2002-01-31 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "bfd.h"
28 #include "inferior.h"
29 #include "value.h"
30 #include "regcache.h"
31
32 /* For argument passing to the inferior */
33 #include "symtab.h"
34
35 #ifdef USG
36 #include <sys/types.h>
37 #endif
38
39 #include <dl.h>
40 #include <sys/param.h>
41 #include <signal.h>
42
43 #include <sys/ptrace.h>
44 #include <machine/save_state.h>
45
46 #ifdef COFF_ENCAPSULATE
47 #include "a.out.encap.h"
48 #else
49 #endif
50
51 /*#include <sys/user.h> After a.out.h */
52 #include <sys/file.h>
53 #include "gdb_stat.h"
54 #include "gdb_wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 /* To support detection of the pseudo-initial frame
63 that threads have. */
64 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
65 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
66
67 static int extract_5_load (unsigned int);
68
69 static unsigned extract_5R_store (unsigned int);
70
71 static unsigned extract_5r_store (unsigned int);
72
73 static void find_dummy_frame_regs (struct frame_info *,
74 struct frame_saved_regs *);
75
76 static int find_proc_framesize (CORE_ADDR);
77
78 static int find_return_regnum (CORE_ADDR);
79
80 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
81
82 static int extract_17 (unsigned int);
83
84 static unsigned deposit_21 (unsigned int, unsigned int);
85
86 static int extract_21 (unsigned);
87
88 static unsigned deposit_14 (int, unsigned int);
89
90 static int extract_14 (unsigned);
91
92 static void unwind_command (char *, int);
93
94 static int low_sign_extend (unsigned int, unsigned int);
95
96 static int sign_extend (unsigned int, unsigned int);
97
98 static int restore_pc_queue (struct frame_saved_regs *);
99
100 static int hppa_alignof (struct type *);
101
102 /* To support multi-threading and stepping. */
103 int hppa_prepare_to_proceed ();
104
105 static int prologue_inst_adjust_sp (unsigned long);
106
107 static int is_branch (unsigned long);
108
109 static int inst_saves_gr (unsigned long);
110
111 static int inst_saves_fr (unsigned long);
112
113 static int pc_in_interrupt_handler (CORE_ADDR);
114
115 static int pc_in_linker_stub (CORE_ADDR);
116
117 static int compare_unwind_entries (const void *, const void *);
118
119 static void read_unwind_info (struct objfile *);
120
121 static void internalize_unwinds (struct objfile *,
122 struct unwind_table_entry *,
123 asection *, unsigned int,
124 unsigned int, CORE_ADDR);
125 static void pa_print_registers (char *, int, int);
126 static void pa_strcat_registers (char *, int, int, struct ui_file *);
127 static void pa_register_look_aside (char *, int, long *);
128 static void pa_print_fp_reg (int);
129 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
130 static void record_text_segment_lowaddr (bfd *, asection *, void *);
131
132 typedef struct
133 {
134 struct minimal_symbol *msym;
135 CORE_ADDR solib_handle;
136 CORE_ADDR return_val;
137 }
138 args_for_find_stub;
139
140 static int cover_find_stub_with_shl_get (PTR);
141
142 static int is_pa_2 = 0; /* False */
143
144 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
145 extern int hp_som_som_object_present;
146
147 /* In breakpoint.c */
148 extern int exception_catchpoints_are_fragile;
149
150 /* This is defined in valops.c. */
151 extern struct value *find_function_in_inferior (char *);
152
153 /* Should call_function allocate stack space for a struct return? */
154 int
155 hppa_use_struct_convention (int gcc_p, struct type *type)
156 {
157 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
158 }
159 \f
160
161 /* Routines to extract various sized constants out of hppa
162 instructions. */
163
164 /* This assumes that no garbage lies outside of the lower bits of
165 value. */
166
167 static int
168 sign_extend (unsigned val, unsigned bits)
169 {
170 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
171 }
172
173 /* For many immediate values the sign bit is the low bit! */
174
175 static int
176 low_sign_extend (unsigned val, unsigned bits)
177 {
178 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
179 }
180
181 /* extract the immediate field from a ld{bhw}s instruction */
182
183 static int
184 extract_5_load (unsigned word)
185 {
186 return low_sign_extend (word >> 16 & MASK_5, 5);
187 }
188
189 /* extract the immediate field from a break instruction */
190
191 static unsigned
192 extract_5r_store (unsigned word)
193 {
194 return (word & MASK_5);
195 }
196
197 /* extract the immediate field from a {sr}sm instruction */
198
199 static unsigned
200 extract_5R_store (unsigned word)
201 {
202 return (word >> 16 & MASK_5);
203 }
204
205 /* extract a 14 bit immediate field */
206
207 static int
208 extract_14 (unsigned word)
209 {
210 return low_sign_extend (word & MASK_14, 14);
211 }
212
213 /* deposit a 14 bit constant in a word */
214
215 static unsigned
216 deposit_14 (int opnd, unsigned word)
217 {
218 unsigned sign = (opnd < 0 ? 1 : 0);
219
220 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
221 }
222
223 /* extract a 21 bit constant */
224
225 static int
226 extract_21 (unsigned word)
227 {
228 int val;
229
230 word &= MASK_21;
231 word <<= 11;
232 val = GET_FIELD (word, 20, 20);
233 val <<= 11;
234 val |= GET_FIELD (word, 9, 19);
235 val <<= 2;
236 val |= GET_FIELD (word, 5, 6);
237 val <<= 5;
238 val |= GET_FIELD (word, 0, 4);
239 val <<= 2;
240 val |= GET_FIELD (word, 7, 8);
241 return sign_extend (val, 21) << 11;
242 }
243
244 /* deposit a 21 bit constant in a word. Although 21 bit constants are
245 usually the top 21 bits of a 32 bit constant, we assume that only
246 the low 21 bits of opnd are relevant */
247
248 static unsigned
249 deposit_21 (unsigned opnd, unsigned word)
250 {
251 unsigned val = 0;
252
253 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
254 val <<= 2;
255 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
256 val <<= 2;
257 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
258 val <<= 11;
259 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
260 val <<= 1;
261 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
262 return word | val;
263 }
264
265 /* extract a 17 bit constant from branch instructions, returning the
266 19 bit signed value. */
267
268 static int
269 extract_17 (unsigned word)
270 {
271 return sign_extend (GET_FIELD (word, 19, 28) |
272 GET_FIELD (word, 29, 29) << 10 |
273 GET_FIELD (word, 11, 15) << 11 |
274 (word & 0x1) << 16, 17) << 2;
275 }
276 \f
277
278 /* Compare the start address for two unwind entries returning 1 if
279 the first address is larger than the second, -1 if the second is
280 larger than the first, and zero if they are equal. */
281
282 static int
283 compare_unwind_entries (const void *arg1, const void *arg2)
284 {
285 const struct unwind_table_entry *a = arg1;
286 const struct unwind_table_entry *b = arg2;
287
288 if (a->region_start > b->region_start)
289 return 1;
290 else if (a->region_start < b->region_start)
291 return -1;
292 else
293 return 0;
294 }
295
296 static CORE_ADDR low_text_segment_address;
297
298 static void
299 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
300 {
301 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
302 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
303 && section->vma < low_text_segment_address)
304 low_text_segment_address = section->vma;
305 }
306
307 static void
308 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
309 asection *section, unsigned int entries, unsigned int size,
310 CORE_ADDR text_offset)
311 {
312 /* We will read the unwind entries into temporary memory, then
313 fill in the actual unwind table. */
314 if (size > 0)
315 {
316 unsigned long tmp;
317 unsigned i;
318 char *buf = alloca (size);
319
320 low_text_segment_address = -1;
321
322 /* If addresses are 64 bits wide, then unwinds are supposed to
323 be segment relative offsets instead of absolute addresses.
324
325 Note that when loading a shared library (text_offset != 0) the
326 unwinds are already relative to the text_offset that will be
327 passed in. */
328 if (TARGET_PTR_BIT == 64 && text_offset == 0)
329 {
330 bfd_map_over_sections (objfile->obfd,
331 record_text_segment_lowaddr, (PTR) NULL);
332
333 /* ?!? Mask off some low bits. Should this instead subtract
334 out the lowest section's filepos or something like that?
335 This looks very hokey to me. */
336 low_text_segment_address &= ~0xfff;
337 text_offset += low_text_segment_address;
338 }
339
340 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
341
342 /* Now internalize the information being careful to handle host/target
343 endian issues. */
344 for (i = 0; i < entries; i++)
345 {
346 table[i].region_start = bfd_get_32 (objfile->obfd,
347 (bfd_byte *) buf);
348 table[i].region_start += text_offset;
349 buf += 4;
350 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
351 table[i].region_end += text_offset;
352 buf += 4;
353 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
354 buf += 4;
355 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
356 table[i].Millicode = (tmp >> 30) & 0x1;
357 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
358 table[i].Region_description = (tmp >> 27) & 0x3;
359 table[i].reserved1 = (tmp >> 26) & 0x1;
360 table[i].Entry_SR = (tmp >> 25) & 0x1;
361 table[i].Entry_FR = (tmp >> 21) & 0xf;
362 table[i].Entry_GR = (tmp >> 16) & 0x1f;
363 table[i].Args_stored = (tmp >> 15) & 0x1;
364 table[i].Variable_Frame = (tmp >> 14) & 0x1;
365 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
366 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
367 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
368 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
369 table[i].Ada_Region = (tmp >> 9) & 0x1;
370 table[i].cxx_info = (tmp >> 8) & 0x1;
371 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
372 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
373 table[i].reserved2 = (tmp >> 5) & 0x1;
374 table[i].Save_SP = (tmp >> 4) & 0x1;
375 table[i].Save_RP = (tmp >> 3) & 0x1;
376 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
377 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
378 table[i].Cleanup_defined = tmp & 0x1;
379 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
380 buf += 4;
381 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
382 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
383 table[i].Large_frame = (tmp >> 29) & 0x1;
384 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
385 table[i].reserved4 = (tmp >> 27) & 0x1;
386 table[i].Total_frame_size = tmp & 0x7ffffff;
387
388 /* Stub unwinds are handled elsewhere. */
389 table[i].stub_unwind.stub_type = 0;
390 table[i].stub_unwind.padding = 0;
391 }
392 }
393 }
394
395 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
396 the object file. This info is used mainly by find_unwind_entry() to find
397 out the stack frame size and frame pointer used by procedures. We put
398 everything on the psymbol obstack in the objfile so that it automatically
399 gets freed when the objfile is destroyed. */
400
401 static void
402 read_unwind_info (struct objfile *objfile)
403 {
404 asection *unwind_sec, *stub_unwind_sec;
405 unsigned unwind_size, stub_unwind_size, total_size;
406 unsigned index, unwind_entries;
407 unsigned stub_entries, total_entries;
408 CORE_ADDR text_offset;
409 struct obj_unwind_info *ui;
410 obj_private_data_t *obj_private;
411
412 text_offset = ANOFFSET (objfile->section_offsets, 0);
413 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
414 sizeof (struct obj_unwind_info));
415
416 ui->table = NULL;
417 ui->cache = NULL;
418 ui->last = -1;
419
420 /* For reasons unknown the HP PA64 tools generate multiple unwinder
421 sections in a single executable. So we just iterate over every
422 section in the BFD looking for unwinder sections intead of trying
423 to do a lookup with bfd_get_section_by_name.
424
425 First determine the total size of the unwind tables so that we
426 can allocate memory in a nice big hunk. */
427 total_entries = 0;
428 for (unwind_sec = objfile->obfd->sections;
429 unwind_sec;
430 unwind_sec = unwind_sec->next)
431 {
432 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
433 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
434 {
435 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
436 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
437
438 total_entries += unwind_entries;
439 }
440 }
441
442 /* Now compute the size of the stub unwinds. Note the ELF tools do not
443 use stub unwinds at the curren time. */
444 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
445
446 if (stub_unwind_sec)
447 {
448 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
449 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
450 }
451 else
452 {
453 stub_unwind_size = 0;
454 stub_entries = 0;
455 }
456
457 /* Compute total number of unwind entries and their total size. */
458 total_entries += stub_entries;
459 total_size = total_entries * sizeof (struct unwind_table_entry);
460
461 /* Allocate memory for the unwind table. */
462 ui->table = (struct unwind_table_entry *)
463 obstack_alloc (&objfile->psymbol_obstack, total_size);
464 ui->last = total_entries - 1;
465
466 /* Now read in each unwind section and internalize the standard unwind
467 entries. */
468 index = 0;
469 for (unwind_sec = objfile->obfd->sections;
470 unwind_sec;
471 unwind_sec = unwind_sec->next)
472 {
473 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
474 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
475 {
476 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
477 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
478
479 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
480 unwind_entries, unwind_size, text_offset);
481 index += unwind_entries;
482 }
483 }
484
485 /* Now read in and internalize the stub unwind entries. */
486 if (stub_unwind_size > 0)
487 {
488 unsigned int i;
489 char *buf = alloca (stub_unwind_size);
490
491 /* Read in the stub unwind entries. */
492 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
493 0, stub_unwind_size);
494
495 /* Now convert them into regular unwind entries. */
496 for (i = 0; i < stub_entries; i++, index++)
497 {
498 /* Clear out the next unwind entry. */
499 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
500
501 /* Convert offset & size into region_start and region_end.
502 Stuff away the stub type into "reserved" fields. */
503 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
504 (bfd_byte *) buf);
505 ui->table[index].region_start += text_offset;
506 buf += 4;
507 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
508 (bfd_byte *) buf);
509 buf += 2;
510 ui->table[index].region_end
511 = ui->table[index].region_start + 4 *
512 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
513 buf += 2;
514 }
515
516 }
517
518 /* Unwind table needs to be kept sorted. */
519 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
520 compare_unwind_entries);
521
522 /* Keep a pointer to the unwind information. */
523 if (objfile->obj_private == NULL)
524 {
525 obj_private = (obj_private_data_t *)
526 obstack_alloc (&objfile->psymbol_obstack,
527 sizeof (obj_private_data_t));
528 obj_private->unwind_info = NULL;
529 obj_private->so_info = NULL;
530 obj_private->dp = 0;
531
532 objfile->obj_private = (PTR) obj_private;
533 }
534 obj_private = (obj_private_data_t *) objfile->obj_private;
535 obj_private->unwind_info = ui;
536 }
537
538 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
539 of the objfiles seeking the unwind table entry for this PC. Each objfile
540 contains a sorted list of struct unwind_table_entry. Since we do a binary
541 search of the unwind tables, we depend upon them to be sorted. */
542
543 struct unwind_table_entry *
544 find_unwind_entry (CORE_ADDR pc)
545 {
546 int first, middle, last;
547 struct objfile *objfile;
548
549 /* A function at address 0? Not in HP-UX! */
550 if (pc == (CORE_ADDR) 0)
551 return NULL;
552
553 ALL_OBJFILES (objfile)
554 {
555 struct obj_unwind_info *ui;
556 ui = NULL;
557 if (objfile->obj_private)
558 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
559
560 if (!ui)
561 {
562 read_unwind_info (objfile);
563 if (objfile->obj_private == NULL)
564 error ("Internal error reading unwind information.");
565 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
566 }
567
568 /* First, check the cache */
569
570 if (ui->cache
571 && pc >= ui->cache->region_start
572 && pc <= ui->cache->region_end)
573 return ui->cache;
574
575 /* Not in the cache, do a binary search */
576
577 first = 0;
578 last = ui->last;
579
580 while (first <= last)
581 {
582 middle = (first + last) / 2;
583 if (pc >= ui->table[middle].region_start
584 && pc <= ui->table[middle].region_end)
585 {
586 ui->cache = &ui->table[middle];
587 return &ui->table[middle];
588 }
589
590 if (pc < ui->table[middle].region_start)
591 last = middle - 1;
592 else
593 first = middle + 1;
594 }
595 } /* ALL_OBJFILES() */
596 return NULL;
597 }
598
599 /* Return the adjustment necessary to make for addresses on the stack
600 as presented by hpread.c.
601
602 This is necessary because of the stack direction on the PA and the
603 bizarre way in which someone (?) decided they wanted to handle
604 frame pointerless code in GDB. */
605 int
606 hpread_adjust_stack_address (CORE_ADDR func_addr)
607 {
608 struct unwind_table_entry *u;
609
610 u = find_unwind_entry (func_addr);
611 if (!u)
612 return 0;
613 else
614 return u->Total_frame_size << 3;
615 }
616
617 /* Called to determine if PC is in an interrupt handler of some
618 kind. */
619
620 static int
621 pc_in_interrupt_handler (CORE_ADDR pc)
622 {
623 struct unwind_table_entry *u;
624 struct minimal_symbol *msym_us;
625
626 u = find_unwind_entry (pc);
627 if (!u)
628 return 0;
629
630 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
631 its frame isn't a pure interrupt frame. Deal with this. */
632 msym_us = lookup_minimal_symbol_by_pc (pc);
633
634 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
635 }
636
637 /* Called when no unwind descriptor was found for PC. Returns 1 if it
638 appears that PC is in a linker stub.
