* hppa-tdep.c (frame_chain): Fix more obscure problems caused
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include "gdb_stat.h"
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60 static int hppa_alignof PARAMS ((struct type *));
61
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
65
66 static int is_branch PARAMS ((unsigned long));
67
68 static int inst_saves_gr PARAMS ((unsigned long));
69
70 static int inst_saves_fr PARAMS ((unsigned long));
71
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
73
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
75
76 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
77 const struct unwind_table_entry *));
78
79 static void read_unwind_info PARAMS ((struct objfile *));
80
81 static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
84 unsigned int, CORE_ADDR));
85 static void pa_print_registers PARAMS ((char *, int, int));
86 static void pa_print_fp_reg PARAMS ((int));
87
88 \f
89 /* Routines to extract various sized constants out of hppa
90 instructions. */
91
92 /* This assumes that no garbage lies outside of the lower bits of
93 value. */
94
95 int
96 sign_extend (val, bits)
97 unsigned val, bits;
98 {
99 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
100 }
101
102 /* For many immediate values the sign bit is the low bit! */
103
104 int
105 low_sign_extend (val, bits)
106 unsigned val, bits;
107 {
108 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
109 }
110 /* extract the immediate field from a ld{bhw}s instruction */
111
112 unsigned
113 get_field (val, from, to)
114 unsigned val, from, to;
115 {
116 val = val >> 31 - to;
117 return val & ((1 << 32 - from) - 1);
118 }
119
120 unsigned
121 set_field (val, from, to, new_val)
122 unsigned *val, from, to;
123 {
124 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
125 return *val = *val & mask | (new_val << (31 - from));
126 }
127
128 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
129
130 extract_3 (word)
131 unsigned word;
132 {
133 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
134 }
135
136 extract_5_load (word)
137 unsigned word;
138 {
139 return low_sign_extend (word >> 16 & MASK_5, 5);
140 }
141
142 /* extract the immediate field from a st{bhw}s instruction */
143
144 int
145 extract_5_store (word)
146 unsigned word;
147 {
148 return low_sign_extend (word & MASK_5, 5);
149 }
150
151 /* extract the immediate field from a break instruction */
152
153 unsigned
154 extract_5r_store (word)
155 unsigned word;
156 {
157 return (word & MASK_5);
158 }
159
160 /* extract the immediate field from a {sr}sm instruction */
161
162 unsigned
163 extract_5R_store (word)
164 unsigned word;
165 {
166 return (word >> 16 & MASK_5);
167 }
168
169 /* extract an 11 bit immediate field */
170
171 int
172 extract_11 (word)
173 unsigned word;
174 {
175 return low_sign_extend (word & MASK_11, 11);
176 }
177
178 /* extract a 14 bit immediate field */
179
180 int
181 extract_14 (word)
182 unsigned word;
183 {
184 return low_sign_extend (word & MASK_14, 14);
185 }
186
187 /* deposit a 14 bit constant in a word */
188
189 unsigned
190 deposit_14 (opnd, word)
191 int opnd;
192 unsigned word;
193 {
194 unsigned sign = (opnd < 0 ? 1 : 0);
195
196 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
197 }
198
199 /* extract a 21 bit constant */
200
201 int
202 extract_21 (word)
203 unsigned word;
204 {
205 int val;
206
207 word &= MASK_21;
208 word <<= 11;
209 val = GET_FIELD (word, 20, 20);
210 val <<= 11;
211 val |= GET_FIELD (word, 9, 19);
212 val <<= 2;
213 val |= GET_FIELD (word, 5, 6);
214 val <<= 5;
215 val |= GET_FIELD (word, 0, 4);
216 val <<= 2;
217 val |= GET_FIELD (word, 7, 8);
218 return sign_extend (val, 21) << 11;
219 }
220
221 /* deposit a 21 bit constant in a word. Although 21 bit constants are
222 usually the top 21 bits of a 32 bit constant, we assume that only
223 the low 21 bits of opnd are relevant */
224
225 unsigned
226 deposit_21 (opnd, word)
227 unsigned opnd, word;
228 {
229 unsigned val = 0;
230
231 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
234 val <<= 2;
235 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
236 val <<= 11;
237 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
238 val <<= 1;
239 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
240 return word | val;
241 }
242
243 /* extract a 12 bit constant from branch instructions */
244
245 int
246 extract_12 (word)
247 unsigned word;
248 {
249 return sign_extend (GET_FIELD (word, 19, 28) |
250 GET_FIELD (word, 29, 29) << 10 |
251 (word & 0x1) << 11, 12) << 2;
252 }
253
254 /* Deposit a 17 bit constant in an instruction (like bl). */
255
256 unsigned int
257 deposit_17 (opnd, word)
258 unsigned opnd, word;
259 {
260 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
261 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
262 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
263 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
264
265 return word;
266 }
267
268 /* extract a 17 bit constant from branch instructions, returning the
269 19 bit signed value. */
270
271 int
272 extract_17 (word)
273 unsigned word;
274 {
275 return sign_extend (GET_FIELD (word, 19, 28) |
276 GET_FIELD (word, 29, 29) << 10 |
277 GET_FIELD (word, 11, 15) << 11 |
278 (word & 0x1) << 16, 17) << 2;
279 }
280 \f
281
282 /* Compare the start address for two unwind entries returning 1 if
283 the first address is larger than the second, -1 if the second is
284 larger than the first, and zero if they are equal. */
285
286 static int
287 compare_unwind_entries (a, b)
288 const struct unwind_table_entry *a;
289 const struct unwind_table_entry *b;
