2272 /* Note the interesting effects of this instruction. */
2273 stack_remaining -= prologue_inst_adjust_sp (inst);
2274
2275 /* There is only one instruction used for saving RP into the stack. */
2276 if (inst == 0x6bc23fd9)
2277 {
2278 save_rp = 0;
2279 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2280 }
2281
2282 /* Just note that we found the save of SP into the stack. The
2283 value for frame_saved_regs was computed above. */
2284 if ((inst & 0xffffc000) == 0x6fc10000)
2285 save_sp = 0;
2286
2287 /* Account for general and floating-point register saves. */
2288 reg = inst_saves_gr (inst);
2289 if (reg >= 3 && reg <= 18
2290 && (!u->Save_SP || reg != FP_REGNUM))
2291 {
2292 save_gr &= ~(1 << reg);
2293
2294 /* stwm with a positive displacement is a *post modify*. */
2295 if ((inst >> 26) == 0x1b
2296 && extract_14 (inst) >= 0)
2297 frame_saved_regs->regs[reg] = frame_info->frame;
2298 else
2299 {
2300 /* Handle code with and without frame pointers. */
2301 if (u->Save_SP)
2302 frame_saved_regs->regs[reg]
2303 = frame_info->frame + extract_14 (inst);
2304 else
2305 frame_saved_regs->regs[reg]
2306 = frame_info->frame + (u->Total_frame_size << 3)
2307 + extract_14 (inst);
2308 }
2309 }
2310
2311
2312 /* GCC handles callee saved FP regs a little differently.
2313
2314 It emits an instruction to put the value of the start of
2315 the FP store area into %r1. It then uses fstds,ma with
2316 a basereg of %r1 for the stores.
2317
2318 HP CC emits them at the current stack pointer modifying
2319 the stack pointer as it stores each register. */
2320
2321 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2322 if ((inst & 0xffffc000) == 0x34610000
2323 || (inst & 0xffffc000) == 0x37c10000)
2324 fp_loc = extract_14 (inst);
2325
2326 reg = inst_saves_fr (inst);
2327 if (reg >= 12 && reg <= 21)
2328 {
2329 /* Note +4 braindamage below is necessary because the FP status
2330 registers are internally 8 registers rather than the expected
2331 4 registers. */
2332 save_fr &= ~(1 << reg);
2333 if (fp_loc == -1)
2334 {
2335 /* 1st HP CC FP register store. After this instruction
2336 we've set enough state that the GCC and HPCC code are
2337 both handled in the same manner. */
2338 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2339 fp_loc = 8;
2340 }
2341 else
2342 {
2343 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2344 = frame_info->frame + fp_loc;
2345 fp_loc += 8;
2346 }
2347 }
2348
2349 /* Quit if we hit any kind of branch. This can happen if a prologue
2350 instruction is in the delay slot of the first call/branch. */
2351 if (is_branch (inst))
2352 break;
2353
2354 /* Bump the PC. */
2355 pc += 4;
2356 }
2357 }
2358
2359 #ifdef MAINTENANCE_CMDS
2360
2361 static void
2362 unwind_command (exp, from_tty)
2363 char *exp;
2364 int from_tty;
2365 {
2366 CORE_ADDR address;
2367 union
2368 {
2369 int *foo;
2370 struct unwind_table_entry *u;
2371 } xxx;
2372
2373 /* If we have an expression, evaluate it and use it as the address. */
2374
2375 if (exp != 0 && *exp != 0)
2376 address = parse_and_eval_address (exp);
2377 else
2378 return;
2379
2380 xxx.u = find_unwind_entry (address);
2381
2382 if (!xxx.u)
2383 {
2384 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
2385 return;
2386 }
2387
2388 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
2389 xxx.foo[3]);
2390 }
2391 #endif /* MAINTENANCE_CMDS */
2392
2393 void
2394 _initialize_hppa_tdep ()
2395 {
2396 #ifdef MAINTENANCE_CMDS
2397 add_cmd ("unwind", class_maintenance, unwind_command,
2398 "Print unwind table entry at given address.",
2399 &maintenanceprintlist);
2400 #endif /* MAINTENANCE_CMDS */
2401 }
This page took 0.080023 seconds and 5 git commands to generate.