639
640 ?!? Need to handle stubs which appear in PA64 code. */
641
642 static int
643 pc_in_linker_stub (CORE_ADDR pc)
644 {
645 int found_magic_instruction = 0;
646 int i;
647 char buf[4];
648
649 /* If unable to read memory, assume pc is not in a linker stub. */
650 if (target_read_memory (pc, buf, 4) != 0)
651 return 0;
652
653 /* We are looking for something like
654
655 ; $$dyncall jams RP into this special spot in the frame (RP')
656 ; before calling the "call stub"
657 ldw -18(sp),rp
658
659 ldsid (rp),r1 ; Get space associated with RP into r1
660 mtsp r1,sp ; Move it into space register 0
661 be,n 0(sr0),rp) ; back to your regularly scheduled program */
662
663 /* Maximum known linker stub size is 4 instructions. Search forward
664 from the given PC, then backward. */
665 for (i = 0; i < 4; i++)
666 {
667 /* If we hit something with an unwind, stop searching this direction. */
668
669 if (find_unwind_entry (pc + i * 4) != 0)
670 break;
671
672 /* Check for ldsid (rp),r1 which is the magic instruction for a
673 return from a cross-space function call. */
674 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
675 {
676 found_magic_instruction = 1;
677 break;
678 }
679 /* Add code to handle long call/branch and argument relocation stubs
680 here. */
681 }
682
683 if (found_magic_instruction != 0)
684 return 1;
685
686 /* Now look backward. */
687 for (i = 0; i < 4; i++)
688 {
689 /* If we hit something with an unwind, stop searching this direction. */
690
691 if (find_unwind_entry (pc - i * 4) != 0)
692 break;
693
694 /* Check for ldsid (rp),r1 which is the magic instruction for a
695 return from a cross-space function call. */
696 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
697 {
698 found_magic_instruction = 1;
699 break;
700 }
701 /* Add code to handle long call/branch and argument relocation stubs
702 here. */
703 }
704 return found_magic_instruction;
705 }
706
707 static int
708 find_return_regnum (CORE_ADDR pc)
709 {
710 struct unwind_table_entry *u;
711
712 u = find_unwind_entry (pc);
713
714 if (!u)
715 return RP_REGNUM;
716
717 if (u->Millicode)
718 return 31;
719
720 return RP_REGNUM;
721 }
722
723 /* Return size of frame, or -1 if we should use a frame pointer. */
724 static int
725 find_proc_framesize (CORE_ADDR pc)
726 {
727 struct unwind_table_entry *u;
728 struct minimal_symbol *msym_us;
729
730 /* This may indicate a bug in our callers... */
731 if (pc == (CORE_ADDR) 0)
732 return -1;
733
734 u = find_unwind_entry (pc);
735
736 if (!u)
737 {
738 if (pc_in_linker_stub (pc))
739 /* Linker stubs have a zero size frame. */
740 return 0;
741 else
742 return -1;
743 }
744
745 msym_us = lookup_minimal_symbol_by_pc (pc);
746
747 /* If Save_SP is set, and we're not in an interrupt or signal caller,
748 then we have a frame pointer. Use it. */
749 if (u->Save_SP && !pc_in_interrupt_handler (pc)
750 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
751 return -1;
752
753 return u->Total_frame_size << 3;
754 }
755
756 /* Return offset from sp at which rp is saved, or 0 if not saved. */
757 static int rp_saved (CORE_ADDR);
758
759 static int
760 rp_saved (CORE_ADDR pc)
761 {
762 struct unwind_table_entry *u;
763
764 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
765 if (pc == (CORE_ADDR) 0)
766 return 0;
767
768 u = find_unwind_entry (pc);
769
770 if (!u)
771 {
772 if (pc_in_linker_stub (pc))
773 /* This is the so-called RP'. */
774 return -24;
775 else
776 return 0;
777 }
778
779 if (u->Save_RP)
780 return (TARGET_PTR_BIT == 64 ? -16 : -20);
781 else if (u->stub_unwind.stub_type != 0)
782 {
783 switch (u->stub_unwind.stub_type)
784 {
785 case EXPORT:
786 case IMPORT:
787 return -24;
788 case PARAMETER_RELOCATION:
789 return -8;
790 default:
791 return 0;
792 }
793 }
794 else
795 return 0;
796 }
797 \f
798 int
799 frameless_function_invocation (struct frame_info *frame)
800 {
801 struct unwind_table_entry *u;
802
803 u = find_unwind_entry (frame->pc);
804
805 if (u == 0)
806 return 0;
807
808 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
809 }
810
811 CORE_ADDR
812 saved_pc_after_call (struct frame_info *frame)
813 {
814 int ret_regnum;
815 CORE_ADDR pc;
816 struct unwind_table_entry *u;
817
818 ret_regnum = find_return_regnum (get_frame_pc (frame));
819 pc = read_register (ret_regnum) & ~0x3;
820
821 /* If PC is in a linker stub, then we need to dig the address
822 the stub will return to out of the stack. */
823 u = find_unwind_entry (pc);
824 if (u && u->stub_unwind.stub_type != 0)
825 return FRAME_SAVED_PC (frame);
826 else
827 return pc;
828 }
829 \f
830 CORE_ADDR
831 hppa_frame_saved_pc (struct frame_info *frame)
832 {
833 CORE_ADDR pc = get_frame_pc (frame);
834 struct unwind_table_entry *u;
835 CORE_ADDR old_pc;
836 int spun_around_loop = 0;
837 int rp_offset = 0;
838
839 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
840 at the base of the frame in an interrupt handler. Registers within
841 are saved in the exact same order as GDB numbers registers. How
842 convienent. */
843 if (pc_in_interrupt_handler (pc))
844 return read_memory_integer (frame->frame + PC_REGNUM * 4,
845 TARGET_PTR_BIT / 8) & ~0x3;
846
847 if ((frame->pc >= frame->frame
848 && frame->pc <= (frame->frame
849 /* A call dummy is sized in words, but it is
850 actually a series of instructions. Account
851 for that scaling factor. */
852 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
853 * CALL_DUMMY_LENGTH)
854 /* Similarly we have to account for 64bit
855 wide register saves. */
856 + (32 * REGISTER_SIZE)
857 /* We always consider FP regs 8 bytes long. */
858 + (NUM_REGS - FP0_REGNUM) * 8
859 /* Similarly we have to account for 64bit
860 wide register saves. */
861 + (6 * REGISTER_SIZE))))
862 {
863 return read_memory_integer ((frame->frame
864 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
865 TARGET_PTR_BIT / 8) & ~0x3;
866 }
867
868 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
869 /* Deal with signal handler caller frames too. */
870 if (frame->signal_handler_caller)
871 {
872 CORE_ADDR rp;
873 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
874 return rp & ~0x3;
875 }
876 #endif
877
878 if (frameless_function_invocation (frame))
879 {
880 int ret_regnum;
881
882 ret_regnum = find_return_regnum (pc);
883
884 /* If the next frame is an interrupt frame or a signal
885 handler caller, then we need to look in the saved
886 register area to get the return pointer (the values
887 in the registers may not correspond to anything useful). */
888 if (frame->next
889 && (frame->next->signal_handler_caller
890 || pc_in_interrupt_handler (frame->next->pc)))
891 {
892 struct frame_saved_regs saved_regs;
893
894 get_frame_saved_regs (frame->next, &saved_regs);
895 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
896 TARGET_PTR_BIT / 8) & 0x2)
897 {
898 pc = read_memory_integer (saved_regs.regs[31],
899 TARGET_PTR_BIT / 8) & ~0x3;
900
901 /* Syscalls are really two frames. The syscall stub itself
902 with a return pointer in %rp and the kernel call with
903 a return pointer in %r31. We return the %rp variant
904 if %r31 is the same as frame->pc. */
905 if (pc == frame->pc)
906 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
907 TARGET_PTR_BIT / 8) & ~0x3;
908 }
909 else
910 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
911 TARGET_PTR_BIT / 8) & ~0x3;
912 }
913 else
914 pc = read_register (ret_regnum) & ~0x3;
915 }
916 else
917 {
918 spun_around_loop = 0;
919 old_pc = pc;
920
921 restart:
922 rp_offset = rp_saved (pc);
923
924 /* Similar to code in frameless function case. If the next
925 frame is a signal or interrupt handler, then dig the right
926 information out of the saved register info. */
927 if (rp_offset == 0
928 && frame->next
929 && (frame->next->signal_handler_caller
930 || pc_in_interrupt_handler (frame->next->pc)))
931 {
932 struct frame_saved_regs saved_regs;
933
934 get_frame_saved_regs (frame->next, &saved_regs);
935 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
936 TARGET_PTR_BIT / 8) & 0x2)
937 {
938 pc = read_memory_integer (saved_regs.regs[31],
939 TARGET_PTR_BIT / 8) & ~0x3;
940
941 /* Syscalls are really two frames. The syscall stub itself
942 with a return pointer in %rp and the kernel call with
943 a return pointer in %r31. We return the %rp variant
944 if %r31 is the same as frame->pc. */
945 if (pc == frame->pc)
946 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
947 TARGET_PTR_BIT / 8) & ~0x3;
948 }
949 else
950 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
951 TARGET_PTR_BIT / 8) & ~0x3;
952 }
953 else if (rp_offset == 0)
954 {
955 old_pc = pc;
956 pc = read_register (RP_REGNUM) & ~0x3;
957 }
958 else
959 {
960 old_pc = pc;
961 pc = read_memory_integer (frame->frame + rp_offset,
962 TARGET_PTR_BIT / 8) & ~0x3;
963 }
964 }
965
966 /* If PC is inside a linker stub, then dig out the address the stub
967 will return to.
968
969 Don't do this for long branch stubs. Why? For some unknown reason
970 _start is marked as a long branch stub in hpux10. */
971 u = find_unwind_entry (pc);
972 if (u && u->stub_unwind.stub_type != 0
973 && u->stub_unwind.stub_type != LONG_BRANCH)
974 {
975 unsigned int insn;
976
977 /* If this is a dynamic executable, and we're in a signal handler,
978 then the call chain will eventually point us into the stub for
979 _sigreturn. Unlike most cases, we'll be pointed to the branch
980 to the real sigreturn rather than the code after the real branch!.
981
982 Else, try to dig the address the stub will return to in the normal
983 fashion. */
984 insn = read_memory_integer (pc, 4);
985 if ((insn & 0xfc00e000) == 0xe8000000)
986 return (pc + extract_17 (insn) + 8) & ~0x3;
987 else
988 {
989 if (old_pc == pc)
990 spun_around_loop++;
991
992 if (spun_around_loop > 1)
993 {
994 /* We're just about to go around the loop again with
995 no more hope of success. Die. */
996 error ("Unable to find return pc for this frame");
997 }
998 else
999 goto restart;
1000 }
1001 }
1002
1003 return pc;
1004 }
1005 \f
1006 /* We need to correct the PC and the FP for the outermost frame when we are
1007 in a system call. */
1008
1009 void
1010 init_extra_frame_info (int fromleaf, struct frame_info *frame)
1011 {
1012 int flags;
1013 int framesize;
1014
1015 if (frame->next && !fromleaf)
1016 return;
1017
1018 /* If the next frame represents a frameless function invocation
1019 then we have to do some adjustments that are normally done by
1020 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1021 if (fromleaf)
1022 {
1023 /* Find the framesize of *this* frame without peeking at the PC
1024 in the current frame structure (it isn't set yet). */
1025 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1026
1027 /* Now adjust our base frame accordingly. If we have a frame pointer
1028 use it, else subtract the size of this frame from the current
1029 frame. (we always want frame->frame to point at the lowest address
1030 in the frame). */
1031 if (framesize == -1)
1032 frame->frame = TARGET_READ_FP ();
1033 else
1034 frame->frame -= framesize;
1035 return;
1036 }
1037
1038 flags = read_register (FLAGS_REGNUM);
1039 if (flags & 2) /* In system call? */
1040 frame->pc = read_register (31) & ~0x3;
1041
1042 /* The outermost frame is always derived from PC-framesize
1043
1044 One might think frameless innermost frames should have
1045 a frame->frame that is the same as the parent's frame->frame.
1046 That is wrong; frame->frame in that case should be the *high*
1047 address of the parent's frame. It's complicated as hell to
1048 explain, but the parent *always* creates some stack space for
1049 the child. So the child actually does have a frame of some
1050 sorts, and its base is the high address in its parent's frame. */
1051 framesize = find_proc_framesize (frame->pc);
1052 if (framesize == -1)
1053 frame->frame = TARGET_READ_FP ();
1054 else
1055 frame->frame = read_register (SP_REGNUM) - framesize;
1056 }
1057 \f
1058 /* Given a GDB frame, determine the address of the calling function's frame.
1059 This will be used to create a new GDB frame struct, and then
1060 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1061
1062 This may involve searching through prologues for several functions
1063 at boundaries where GCC calls HP C code, or where code which has
1064 a frame pointer calls code without a frame pointer. */
1065
1066 CORE_ADDR
1067 frame_chain (struct frame_info *frame)
1068 {
1069 int my_framesize, caller_framesize;
1070 struct unwind_table_entry *u;
1071 CORE_ADDR frame_base;
1072 struct frame_info *tmp_frame;
1073
1074 /* A frame in the current frame list, or zero. */
1075 struct frame_info *saved_regs_frame = 0;
1076 /* Where the registers were saved in saved_regs_frame.
1077 If saved_regs_frame is zero, this is garbage. */
1078 struct frame_saved_regs saved_regs;
1079
1080 CORE_ADDR caller_pc;
1081
1082 struct minimal_symbol *min_frame_symbol;
1083 struct symbol *frame_symbol;
1084 char *frame_symbol_name;
1085
1086 /* If this is a threaded application, and we see the
1087 routine "__pthread_exit", treat it as the stack root
1088 for this thread. */
1089 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1090 frame_symbol = find_pc_function (frame->pc);
1091
1092 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1093 {
1094 /* The test above for "no user function name" would defend
1095 against the slim likelihood that a user might define a
1096 routine named "__pthread_exit" and then try to debug it.
1097
1098 If it weren't commented out, and you tried to debug the
1099 pthread library itself, you'd get errors.
1100
1101 So for today, we don't make that check. */
1102 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1103 if (frame_symbol_name != 0)
1104 {
1105 if (0 == strncmp (frame_symbol_name,
1106 THREAD_INITIAL_FRAME_SYMBOL,
1107 THREAD_INITIAL_FRAME_SYM_LEN))
1108 {
1109 /* Pretend we've reached the bottom of the stack. */
1110 return (CORE_ADDR) 0;
1111 }
1112 }
1113 } /* End of hacky code for threads. */
1114
1115 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1116 are easy; at *sp we have a full save state strucutre which we can
1117 pull the old stack pointer from. Also see frame_saved_pc for
1118 code to dig a saved PC out of the save state structure. */
1119 if (pc_in_interrupt_handler (frame->pc))
1120 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1121 TARGET_PTR_BIT / 8);
1122 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1123 else if (frame->signal_handler_caller)
1124 {
1125 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1126 }
1127 #endif
1128 else
1129 frame_base = frame->frame;
1130
1131 /* Get frame sizes for the current frame and the frame of the
1132 caller. */
1133 my_framesize = find_proc_framesize (frame->pc);
1134 caller_pc = FRAME_SAVED_PC (frame);
1135
1136 /* If we can't determine the caller's PC, then it's not likely we can
1137 really determine anything meaningful about its frame. We'll consider
1138 this to be stack bottom. */
1139 if (caller_pc == (CORE_ADDR) 0)
1140 return (CORE_ADDR) 0;
1141
1142 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
1143
1144 /* If caller does not have a frame pointer, then its frame
1145 can be found at current_frame - caller_framesize. */
1146 if (caller_framesize != -1)
1147 {
1148 return frame_base - caller_framesize;
1149 }
1150 /* Both caller and callee have frame pointers and are GCC compiled
1151 (SAVE_SP bit in unwind descriptor is on for both functions.
1152 The previous frame pointer is found at the top of the current frame. */
1153 if (caller_framesize == -1 && my_framesize == -1)
1154 {
1155 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1156 }
1157 /* Caller has a frame pointer, but callee does not. This is a little
1158 more difficult as GCC and HP C lay out locals and callee register save
1159 areas very differently.
1160
1161 The previous frame pointer could be in a register, or in one of
1162 several areas on the stack.
1163
1164 Walk from the current frame to the innermost frame examining
1165 unwind descriptors to determine if %r3 ever gets saved into the
1166 stack. If so return whatever value got saved into the stack.
1167 If it was never saved in the stack, then the value in %r3 is still
1168 valid, so use it.
1169
1170 We use information from unwind descriptors to determine if %r3
1171 is saved into the stack (Entry_GR field has this information). */
1172
1173 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
1174 {
1175 u = find_unwind_entry (tmp_frame->pc);
1176
1177 if (!u)
1178 {
1179 /* We could find this information by examining prologues. I don't
1180 think anyone has actually written any tools (not even "strip")
1181 which leave them out of an executable, so maybe this is a moot
1182 point. */
1183 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1184 code that doesn't have unwind entries. For example, stepping into
1185 the dynamic linker will give you a PC that has none. Thus, I've
1186 disabled this warning. */
1187 #if 0
1188 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1189 #endif
1190 return (CORE_ADDR) 0;
1191 }
1192
1193 if (u->Save_SP
1194 || tmp_frame->signal_handler_caller
1195 || pc_in_interrupt_handler (tmp_frame->pc))
1196 break;
1197
1198 /* Entry_GR specifies the number of callee-saved general registers
1199 saved in the stack. It starts at %r3, so %r3 would be 1. */
1200 if (u->Entry_GR >= 1)
1201 {
1202 /* The unwind entry claims that r3 is saved here. However,
1203 in optimized code, GCC often doesn't actually save r3.
1204 We'll discover this if we look at the prologue. */
1205 get_frame_saved_regs (tmp_frame, &saved_regs);
1206 saved_regs_frame = tmp_frame;
1207
1208 /* If we have an address for r3, that's good. */
1209 if (saved_regs.regs[FP_REGNUM])
1210 break;
1211 }
1212 }
1213
1214 if (tmp_frame)
1215 {
1216 /* We may have walked down the chain into a function with a frame
1217 pointer. */
1218 if (u->Save_SP
1219 && !tmp_frame->signal_handler_caller
1220 && !pc_in_interrupt_handler (tmp_frame->pc))
1221 {
1222 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
1223 }
1224 /* %r3 was saved somewhere in the stack. Dig it out. */
1225 else
1226 {
1227 /* Sick.
1228
1229 For optimization purposes many kernels don't have the
1230 callee saved registers into the save_state structure upon
1231 entry into the kernel for a syscall; the optimization
1232 is usually turned off if the process is being traced so
1233 that the debugger can get full register state for the
1234 process.
1235
1236 This scheme works well except for two cases:
1237
1238 * Attaching to a process when the process is in the
1239 kernel performing a system call (debugger can't get
1240 full register state for the inferior process since
1241 the process wasn't being traced when it entered the
1242 system call).
1243
1244 * Register state is not complete if the system call
1245 causes the process to core dump.