290 {
291 if (a->region_start > b->region_start)
292 return 1;
293 else if (a->region_start < b->region_start)
294 return -1;
295 else
296 return 0;
297 }
298
299 static void
300 internalize_unwinds (objfile, table, section, entries, size, text_offset)
301 struct objfile *objfile;
302 struct unwind_table_entry *table;
303 asection *section;
304 unsigned int entries, size;
305 CORE_ADDR text_offset;
306 {
307 /* We will read the unwind entries into temporary memory, then
308 fill in the actual unwind table. */
309 if (size > 0)
310 {
311 unsigned long tmp;
312 unsigned i;
313 char *buf = alloca (size);
314
315 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
316
317 /* Now internalize the information being careful to handle host/target
318 endian issues. */
319 for (i = 0; i < entries; i++)
320 {
321 table[i].region_start = bfd_get_32 (objfile->obfd,
322 (bfd_byte *)buf);
323 table[i].region_start += text_offset;
324 buf += 4;
325 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
326 table[i].region_end += text_offset;
327 buf += 4;
328 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
329 buf += 4;
330 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
331 table[i].Millicode = (tmp >> 30) & 0x1;
332 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
333 table[i].Region_description = (tmp >> 27) & 0x3;
334 table[i].reserved1 = (tmp >> 26) & 0x1;
335 table[i].Entry_SR = (tmp >> 25) & 0x1;
336 table[i].Entry_FR = (tmp >> 21) & 0xf;
337 table[i].Entry_GR = (tmp >> 16) & 0x1f;
338 table[i].Args_stored = (tmp >> 15) & 0x1;
339 table[i].Variable_Frame = (tmp >> 14) & 0x1;
340 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
341 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
342 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
343 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
344 table[i].Ada_Region = (tmp >> 9) & 0x1;
345 table[i].reserved2 = (tmp >> 5) & 0xf;
346 table[i].Save_SP = (tmp >> 4) & 0x1;
347 table[i].Save_RP = (tmp >> 3) & 0x1;
348 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
349 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
350 table[i].Cleanup_defined = tmp & 0x1;
351 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
352 buf += 4;
353 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
354 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
355 table[i].Large_frame = (tmp >> 29) & 0x1;
356 table[i].reserved4 = (tmp >> 27) & 0x3;
357 table[i].Total_frame_size = tmp & 0x7ffffff;
358 }
359 }
360 }
361
362 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
363 the object file. This info is used mainly by find_unwind_entry() to find
364 out the stack frame size and frame pointer used by procedures. We put
365 everything on the psymbol obstack in the objfile so that it automatically
366 gets freed when the objfile is destroyed. */
367
368 static void
369 read_unwind_info (objfile)
370 struct objfile *objfile;
371 {
372 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
373 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
374 unsigned index, unwind_entries, elf_unwind_entries;
375 unsigned stub_entries, total_entries;
376 CORE_ADDR text_offset;
377 struct obj_unwind_info *ui;
378
379 text_offset = ANOFFSET (objfile->section_offsets, 0);
380 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
381 sizeof (struct obj_unwind_info));
382
383 ui->table = NULL;
384 ui->cache = NULL;
385 ui->last = -1;
386
387 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
388 section in ELF at the moment. */
389 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
390 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
391 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
392
393 /* Get sizes and unwind counts for all sections. */
394 if (unwind_sec)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398 }
399 else
400 {
401 unwind_size = 0;
402 unwind_entries = 0;
403 }
404
405 if (elf_unwind_sec)
406 {
407 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
408 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
409 }
410 else
411 {
412 elf_unwind_size = 0;
413 elf_unwind_entries = 0;
414 }
415
416 if (stub_unwind_sec)
417 {
418 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
419 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
420 }
421 else
422 {
423 stub_unwind_size = 0;
424 stub_entries = 0;
425 }
426
427 /* Compute total number of unwind entries and their total size. */
428 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
429 total_size = total_entries * sizeof (struct unwind_table_entry);
430
431 /* Allocate memory for the unwind table. */
432 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
433 ui->last = total_entries - 1;
434
435 /* Internalize the standard unwind entries. */
436 index = 0;
437 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
438 unwind_entries, unwind_size, text_offset);
439 index += unwind_entries;
440 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
441 elf_unwind_entries, elf_unwind_size, text_offset);
442 index += elf_unwind_entries;
443
444 /* Now internalize the stub unwind entries. */
445 if (stub_unwind_size > 0)
446 {
447 unsigned int i;
448 char *buf = alloca (stub_unwind_size);
449
450 /* Read in the stub unwind entries. */
451 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
452 0, stub_unwind_size);
453
454 /* Now convert them into regular unwind entries. */
455 for (i = 0; i < stub_entries; i++, index++)
456 {
457 /* Clear out the next unwind entry. */
458 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
459
460 /* Convert offset & size into region_start and region_end.
461 Stuff away the stub type into "reserved" fields. */
462 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
463 (bfd_byte *) buf);
464 ui->table[index].region_start += text_offset;
465 buf += 4;
466 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
467 (bfd_byte *) buf);
468 buf += 2;
469 ui->table[index].region_end
470 = ui->table[index].region_start + 4 *
471 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
472 buf += 2;
473 }
474
475 }
476
477 /* Unwind table needs to be kept sorted. */
478 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
479 compare_unwind_entries);
480
481 /* Keep a pointer to the unwind information. */
482 objfile->obj_private = (PTR) ui;
483 }
484
485 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
486 of the objfiles seeking the unwind table entry for this PC. Each objfile
487 contains a sorted list of struct unwind_table_entry. Since we do a binary
488 search of the unwind tables, we depend upon them to be sorted. */
489
490 static struct unwind_table_entry *
491 find_unwind_entry(pc)
492 CORE_ADDR pc;
493 {
494 int first, middle, last;
495 struct objfile *objfile;
496
497 ALL_OBJFILES (objfile)
498 {
499 struct obj_unwind_info *ui;
500
501 ui = OBJ_UNWIND_INFO (objfile);
502
503 if (!ui)
504 {
505 read_unwind_info (objfile);
506 ui = OBJ_UNWIND_INFO (objfile);
507 }
508
509 /* First, check the cache */
510
511 if (ui->cache
512 && pc >= ui->cache->region_start
513 && pc <= ui->cache->region_end)
514 return ui->cache;
515
516 /* Not in the cache, do a binary search */
517
518 first = 0;
519 last = ui->last;
520
521 while (first <= last)
522 {
523 middle = (first + last) / 2;
524 if (pc >= ui->table[middle].region_start
525 && pc <= ui->table[middle].region_end)
526 {
527 ui->cache = &ui->table[middle];
528 return &ui->table[middle];
529 }
530
531 if (pc < ui->table[middle].region_start)
532 last = middle - 1;
533 else
534 first = middle + 1;
535 }
536 } /* ALL_OBJFILES() */
537 return NULL;
538 }
539
540 /* Return the adjustment necessary to make for addresses on the stack
541 as presented by hpread.c.
542
543 This is necessary because of the stack direction on the PA and the
544 bizarre way in which someone (?) decided they wanted to handle
545 frame pointerless code in GDB. */
546 int
547 hpread_adjust_stack_address (func_addr)
548 CORE_ADDR func_addr;
549 {
550 struct unwind_table_entry *u;
551
552 u = find_unwind_entry (func_addr);
553 if (!u)
554 return 0;
555 else
556 return u->Total_frame_size << 3;
557 }
558
559 /* Called to determine if PC is in an interrupt handler of some
560 kind. */
561
562 static int
563 pc_in_interrupt_handler (pc)
564 CORE_ADDR pc;
565 {
566 struct unwind_table_entry *u;
567 struct minimal_symbol *msym_us;
568
569 u = find_unwind_entry (pc);
570 if (!u)
571 return 0;
572
573 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
574 its frame isn't a pure interrupt frame. Deal with this. */
575 msym_us = lookup_minimal_symbol_by_pc (pc);
576
577 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
578 }
579
580 /* Called when no unwind descriptor was found for PC. Returns 1 if it
581 appears that PC is in a linker stub. */
582
583 static int
584 pc_in_linker_stub (pc)
585 CORE_ADDR pc;
586 {
587 int found_magic_instruction = 0;
588 int i;
589 char buf[4];
590
591 /* If unable to read memory, assume pc is not in a linker stub. */
592 if (target_read_memory (pc, buf, 4) != 0)
593 return 0;
594
595 /* We are looking for something like
596
597 ; $$dyncall jams RP into this special spot in the frame (RP')
598 ; before calling the "call stub"
599 ldw -18(sp),rp
600
601 ldsid (rp),r1 ; Get space associated with RP into r1
602 mtsp r1,sp ; Move it into space register 0
603 be,n 0(sr0),rp) ; back to your regularly scheduled program
604 */
605
606 /* Maximum known linker stub size is 4 instructions. Search forward
607 from the given PC, then backward. */
608 for (i = 0; i < 4; i++)
609 {
610 /* If we hit something with an unwind, stop searching this direction. */
611
612 if (find_unwind_entry (pc + i * 4) != 0)
613 break;
614
615 /* Check for ldsid (rp),r1 which is the magic instruction for a
616 return from a cross-space function call. */
617 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
618 {
619 found_magic_instruction = 1;
620 break;
621 }
622 /* Add code to handle long call/branch and argument relocation stubs
623 here. */
624 }
625
626 if (found_magic_instruction != 0)
627 return 1;
628
629 /* Now look backward. */
630 for (i = 0; i < 4; i++)
631 {
632 /* If we hit something with an unwind, stop searching this direction. */
633
634 if (find_unwind_entry (pc - i * 4) != 0)
635 break;
636
637 /* Check for ldsid (rp),r1 which is the magic instruction for a
638 return from a cross-space function call. */
639 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
640 {
641 found_magic_instruction = 1;
642 break;
643 }
644 /* Add code to handle long call/branch and argument relocation stubs
645 here. */
646 }
647 return found_magic_instruction;
648 }
649
650 static int
651 find_return_regnum(pc)
652 CORE_ADDR pc;
653 {
654 struct unwind_table_entry *u;
655
656 u = find_unwind_entry (pc);
657
658 if (!u)
659 return RP_REGNUM;
660
661 if (u->Millicode)
662 return 31;
663
664 return RP_REGNUM;
665 }
666