1246
1247
1248 The following heinous code is an attempt to deal with
1249 the lack of register state in a core dump. It will
1250 fail miserably if the function which performs the
1251 system call has a variable sized stack frame. */
1252
1253 if (tmp_frame != saved_regs_frame)
1254 get_frame_saved_regs (tmp_frame, &saved_regs);
1255
1256 /* Abominable hack. */
1257 if (current_target.to_has_execution == 0
1258 && ((saved_regs.regs[FLAGS_REGNUM]
1259 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1260 TARGET_PTR_BIT / 8)
1261 & 0x2))
1262 || (saved_regs.regs[FLAGS_REGNUM] == 0
1263 && read_register (FLAGS_REGNUM) & 0x2)))
1264 {
1265 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1266 if (!u)
1267 {
1268 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1269 TARGET_PTR_BIT / 8);
1270 }
1271 else
1272 {
1273 return frame_base - (u->Total_frame_size << 3);
1274 }
1275 }
1276
1277 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1278 TARGET_PTR_BIT / 8);
1279 }
1280 }
1281 else
1282 {
1283 /* Get the innermost frame. */
1284 tmp_frame = frame;
1285 while (tmp_frame->next != NULL)
1286 tmp_frame = tmp_frame->next;
1287
1288 if (tmp_frame != saved_regs_frame)
1289 get_frame_saved_regs (tmp_frame, &saved_regs);
1290
1291 /* Abominable hack. See above. */
1292 if (current_target.to_has_execution == 0
1293 && ((saved_regs.regs[FLAGS_REGNUM]
1294 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1295 TARGET_PTR_BIT / 8)
1296 & 0x2))
1297 || (saved_regs.regs[FLAGS_REGNUM] == 0
1298 && read_register (FLAGS_REGNUM) & 0x2)))
1299 {
1300 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1301 if (!u)
1302 {
1303 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1304 TARGET_PTR_BIT / 8);
1305 }
1306 else
1307 {
1308 return frame_base - (u->Total_frame_size << 3);
1309 }
1310 }
1311
1312 /* The value in %r3 was never saved into the stack (thus %r3 still
1313 holds the value of the previous frame pointer). */
1314 return TARGET_READ_FP ();
1315 }
1316 }
1317 \f
1318
1319 /* To see if a frame chain is valid, see if the caller looks like it
1320 was compiled with gcc. */
1321
1322 int
1323 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1324 {
1325 struct minimal_symbol *msym_us;
1326 struct minimal_symbol *msym_start;
1327 struct unwind_table_entry *u, *next_u = NULL;
1328 struct frame_info *next;
1329
1330 if (!chain)
1331 return 0;
1332
1333 u = find_unwind_entry (thisframe->pc);
1334
1335 if (u == NULL)
1336 return 1;
1337
1338 /* We can't just check that the same of msym_us is "_start", because
1339 someone idiotically decided that they were going to make a Ltext_end
1340 symbol with the same address. This Ltext_end symbol is totally
1341 indistinguishable (as nearly as I can tell) from the symbol for a function
1342 which is (legitimately, since it is in the user's namespace)
1343 named Ltext_end, so we can't just ignore it. */
1344 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1345 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1346 if (msym_us
1347 && msym_start
1348 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1349 return 0;
1350
1351 /* Grrrr. Some new idiot decided that they don't want _start for the
1352 PRO configurations; $START$ calls main directly.... Deal with it. */
1353 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1354 if (msym_us
1355 && msym_start
1356 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1357 return 0;
1358
1359 next = get_next_frame (thisframe);
1360 if (next)
1361 next_u = find_unwind_entry (next->pc);
1362
1363 /* If this frame does not save SP, has no stack, isn't a stub,
1364 and doesn't "call" an interrupt routine or signal handler caller,
1365 then its not valid. */
1366 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1367 || (thisframe->next && thisframe->next->signal_handler_caller)
1368 || (next_u && next_u->HP_UX_interrupt_marker))
1369 return 1;
1370
1371 if (pc_in_linker_stub (thisframe->pc))
1372 return 1;
1373
1374 return 0;
1375 }
1376
1377 /*
1378 These functions deal with saving and restoring register state
1379 around a function call in the inferior. They keep the stack
1380 double-word aligned; eventually, on an hp700, the stack will have
1381 to be aligned to a 64-byte boundary. */
1382
1383 void
1384 push_dummy_frame (struct inferior_status *inf_status)
1385 {
1386 CORE_ADDR sp, pc, pcspace;
1387 register int regnum;
1388 CORE_ADDR int_buffer;
1389 double freg_buffer;
1390
1391 /* Oh, what a hack. If we're trying to perform an inferior call
1392 while the inferior is asleep, we have to make sure to clear
1393 the "in system call" bit in the flag register (the call will
1394 start after the syscall returns, so we're no longer in the system
1395 call!) This state is kept in "inf_status", change it there.
1396
1397 We also need a number of horrid hacks to deal with lossage in the
1398 PC queue registers (apparently they're not valid when the in syscall
1399 bit is set). */
1400 pc = target_read_pc (inferior_ptid);
1401 int_buffer = read_register (FLAGS_REGNUM);
1402 if (int_buffer & 0x2)
1403 {
1404 unsigned int sid;
1405 int_buffer &= ~0x2;
1406 write_inferior_status_register (inf_status, 0, int_buffer);
1407 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1408 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
1409 sid = (pc >> 30) & 0x3;
1410 if (sid == 0)
1411 pcspace = read_register (SR4_REGNUM);
1412 else
1413 pcspace = read_register (SR4_REGNUM + 4 + sid);
1414 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1415 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
1416 }
1417 else
1418 pcspace = read_register (PCSQ_HEAD_REGNUM);
1419
1420 /* Space for "arguments"; the RP goes in here. */
1421 sp = read_register (SP_REGNUM) + 48;
1422 int_buffer = read_register (RP_REGNUM) | 0x3;
1423
1424 /* The 32bit and 64bit ABIs save the return pointer into different
1425 stack slots. */
1426 if (REGISTER_SIZE == 8)
1427 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1428 else
1429 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
1430
1431 int_buffer = TARGET_READ_FP ();
1432 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
1433
1434 write_register (FP_REGNUM, sp);
1435
1436 sp += 2 * REGISTER_SIZE;
1437
1438 for (regnum = 1; regnum < 32; regnum++)
1439 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1440 sp = push_word (sp, read_register (regnum));
1441
1442 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1443 if (REGISTER_SIZE != 8)
1444 sp += 4;
1445
1446 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1447 {
1448 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1449 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1450 }
1451 sp = push_word (sp, read_register (IPSW_REGNUM));
1452 sp = push_word (sp, read_register (SAR_REGNUM));
1453 sp = push_word (sp, pc);
1454 sp = push_word (sp, pcspace);
1455 sp = push_word (sp, pc + 4);
1456 sp = push_word (sp, pcspace);
1457 write_register (SP_REGNUM, sp);
1458 }
1459
1460 static void
1461 find_dummy_frame_regs (struct frame_info *frame,
1462 struct frame_saved_regs *frame_saved_regs)
1463 {
1464 CORE_ADDR fp = frame->frame;
1465 int i;
1466
1467 /* The 32bit and 64bit ABIs save RP into different locations. */
1468 if (REGISTER_SIZE == 8)
1469 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1470 else
1471 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1472
1473 frame_saved_regs->regs[FP_REGNUM] = fp;
1474
1475 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1476
1477 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
1478 {
1479 if (i != FP_REGNUM)
1480 {
1481 frame_saved_regs->regs[i] = fp;
1482 fp += REGISTER_SIZE;
1483 }
1484 }
1485
1486 /* This is not necessary or desirable for the 64bit ABI. */
1487 if (REGISTER_SIZE != 8)
1488 fp += 4;
1489
1490 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1491 frame_saved_regs->regs[i] = fp;
1492
1493 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1494 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1495 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1496 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1497 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1498 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
1499 }
1500
1501 void
1502 hppa_pop_frame (void)
1503 {
1504 register struct frame_info *frame = get_current_frame ();
1505 register CORE_ADDR fp, npc, target_pc;
1506 register int regnum;
1507 struct frame_saved_regs fsr;
1508 double freg_buffer;
1509
1510 fp = FRAME_FP (frame);
1511 get_frame_saved_regs (frame, &fsr);
1512
1513 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1514 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1515 restore_pc_queue (&fsr);
1516 #endif
1517
1518 for (regnum = 31; regnum > 0; regnum--)
1519 if (fsr.regs[regnum])
1520 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1521 REGISTER_SIZE));
1522
1523 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1524 if (fsr.regs[regnum])
1525 {
1526 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1527 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1528 }
1529
1530 if (fsr.regs[IPSW_REGNUM])
1531 write_register (IPSW_REGNUM,
1532 read_memory_integer (fsr.regs[IPSW_REGNUM],
1533 REGISTER_SIZE));
1534
1535 if (fsr.regs[SAR_REGNUM])
1536 write_register (SAR_REGNUM,
1537 read_memory_integer (fsr.regs[SAR_REGNUM],
1538 REGISTER_SIZE));
1539
1540 /* If the PC was explicitly saved, then just restore it. */
1541 if (fsr.regs[PCOQ_TAIL_REGNUM])
1542 {
1543 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1544 REGISTER_SIZE);
1545 write_register (PCOQ_TAIL_REGNUM, npc);
1546 }
1547 /* Else use the value in %rp to set the new PC. */
1548 else
1549 {
1550 npc = read_register (RP_REGNUM);
1551 write_pc (npc);
1552 }
1553
1554 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
1555
1556 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1557 write_register (SP_REGNUM, fp - 48);
1558 else
1559 write_register (SP_REGNUM, fp);
1560
1561 /* The PC we just restored may be inside a return trampoline. If so
1562 we want to restart the inferior and run it through the trampoline.
1563
1564 Do this by setting a momentary breakpoint at the location the
1565 trampoline returns to.
1566
1567 Don't skip through the trampoline if we're popping a dummy frame. */
1568 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1569 if (target_pc && !fsr.regs[IPSW_REGNUM])
1570 {
1571 struct symtab_and_line sal;
1572 struct breakpoint *breakpoint;
1573 struct cleanup *old_chain;
1574
1575 /* Set up our breakpoint. Set it to be silent as the MI code
1576 for "return_command" will print the frame we returned to. */
1577 sal = find_pc_line (target_pc, 0);
1578 sal.pc = target_pc;
1579 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1580 breakpoint->silent = 1;
1581
1582 /* So we can clean things up. */
1583 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1584
1585 /* Start up the inferior. */
1586 clear_proceed_status ();
1587 proceed_to_finish = 1;
1588 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1589
1590 /* Perform our cleanups. */
1591 do_cleanups (old_chain);
1592 }
1593 flush_cached_frames ();
1594 }
1595
1596 /* After returning to a dummy on the stack, restore the instruction
1597 queue space registers. */
1598
1599 static int
1600 restore_pc_queue (struct frame_saved_regs *fsr)
1601 {
1602 CORE_ADDR pc = read_pc ();
1603 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1604 TARGET_PTR_BIT / 8);
1605 struct target_waitstatus w;
1606 int insn_count;
1607
1608 /* Advance past break instruction in the call dummy. */
1609 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1610 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1611
1612 /* HPUX doesn't let us set the space registers or the space
1613 registers of the PC queue through ptrace. Boo, hiss.
1614 Conveniently, the call dummy has this sequence of instructions
1615 after the break:
1616 mtsp r21, sr0
1617 ble,n 0(sr0, r22)
1618
1619 So, load up the registers and single step until we are in the
1620 right place. */
1621
1622 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1623 REGISTER_SIZE));
1624 write_register (22, new_pc);
1625
1626 for (insn_count = 0; insn_count < 3; insn_count++)
1627 {
1628 /* FIXME: What if the inferior gets a signal right now? Want to
1629 merge this into wait_for_inferior (as a special kind of
1630 watchpoint? By setting a breakpoint at the end? Is there
1631 any other choice? Is there *any* way to do this stuff with
1632 ptrace() or some equivalent?). */
1633 resume (1, 0);
1634 target_wait (inferior_ptid, &w);
1635
1636 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1637 {
1638 stop_signal = w.value.sig;
1639 terminal_ours_for_output ();
1640 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1641 target_signal_to_name (stop_signal),
1642 target_signal_to_string (stop_signal));
1643 gdb_flush (gdb_stdout);
1644 return 0;
1645 }
1646 }
1647 target_terminal_ours ();
1648 target_fetch_registers (-1);
1649 return 1;
1650 }
1651
1652
1653 #ifdef PA20W_CALLING_CONVENTIONS
1654
1655 /* This function pushes a stack frame with arguments as part of the
1656 inferior function calling mechanism.
1657
1658 This is the version for the PA64, in which later arguments appear
1659 at higher addresses. (The stack always grows towards higher
1660 addresses.)
1661
1662 We simply allocate the appropriate amount of stack space and put
1663 arguments into their proper slots. The call dummy code will copy
1664 arguments into registers as needed by the ABI.
1665
1666 This ABI also requires that the caller provide an argument pointer
1667 to the callee, so we do that too. */
1668
1669 CORE_ADDR
1670 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1671 int struct_return, CORE_ADDR struct_addr)
1672 {
1673 /* array of arguments' offsets */
1674 int *offset = (int *) alloca (nargs * sizeof (int));
1675
1676 /* array of arguments' lengths: real lengths in bytes, not aligned to
1677 word size */
1678 int *lengths = (int *) alloca (nargs * sizeof (int));
1679
1680 /* The value of SP as it was passed into this function after
1681 aligning. */
1682 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1683
1684 /* The number of stack bytes occupied by the current argument. */
1685 int bytes_reserved;
1686
1687 /* The total number of bytes reserved for the arguments. */
1688 int cum_bytes_reserved = 0;
1689
1690 /* Similarly, but aligned. */
1691 int cum_bytes_aligned = 0;
1692 int i;
1693
1694 /* Iterate over each argument provided by the user. */
1695 for (i = 0; i < nargs; i++)
1696 {
1697 struct type *arg_type = VALUE_TYPE (args[i]);
1698
1699 /* Integral scalar values smaller than a register are padded on
1700 the left. We do this by promoting them to full-width,
1701 although the ABI says to pad them with garbage. */
1702 if (is_integral_type (arg_type)
1703 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1704 {
1705 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1706 ? builtin_type_unsigned_long
1707 : builtin_type_long),
1708 args[i]);
1709 arg_type = VALUE_TYPE (args[i]);
1710 }
1711
1712 lengths[i] = TYPE_LENGTH (arg_type);
1713
1714 /* Align the size of the argument to the word size for this
1715 target. */
1716 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1717
1718 offset[i] = cum_bytes_reserved;
1719
1720 /* Aggregates larger than eight bytes (the only types larger
1721 than eight bytes we have) are aligned on a 16-byte boundary,
1722 possibly padded on the right with garbage. This may leave an
1723 empty word on the stack, and thus an unused register, as per
1724 the ABI. */
1725 if (bytes_reserved > 8)
1726 {
1727 /* Round up the offset to a multiple of two slots. */
1728 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1729 & -(2*REGISTER_SIZE));
1730
1731 /* Note the space we've wasted, if any. */
1732 bytes_reserved += new_offset - offset[i];
1733 offset[i] = new_offset;
1734 }
1735
1736 cum_bytes_reserved += bytes_reserved;
1737 }
1738
1739 /* CUM_BYTES_RESERVED already accounts for all the arguments
1740 passed by the user. However, the ABIs mandate minimum stack space
1741 allocations for outgoing arguments.
1742
1743 The ABIs also mandate minimum stack alignments which we must
1744 preserve. */
1745 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1746 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1747
1748 /* Now write each of the args at the proper offset down the stack. */
1749 for (i = 0; i < nargs; i++)
1750 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1751
1752 /* If a structure has to be returned, set up register 28 to hold its
1753 address */
1754 if (struct_return)
1755 write_register (28, struct_addr);
1756
1757 /* For the PA64 we must pass a pointer to the outgoing argument list.
1758 The ABI mandates that the pointer should point to the first byte of
1759 storage beyond the register flushback area.
1760
1761 However, the call dummy expects the outgoing argument pointer to
1762 be passed in register %r4. */
1763 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1764
1765 /* ?!? This needs further work. We need to set up the global data
1766 pointer for this procedure. This assumes the same global pointer
1767 for every procedure. The call dummy expects the dp value to
1768 be passed in register %r6. */
1769 write_register (6, read_register (27));
1770
1771 /* The stack will have 64 bytes of additional space for a frame marker. */
1772 return sp + 64;
1773 }
1774
1775 #else
1776
1777 /* This function pushes a stack frame with arguments as part of the
1778 inferior function calling mechanism.
1779
1780 This is the version of the function for the 32-bit PA machines, in
1781 which later arguments appear at lower addresses. (The stack always
1782 grows towards higher addresses.)
1783
1784 We simply allocate the appropriate amount of stack space and put
1785 arguments into their proper slots. The call dummy code will copy
1786 arguments into registers as needed by the ABI. */
1787
1788 CORE_ADDR
1789 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1790 int struct_return, CORE_ADDR struct_addr)
1791 {
1792 /* array of arguments' offsets */
1793 int *offset = (int *) alloca (nargs * sizeof (int));
1794
1795 /* array of arguments' lengths: real lengths in bytes, not aligned to
1796 word size */
1797 int *lengths = (int *) alloca (nargs * sizeof (int));
1798
1799 /* The number of stack bytes occupied by the current argument. */
1800 int bytes_reserved;
1801
1802 /* The total number of bytes reserved for the arguments. */
1803 int cum_bytes_reserved = 0;
1804
1805 /* Similarly, but aligned. */
1806 int cum_bytes_aligned = 0;
1807 int i;
1808
1809 /* Iterate over each argument provided by the user. */
1810 for (i = 0; i < nargs; i++)
1811 {
1812 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1813
1814 /* Align the size of the argument to the word size for this
1815 target. */
1816 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1817
1818 offset[i] = (cum_bytes_reserved
1819 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
1820
1821 /* If the argument is a double word argument, then it needs to be
1822 double word aligned. */
1823 if ((bytes_reserved == 2 * REGISTER_SIZE)
1824 && (offset[i] % 2 * REGISTER_SIZE))
1825 {
1826 int new_offset = 0;
1827 /* BYTES_RESERVED is already aligned to the word, so we put
1828 the argument at one word more down the stack.
1829
1830 This will leave one empty word on the stack, and one unused
1831 register as mandated by the ABI. */
1832 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1833 & -(2 * REGISTER_SIZE));
1834
1835 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
1836 {
1837 bytes_reserved += REGISTER_SIZE;
1838 offset[i] += REGISTER_SIZE;
1839 }
1840 }
1841
1842 cum_bytes_reserved += bytes_reserved;
1843
1844 }
1845
1846 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1847 by the user. However, the ABI mandates minimum stack space
1848 allocations for outgoing arguments.
1849
1850 The ABI also mandates minimum stack alignments which we must
1851 preserve. */
1852 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1853 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1854
1855 /* Now write each of the args at the proper offset down the stack.
1856 ?!? We need to promote values to a full register instead of skipping
1857 words in the stack. */
1858 for (i = 0; i < nargs; i++)
1859 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1860
1861 /* If a structure has to be returned, set up register 28 to hold its
1862 address */
1863 if (struct_return)
1864 write_register (28, struct_addr);
1865
1866 /* The stack will have 32 bytes of additional space for a frame marker. */
1867 return sp + 32;
1868 }
1869
1870 #endif
1871
1872 /* elz: this function returns a value which is built looking at the given address.