667 /* Return size of frame, or -1 if we should use a frame pointer. */
668 int
669 find_proc_framesize (pc)
670 CORE_ADDR pc;
671 {
672 struct unwind_table_entry *u;
673 struct minimal_symbol *msym_us;
674
675 u = find_unwind_entry (pc);
676
677 if (!u)
678 {
679 if (pc_in_linker_stub (pc))
680 /* Linker stubs have a zero size frame. */
681 return 0;
682 else
683 return -1;
684 }
685
686 msym_us = lookup_minimal_symbol_by_pc (pc);
687
688 /* If Save_SP is set, and we're not in an interrupt or signal caller,
689 then we have a frame pointer. Use it. */
690 if (u->Save_SP && !pc_in_interrupt_handler (pc)
691 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
692 return -1;
693
694 return u->Total_frame_size << 3;
695 }
696
697 /* Return offset from sp at which rp is saved, or 0 if not saved. */
698 static int rp_saved PARAMS ((CORE_ADDR));
699
700 static int
701 rp_saved (pc)
702 CORE_ADDR pc;
703 {
704 struct unwind_table_entry *u;
705
706 u = find_unwind_entry (pc);
707
708 if (!u)
709 {
710 if (pc_in_linker_stub (pc))
711 /* This is the so-called RP'. */
712 return -24;
713 else
714 return 0;
715 }
716
717 if (u->Save_RP)
718 return -20;
719 else if (u->stub_type != 0)
720 {
721 switch (u->stub_type)
722 {
723 case EXPORT:
724 case IMPORT:
725 return -24;
726 case PARAMETER_RELOCATION:
727 return -8;
728 default:
729 return 0;
730 }
731 }
732 else
733 return 0;
734 }
735 \f
736 int
737 frameless_function_invocation (frame)
738 struct frame_info *frame;
739 {
740 struct unwind_table_entry *u;
741
742 u = find_unwind_entry (frame->pc);
743
744 if (u == 0)
745 return 0;
746
747 return (u->Total_frame_size == 0 && u->stub_type == 0);
748 }
749
750 CORE_ADDR
751 saved_pc_after_call (frame)
752 struct frame_info *frame;
753 {
754 int ret_regnum;
755 CORE_ADDR pc;
756 struct unwind_table_entry *u;
757
758 ret_regnum = find_return_regnum (get_frame_pc (frame));
759 pc = read_register (ret_regnum) & ~0x3;
760
761 /* If PC is in a linker stub, then we need to dig the address
762 the stub will return to out of the stack. */
763 u = find_unwind_entry (pc);
764 if (u && u->stub_type != 0)
765 return frame_saved_pc (frame);
766 else
767 return pc;
768 }
769 \f
770 CORE_ADDR
771 frame_saved_pc (frame)
772 struct frame_info *frame;
773 {
774 CORE_ADDR pc = get_frame_pc (frame);
775 struct unwind_table_entry *u;
776
777 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
778 at the base of the frame in an interrupt handler. Registers within
779 are saved in the exact same order as GDB numbers registers. How
780 convienent. */
781 if (pc_in_interrupt_handler (pc))
782 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
783
784 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
785 /* Deal with signal handler caller frames too. */
786 if (frame->signal_handler_caller)
787 {
788 CORE_ADDR rp;
789 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
790 return rp & ~0x3;
791 }
792 #endif
793
794 if (frameless_function_invocation (frame))
795 {
796 int ret_regnum;
797
798 ret_regnum = find_return_regnum (pc);
799
800 /* If the next frame is an interrupt frame or a signal
801 handler caller, then we need to look in the saved
802 register area to get the return pointer (the values
803 in the registers may not correspond to anything useful). */
804 if (frame->next
805 && (frame->next->signal_handler_caller
806 || pc_in_interrupt_handler (frame->next->pc)))
807 {
808 struct frame_saved_regs saved_regs;
809
810 get_frame_saved_regs (frame->next, &saved_regs);
811 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
812 {
813 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
814
815 /* Syscalls are really two frames. The syscall stub itself
816 with a return pointer in %rp and the kernel call with
817 a return pointer in %r31. We return the %rp variant
818 if %r31 is the same as frame->pc. */
819 if (pc == frame->pc)
820 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
821 }
822 else
823 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
824 }
825 else
826 pc = read_register (ret_regnum) & ~0x3;
827 }
828 else
829 {
830 int rp_offset;
831
832 restart:
833 rp_offset = rp_saved (pc);
834 /* Similar to code in frameless function case. If the next
835 frame is a signal or interrupt handler, then dig the right
836 information out of the saved register info. */
837 if (rp_offset == 0
838 && frame->next
839 && (frame->next->signal_handler_caller
840 || pc_in_interrupt_handler (frame->next->pc)))
841 {
842 struct frame_saved_regs saved_regs;
843
844 get_frame_saved_regs (frame->next, &saved_regs);
845 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
846 {
847 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
848
849 /* Syscalls are really two frames. The syscall stub itself
850 with a return pointer in %rp and the kernel call with
851 a return pointer in %r31. We return the %rp variant
852 if %r31 is the same as frame->pc. */
853 if (pc == frame->pc)
854 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
855 }
856 else
857 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
858 }
859 else if (rp_offset == 0)
860 pc = read_register (RP_REGNUM) & ~0x3;
861 else
862 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
863 }
864
865 /* If PC is inside a linker stub, then dig out the address the stub
866 will return to.