1873 It is called from call_function_by_hand, in case we need to return a
1874 value which is larger than 64 bits, and it is stored in the stack rather than
1875 in the registers r28 and r29 or fr4.
1876 This function does the same stuff as value_being_returned in values.c, but
1877 gets the value from the stack rather than from the buffer where all the
1878 registers were saved when the function called completed. */
1879 struct value *
1880 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
1881 {
1882 register struct value *val;
1883
1884 val = allocate_value (valtype);
1885 CHECK_TYPEDEF (valtype);
1886 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1887
1888 return val;
1889 }
1890
1891
1892
1893 /* elz: Used to lookup a symbol in the shared libraries.
1894 This function calls shl_findsym, indirectly through a
1895 call to __d_shl_get. __d_shl_get is in end.c, which is always
1896 linked in by the hp compilers/linkers.
1897 The call to shl_findsym cannot be made directly because it needs
1898 to be active in target address space.
1899 inputs: - minimal symbol pointer for the function we want to look up
1900 - address in target space of the descriptor for the library
1901 where we want to look the symbol up.
1902 This address is retrieved using the
1903 som_solib_get_solib_by_pc function (somsolib.c).
1904 output: - real address in the library of the function.
1905 note: the handle can be null, in which case shl_findsym will look for
1906 the symbol in all the loaded shared libraries.
1907 files to look at if you need reference on this stuff:
1908 dld.c, dld_shl_findsym.c
1909 end.c
1910 man entry for shl_findsym */
1911
1912 CORE_ADDR
1913 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
1914 {
1915 struct symbol *get_sym, *symbol2;
1916 struct minimal_symbol *buff_minsym, *msymbol;
1917 struct type *ftype;
1918 struct value **args;
1919 struct value *funcval;
1920 struct value *val;
1921
1922 int x, namelen, err_value, tmp = -1;
1923 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1924 CORE_ADDR stub_addr;
1925
1926
1927 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
1928 funcval = find_function_in_inferior ("__d_shl_get");
1929 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1930 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1931 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1932 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1933 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1934 namelen = strlen (SYMBOL_NAME (function));
1935 value_return_addr = endo_buff_addr + namelen;
1936 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1937
1938 /* do alignment */
1939 if ((x = value_return_addr % 64) != 0)
1940 value_return_addr = value_return_addr + 64 - x;
1941
1942 errno_return_addr = value_return_addr + 64;
1943
1944
1945 /* set up stuff needed by __d_shl_get in buffer in end.o */
1946
1947 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1948
1949 target_write_memory (value_return_addr, (char *) &tmp, 4);
1950
1951 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1952
1953 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1954 (char *) &handle, 4);
1955
1956 /* now prepare the arguments for the call */
1957
1958 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
1959 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1960 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
1961 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
1962 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1963 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
1964
1965 /* now call the function */
1966
1967 val = call_function_by_hand (funcval, 6, args);
1968
1969 /* now get the results */
1970
1971 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1972
1973 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
1974 if (stub_addr <= 0)
1975 error ("call to __d_shl_get failed, error code is %d", err_value);
1976
1977 return (stub_addr);
1978 }
1979
1980 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
1981 static int
1982 cover_find_stub_with_shl_get (PTR args_untyped)
1983 {
1984 args_for_find_stub *args = args_untyped;
1985 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
1986 return 0;
1987 }
1988
1989 /* Insert the specified number of args and function address
1990 into a call sequence of the above form stored at DUMMYNAME.
1991
1992 On the hppa we need to call the stack dummy through $$dyncall.
1993 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1994 real_pc, which is the location where gdb should start up the
1995 inferior to do the function call.
1996
1997 This has to work across several versions of hpux, bsd, osf1. It has to
1998 work regardless of what compiler was used to build the inferior program.
1999 It should work regardless of whether or not end.o is available. It has
2000 to work even if gdb can not call into the dynamic loader in the inferior
2001 to query it for symbol names and addresses.
2002
2003 Yes, all those cases should work. Luckily code exists to handle most
2004 of them. The complexity is in selecting exactly what scheme should
2005 be used to perform the inferior call.
2006
2007 At the current time this routine is known not to handle cases where
2008 the program was linked with HP's compiler without including end.o.
2009
2010 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2011
2012 CORE_ADDR
2013 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2014 struct value **args, struct type *type, int gcc_p)
2015 {
2016 CORE_ADDR dyncall_addr;
2017 struct minimal_symbol *msymbol;
2018 struct minimal_symbol *trampoline;
2019 int flags = read_register (FLAGS_REGNUM);
2020 struct unwind_table_entry *u = NULL;
2021 CORE_ADDR new_stub = 0;
2022 CORE_ADDR solib_handle = 0;
2023
2024 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2025 passed an import stub, not a PLABEL. It is also necessary to set %r19
2026 (the PIC register) before performing the call.
2027
2028 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2029 are calling the target directly. When using __d_plt_call we want to
2030 use a PLABEL instead of an import stub. */
2031 int using_gcc_plt_call = 1;
2032
2033 #ifdef GDB_TARGET_IS_HPPA_20W
2034 /* We currently use completely different code for the PA2.0W inferior
2035 function call sequences. This needs to be cleaned up. */
2036 {
2037 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2038 struct target_waitstatus w;
2039 int inst1, inst2;
2040 char buf[4];
2041 int status;
2042 struct objfile *objfile;
2043
2044 /* We can not modify the PC space queues directly, so we start
2045 up the inferior and execute a couple instructions to set the
2046 space queues so that they point to the call dummy in the stack. */
2047 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2048 sr5 = read_register (SR5_REGNUM);
2049 if (1)
2050 {
2051 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2052 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2053 if (target_read_memory (pcoqh, buf, 4) != 0)
2054 error ("Couldn't modify space queue\n");
2055 inst1 = extract_unsigned_integer (buf, 4);
2056
2057 if (target_read_memory (pcoqt, buf, 4) != 0)
2058 error ("Couldn't modify space queue\n");
2059 inst2 = extract_unsigned_integer (buf, 4);
2060
2061 /* BVE (r1) */
2062 *((int *) buf) = 0xe820d000;
2063 if (target_write_memory (pcoqh, buf, 4) != 0)
2064 error ("Couldn't modify space queue\n");
2065
2066 /* NOP */
2067 *((int *) buf) = 0x08000240;
2068 if (target_write_memory (pcoqt, buf, 4) != 0)
2069 {
2070 *((int *) buf) = inst1;
2071 target_write_memory (pcoqh, buf, 4);
2072 error ("Couldn't modify space queue\n");
2073 }
2074
2075 write_register (1, pc);
2076
2077 /* Single step twice, the BVE instruction will set the space queue
2078 such that it points to the PC value written immediately above
2079 (ie the call dummy). */
2080 resume (1, 0);
2081 target_wait (inferior_ptid, &w);
2082 resume (1, 0);
2083 target_wait (inferior_ptid, &w);
2084
2085 /* Restore the two instructions at the old PC locations. */
2086 *((int *) buf) = inst1;
2087 target_write_memory (pcoqh, buf, 4);
2088 *((int *) buf) = inst2;
2089 target_write_memory (pcoqt, buf, 4);
2090 }
2091
2092 /* The call dummy wants the ultimate destination address initially
2093 in register %r5. */
2094 write_register (5, fun);
2095
2096 /* We need to see if this objfile has a different DP value than our
2097 own (it could be a shared library for example). */
2098 ALL_OBJFILES (objfile)
2099 {
2100 struct obj_section *s;
2101 obj_private_data_t *obj_private;
2102
2103 /* See if FUN is in any section within this shared library. */
2104 for (s = objfile->sections; s < objfile->sections_end; s++)
2105 if (s->addr <= fun && fun < s->endaddr)
2106 break;
2107
2108 if (s >= objfile->sections_end)
2109 continue;
2110
2111 obj_private = (obj_private_data_t *) objfile->obj_private;
2112
2113 /* The DP value may be different for each objfile. But within an
2114 objfile each function uses the same dp value. Thus we do not need
2115 to grope around the opd section looking for dp values.
2116
2117 ?!? This is not strictly correct since we may be in a shared library
2118 and want to call back into the main program. To make that case
2119 work correctly we need to set obj_private->dp for the main program's
2120 objfile, then remove this conditional. */
2121 if (obj_private->dp)
2122 write_register (27, obj_private->dp);
2123 break;
2124 }
2125 return pc;
2126 }
2127 #endif
2128
2129 #ifndef GDB_TARGET_IS_HPPA_20W
2130 /* Prefer __gcc_plt_call over the HP supplied routine because
2131 __gcc_plt_call works for any number of arguments. */
2132 trampoline = NULL;
2133 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2134 using_gcc_plt_call = 0;
2135
2136 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2137 if (msymbol == NULL)
2138 error ("Can't find an address for $$dyncall trampoline");
2139
2140 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2141
2142 /* FUN could be a procedure label, in which case we have to get
2143 its real address and the value of its GOT/DP if we plan to
2144 call the routine via gcc_plt_call. */
2145 if ((fun & 0x2) && using_gcc_plt_call)
2146 {
2147 /* Get the GOT/DP value for the target function. It's
2148 at *(fun+4). Note the call dummy is *NOT* allowed to
2149 trash %r19 before calling the target function. */
2150 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2151 REGISTER_SIZE));
2152
2153 /* Now get the real address for the function we are calling, it's
2154 at *fun. */
2155 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2156 TARGET_PTR_BIT / 8);
2157 }
2158 else
2159 {
2160
2161 #ifndef GDB_TARGET_IS_PA_ELF
2162 /* FUN could be an export stub, the real address of a function, or
2163 a PLABEL. When using gcc's PLT call routine we must call an import
2164 stub rather than the export stub or real function for lazy binding
2165 to work correctly
2166
2167 If we are using the gcc PLT call routine, then we need to
2168 get the import stub for the target function. */
2169 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2170 {
2171 struct objfile *objfile;
2172 struct minimal_symbol *funsymbol, *stub_symbol;
2173 CORE_ADDR newfun = 0;
2174
2175 funsymbol = lookup_minimal_symbol_by_pc (fun);
2176 if (!funsymbol)
2177 error ("Unable to find minimal symbol for target function.\n");
2178
2179 /* Search all the object files for an import symbol with the
2180 right name. */
2181 ALL_OBJFILES (objfile)
2182 {
2183 stub_symbol
2184 = lookup_minimal_symbol_solib_trampoline
2185 (SYMBOL_NAME (funsymbol), NULL, objfile);
2186
2187 if (!stub_symbol)
2188 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2189 NULL, objfile);
2190
2191 /* Found a symbol with the right name. */
2192 if (stub_symbol)
2193 {
2194 struct unwind_table_entry *u;
2195 /* It must be a shared library trampoline. */
2196 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2197 continue;
2198
2199 /* It must also be an import stub. */
2200 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2201 if (u == NULL
2202 || (u->stub_unwind.stub_type != IMPORT
2203 #ifdef GDB_NATIVE_HPUX_11
2204 /* Sigh. The hpux 10.20 dynamic linker will blow
2205 chunks if we perform a call to an unbound function
2206 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2207 linker will blow chunks if we do not call the
2208 unbound function via the IMPORT_SHLIB stub.
2209
2210 We currently have no way to select bevahior on just
2211 the target. However, we only support HPUX/SOM in
2212 native mode. So we conditinalize on a native
2213 #ifdef. Ugly. Ugly. Ugly */
2214 && u->stub_unwind.stub_type != IMPORT_SHLIB
2215 #endif
2216 ))
2217 continue;
2218
2219 /* OK. Looks like the correct import stub. */
2220 newfun = SYMBOL_VALUE (stub_symbol);
2221 fun = newfun;
2222
2223 /* If we found an IMPORT stub, then we want to stop
2224 searching now. If we found an IMPORT_SHLIB, we want
2225 to continue the search in the hopes that we will find
2226 an IMPORT stub. */
2227 if (u->stub_unwind.stub_type == IMPORT)
2228 break;
2229 }
2230 }
2231
2232 /* Ouch. We did not find an import stub. Make an attempt to
2233 do the right thing instead of just croaking. Most of the
2234 time this will actually work. */
2235 if (newfun == 0)
2236 write_register (19, som_solib_get_got_by_pc (fun));
2237
2238 u = find_unwind_entry (fun);
2239 if (u
2240 && (u->stub_unwind.stub_type == IMPORT
2241 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2242 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2243
2244 /* If we found the import stub in the shared library, then we have
2245 to set %r19 before we call the stub. */
2246 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2247 write_register (19, som_solib_get_got_by_pc (fun));
2248 }
2249 #endif
2250 }
2251
2252 /* If we are calling into another load module then have sr4export call the
2253 magic __d_plt_call routine which is linked in from end.o.
2254
2255 You can't use _sr4export to make the call as the value in sp-24 will get
2256 fried and you end up returning to the wrong location. You can't call the
2257 target as the code to bind the PLT entry to a function can't return to a
2258 stack address.
2259
2260 Also, query the dynamic linker in the inferior to provide a suitable
2261 PLABEL for the target function. */
2262 if (!using_gcc_plt_call)
2263 {
2264 CORE_ADDR new_fun;
2265
2266 /* Get a handle for the shared library containing FUN. Given the
2267 handle we can query the shared library for a PLABEL. */
2268 solib_handle = som_solib_get_solib_by_pc (fun);
2269
2270 if (solib_handle)
2271 {
2272 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2273
2274 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2275
2276 if (trampoline == NULL)
2277 {
2278 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2279 }
2280
2281 /* This is where sr4export will jump to. */
2282 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2283
2284 /* If the function is in a shared library, then call __d_shl_get to
2285 get a PLABEL for the target function. */
2286 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2287
2288 if (new_stub == 0)
2289 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
2290
2291 /* We have to store the address of the stub in __shlib_funcptr. */
2292 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2293 (struct objfile *) NULL);
2294
2295 if (msymbol == NULL)
2296 error ("Can't find an address for __shlib_funcptr");
2297 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2298 (char *) &new_stub, 4);
2299
2300 /* We want sr4export to call __d_plt_call, so we claim it is
2301 the final target. Clear trampoline. */
2302 fun = new_fun;
2303 trampoline = NULL;
2304 }
2305 }
2306
2307 /* Store upper 21 bits of function address into ldil. fun will either be
2308 the final target (most cases) or __d_plt_call when calling into a shared
2309 library and __gcc_plt_call is not available. */
2310 store_unsigned_integer
2311 (&dummy[FUNC_LDIL_OFFSET],
2312 INSTRUCTION_SIZE,
2313 deposit_21 (fun >> 11,
2314 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2315 INSTRUCTION_SIZE)));
2316
2317 /* Store lower 11 bits of function address into ldo */
2318 store_unsigned_integer
2319 (&dummy[FUNC_LDO_OFFSET],
2320 INSTRUCTION_SIZE,
2321 deposit_14 (fun & MASK_11,
2322 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2323 INSTRUCTION_SIZE)));
2324 #ifdef SR4EXPORT_LDIL_OFFSET
2325
2326 {
2327 CORE_ADDR trampoline_addr;
2328
2329 /* We may still need sr4export's address too. */
2330
2331 if (trampoline == NULL)
2332 {
2333 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2334 if (msymbol == NULL)
2335 error ("Can't find an address for _sr4export trampoline");
2336
2337 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2338 }
2339 else
2340 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2341
2342
2343 /* Store upper 21 bits of trampoline's address into ldil */
2344 store_unsigned_integer
2345 (&dummy[SR4EXPORT_LDIL_OFFSET],
2346 INSTRUCTION_SIZE,
2347 deposit_21 (trampoline_addr >> 11,
2348 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2349 INSTRUCTION_SIZE)));
2350
2351 /* Store lower 11 bits of trampoline's address into ldo */
2352 store_unsigned_integer
2353 (&dummy[SR4EXPORT_LDO_OFFSET],
2354 INSTRUCTION_SIZE,
2355 deposit_14 (trampoline_addr & MASK_11,
2356 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2357 INSTRUCTION_SIZE)));
2358 }
2359 #endif
2360
2361 write_register (22, pc);
2362
2363 /* If we are in a syscall, then we should call the stack dummy
2364 directly. $$dyncall is not needed as the kernel sets up the
2365 space id registers properly based on the value in %r31. In
2366 fact calling $$dyncall will not work because the value in %r22
2367 will be clobbered on the syscall exit path.
2368
2369 Similarly if the current PC is in a shared library. Note however,
2370 this scheme won't work if the shared library isn't mapped into
2371 the same space as the stack. */
2372 if (flags & 2)
2373 return pc;
2374 #ifndef GDB_TARGET_IS_PA_ELF
2375 else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid)))
2376 return pc;
2377 #endif
2378 else
2379 return dyncall_addr;
2380 #endif
2381 }
2382
2383
2384
2385
2386 /* If the pid is in a syscall, then the FP register is not readable.
2387 We'll return zero in that case, rather than attempting to read it
2388 and cause a warning. */
2389 CORE_ADDR
2390 target_read_fp (int pid)
2391 {
2392 int flags = read_register (FLAGS_REGNUM);
2393
2394 if (flags & 2)
2395 {
2396 return (CORE_ADDR) 0;
2397 }
2398
2399 /* This is the only site that may directly read_register () the FP
2400 register. All others must use TARGET_READ_FP (). */
2401 return read_register (FP_REGNUM);
2402 }
2403
2404
2405 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2406 bits. */
2407
2408 CORE_ADDR
2409 target_read_pc (ptid_t ptid)
2410 {
2411 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2412
2413 /* The following test does not belong here. It is OS-specific, and belongs
2414 in native code. */
2415 /* Test SS_INSYSCALL */
2416 if (flags & 2)
2417 return read_register_pid (31, ptid) & ~0x3;
2418
2419 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2420 }
2421
2422 /* Write out the PC. If currently in a syscall, then also write the new
2423 PC value into %r31. */
2424
2425 void
2426 target_write_pc (CORE_ADDR v, ptid_t ptid)
2427 {
2428 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2429
2430 /* The following test does not belong here. It is OS-specific, and belongs
2431 in native code. */
2432 /* If in a syscall, then set %r31. Also make sure to get the
2433 privilege bits set correctly. */
2434 /* Test SS_INSYSCALL */
2435 if (flags & 2)
2436 write_register_pid (31, v | 0x3, ptid);
2437
2438 write_register_pid (PC_REGNUM, v, ptid);
2439 write_register_pid (NPC_REGNUM, v + 4, ptid);
2440 }
2441
2442 /* return the alignment of a type in bytes. Structures have the maximum
2443 alignment required by their fields. */
2444
2445 static int
2446 hppa_alignof (struct type *type)
2447 {
2448 int max_align, align, i;
2449 CHECK_TYPEDEF (type);
2450 switch (TYPE_CODE (type))
2451 {
2452 case TYPE_CODE_PTR:
2453 case TYPE_CODE_INT:
2454 case TYPE_CODE_FLT:
2455 return TYPE_LENGTH (type);
2456 case TYPE_CODE_ARRAY:
2457 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2458 case TYPE_CODE_STRUCT:
2459 case TYPE_CODE_UNION:
2460 max_align = 1;
2461 for (i = 0; i < TYPE_NFIELDS (type); i++)
2462 {
2463 /* Bit fields have no real alignment. */
2464 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2465 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2466 {
2467 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2468 max_align = max (max_align, align);
2469 }
2470 }
2471 return max_align;
2472 default:
2473 return 4;
2474 }
2475 }
2476
2477 /* Print the register regnum, or all registers if regnum is -1 */
2478
2479 void
2480 pa_do_registers_info (int regnum, int fpregs)
2481 {
2482 char raw_regs[REGISTER_BYTES];
2483 int i;
2484
2485 /* Make a copy of gdb's save area (may cause actual
2486 reads from the target). */
2487 for (i = 0; i < NUM_REGS; i++)
2488 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2489
2490 if (regnum == -1)
2491 pa_print_registers (raw_regs, regnum, fpregs);
2492 else if (regnum < FP4_REGNUM)
2493 {
2494 long reg_val[2];
2495
2496 /* Why is the value not passed through "extract_signed_integer"
2497 as in "pa_print_registers" below? */
2498 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2499
2500 if (!is_pa_2)
2501 {
2502 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2503 }
2504 else
2505 {
2506 /* Fancy % formats to prevent leading zeros. */
2507 if (reg_val[0] == 0)
2508 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2509 else
2510 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2511 reg_val[0], reg_val[1]);
2512 }
2513 }
2514 else
2515 /* Note that real floating point values only start at
2516 FP4_REGNUM. FP0 and up are just status and error
2517 registers, which have integral (bit) values. */
2518 pa_print_fp_reg (regnum);
2519 }
2520
2521 /********** new function ********************/
2522 void
2523 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2524 enum precision_type precision)
2525 {
2526 char raw_regs[REGISTER_BYTES];
2527 int i;
2528
2529 /* Make a copy of gdb's save area (may cause actual
2530 reads from the target). */
2531 for (i = 0; i < NUM_REGS; i++)
2532 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2533
2534 if (regnum == -1)
2535 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2536
2537 else if (regnum < FP4_REGNUM)
2538 {
2539 long reg_val[2];
2540
2541 /* Why is the value not passed through "extract_signed_integer"
2542 as in "pa_print_registers" below? */
2543 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2544
2545 if (!is_pa_2)
2546 {
2547 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2548 }
2549 else
2550 {
2551 /* Fancy % formats to prevent leading zeros. */
2552 if (reg_val[0] == 0)
2553 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2554 reg_val[1]);
2555 else
2556 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2557 reg_val[0], reg_val[1]);
2558 }
2559 }
2560 else
2561 /* Note that real floating point values only start at
2562 FP4_REGNUM. FP0 and up are just status and error
2563 registers, which have integral (bit) values. */
2564 pa_strcat_fp_reg (regnum, stream, precision);
2565 }
2566
2567 /* If this is a PA2.0 machine, fetch the real 64-bit register
2568 value. Otherwise use the info from gdb's saved register area.
2569
2570 Note that reg_val is really expected to be an array of longs,
2571 with two elements. */
2572 static void
2573 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2574 {
2575 static int know_which = 0; /* False */
2576
2577 int regaddr;
2578 unsigned int offset;
2579 register int i;
2580 int start;
2581
2582
2583 char buf[MAX_REGISTER_RAW_SIZE];
2584 long long reg_val;
2585
2586 if (!know_which)
2587 {
2588 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2589 {
2590 is_pa_2 = (1 == 1);
2591 }
2592
2593 know_which = 1; /* True */
2594 }
2595
2596 raw_val[0] = 0;
2597 raw_val[1] = 0;
2598
2599 if (!is_pa_2)
2600 {
2601 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2602 return;
2603 }
2604
2605 /* Code below copied from hppah-nat.c, with fixes for wide
2606 registers, using different area of save_state, etc. */
2607 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2608 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2609 {
2610 /* Use narrow regs area of save_state and default macro. */
2611 offset = U_REGS_OFFSET;
2612 regaddr = register_addr (regnum, offset);
2613 start = 1;
2614 }
2615 else
2616 {
2617 /* Use wide regs area, and calculate registers as 8 bytes wide.
2618
2619 We'd like to do this, but current version of "C" doesn't
2620 permit "offsetof":
2621
2622 offset = offsetof(save_state_t, ss_wide);
2623
2624 Note that to avoid "C" doing typed pointer arithmetic, we
2625 have to cast away the type in our offset calculation:
2626 otherwise we get an offset of 1! */
2627
2628 /* NB: save_state_t is not available before HPUX 9.
2629 The ss_wide field is not available previous to HPUX 10.20,
2630 so to avoid compile-time warnings, we only compile this for
2631 PA 2.0 processors. This control path should only be followed
2632 if we're debugging a PA 2.0 processor, so this should not cause
2633 problems. */
2634
2635 /* #if the following code out so that this file can still be
2636 compiled on older HPUX boxes (< 10.20) which don't have
2637 this structure/structure member. */
2638 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2639 save_state_t temp;
2640
2641 offset = ((int) &temp.ss_wide) - ((int) &temp);
2642 regaddr = offset + regnum * 8;
2643 start = 0;
2644 #endif
2645 }
2646
2647 for (i = start; i < 2; i++)
2648 {
2649 errno = 0;
2650 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2651 (PTRACE_ARG3_TYPE) regaddr, 0);
2652 if (errno != 0)
2653 {
2654 /* Warning, not error, in case we are attached; sometimes the
2655 kernel doesn't let us at the registers. */
2656 char *err = safe_strerror (errno);
2657 char *msg = alloca (strlen (err) + 128);
2658 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2659 warning (msg);
2660 goto error_exit;
2661 }
2662
2663 regaddr += sizeof (long);
2664 }
2665
2666 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2667 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2668
2669 error_exit:
2670 ;
2671 }
2672
2673 /* "Info all-reg" command */
2674
2675 static void
2676 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2677 {
2678 int i, j;
2679 /* Alas, we are compiled so that "long long" is 32 bits */
2680 long raw_val[2];
2681 long long_val;
2682 int rows = 48, columns = 2;
2683
2684 for (i = 0; i < rows; i++)
2685 {
2686 for (j = 0; j < columns; j++)
2687 {
2688 /* We display registers in column-major order. */
2689 int regnum = i + j * rows;
2690
2691 /* Q: Why is the value passed through "extract_signed_integer",
2692 while above, in "pa_do_registers_info" it isn't?
2693 A: ? */
2694 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2695
2696 /* Even fancier % formats to prevent leading zeros
2697 and still maintain the output in columns. */
2698 if (!is_pa_2)
2699 {
2700 /* Being big-endian, on this machine the low bits
2701 (the ones we want to look at) are in the second longword. */
2702 long_val = extract_signed_integer (&raw_val[1], 4);
2703 printf_filtered ("%10.10s: %8lx ",
2704 REGISTER_NAME (regnum), long_val);
2705 }
2706 else
2707 {
2708 /* raw_val = extract_signed_integer(&raw_val, 8); */
2709 if (raw_val[0] == 0)
2710 printf_filtered ("%10.10s: %8lx ",
2711 REGISTER_NAME (regnum), raw_val[1]);
2712 else
2713 printf_filtered ("%10.10s: %8lx%8.8lx ",
2714 REGISTER_NAME (regnum),
2715 raw_val[0], raw_val[1]);
2716 }
2717 }
2718 printf_unfiltered ("\n");
2719 }
2720
2721 if (fpregs)
2722 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2723 pa_print_fp_reg (i);
2724 }
2725
2726 /************* new function ******************/
2727 static void
2728 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2729 struct ui_file *stream)
2730 {
2731 int i, j;
2732 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2733 long long_val;
2734 enum precision_type precision;
2735
2736 precision = unspecified_precision;
2737
2738 for (i = 0; i < 18; i++)
2739 {
2740 for (j = 0; j < 4; j++)
2741 {
2742 /* Q: Why is the value passed through "extract_signed_integer",
2743 while above, in "pa_do_registers_info" it isn't?
2744 A: ? */
2745 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2746
2747 /* Even fancier % formats to prevent leading zeros
2748 and still maintain the output in columns. */
2749 if (!is_pa_2)
2750 {
2751 /* Being big-endian, on this machine the low bits
2752 (the ones we want to look at) are in the second longword. */
2753 long_val = extract_signed_integer (&raw_val[1], 4);
2754 fprintf_filtered (stream, "%8.8s: %8lx ",
2755 REGISTER_NAME (i + (j * 18)), long_val);
2756 }
2757 else
2758 {
2759 /* raw_val = extract_signed_integer(&raw_val, 8); */
2760 if (raw_val[0] == 0)
2761 fprintf_filtered (stream, "%8.8s: %8lx ",
2762 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2763 else
2764 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2765 REGISTER_NAME (i + (j * 18)), raw_val[0],
2766 raw_val[1]);
2767 }
2768 }
2769 fprintf_unfiltered (stream, "\n");
2770 }
2771
2772 if (fpregs)
2773 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2774 pa_strcat_fp_reg (i, stream, precision);
2775 }
2776
2777 static void
2778 pa_print_fp_reg (int i)
2779 {
2780 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2781 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2782
2783 /* Get 32bits of data. */
2784 read_relative_register_raw_bytes (i, raw_buffer);
2785
2786 /* Put it in the buffer. No conversions are ever necessary. */
2787 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2788
2789 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2790 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2791 fputs_filtered ("(single precision) ", gdb_stdout);
2792
2793 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2794 1, 0, Val_pretty_default);
2795 printf_filtered ("\n");
2796
2797 /* If "i" is even, then this register can also be a double-precision
2798 FP register. Dump it out as such. */
2799 if ((i % 2) == 0)
2800 {
2801 /* Get the data in raw format for the 2nd half. */
2802 read_relative_register_raw_bytes (i + 1, raw_buffer);
2803
2804 /* Copy it into the appropriate part of the virtual buffer. */
2805 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2806 REGISTER_RAW_SIZE (i));
2807
2808 /* Dump it as a double. */
2809 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2810 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2811 fputs_filtered ("(double precision) ", gdb_stdout);
2812
2813 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2814 1, 0, Val_pretty_default);
2815 printf_filtered ("\n");
2816 }
2817 }
2818
2819 /*************** new function ***********************/
2820 static void
2821 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2822 {
2823 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2824 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2825
2826 fputs_filtered (REGISTER_NAME (i), stream);
2827 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2828
2829 /* Get 32bits of data. */
2830 read_relative_register_raw_bytes (i, raw_buffer);
2831
2832 /* Put it in the buffer. No conversions are ever necessary. */
2833 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2834
2835 if (precision == double_precision && (i % 2) == 0)
2836 {
2837
2838 char raw_buf[MAX_REGISTER_RAW_SIZE];
2839
2840 /* Get the data in raw format for the 2nd half. */
2841 read_relative_register_raw_bytes (i + 1, raw_buf);
2842
2843 /* Copy it into the appropriate part of the virtual buffer. */
2844 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2845
2846 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2847 1, 0, Val_pretty_default);
2848
2849 }
2850 else
2851 {
2852 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2853 1, 0, Val_pretty_default);
2854 }
2855
2856 }
2857
2858 /* Return one if PC is in the call path of a trampoline, else return zero.
2859
2860 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2861 just shared library trampolines (import, export). */
2862
2863 int
2864 in_solib_call_trampoline (CORE_ADDR pc, char *name)
2865 {
2866 struct minimal_symbol *minsym;
2867 struct unwind_table_entry *u;
2868 static CORE_ADDR dyncall = 0;
2869 static CORE_ADDR sr4export = 0;
2870
2871 #ifdef GDB_TARGET_IS_HPPA_20W
2872 /* PA64 has a completely different stub/trampoline scheme. Is it
2873 better? Maybe. It's certainly harder to determine with any
2874 certainty that we are in a stub because we can not refer to the
2875 unwinders to help.
2876
2877 The heuristic is simple. Try to lookup the current PC value in th
2878 minimal symbol table. If that fails, then assume we are not in a
2879 stub and return.
2880
2881 Then see if the PC value falls within the section bounds for the
2882 section containing the minimal symbol we found in the first
2883 step. If it does, then assume we are not in a stub and return.
2884
2885 Finally peek at the instructions to see if they look like a stub. */
2886 {
2887 struct minimal_symbol *minsym;
2888 asection *sec;
2889 CORE_ADDR addr;
2890 int insn, i;
2891
2892 minsym = lookup_minimal_symbol_by_pc (pc);
2893 if (! minsym)
2894 return 0;
2895
2896 sec = SYMBOL_BFD_SECTION (minsym);
2897
2898 if (sec->vma <= pc
2899 && sec->vma + sec->_cooked_size < pc)
2900 return 0;
2901
2902 /* We might be in a stub. Peek at the instructions. Stubs are 3
2903 instructions long. */
2904 insn = read_memory_integer (pc, 4);
2905
2906 /* Find out where we think we are within the stub. */
2907 if ((insn & 0xffffc00e) == 0x53610000)
2908 addr = pc;
2909 else if ((insn & 0xffffffff) == 0xe820d000)
2910 addr = pc - 4;
2911 else if ((insn & 0xffffc00e) == 0x537b0000)
2912 addr = pc - 8;
2913 else
2914 return 0;
2915
2916 /* Now verify each insn in the range looks like a stub instruction. */
2917 insn = read_memory_integer (addr, 4);
2918 if ((insn & 0xffffc00e) != 0x53610000)
2919 return 0;
2920
2921 /* Now verify each insn in the range looks like a stub instruction. */
2922 insn = read_memory_integer (addr + 4, 4);
2923 if ((insn & 0xffffffff) != 0xe820d000)
2924 return 0;
2925
2926 /* Now verify each insn in the range looks like a stub instruction. */
2927 insn = read_memory_integer (addr + 8, 4);
2928 if ((insn & 0xffffc00e) != 0x537b0000)
2929 return 0;
2930
2931 /* Looks like a stub. */
2932 return 1;
2933 }
2934 #endif
2935
2936 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2937 new exec file */
2938
2939 /* First see if PC is in one of the two C-library trampolines. */
2940 if (!dyncall)
2941 {
2942 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2943 if (minsym)
2944 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2945 else
2946 dyncall = -1;
2947 }
2948
2949 if (!sr4export)
2950 {
2951 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2952 if (minsym)
2953 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2954 else
2955 sr4export = -1;
2956 }
2957
2958 if (pc == dyncall || pc == sr4export)
2959 return 1;
2960
2961 minsym = lookup_minimal_symbol_by_pc (pc);
2962 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
2963 return 1;
2964
2965 /* Get the unwind descriptor corresponding to PC, return zero
2966 if no unwind was found. */
2967 u = find_unwind_entry (pc);
2968 if (!u)
2969 return 0;
2970
2971 /* If this isn't a linker stub, then return now. */
2972 if (u->stub_unwind.stub_type == 0)
2973 return 0;
2974
2975 /* By definition a long-branch stub is a call stub. */
2976 if (u->stub_unwind.stub_type == LONG_BRANCH)
2977 return 1;
2978
2979 /* The call and return path execute the same instructions within
2980 an IMPORT stub! So an IMPORT stub is both a call and return
2981 trampoline. */
2982 if (u->stub_unwind.stub_type == IMPORT)
2983 return 1;
2984
2985 /* Parameter relocation stubs always have a call path and may have a
2986 return path. */
2987 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2988 || u->stub_unwind.stub_type == EXPORT)
2989 {
2990 CORE_ADDR addr;
2991
2992 /* Search forward from the current PC until we hit a branch
2993 or the end of the stub. */
2994 for (addr = pc; addr <= u->region_end; addr += 4)
2995 {
2996 unsigned long insn;
2997
2998 insn = read_memory_integer (addr, 4);
2999
3000 /* Does it look like a bl? If so then it's the call path, if
3001 we find a bv or be first, then we're on the return path. */
3002 if ((insn & 0xfc00e000) == 0xe8000000)
3003 return 1;
3004 else if ((insn & 0xfc00e001) == 0xe800c000
3005 || (insn & 0xfc000000) == 0xe0000000)
3006 return 0;
3007 }
3008
3009 /* Should never happen. */
3010 warning ("Unable to find branch in parameter relocation stub.\n");
3011 return 0;
3012 }
3013
3014 /* Unknown stub type. For now, just return zero. */
3015 return 0;
3016 }
3017
3018 /* Return one if PC is in the return path of a trampoline, else return zero.
3019
3020 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3021 just shared library trampolines (import, export). */
3022
3023 int
3024 in_solib_return_trampoline (CORE_ADDR pc, char *name)
3025 {
3026 struct unwind_table_entry *u;
3027
3028 /* Get the unwind descriptor corresponding to PC, return zero
3029 if no unwind was found. */
3030 u = find_unwind_entry (pc);
3031 if (!u)
3032 return 0;
3033
3034 /* If this isn't a linker stub or it's just a long branch stub, then
3035 return zero. */
3036 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3037 return 0;
3038
3039 /* The call and return path execute the same instructions within
3040 an IMPORT stub! So an IMPORT stub is both a call and return
3041 trampoline. */
3042 if (u->stub_unwind.stub_type == IMPORT)
3043 return 1;
3044
3045 /* Parameter relocation stubs always have a call path and may have a
3046 return path. */
3047 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3048 || u->stub_unwind.stub_type == EXPORT)
3049 {
3050 CORE_ADDR addr;
3051
3052 /* Search forward from the current PC until we hit a branch
3053 or the end of the stub. */
3054 for (addr = pc; addr <= u->region_end; addr += 4)
3055 {
3056 unsigned long insn;
3057
3058 insn = read_memory_integer (addr, 4);
3059
3060 /* Does it look like a bl? If so then it's the call path, if
3061 we find a bv or be first, then we're on the return path. */
3062 if ((insn & 0xfc00e000) == 0xe8000000)
3063 return 0;
3064 else if ((insn & 0xfc00e001) == 0xe800c000
3065 || (insn & 0xfc000000) == 0xe0000000)
3066 return 1;
3067 }
3068
3069 /* Should never happen. */
3070 warning ("Unable to find branch in parameter relocation stub.\n");
3071 return 0;
3072 }
3073
3074 /* Unknown stub type. For now, just return zero. */
3075 return 0;
3076
3077 }
3078
3079 /* Figure out if PC is in a trampoline, and if so find out where
3080 the trampoline will jump to. If not in a trampoline, return zero.