867
868 Don't do this for long branch stubs. Why? For some unknown reason
869 _start is marked as a long branch stub in hpux10. */
870 u = find_unwind_entry (pc);
871 if (u && u->stub_type != 0
872 && u->stub_type != LONG_BRANCH)
873 {
874 unsigned int insn;
875
876 /* If this is a dynamic executable, and we're in a signal handler,
877 then the call chain will eventually point us into the stub for
878 _sigreturn. Unlike most cases, we'll be pointed to the branch
879 to the real sigreturn rather than the code after the real branch!.
880
881 Else, try to dig the address the stub will return to in the normal
882 fashion. */
883 insn = read_memory_integer (pc, 4);
884 if ((insn & 0xfc00e000) == 0xe8000000)
885 return (pc + extract_17 (insn) + 8) & ~0x3;
886 else
887 goto restart;
888 }
889
890 return pc;
891 }
892 \f
893 /* We need to correct the PC and the FP for the outermost frame when we are
894 in a system call. */
895
896 void
897 init_extra_frame_info (fromleaf, frame)
898 int fromleaf;
899 struct frame_info *frame;
900 {
901 int flags;
902 int framesize;
903
904 if (frame->next && !fromleaf)
905 return;
906
907 /* If the next frame represents a frameless function invocation
908 then we have to do some adjustments that are normally done by
909 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
910 if (fromleaf)
911 {
912 /* Find the framesize of *this* frame without peeking at the PC
913 in the current frame structure (it isn't set yet). */
914 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
915
916 /* Now adjust our base frame accordingly. If we have a frame pointer
917 use it, else subtract the size of this frame from the current
918 frame. (we always want frame->frame to point at the lowest address
919 in the frame). */
920 if (framesize == -1)
921 frame->frame = read_register (FP_REGNUM);
922 else
923 frame->frame -= framesize;
924 return;
925 }
926
927 flags = read_register (FLAGS_REGNUM);
928 if (flags & 2) /* In system call? */
929 frame->pc = read_register (31) & ~0x3;
930
931 /* The outermost frame is always derived from PC-framesize
932
933 One might think frameless innermost frames should have
934 a frame->frame that is the same as the parent's frame->frame.
935 That is wrong; frame->frame in that case should be the *high*
936 address of the parent's frame. It's complicated as hell to
937 explain, but the parent *always* creates some stack space for
938 the child. So the child actually does have a frame of some
939 sorts, and its base is the high address in its parent's frame. */
940 framesize = find_proc_framesize(frame->pc);
941 if (framesize == -1)
942 frame->frame = read_register (FP_REGNUM);
943 else
944 frame->frame = read_register (SP_REGNUM) - framesize;
945 }
946 \f
947 /* Given a GDB frame, determine the address of the calling function's frame.
948 This will be used to create a new GDB frame struct, and then
949 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
950
951 This may involve searching through prologues for several functions
952 at boundaries where GCC calls HP C code, or where code which has
953 a frame pointer calls code without a frame pointer. */
954
955 CORE_ADDR
956 frame_chain (frame)
957 struct frame_info *frame;
958 {
959 int my_framesize, caller_framesize;
960 struct unwind_table_entry *u;
961 CORE_ADDR frame_base;
962 struct frame_info *tmp_frame;
963
964 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
965 are easy; at *sp we have a full save state strucutre which we can
966 pull the old stack pointer from. Also see frame_saved_pc for
967 code to dig a saved PC out of the save state structure. */
968 if (pc_in_interrupt_handler (frame->pc))
969 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
970 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
971 else if (frame->signal_handler_caller)
972 {
973 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
974 }
975 #endif
976 else
977 frame_base = frame->frame;
978
979 /* Get frame sizes for the current frame and the frame of the
980 caller. */
981 my_framesize = find_proc_framesize (frame->pc);
982 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
983
984 /* If caller does not have a frame pointer, then its frame
985 can be found at current_frame - caller_framesize. */
986 if (caller_framesize != -1)
987 return frame_base - caller_framesize;
988
989 /* Both caller and callee have frame pointers and are GCC compiled
990 (SAVE_SP bit in unwind descriptor is on for both functions.
991 The previous frame pointer is found at the top of the current frame. */
992 if (caller_framesize == -1 && my_framesize == -1)
993 return read_memory_integer (frame_base, 4);
994
995 /* Caller has a frame pointer, but callee does not. This is a little
996 more difficult as GCC and HP C lay out locals and callee register save
997 areas very differently.