3081
3082 Simple code examination probably is not a good idea since the code
3083 sequences in trampolines can also appear in user code.
3084
3085 We use unwinds and information from the minimal symbol table to
3086 determine when we're in a trampoline. This won't work for ELF
3087 (yet) since it doesn't create stub unwind entries. Whether or
3088 not ELF will create stub unwinds or normal unwinds for linker
3089 stubs is still being debated.
3090
3091 This should handle simple calls through dyncall or sr4export,
3092 long calls, argument relocation stubs, and dyncall/sr4export
3093 calling an argument relocation stub. It even handles some stubs
3094 used in dynamic executables. */
3095
3096 CORE_ADDR
3097 skip_trampoline_code (CORE_ADDR pc, char *name)
3098 {
3099 long orig_pc = pc;
3100 long prev_inst, curr_inst, loc;
3101 static CORE_ADDR dyncall = 0;
3102 static CORE_ADDR dyncall_external = 0;
3103 static CORE_ADDR sr4export = 0;
3104 struct minimal_symbol *msym;
3105 struct unwind_table_entry *u;
3106
3107 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3108 new exec file */
3109
3110 if (!dyncall)
3111 {
3112 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3113 if (msym)
3114 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3115 else
3116 dyncall = -1;
3117 }
3118
3119 if (!dyncall_external)
3120 {
3121 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3122 if (msym)
3123 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3124 else
3125 dyncall_external = -1;
3126 }
3127
3128 if (!sr4export)
3129 {
3130 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3131 if (msym)
3132 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3133 else
3134 sr4export = -1;
3135 }
3136
3137 /* Addresses passed to dyncall may *NOT* be the actual address
3138 of the function. So we may have to do something special. */
3139 if (pc == dyncall)
3140 {
3141 pc = (CORE_ADDR) read_register (22);
3142
3143 /* If bit 30 (counting from the left) is on, then pc is the address of
3144 the PLT entry for this function, not the address of the function
3145 itself. Bit 31 has meaning too, but only for MPE. */
3146 if (pc & 0x2)
3147 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3148 }
3149 if (pc == dyncall_external)
3150 {
3151 pc = (CORE_ADDR) read_register (22);
3152 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3153 }
3154 else if (pc == sr4export)
3155 pc = (CORE_ADDR) (read_register (22));
3156
3157 /* Get the unwind descriptor corresponding to PC, return zero
3158 if no unwind was found. */
3159 u = find_unwind_entry (pc);
3160 if (!u)
3161 return 0;
3162
3163 /* If this isn't a linker stub, then return now. */
3164 /* elz: attention here! (FIXME) because of a compiler/linker
3165 error, some stubs which should have a non zero stub_unwind.stub_type
3166 have unfortunately a value of zero. So this function would return here
3167 as if we were not in a trampoline. To fix this, we go look at the partial
3168 symbol information, which reports this guy as a stub.
3169 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3170 partial symbol information is also wrong sometimes. This is because
3171 when it is entered (somread.c::som_symtab_read()) it can happen that
3172 if the type of the symbol (from the som) is Entry, and the symbol is
3173 in a shared library, then it can also be a trampoline. This would
3174 be OK, except that I believe the way they decide if we are ina shared library
3175 does not work. SOOOO..., even if we have a regular function w/o trampolines
3176 its minimal symbol can be assigned type mst_solib_trampoline.
3177 Also, if we find that the symbol is a real stub, then we fix the unwind
3178 descriptor, and define the stub type to be EXPORT.
3179 Hopefully this is correct most of the times. */
3180 if (u->stub_unwind.stub_type == 0)
3181 {
3182
3183 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3184 we can delete all the code which appears between the lines */
3185 /*--------------------------------------------------------------------------*/
3186 msym = lookup_minimal_symbol_by_pc (pc);
3187
3188 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3189 return orig_pc == pc ? 0 : pc & ~0x3;
3190
3191 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3192 {
3193 struct objfile *objfile;
3194 struct minimal_symbol *msymbol;
3195 int function_found = 0;
3196
3197 /* go look if there is another minimal symbol with the same name as
3198 this one, but with type mst_text. This would happen if the msym
3199 is an actual trampoline, in which case there would be another
3200 symbol with the same name corresponding to the real function */
3201
3202 ALL_MSYMBOLS (objfile, msymbol)
3203 {
3204 if (MSYMBOL_TYPE (msymbol) == mst_text
3205 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3206 {
3207 function_found = 1;
3208 break;
3209 }
3210 }
3211
3212 if (function_found)
3213 /* the type of msym is correct (mst_solib_trampoline), but
3214 the unwind info is wrong, so set it to the correct value */
3215 u->stub_unwind.stub_type = EXPORT;
3216 else
3217 /* the stub type info in the unwind is correct (this is not a
3218 trampoline), but the msym type information is wrong, it
3219 should be mst_text. So we need to fix the msym, and also
3220 get out of this function */
3221 {
3222 MSYMBOL_TYPE (msym) = mst_text;
3223 return orig_pc == pc ? 0 : pc & ~0x3;
3224 }
3225 }
3226
3227 /*--------------------------------------------------------------------------*/
3228 }
3229
3230 /* It's a stub. Search for a branch and figure out where it goes.
3231 Note we have to handle multi insn branch sequences like ldil;ble.
3232 Most (all?) other branches can be determined by examining the contents
3233 of certain registers and the stack. */
3234
3235 loc = pc;
3236 curr_inst = 0;
3237 prev_inst = 0;
3238 while (1)
3239 {
3240 /* Make sure we haven't walked outside the range of this stub. */
3241 if (u != find_unwind_entry (loc))
3242 {
3243 warning ("Unable to find branch in linker stub");
3244 return orig_pc == pc ? 0 : pc & ~0x3;
3245 }
3246
3247 prev_inst = curr_inst;
3248 curr_inst = read_memory_integer (loc, 4);
3249
3250 /* Does it look like a branch external using %r1? Then it's the
3251 branch from the stub to the actual function. */
3252 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3253 {
3254 /* Yup. See if the previous instruction loaded
3255 a value into %r1. If so compute and return the jump address. */
3256 if ((prev_inst & 0xffe00000) == 0x20200000)
3257 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3258 else
3259 {
3260 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3261 return orig_pc == pc ? 0 : pc & ~0x3;
3262 }
3263 }
3264
3265 /* Does it look like a be 0(sr0,%r21)? OR
3266 Does it look like a be, n 0(sr0,%r21)? OR
3267 Does it look like a bve (r21)? (this is on PA2.0)
3268 Does it look like a bve, n(r21)? (this is also on PA2.0)
3269 That's the branch from an
3270 import stub to an export stub.
3271
3272 It is impossible to determine the target of the branch via
3273 simple examination of instructions and/or data (consider
3274 that the address in the plabel may be the address of the
3275 bind-on-reference routine in the dynamic loader).
3276
3277 So we have try an alternative approach.
3278
3279 Get the name of the symbol at our current location; it should
3280 be a stub symbol with the same name as the symbol in the
3281 shared library.
3282
3283 Then lookup a minimal symbol with the same name; we should
3284 get the minimal symbol for the target routine in the shared
3285 library as those take precedence of import/export stubs. */
3286 if ((curr_inst == 0xe2a00000) ||
3287 (curr_inst == 0xe2a00002) ||
3288 (curr_inst == 0xeaa0d000) ||
3289 (curr_inst == 0xeaa0d002))
3290 {
3291 struct minimal_symbol *stubsym, *libsym;
3292
3293 stubsym = lookup_minimal_symbol_by_pc (loc);
3294 if (stubsym == NULL)
3295 {
3296 warning ("Unable to find symbol for 0x%lx", loc);
3297 return orig_pc == pc ? 0 : pc & ~0x3;
3298 }
3299
3300 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3301 if (libsym == NULL)
3302 {
3303 warning ("Unable to find library symbol for %s\n",
3304 SYMBOL_NAME (stubsym));
3305 return orig_pc == pc ? 0 : pc & ~0x3;
3306 }
3307
3308 return SYMBOL_VALUE (libsym);
3309 }
3310
3311 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3312 branch from the stub to the actual function. */
3313 /*elz */
3314 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3315 || (curr_inst & 0xffe0e000) == 0xe8000000
3316 || (curr_inst & 0xffe0e000) == 0xe800A000)
3317 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3318
3319 /* Does it look like bv (rp)? Note this depends on the
3320 current stack pointer being the same as the stack
3321 pointer in the stub itself! This is a branch on from the
3322 stub back to the original caller. */
3323 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3324 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3325 {
3326 /* Yup. See if the previous instruction loaded
3327 rp from sp - 8. */
3328 if (prev_inst == 0x4bc23ff1)
3329 return (read_memory_integer
3330 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3331 else
3332 {
3333 warning ("Unable to find restore of %%rp before bv (%%rp).");
3334 return orig_pc == pc ? 0 : pc & ~0x3;
3335 }
3336 }
3337
3338 /* elz: added this case to capture the new instruction
3339 at the end of the return part of an export stub used by
3340 the PA2.0: BVE, n (rp) */
3341 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3342 {
3343 return (read_memory_integer
3344 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3345 }
3346
3347 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3348 the original caller from the stub. Used in dynamic executables. */
3349 else if (curr_inst == 0xe0400002)
3350 {
3351 /* The value we jump to is sitting in sp - 24. But that's
3352 loaded several instructions before the be instruction.
3353 I guess we could check for the previous instruction being
3354 mtsp %r1,%sr0 if we want to do sanity checking. */
3355 return (read_memory_integer
3356 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3357 }
3358
3359 /* Haven't found the branch yet, but we're still in the stub.
3360 Keep looking. */
3361 loc += 4;
3362 }
3363 }
3364
3365
3366 /* For the given instruction (INST), return any adjustment it makes
3367 to the stack pointer or zero for no adjustment.
3368
3369 This only handles instructions commonly found in prologues. */
3370
3371 static int
3372 prologue_inst_adjust_sp (unsigned long inst)
3373 {
3374 /* This must persist across calls. */
3375 static int save_high21;
3376
3377 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3378 if ((inst & 0xffffc000) == 0x37de0000)
3379 return extract_14 (inst);
3380
3381 /* stwm X,D(sp) */
3382 if ((inst & 0xffe00000) == 0x6fc00000)
3383 return extract_14 (inst);
3384
3385 /* std,ma X,D(sp) */
3386 if ((inst & 0xffe00008) == 0x73c00008)
3387 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3388
3389 /* addil high21,%r1; ldo low11,(%r1),%r30)
3390 save high bits in save_high21 for later use. */
3391 if ((inst & 0xffe00000) == 0x28200000)
3392 {
3393 save_high21 = extract_21 (inst);
3394 return 0;
3395 }
3396
3397 if ((inst & 0xffff0000) == 0x343e0000)
3398 return save_high21 + extract_14 (inst);
3399
3400 /* fstws as used by the HP compilers. */
3401 if ((inst & 0xffffffe0) == 0x2fd01220)
3402 return extract_5_load (inst);
3403
3404 /* No adjustment. */
3405 return 0;
3406 }
3407
3408 /* Return nonzero if INST is a branch of some kind, else return zero. */
3409
3410 static int
3411 is_branch (unsigned long inst)
3412 {
3413 switch (inst >> 26)
3414 {
3415 case 0x20:
3416 case 0x21:
3417 case 0x22:
3418 case 0x23:
3419 case 0x27:
3420 case 0x28:
3421 case 0x29:
3422 case 0x2a:
3423 case 0x2b:
3424 case 0x2f:
3425 case 0x30:
3426 case 0x31:
3427 case 0x32:
3428 case 0x33:
3429 case 0x38:
3430 case 0x39:
3431 case 0x3a:
3432 case 0x3b:
3433 return 1;
3434
3435 default:
3436 return 0;
3437 }
3438 }
3439
3440 /* Return the register number for a GR which is saved by INST or
3441 zero it INST does not save a GR. */
3442
3443 static int
3444 inst_saves_gr (unsigned long inst)
3445 {
3446 /* Does it look like a stw? */
3447 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3448 || (inst >> 26) == 0x1f
3449 || ((inst >> 26) == 0x1f
3450 && ((inst >> 6) == 0xa)))
3451 return extract_5R_store (inst);
3452
3453 /* Does it look like a std? */
3454 if ((inst >> 26) == 0x1c
3455 || ((inst >> 26) == 0x03
3456 && ((inst >> 6) & 0xf) == 0xb))
3457 return extract_5R_store (inst);
3458
3459 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3460 if ((inst >> 26) == 0x1b)
3461 return extract_5R_store (inst);
3462
3463 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3464 too. */
3465 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3466 || ((inst >> 26) == 0x3
3467 && (((inst >> 6) & 0xf) == 0x8
3468 || (inst >> 6) & 0xf) == 0x9))
3469 return extract_5R_store (inst);
3470
3471 return 0;
3472 }
3473
3474 /* Return the register number for a FR which is saved by INST or
3475 zero it INST does not save a FR.
3476
3477 Note we only care about full 64bit register stores (that's the only
3478 kind of stores the prologue will use).
3479
3480 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3481
3482 static int
3483 inst_saves_fr (unsigned long inst)
3484 {
3485 /* is this an FSTD ? */
3486 if ((inst & 0xfc00dfc0) == 0x2c001200)
3487 return extract_5r_store (inst);
3488 if ((inst & 0xfc000002) == 0x70000002)
3489 return extract_5R_store (inst);
3490 /* is this an FSTW ? */
3491 if ((inst & 0xfc00df80) == 0x24001200)
3492 return extract_5r_store (inst);
3493 if ((inst & 0xfc000002) == 0x7c000000)
3494 return extract_5R_store (inst);
3495 return 0;
3496 }
3497
3498 /* Advance PC across any function entry prologue instructions
3499 to reach some "real" code.
3500
3501 Use information in the unwind table to determine what exactly should
3502 be in the prologue. */
3503
3504
3505 CORE_ADDR
3506 skip_prologue_hard_way (CORE_ADDR pc)
3507 {
3508 char buf[4];
3509 CORE_ADDR orig_pc = pc;
3510 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3511 unsigned long args_stored, status, i, restart_gr, restart_fr;
3512 struct unwind_table_entry *u;
3513
3514 restart_gr = 0;
3515 restart_fr = 0;
3516
3517 restart:
3518 u = find_unwind_entry (pc);
3519 if (!u)
3520 return pc;
3521
3522 /* If we are not at the beginning of a function, then return now. */
3523 if ((pc & ~0x3) != u->region_start)
3524 return pc;
3525
3526 /* This is how much of a frame adjustment we need to account for. */
3527 stack_remaining = u->Total_frame_size << 3;
3528
3529 /* Magic register saves we want to know about. */
3530 save_rp = u->Save_RP;
3531 save_sp = u->Save_SP;
3532
3533 /* An indication that args may be stored into the stack. Unfortunately
3534 the HPUX compilers tend to set this in cases where no args were
3535 stored too!. */
3536 args_stored = 1;
3537
3538 /* Turn the Entry_GR field into a bitmask. */
3539 save_gr = 0;
3540 for (i = 3; i < u->Entry_GR + 3; i++)
3541 {
3542 /* Frame pointer gets saved into a special location. */
3543 if (u->Save_SP && i == FP_REGNUM)
3544 continue;
3545
3546 save_gr |= (1 << i);
3547 }
3548 save_gr &= ~restart_gr;
3549
3550 /* Turn the Entry_FR field into a bitmask too. */
3551 save_fr = 0;
3552 for (i = 12; i < u->Entry_FR + 12; i++)
3553 save_fr |= (1 << i);
3554 save_fr &= ~restart_fr;
3555
3556 /* Loop until we find everything of interest or hit a branch.
3557
3558 For unoptimized GCC code and for any HP CC code this will never ever
3559 examine any user instructions.
3560
3561 For optimzied GCC code we're faced with problems. GCC will schedule
3562 its prologue and make prologue instructions available for delay slot
3563 filling. The end result is user code gets mixed in with the prologue
3564 and a prologue instruction may be in the delay slot of the first branch
3565 or call.
3566
3567 Some unexpected things are expected with debugging optimized code, so
3568 we allow this routine to walk past user instructions in optimized
3569 GCC code. */
3570 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3571 || args_stored)
3572 {
3573 unsigned int reg_num;
3574 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3575 unsigned long old_save_rp, old_save_sp, next_inst;
3576
3577 /* Save copies of all the triggers so we can compare them later
3578 (only for HPC). */
3579 old_save_gr = save_gr;
3580 old_save_fr = save_fr;
3581 old_save_rp = save_rp;
3582 old_save_sp = save_sp;
3583 old_stack_remaining = stack_remaining;
3584
3585 status = target_read_memory (pc, buf, 4);
3586 inst = extract_unsigned_integer (buf, 4);
3587
3588 /* Yow! */
3589 if (status != 0)
3590 return pc;
3591
3592 /* Note the interesting effects of this instruction. */
3593 stack_remaining -= prologue_inst_adjust_sp (inst);
3594
3595 /* There are limited ways to store the return pointer into the
3596 stack. */
3597 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3598 save_rp = 0;
3599
3600 /* These are the only ways we save SP into the stack. At this time
3601 the HP compilers never bother to save SP into the stack. */
3602 if ((inst & 0xffffc000) == 0x6fc10000
3603 || (inst & 0xffffc00c) == 0x73c10008)
3604 save_sp = 0;
3605
3606 /* Are we loading some register with an offset from the argument
3607 pointer? */
3608 if ((inst & 0xffe00000) == 0x37a00000
3609 || (inst & 0xffffffe0) == 0x081d0240)
3610 {
3611 pc += 4;
3612 continue;
3613 }
3614
3615 /* Account for general and floating-point register saves. */
3616 reg_num = inst_saves_gr (inst);
3617 save_gr &= ~(1 << reg_num);
3618
3619 /* Ugh. Also account for argument stores into the stack.
3620 Unfortunately args_stored only tells us that some arguments
3621 where stored into the stack. Not how many or what kind!
3622
3623 This is a kludge as on the HP compiler sets this bit and it
3624 never does prologue scheduling. So once we see one, skip past
3625 all of them. We have similar code for the fp arg stores below.
3626
3627 FIXME. Can still die if we have a mix of GR and FR argument
3628 stores! */
3629 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3630 {
3631 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3632 {
3633 pc += 4;
3634 status = target_read_memory (pc, buf, 4);
3635 inst = extract_unsigned_integer (buf, 4);
3636 if (status != 0)
3637 return pc;
3638 reg_num = inst_saves_gr (inst);
3639 }
3640 args_stored = 0;
3641 continue;
3642 }
3643
3644 reg_num = inst_saves_fr (inst);
3645 save_fr &= ~(1 << reg_num);
3646
3647 status = target_read_memory (pc + 4, buf, 4);
3648 next_inst = extract_unsigned_integer (buf, 4);
3649
3650 /* Yow! */
3651 if (status != 0)
3652 return pc;
3653
3654 /* We've got to be read to handle the ldo before the fp register
3655 save. */
3656 if ((inst & 0xfc000000) == 0x34000000
3657 && inst_saves_fr (next_inst) >= 4
3658 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3659 {
3660 /* So we drop into the code below in a reasonable state. */
3661 reg_num = inst_saves_fr (next_inst);
3662 pc -= 4;
3663 }
3664
3665 /* Ugh. Also account for argument stores into the stack.
3666 This is a kludge as on the HP compiler sets this bit and it
3667 never does prologue scheduling. So once we see one, skip past
3668 all of them. */
3669 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3670 {
3671 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3672 {
3673 pc += 8;
3674 status = target_read_memory (pc, buf, 4);
3675 inst = extract_unsigned_integer (buf, 4);
3676 if (status != 0)
3677 return pc;
3678 if ((inst & 0xfc000000) != 0x34000000)
3679 break;
3680 status = target_read_memory (pc + 4, buf, 4);
3681 next_inst = extract_unsigned_integer (buf, 4);
3682 if (status != 0)
3683 return pc;
3684 reg_num = inst_saves_fr (next_inst);
3685 }
3686 args_stored = 0;
3687 continue;
3688 }
3689
3690 /* Quit if we hit any kind of branch. This can happen if a prologue
3691 instruction is in the delay slot of the first call/branch. */
3692 if (is_branch (inst))
3693 break;
3694
3695 /* What a crock. The HP compilers set args_stored even if no
3696 arguments were stored into the stack (boo hiss). This could
3697 cause this code to then skip a bunch of user insns (up to the
3698 first branch).
3699
3700 To combat this we try to identify when args_stored was bogusly
3701 set and clear it. We only do this when args_stored is nonzero,
3702 all other resources are accounted for, and nothing changed on
3703 this pass. */
3704 if (args_stored
3705 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3706 && old_save_gr == save_gr && old_save_fr == save_fr
3707 && old_save_rp == save_rp && old_save_sp == save_sp
3708 && old_stack_remaining == stack_remaining)
3709 break;
3710
3711 /* Bump the PC. */
3712 pc += 4;
3713 }
3714
3715 /* We've got a tenative location for the end of the prologue. However
3716 because of limitations in the unwind descriptor mechanism we may
3717 have went too far into user code looking for the save of a register
3718 that does not exist. So, if there registers we expected to be saved
3719 but never were, mask them out and restart.
3720
3721 This should only happen in optimized code, and should be very rare. */
3722 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3723 {
3724 pc = orig_pc;
3725 restart_gr = save_gr;
3726 restart_fr = save_fr;
3727 goto restart;
3728 }
3729
3730 return pc;
3731 }
3732
3733
3734 /* Return the address of the PC after the last prologue instruction if
3735 we can determine it from the debug symbols. Else return zero. */
3736
3737 static CORE_ADDR
3738 after_prologue (CORE_ADDR pc)
3739 {
3740 struct symtab_and_line sal;
3741 CORE_ADDR func_addr, func_end;
3742 struct symbol *f;
3743
3744 /* If we can not find the symbol in the partial symbol table, then
3745 there is no hope we can determine the function's start address
3746 with this code. */
3747 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3748 return 0;
3749
3750 /* Get the line associated with FUNC_ADDR. */
3751 sal = find_pc_line (func_addr, 0);
3752
3753 /* There are only two cases to consider. First, the end of the source line
3754 is within the function bounds. In that case we return the end of the
3755 source line. Second is the end of the source line extends beyond the
3756 bounds of the current function. We need to use the slow code to
3757 examine instructions in that case.
3758
3759 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3760 the wrong thing to do. In fact, it should be entirely possible for this
3761 function to always return zero since the slow instruction scanning code
3762 is supposed to *always* work. If it does not, then it is a bug. */
3763 if (sal.end < func_end)
3764 return sal.end;
3765 else
3766 return 0;
3767 }
3768
3769 /* To skip prologues, I use this predicate. Returns either PC itself
3770 if the code at PC does not look like a function prologue; otherwise
3771 returns an address that (if we're lucky) follows the prologue. If
3772 LENIENT, then we must skip everything which is involved in setting
3773 up the frame (it's OK to skip more, just so long as we don't skip
3774 anything which might clobber the registers which are being saved.
3775 Currently we must not skip more on the alpha, but we might the lenient
3776 stuff some day. */
3777
3778 CORE_ADDR
3779 hppa_skip_prologue (CORE_ADDR pc)
3780 {
3781 unsigned long inst;
3782 int offset;
3783 CORE_ADDR post_prologue_pc;
3784 char buf[4];
3785
3786 /* See if we can determine the end of the prologue via the symbol table.
3787 If so, then return either PC, or the PC after the prologue, whichever
3788 is greater. */
3789
3790 post_prologue_pc = after_prologue (pc);
3791
3792 /* If after_prologue returned a useful address, then use it. Else
3793 fall back on the instruction skipping code.
3794
3795 Some folks have claimed this causes problems because the breakpoint
3796 may be the first instruction of the prologue. If that happens, then
3797 the instruction skipping code has a bug that needs to be fixed. */
3798 if (post_prologue_pc != 0)
3799 return max (pc, post_prologue_pc);
3800 else
3801 return (skip_prologue_hard_way (pc));
3802 }
3803
3804 /* Put here the code to store, into a struct frame_saved_regs,
3805 the addresses of the saved registers of frame described by FRAME_INFO.
3806 This includes special registers such as pc and fp saved in special
3807 ways in the stack frame. sp is even more special:
3808 the address we return for it IS the sp for the next frame. */
3809
3810 void
3811 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3812 struct frame_saved_regs *frame_saved_regs)
3813 {
3814 CORE_ADDR pc;
3815 struct unwind_table_entry *u;
3816 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3817 int status, i, reg;
3818 char buf[4];
3819 int fp_loc = -1;
3820 int final_iteration;
3821
3822 /* Zero out everything. */
3823 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3824
3825 /* Call dummy frames always look the same, so there's no need to
3826 examine the dummy code to determine locations of saved registers;
3827 instead, let find_dummy_frame_regs fill in the correct offsets
3828 for the saved registers. */
3829 if ((frame_info->pc >= frame_info->frame
3830 && frame_info->pc <= (frame_info->frame
3831 /* A call dummy is sized in words, but it is
3832 actually a series of instructions. Account
3833 for that scaling factor. */
3834 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3835 * CALL_DUMMY_LENGTH)
3836 /* Similarly we have to account for 64bit
3837 wide register saves. */
3838 + (32 * REGISTER_SIZE)
3839 /* We always consider FP regs 8 bytes long. */
3840 + (NUM_REGS - FP0_REGNUM) * 8
3841 /* Similarly we have to account for 64bit
3842 wide register saves. */
3843 + (6 * REGISTER_SIZE))))
3844 find_dummy_frame_regs (frame_info, frame_saved_regs);
3845
3846 /* Interrupt handlers are special too. They lay out the register
3847 state in the exact same order as the register numbers in GDB. */
3848 if (pc_in_interrupt_handler (frame_info->pc))
3849 {
3850 for (i = 0; i < NUM_REGS; i++)
3851 {
3852 /* SP is a little special. */
3853 if (i == SP_REGNUM)
3854 frame_saved_regs->regs[SP_REGNUM]
3855 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3856 TARGET_PTR_BIT / 8);
3857 else
3858 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3859 }
3860 return;
3861 }
3862
3863 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3864 /* Handle signal handler callers. */
3865 if (frame_info->signal_handler_caller)
3866 {
3867 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3868 return;
3869 }
3870 #endif
3871
3872 /* Get the starting address of the function referred to by the PC
3873 saved in frame. */
3874 pc = get_pc_function_start (frame_info->pc);
3875
3876 /* Yow! */
3877 u = find_unwind_entry (pc);
3878 if (!u)
3879 return;
3880
3881 /* This is how much of a frame adjustment we need to account for. */
3882 stack_remaining = u->Total_frame_size << 3;
3883
3884 /* Magic register saves we want to know about. */
3885 save_rp = u->Save_RP;
3886 save_sp = u->Save_SP;
3887
3888 /* Turn the Entry_GR field into a bitmask. */
3889 save_gr = 0;
3890 for (i = 3; i < u->Entry_GR + 3; i++)
3891 {
3892 /* Frame pointer gets saved into a special location. */
3893 if (u->Save_SP && i == FP_REGNUM)
3894 continue;
3895
3896 save_gr |= (1 << i);
3897 }
3898
3899 /* Turn the Entry_FR field into a bitmask too. */
3900 save_fr = 0;
3901 for (i = 12; i < u->Entry_FR + 12; i++)
3902 save_fr |= (1 << i);
3903
3904 /* The frame always represents the value of %sp at entry to the
3905 current function (and is thus equivalent to the "saved" stack
3906 pointer. */
3907 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3908
3909 /* Loop until we find everything of interest or hit a branch.
3910
3911 For unoptimized GCC code and for any HP CC code this will never ever
3912 examine any user instructions.
3913
3914 For optimized GCC code we're faced with problems. GCC will schedule
3915 its prologue and make prologue instructions available for delay slot
3916 filling. The end result is user code gets mixed in with the prologue
3917 and a prologue instruction may be in the delay slot of the first branch
3918 or call.
3919
3920 Some unexpected things are expected with debugging optimized code, so
3921 we allow this routine to walk past user instructions in optimized
3922 GCC code. */
3923 final_iteration = 0;
3924 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3925 && pc <= frame_info->pc)
3926 {
3927 status = target_read_memory (pc, buf, 4);
3928 inst = extract_unsigned_integer (buf, 4);
3929
3930 /* Yow! */
3931 if (status != 0)
3932 return;
3933
3934 /* Note the interesting effects of this instruction. */
3935 stack_remaining -= prologue_inst_adjust_sp (inst);
3936
3937 /* There are limited ways to store the return pointer into the
3938 stack. */
3939 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
3940 {
3941 save_rp = 0;
3942 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3943 }
3944 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3945 {
3946 save_rp = 0;
3947 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
3948 }
3949
3950 /* Note if we saved SP into the stack. This also happens to indicate
3951 the location of the saved frame pointer. */
3952 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
3953 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
3954 {
3955 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
3956 save_sp = 0;
3957 }
3958
3959 /* Account for general and floating-point register saves. */
3960 reg = inst_saves_gr (inst);
3961 if (reg >= 3 && reg <= 18
3962 && (!u->Save_SP || reg != FP_REGNUM))
3963 {
3964 save_gr &= ~(1 << reg);
3965
3966 /* stwm with a positive displacement is a *post modify*. */
3967 if ((inst >> 26) == 0x1b
3968 && extract_14 (inst) >= 0)
3969 frame_saved_regs->regs[reg] = frame_info->frame;
3970 /* A std has explicit post_modify forms. */
3971 else if ((inst & 0xfc00000c0) == 0x70000008)
3972 frame_saved_regs->regs[reg] = frame_info->frame;
3973 else
3974 {
3975 CORE_ADDR offset;
3976
3977 if ((inst >> 26) == 0x1c)
3978 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3979 else if ((inst >> 26) == 0x03)
3980 offset = low_sign_extend (inst & 0x1f, 5);
3981 else
3982 offset = extract_14 (inst);
3983
3984 /* Handle code with and without frame pointers. */
3985 if (u->Save_SP)
3986 frame_saved_regs->regs[reg]
3987 = frame_info->frame + offset;
3988 else
3989 frame_saved_regs->regs[reg]
3990 = (frame_info->frame + (u->Total_frame_size << 3)
3991 + offset);
3992 }
3993 }
3994
3995
3996 /* GCC handles callee saved FP regs a little differently.
3997
3998 It emits an instruction to put the value of the start of
3999 the FP store area into %r1. It then uses fstds,ma with
4000 a basereg of %r1 for the stores.
4001
4002 HP CC emits them at the current stack pointer modifying
4003 the stack pointer as it stores each register. */
4004
4005 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4006 if ((inst & 0xffffc000) == 0x34610000
4007 || (inst & 0xffffc000) == 0x37c10000)
4008 fp_loc = extract_14 (inst);
4009
4010 reg = inst_saves_fr (inst);
4011 if (reg >= 12 && reg <= 21)
4012 {
4013 /* Note +4 braindamage below is necessary because the FP status
4014 registers are internally 8 registers rather than the expected
4015 4 registers. */
4016 save_fr &= ~(1 << reg);
4017 if (fp_loc == -1)
4018 {
4019 /* 1st HP CC FP register store. After this instruction
4020 we've set enough state that the GCC and HPCC code are
4021 both handled in the same manner. */
4022 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4023 fp_loc = 8;
4024 }
4025 else
4026 {
4027 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4028 = frame_info->frame + fp_loc;
4029 fp_loc += 8;
4030 }
4031 }
4032
4033 /* Quit if we hit any kind of branch the previous iteration. */
4034 if (final_iteration)
4035 break;
4036
4037 /* We want to look precisely one instruction beyond the branch
4038 if we have not found everything yet. */
4039 if (is_branch (inst))
4040 final_iteration = 1;
4041
4042 /* Bump the PC. */
4043 pc += 4;
4044 }
4045 }
4046
4047
4048 /* Exception handling support for the HP-UX ANSI C++ compiler.
4049 The compiler (aCC) provides a callback for exception events;
4050 GDB can set a breakpoint on this callback and find out what
4051 exception event has occurred. */
4052
4053 /* The name of the hook to be set to point to the callback function */
4054 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4055 /* The name of the function to be used to set the hook value */
4056 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4057 /* The name of the callback function in end.o */
4058 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4059 /* Name of function in end.o on which a break is set (called by above) */
4060 static char HP_ACC_EH_break[] = "__d_eh_break";
4061 /* Name of flag (in end.o) that enables catching throws */
4062 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4063 /* Name of flag (in end.o) that enables catching catching */
4064 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4065 /* The enum used by aCC */
4066 typedef enum
4067 {
4068 __EH_NOTIFY_THROW,
4069 __EH_NOTIFY_CATCH
4070 }
4071 __eh_notification;
4072
4073 /* Is exception-handling support available with this executable? */
4074 static int hp_cxx_exception_support = 0;
4075 /* Has the initialize function been run? */
4076 int hp_cxx_exception_support_initialized = 0;
4077 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4078 extern int exception_support_initialized;
4079 /* Address of __eh_notify_hook */
4080 static CORE_ADDR eh_notify_hook_addr = 0;
4081 /* Address of __d_eh_notify_callback */
4082 static CORE_ADDR eh_notify_callback_addr = 0;
4083 /* Address of __d_eh_break */
4084 static CORE_ADDR eh_break_addr = 0;
4085 /* Address of __d_eh_catch_catch */
4086 static CORE_ADDR eh_catch_catch_addr = 0;
4087 /* Address of __d_eh_catch_throw */
4088 static CORE_ADDR eh_catch_throw_addr = 0;
4089 /* Sal for __d_eh_break */
4090 static struct symtab_and_line *break_callback_sal = 0;
4091
4092 /* Code in end.c expects __d_pid to be set in the inferior,
4093 otherwise __d_eh_notify_callback doesn't bother to call
4094 __d_eh_break! So we poke the pid into this symbol
4095 ourselves.
4096 0 => success
4097 1 => failure */
4098 int
4099 setup_d_pid_in_inferior (void)
4100 {
4101 CORE_ADDR anaddr;
4102 struct minimal_symbol *msymbol;
4103 char buf[4]; /* FIXME 32x64? */
4104
4105 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4106 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4107 if (msymbol == NULL)
4108 {
4109 warning ("Unable to find __d_pid symbol in object file.");
4110 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4111 return 1;
4112 }
4113
4114 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4115 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4116 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4117 {
4118 warning ("Unable to write __d_pid");
4119 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4120 return 1;
4121 }
4122 return 0;
4123 }
4124
4125 /* Initialize exception catchpoint support by looking for the
4126 necessary hooks/callbacks in end.o, etc., and set the hook value to
4127 point to the required debug function
4128
4129 Return 0 => failure
4130 1 => success */
4131
4132 static int
4133 initialize_hp_cxx_exception_support (void)
4134 {
4135 struct symtabs_and_lines sals;
4136 struct cleanup *old_chain;
4137 struct cleanup *canonical_strings_chain = NULL;
4138 int i;
4139 char *addr_start;
4140 char *addr_end = NULL;
4141 char **canonical = (char **) NULL;
4142 int thread = -1;
4143 struct symbol *sym = NULL;
4144 struct minimal_symbol *msym = NULL;
4145 struct objfile *objfile;
4146 asection *shlib_info;
4147
4148 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4149 recursion is a possibility because finding the hook for exception
4150 callbacks involves making a call in the inferior, which means
4151 re-inserting breakpoints which can re-invoke this code */
4152
4153 static int recurse = 0;
4154 if (recurse > 0)
4155 {
4156 hp_cxx_exception_support_initialized = 0;
4157 exception_support_initialized = 0;
4158 return 0;
4159 }
4160
4161 hp_cxx_exception_support = 0;
4162
4163 /* First check if we have seen any HP compiled objects; if not,
4164 it is very unlikely that HP's idiosyncratic callback mechanism
4165 for exception handling debug support will be available!
4166 This will percolate back up to breakpoint.c, where our callers
4167 will decide to try the g++ exception-handling support instead. */
4168 if (!hp_som_som_object_present)
4169 return 0;
4170
4171 /* We have a SOM executable with SOM debug info; find the hooks */
4172
4173 /* First look for the notify hook provided by aCC runtime libs */
4174 /* If we find this symbol, we conclude that the executable must
4175 have HP aCC exception support built in. If this symbol is not
4176 found, even though we're a HP SOM-SOM file, we may have been
4177 built with some other compiler (not aCC). This results percolates
4178 back up to our callers in breakpoint.c which can decide to
4179 try the g++ style of exception support instead.
4180 If this symbol is found but the other symbols we require are
4181 not found, there is something weird going on, and g++ support
4182 should *not* be tried as an alternative.