998
999 The previous frame pointer could be in a register, or in one of
1000 several areas on the stack.
1001
1002 Walk from the current frame to the innermost frame examining
1003 unwind descriptors to determine if %r3 ever gets saved into the
1004 stack. If so return whatever value got saved into the stack.
1005 If it was never saved in the stack, then the value in %r3 is still
1006 valid, so use it.
1007
1008 We use information from unwind descriptors to determine if %r3
1009 is saved into the stack (Entry_GR field has this information). */
1010
1011 tmp_frame = frame;
1012 while (tmp_frame)
1013 {
1014 u = find_unwind_entry (tmp_frame->pc);
1015
1016 if (!u)
1017 {
1018 /* We could find this information by examining prologues. I don't
1019 think anyone has actually written any tools (not even "strip")
1020 which leave them out of an executable, so maybe this is a moot
1021 point. */
1022 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1023 return 0;
1024 }
1025
1026 /* Entry_GR specifies the number of callee-saved general registers
1027 saved in the stack. It starts at %r3, so %r3 would be 1. */
1028 if (u->Entry_GR >= 1 || u->Save_SP
1029 || tmp_frame->signal_handler_caller
1030 || pc_in_interrupt_handler (tmp_frame->pc))
1031 break;
1032 else
1033 tmp_frame = tmp_frame->next;
1034 }
1035
1036 if (tmp_frame)
1037 {
1038 /* We may have walked down the chain into a function with a frame
1039 pointer. */
1040 if (u->Save_SP
1041 && !tmp_frame->signal_handler_caller
1042 && !pc_in_interrupt_handler (tmp_frame->pc))
1043 return read_memory_integer (tmp_frame->frame, 4);
1044 /* %r3 was saved somewhere in the stack. Dig it out. */
1045 else
1046 {
1047 struct frame_saved_regs saved_regs;
1048
1049 /* Sick.
1050
1051 For optimization purposes many kernels don't have the
1052 callee saved registers into the save_state structure upon
1053 entry into the kernel for a syscall; the optimization
1054 is usually turned off if the process is being traced so
1055 that the debugger can get full register state for the
1056 process.
1057
1058 This scheme works well except for two cases:
1059
1060 * Attaching to a process when the process is in the
1061 kernel performing a system call (debugger can't get
1062 full register state for the inferior process since
1063 the process wasn't being traced when it entered the
1064 system call).
1065
1066 * Register state is not complete if the system call
1067 causes the process to core dump.
1068
1069
1070 The following heinous code is an attempt to deal with
1071 the lack of register state in a core dump. It will
1072 fail miserably if the function which performs the
1073 system call has a variable sized stack frame. */
1074
1075 get_frame_saved_regs (tmp_frame, &saved_regs);
1076
1077 /* Abominable hack. */
1078 if (current_target.to_has_execution == 0
1079 && ((saved_regs.regs[FLAGS_REGNUM]
1080 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1081 & 0x2))
1082 || (saved_regs.regs[FLAGS_REGNUM] == 0
1083 && read_register (FLAGS_REGNUM) & 0x2)))
1084 {
1085 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1086 if (!u)
1087 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1088 else
1089 return frame_base - (u->Total_frame_size << 3);
1090 }
1091
1092 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1093 }
1094 }
1095 else
1096 {
1097 struct frame_saved_regs saved_regs;
1098
1099 /* Get the innermost frame. */
1100 tmp_frame = frame;
1101 while (tmp_frame->next != NULL)
1102 tmp_frame = tmp_frame->next;
1103
1104 get_frame_saved_regs (tmp_frame, &saved_regs);
1105 /* Abominable hack. See above. */
1106 if (current_target.to_has_execution == 0
1107 && ((saved_regs.regs[FLAGS_REGNUM]
1108 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1109 & 0x2))
1110 || (saved_regs.regs[FLAGS_REGNUM] == 0
1111 && read_register (FLAGS_REGNUM) & 0x2)))
1112 {
1113 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1114 if (!u)
1115 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1116 else
1117 return frame_base - (u->Total_frame_size << 3);
1118 }
1119
1120 /* The value in %r3 was never saved into the stack (thus %r3 still
1121 holds the value of the previous frame pointer). */
1122 return read_register (FP_REGNUM);
1123 }
1124 }
1125
1126 \f
1127 /* To see if a frame chain is valid, see if the caller looks like it
1128 was compiled with gcc. */
1129
1130 int
1131 frame_chain_valid (chain, thisframe)
1132 CORE_ADDR chain;
1133 struct frame_info *thisframe;
1134 {
1135 struct minimal_symbol *msym_us;
1136 struct minimal_symbol *msym_start;
1137 struct unwind_table_entry *u, *next_u = NULL;
1138 struct frame_info *next;
1139
1140 if (!chain)
1141 return 0;
1142
1143 u = find_unwind_entry (thisframe->pc);
1144
1145 if (u == NULL)
1146 return 1;
1147
1148 /* We can't just check that the same of msym_us is "_start", because
1149 someone idiotically decided that they were going to make a Ltext_end
1150 symbol with the same address. This Ltext_end symbol is totally
1151 indistinguishable (as nearly as I can tell) from the symbol for a function
1152 which is (legitimately, since it is in the user's namespace)
1153 named Ltext_end, so we can't just ignore it. */
1154 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1155 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1156 if (msym_us
1157 && msym_start
1158 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1159 return 0;
1160
1161 /* Grrrr. Some new idiot decided that they don't want _start for the
1162 PRO configurations; $START$ calls main directly.... Deal with it. */
1163 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1164 if (msym_us
1165 && msym_start
1166 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1167 return 0;
1168
1169 next = get_next_frame (thisframe);
1170 if (next)
1171 next_u = find_unwind_entry (next->pc);
1172
1173 /* If this frame does not save SP, has no stack, isn't a stub,
1174 and doesn't "call" an interrupt routine or signal handler caller,
1175 then its not valid. */
1176 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1177 || (thisframe->next && thisframe->next->signal_handler_caller)
1178 || (next_u && next_u->HP_UX_interrupt_marker))
1179 return 1;
1180
1181 if (pc_in_linker_stub (thisframe->pc))
1182 return 1;
1183
1184 return 0;
1185 }
1186
1187 /*
1188 * These functions deal with saving and restoring register state
1189 * around a function call in the inferior. They keep the stack
1190 * double-word aligned; eventually, on an hp700, the stack will have
1191 * to be aligned to a 64-byte boundary.