4183
4184 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4185 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4186
4187 /* libCsup has this hook; it'll usually be non-debuggable */
4188 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4189 if (msym)
4190 {
4191 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4192 hp_cxx_exception_support = 1;
4193 }
4194 else
4195 {
4196 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4197 warning ("Executable may not have been compiled debuggable with HP aCC.");
4198 warning ("GDB will be unable to intercept exception events.");
4199 eh_notify_hook_addr = 0;
4200 hp_cxx_exception_support = 0;
4201 return 0;
4202 }
4203
4204 /* Next look for the notify callback routine in end.o */
4205 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4206 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4207 if (msym)
4208 {
4209 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4210 hp_cxx_exception_support = 1;
4211 }
4212 else
4213 {
4214 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4215 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4216 warning ("GDB will be unable to intercept exception events.");
4217 eh_notify_callback_addr = 0;
4218 return 0;
4219 }
4220
4221 #ifndef GDB_TARGET_IS_HPPA_20W
4222 /* Check whether the executable is dynamically linked or archive bound */
4223 /* With an archive-bound executable we can use the raw addresses we find
4224 for the callback function, etc. without modification. For an executable
4225 with shared libraries, we have to do more work to find the plabel, which
4226 can be the target of a call through $$dyncall from the aCC runtime support
4227 library (libCsup) which is linked shared by default by aCC. */
4228 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4229 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4230 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4231 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4232 {
4233 /* The minsym we have has the local code address, but that's not the
4234 plabel that can be used by an inter-load-module call. */
4235 /* Find solib handle for main image (which has end.o), and use that
4236 and the min sym as arguments to __d_shl_get() (which does the equivalent
4237 of shl_findsym()) to find the plabel. */
4238
4239 args_for_find_stub args;
4240 static char message[] = "Error while finding exception callback hook:\n";
4241
4242 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4243 args.msym = msym;
4244 args.return_val = 0;
4245
4246 recurse++;
4247 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4248 RETURN_MASK_ALL);
4249 eh_notify_callback_addr = args.return_val;
4250 recurse--;
4251
4252 exception_catchpoints_are_fragile = 1;
4253
4254 if (!eh_notify_callback_addr)
4255 {
4256 /* We can get here either if there is no plabel in the export list
4257 for the main image, or if something strange happened (?) */
4258 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4259 warning ("GDB will not be able to intercept exception events.");
4260 return 0;
4261 }
4262 }
4263 else
4264 exception_catchpoints_are_fragile = 0;
4265 #endif
4266
4267 /* Now, look for the breakpointable routine in end.o */
4268 /* This should also be available in the SOM symbol dict. if end.o linked in */
4269 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4270 if (msym)
4271 {
4272 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4273 hp_cxx_exception_support = 1;
4274 }
4275 else
4276 {
4277 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4278 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4279 warning ("GDB will be unable to intercept exception events.");
4280 eh_break_addr = 0;
4281 return 0;
4282 }
4283
4284 /* Next look for the catch enable flag provided in end.o */
4285 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4286 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4287 if (sym) /* sometimes present in debug info */
4288 {
4289 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4290 hp_cxx_exception_support = 1;
4291 }
4292 else
4293 /* otherwise look in SOM symbol dict. */
4294 {
4295 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4296 if (msym)
4297 {
4298 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4299 hp_cxx_exception_support = 1;
4300 }
4301 else
4302 {
4303 warning ("Unable to enable interception of exception catches.");
4304 warning ("Executable may not have been compiled debuggable with HP aCC.");
4305 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4306 return 0;
4307 }
4308 }
4309
4310 /* Next look for the catch enable flag provided end.o */
4311 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4312 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4313 if (sym) /* sometimes present in debug info */
4314 {
4315 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4316 hp_cxx_exception_support = 1;
4317 }
4318 else
4319 /* otherwise look in SOM symbol dict. */
4320 {
4321 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4322 if (msym)
4323 {
4324 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4325 hp_cxx_exception_support = 1;
4326 }
4327 else
4328 {
4329 warning ("Unable to enable interception of exception throws.");
4330 warning ("Executable may not have been compiled debuggable with HP aCC.");
4331 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4332 return 0;
4333 }
4334 }
4335
4336 /* Set the flags */
4337 hp_cxx_exception_support = 2; /* everything worked so far */
4338 hp_cxx_exception_support_initialized = 1;
4339 exception_support_initialized = 1;
4340
4341 return 1;
4342 }
4343
4344 /* Target operation for enabling or disabling interception of
4345 exception events.
4346 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4347 ENABLE is either 0 (disable) or 1 (enable).
4348 Return value is NULL if no support found;
4349 -1 if something went wrong,
4350 or a pointer to a symtab/line struct if the breakpointable
4351 address was found. */
4352
4353 struct symtab_and_line *
4354 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4355 {
4356 char buf[4];
4357
4358 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4359 if (!initialize_hp_cxx_exception_support ())
4360 return NULL;
4361
4362 switch (hp_cxx_exception_support)
4363 {
4364 case 0:
4365 /* Assuming no HP support at all */
4366 return NULL;
4367 case 1:
4368 /* HP support should be present, but something went wrong */
4369 return (struct symtab_and_line *) -1; /* yuck! */
4370 /* there may be other cases in the future */
4371 }
4372
4373 /* Set the EH hook to point to the callback routine */
4374 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4375 /* pai: (temp) FIXME should there be a pack operation first? */
4376 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4377 {
4378 warning ("Could not write to target memory for exception event callback.");
4379 warning ("Interception of exception events may not work.");
4380 return (struct symtab_and_line *) -1;
4381 }
4382 if (enable)
4383 {
4384 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4385 if (PIDGET (inferior_ptid) > 0)
4386 {
4387 if (setup_d_pid_in_inferior ())
4388 return (struct symtab_and_line *) -1;
4389 }
4390 else
4391 {
4392 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4393 return (struct symtab_and_line *) -1;
4394 }
4395 }
4396
4397 switch (kind)
4398 {
4399 case EX_EVENT_THROW:
4400 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4401 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4402 {
4403 warning ("Couldn't enable exception throw interception.");
4404 return (struct symtab_and_line *) -1;
4405 }
4406 break;
4407 case EX_EVENT_CATCH:
4408 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4409 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4410 {
4411 warning ("Couldn't enable exception catch interception.");
4412 return (struct symtab_and_line *) -1;
4413 }
4414 break;
4415 default:
4416 error ("Request to enable unknown or unsupported exception event.");
4417 }
4418
4419 /* Copy break address into new sal struct, malloc'ing if needed. */
4420 if (!break_callback_sal)
4421 {
4422 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4423 }
4424 INIT_SAL (break_callback_sal);
4425 break_callback_sal->symtab = NULL;
4426 break_callback_sal->pc = eh_break_addr;
4427 break_callback_sal->line = 0;
4428 break_callback_sal->end = eh_break_addr;
4429
4430 return break_callback_sal;
4431 }
4432
4433 /* Record some information about the current exception event */
4434 static struct exception_event_record current_ex_event;
4435 /* Convenience struct */
4436 static struct symtab_and_line null_symtab_and_line =
4437 {NULL, 0, 0, 0};
4438
4439 /* Report current exception event. Returns a pointer to a record
4440 that describes the kind of the event, where it was thrown from,
4441 and where it will be caught. More information may be reported
4442 in the future */
4443 struct exception_event_record *
4444 child_get_current_exception_event (void)
4445 {
4446 CORE_ADDR event_kind;
4447 CORE_ADDR throw_addr;
4448 CORE_ADDR catch_addr;
4449 struct frame_info *fi, *curr_frame;
4450 int level = 1;
4451
4452 curr_frame = get_current_frame ();
4453 if (!curr_frame)
4454 return (struct exception_event_record *) NULL;
4455
4456 /* Go up one frame to __d_eh_notify_callback, because at the
4457 point when this code is executed, there's garbage in the
4458 arguments of __d_eh_break. */
4459 fi = find_relative_frame (curr_frame, &level);
4460 if (level != 0)
4461 return (struct exception_event_record *) NULL;
4462
4463 select_frame (fi, -1);
4464
4465 /* Read in the arguments */
4466 /* __d_eh_notify_callback() is called with 3 arguments:
4467 1. event kind catch or throw
4468 2. the target address if known
4469 3. a flag -- not sure what this is. pai/1997-07-17 */
4470 event_kind = read_register (ARG0_REGNUM);
4471 catch_addr = read_register (ARG1_REGNUM);
4472
4473 /* Now go down to a user frame */
4474 /* For a throw, __d_eh_break is called by
4475 __d_eh_notify_callback which is called by
4476 __notify_throw which is called
4477 from user code.
4478 For a catch, __d_eh_break is called by
4479 __d_eh_notify_callback which is called by
4480 <stackwalking stuff> which is called by
4481 __throw__<stuff> or __rethrow_<stuff> which is called
4482 from user code. */
4483 /* FIXME: Don't use such magic numbers; search for the frames */
4484 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4485 fi = find_relative_frame (curr_frame, &level);
4486 if (level != 0)
4487 return (struct exception_event_record *) NULL;
4488
4489 select_frame (fi, -1);
4490 throw_addr = fi->pc;
4491
4492 /* Go back to original (top) frame */
4493 select_frame (curr_frame, -1);
4494
4495 current_ex_event.kind = (enum exception_event_kind) event_kind;
4496 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4497 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4498
4499 return &current_ex_event;
4500 }
4501
4502 static void
4503 unwind_command (char *exp, int from_tty)
4504 {
4505 CORE_ADDR address;
4506 struct unwind_table_entry *u;
4507
4508 /* If we have an expression, evaluate it and use it as the address. */
4509
4510 if (exp != 0 && *exp != 0)
4511 address = parse_and_eval_address (exp);
4512 else
4513 return;
4514
4515 u = find_unwind_entry (address);
4516
4517 if (!u)
4518 {
4519 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4520 return;
4521 }
4522
4523 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4524 paddr_nz (host_pointer_to_address (u)));
4525
4526 printf_unfiltered ("\tregion_start = ");
4527 print_address (u->region_start, gdb_stdout);
4528
4529 printf_unfiltered ("\n\tregion_end = ");
4530 print_address (u->region_end, gdb_stdout);
4531
4532 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4533
4534 printf_unfiltered ("\n\tflags =");
4535 pif (Cannot_unwind);
4536 pif (Millicode);
4537 pif (Millicode_save_sr0);
4538 pif (Entry_SR);
4539 pif (Args_stored);
4540 pif (Variable_Frame);
4541 pif (Separate_Package_Body);
4542 pif (Frame_Extension_Millicode);
4543 pif (Stack_Overflow_Check);
4544 pif (Two_Instruction_SP_Increment);
4545 pif (Ada_Region);
4546 pif (Save_SP);
4547 pif (Save_RP);
4548 pif (Save_MRP_in_frame);
4549 pif (extn_ptr_defined);
4550 pif (Cleanup_defined);
4551 pif (MPE_XL_interrupt_marker);
4552 pif (HP_UX_interrupt_marker);
4553 pif (Large_frame);
4554
4555 putchar_unfiltered ('\n');
4556
4557 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4558
4559 pin (Region_description);
4560 pin (Entry_FR);
4561 pin (Entry_GR);
4562 pin (Total_frame_size);
4563 }
4564
4565 #ifdef PREPARE_TO_PROCEED
4566
4567 /* If the user has switched threads, and there is a breakpoint
4568 at the old thread's pc location, then switch to that thread
4569 and return TRUE, else return FALSE and don't do a thread
4570 switch (or rather, don't seem to have done a thread switch).
4571
4572 Ptrace-based gdb will always return FALSE to the thread-switch
4573 query, and thus also to PREPARE_TO_PROCEED.
4574
4575 The important thing is whether there is a BPT instruction,
4576 not how many user breakpoints there are. So we have to worry
4577 about things like these:
4578
4579 o Non-bp stop -- NO
4580
4581 o User hits bp, no switch -- NO
4582
4583 o User hits bp, switches threads -- YES
4584
4585 o User hits bp, deletes bp, switches threads -- NO
4586
4587 o User hits bp, deletes one of two or more bps
4588 at that PC, user switches threads -- YES
4589
4590 o Plus, since we're buffering events, the user may have hit a
4591 breakpoint, deleted the breakpoint and then gotten another
4592 hit on that same breakpoint on another thread which
4593 actually hit before the delete. (FIXME in breakpoint.c
4594 so that "dead" breakpoints are ignored?) -- NO
4595
4596 For these reasons, we have to violate information hiding and
4597 call "breakpoint_here_p". If core gdb thinks there is a bpt
4598 here, that's what counts, as core gdb is the one which is
4599 putting the BPT instruction in and taking it out.
4600
4601 Note that this implementation is potentially redundant now that
4602 default_prepare_to_proceed() has been added.
4603
4604 FIXME This may not support switching threads after Ctrl-C
4605 correctly. The default implementation does support this. */
4606 int
4607 hppa_prepare_to_proceed (void)
4608 {
4609 pid_t old_thread;
4610 pid_t current_thread;
4611
4612 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
4613 if (old_thread != 0)
4614 {
4615 /* Switched over from "old_thread". Try to do
4616 as little work as possible, 'cause mostly
4617 we're going to switch back. */
4618 CORE_ADDR new_pc;
4619 CORE_ADDR old_pc = read_pc ();
4620
4621 /* Yuk, shouldn't use global to specify current
4622 thread. But that's how gdb does it. */
4623 current_thread = PIDGET (inferior_ptid);
4624 inferior_ptid = pid_to_ptid (old_thread);
4625
4626 new_pc = read_pc ();
4627 if (new_pc != old_pc /* If at same pc, no need */
4628 && breakpoint_here_p (new_pc))
4629 {
4630 /* User hasn't deleted the BP.
4631 Return TRUE, finishing switch to "old_thread". */
4632 flush_cached_frames ();
4633 registers_changed ();
4634 #if 0
4635 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4636 current_thread, PIDGET (inferior_ptid));
4637 #endif
4638
4639 return 1;
4640 }
4641
4642 /* Otherwise switch back to the user-chosen thread. */
4643 inferior_ptid = pid_to_ptid (current_thread);
4644 new_pc = read_pc (); /* Re-prime register cache */
4645 }
4646
4647 return 0;
4648 }
4649 #endif /* PREPARE_TO_PROCEED */
4650
4651 void
4652 hppa_skip_permanent_breakpoint (void)
4653 {
4654 /* To step over a breakpoint instruction on the PA takes some
4655 fiddling with the instruction address queue.
4656
4657 When we stop at a breakpoint, the IA queue front (the instruction
4658 we're executing now) points at the breakpoint instruction, and
4659 the IA queue back (the next instruction to execute) points to
4660 whatever instruction we would execute after the breakpoint, if it
4661 were an ordinary instruction. This is the case even if the
4662 breakpoint is in the delay slot of a branch instruction.
4663
4664 Clearly, to step past the breakpoint, we need to set the queue
4665 front to the back. But what do we put in the back? What
4666 instruction comes after that one? Because of the branch delay
4667 slot, the next insn is always at the back + 4. */
4668 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4669 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4670
4671 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4672 /* We can leave the tail's space the same, since there's no jump. */
4673 }
4674
4675 void
4676 _initialize_hppa_tdep (void)
4677 {
4678 struct cmd_list_element *c;
4679 void break_at_finish_command (char *arg, int from_tty);
4680 void tbreak_at_finish_command (char *arg, int from_tty);
4681 void break_at_finish_at_depth_command (char *arg, int from_tty);
4682
4683 tm_print_insn = print_insn_hppa;
4684
4685 add_cmd ("unwind", class_maintenance, unwind_command,
4686 "Print unwind table entry at given address.",
4687 &maintenanceprintlist);
4688
4689 add_com ("xbreak", class_breakpoint, break_at_finish_command,
4690 concat ("Set breakpoint at procedure exit. \n\
4691 Argument may be function name, or \"*\" and an address.\n\
4692 If function is specified, break at end of code for that function.\n\
4693 If an address is specified, break at the end of the function that contains \n\
4694 that exact address.\n",
4695 "With no arg, uses current execution address of selected stack frame.\n\
4696 This is useful for breaking on return to a stack frame.\n\
4697 \n\
4698 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
4699 \n\
4700 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL));
4701 add_com_alias ("xb", "xbreak", class_breakpoint, 1);
4702 add_com_alias ("xbr", "xbreak", class_breakpoint, 1);
4703 add_com_alias ("xbre", "xbreak", class_breakpoint, 1);
4704 add_com_alias ("xbrea", "xbreak", class_breakpoint, 1);
4705
4706 c = add_com ("txbreak", class_breakpoint, tbreak_at_finish_command,
4707 "Set temporary breakpoint at procedure exit. Either there should\n\
4708 be no argument or the argument must be a depth.\n");
4709 c->completer = location_completer;
4710
4711 if (xdb_commands)
4712 add_com ("bx", class_breakpoint, break_at_finish_at_depth_command,
4713 "Set breakpoint at procedure exit. Either there should\n\
4714 be no argument or the argument must be a depth.\n");
4715 }
4716
4717 /* Copy the function value from VALBUF into the proper location
4718 for a function return.
4719
4720 Called only in the context of the "return" command. */
4721
4722 void
4723 hppa_store_return_value (struct type *type, char *valbuf)
4724 {
4725 /* For software floating point, the return value goes into the
4726 integer registers. But we do not have any flag to key this on,
4727 so we always store the value into the integer registers.
4728
4729 If its a float value, then we also store it into the floating
4730 point registers. */
4731 write_register_bytes (REGISTER_BYTE (28)
4732 + (TYPE_LENGTH (type) > 4
4733 ? (8 - TYPE_LENGTH (type))
4734 : (4 - TYPE_LENGTH (type))),
4735 valbuf,
4736 TYPE_LENGTH (type));
4737 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4738 write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4739 valbuf,
4740 TYPE_LENGTH (type));
4741 }
4742
4743 /* Copy the function's return value into VALBUF.
4744
4745 This function is called only in the context of "target function calls",
4746 ie. when the debugger forces a function to be called in the child, and
4747 when the debugger forces a fucntion to return prematurely via the
4748 "return" command. */
4749
4750 void
4751 hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4752 {
4753 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4754 memcpy (valbuf,
4755 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4756 TYPE_LENGTH (type));
4757 else
4758 memcpy (valbuf,
4759 ((char *)regbuf
4760 + REGISTER_BYTE (28)
4761 + (TYPE_LENGTH (type) > 4
4762 ? (8 - TYPE_LENGTH (type))
4763 : (4 - TYPE_LENGTH (type)))),
4764 TYPE_LENGTH (type));
4765 }
This page took 0.123394 seconds and 5 git commands to generate.