1192 */
1193
1194 void
1195 push_dummy_frame (inf_status)
1196 struct inferior_status *inf_status;
1197 {
1198 CORE_ADDR sp, pc, pcspace;
1199 register int regnum;
1200 int int_buffer;
1201 double freg_buffer;
1202
1203 /* Oh, what a hack. If we're trying to perform an inferior call
1204 while the inferior is asleep, we have to make sure to clear
1205 the "in system call" bit in the flag register (the call will
1206 start after the syscall returns, so we're no longer in the system
1207 call!) This state is kept in "inf_status", change it there.
1208
1209 We also need a number of horrid hacks to deal with lossage in the
1210 PC queue registers (apparently they're not valid when the in syscall
1211 bit is set). */
1212 pc = target_read_pc (inferior_pid);
1213 int_buffer = read_register (FLAGS_REGNUM);
1214 if (int_buffer & 0x2)
1215 {
1216 unsigned int sid;
1217 int_buffer &= ~0x2;
1218 memcpy (inf_status->registers, &int_buffer, 4);
1219 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1220 pc += 4;
1221 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1222 pc -= 4;
1223 sid = (pc >> 30) & 0x3;
1224 if (sid == 0)
1225 pcspace = read_register (SR4_REGNUM);
1226 else
1227 pcspace = read_register (SR4_REGNUM + 4 + sid);
1228 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1229 &pcspace, 4);
1230 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1231 &pcspace, 4);
1232 }
1233 else
1234 pcspace = read_register (PCSQ_HEAD_REGNUM);
1235
1236 /* Space for "arguments"; the RP goes in here. */
1237 sp = read_register (SP_REGNUM) + 48;
1238 int_buffer = read_register (RP_REGNUM) | 0x3;
1239 write_memory (sp - 20, (char *)&int_buffer, 4);
1240
1241 int_buffer = read_register (FP_REGNUM);
1242 write_memory (sp, (char *)&int_buffer, 4);
1243
1244 write_register (FP_REGNUM, sp);
1245
1246 sp += 8;
1247
1248 for (regnum = 1; regnum < 32; regnum++)
1249 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1250 sp = push_word (sp, read_register (regnum));
1251
1252 sp += 4;
1253
1254 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1255 {
1256 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1257 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1258 }
1259 sp = push_word (sp, read_register (IPSW_REGNUM));
1260 sp = push_word (sp, read_register (SAR_REGNUM));
1261 sp = push_word (sp, pc);
1262 sp = push_word (sp, pcspace);
1263 sp = push_word (sp, pc + 4);
1264 sp = push_word (sp, pcspace);
1265 write_register (SP_REGNUM, sp);
1266 }
1267
1268 void
1269 find_dummy_frame_regs (frame, frame_saved_regs)
1270 struct frame_info *frame;
1271 struct frame_saved_regs *frame_saved_regs;
1272 {
1273 CORE_ADDR fp = frame->frame;
1274 int i;
1275
1276 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1277 frame_saved_regs->regs[FP_REGNUM] = fp;
1278 frame_saved_regs->regs[1] = fp + 8;
1279
1280 for (fp += 12, i = 3; i < 32; i++)
1281 {
1282 if (i != FP_REGNUM)
1283 {
1284 frame_saved_regs->regs[i] = fp;
1285 fp += 4;
1286 }
1287 }
1288
1289 fp += 4;
1290 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1291 frame_saved_regs->regs[i] = fp;
1292
1293 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1294 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1295 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1296 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1297 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1298 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1299 }
1300
1301 void
1302 hppa_pop_frame ()
1303 {
1304 register struct frame_info *frame = get_current_frame ();
1305 register CORE_ADDR fp, npc, target_pc;
1306 register int regnum;
1307 struct frame_saved_regs fsr;
1308 double freg_buffer;
1309
1310 fp = FRAME_FP (frame);
1311 get_frame_saved_regs (frame, &fsr);
1312
1313 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1314 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1315 restore_pc_queue (&fsr);
1316 #endif
1317
1318 for (regnum = 31; regnum > 0; regnum--)
1319 if (fsr.regs[regnum])
1320 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1321
1322 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1323 if (fsr.regs[regnum])
1324 {
1325 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1326 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1327 }
1328
1329 if (fsr.regs[IPSW_REGNUM])
1330 write_register (IPSW_REGNUM,
1331 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1332
1333 if (fsr.regs[SAR_REGNUM])
1334 write_register (SAR_REGNUM,
1335 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1336
1337 /* If the PC was explicitly saved, then just restore it. */
1338 if (fsr.regs[PCOQ_TAIL_REGNUM])
1339 {
1340 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1341 write_register (PCOQ_TAIL_REGNUM, npc);
1342 }
1343 /* Else use the value in %rp to set the new PC. */
1344 else
1345 {
1346 npc = read_register (RP_REGNUM);
1347 target_write_pc (npc, 0);
1348 }
1349
1350 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1351
1352 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1353 write_register (SP_REGNUM, fp - 48);
1354 else
1355 write_register (SP_REGNUM, fp);
1356
1357 /* The PC we just restored may be inside a return trampoline. If so
1358 we want to restart the inferior and run it through the trampoline.
1359
1360 Do this by setting a momentary breakpoint at the location the
1361 trampoline returns to.
1362
1363 Don't skip through the trampoline if we're popping a dummy frame. */
1364 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1365 if (target_pc && !fsr.regs[IPSW_REGNUM])
1366 {
1367 struct symtab_and_line sal;
1368 struct breakpoint *breakpoint;
1369 struct cleanup *old_chain;
1370
1371 /* Set up our breakpoint. Set it to be silent as the MI code
1372 for "return_command" will print the frame we returned to. */
1373 sal = find_pc_line (target_pc, 0);
1374 sal.pc = target_pc;
1375 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1376 breakpoint->silent = 1;
1377
1378 /* So we can clean things up. */
1379 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1380
1381 /* Start up the inferior. */
1382 proceed_to_finish = 1;
1383 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1384
1385 /* Perform our cleanups. */
1386 do_cleanups (old_chain);
1387 }
1388 flush_cached_frames ();
1389 }
1390
1391 /*
1392 * After returning to a dummy on the stack, restore the instruction
1393 * queue space registers. */
1394
1395 static int
1396 restore_pc_queue (fsr)
1397 struct frame_saved_regs *fsr;
1398 {
1399 CORE_ADDR pc = read_pc ();
1400 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1401 struct target_waitstatus w;
1402 int insn_count;
1403
1404 /* Advance past break instruction in the call dummy. */
1405 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1406 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1407
1408 /*
1409 * HPUX doesn't let us set the space registers or the space
1410 * registers of the PC queue through ptrace. Boo, hiss.
1411 * Conveniently, the call dummy has this sequence of instructions
1412 * after the break:
1413 * mtsp r21, sr0
1414 * ble,n 0(sr0, r22)
1415 *
1416 * So, load up the registers and single step until we are in the
1417 * right place.
1418 */
1419
1420 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1421 write_register (22, new_pc);
1422
1423 for (insn_count = 0; insn_count < 3; insn_count++)
1424 {
1425 /* FIXME: What if the inferior gets a signal right now? Want to
1426 merge this into wait_for_inferior (as a special kind of
1427 watchpoint? By setting a breakpoint at the end? Is there
1428 any other choice? Is there *any* way to do this stuff with
1429 ptrace() or some equivalent?). */
1430 resume (1, 0);
1431 target_wait (inferior_pid, &w);
1432
1433 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1434 {
1435 stop_signal = w.value.sig;
1436 terminal_ours_for_output ();
1437 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1438 target_signal_to_name (stop_signal),
1439 target_signal_to_string (stop_signal));
1440 gdb_flush (gdb_stdout);
1441 return 0;
1442 }
1443 }
1444 target_terminal_ours ();
1445 target_fetch_registers (-1);
1446 return 1;
1447 }
1448
1449 CORE_ADDR
1450 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1451 int nargs;
1452 value_ptr *args;
1453 CORE_ADDR sp;
1454 int struct_return;
1455 CORE_ADDR struct_addr;
1456 {
1457 /* array of arguments' offsets */
1458 int *offset = (int *)alloca(nargs * sizeof (int));
1459 int cum = 0;
1460 int i, alignment;
1461
1462 for (i = 0; i < nargs; i++)
1463 {
1464 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1465
1466 /* value must go at proper alignment. Assume alignment is a
1467 power of two.*/
1468 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1469 if (cum % alignment)
1470 cum = (cum + alignment) & -alignment;
1471 offset[i] = -cum;
1472 }
1473 sp += max ((cum + 7) & -8, 16);
1474
1475 for (i = 0; i < nargs; i++)
1476 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1477 TYPE_LENGTH (VALUE_TYPE (args[i])));
1478
1479 if (struct_return)
1480 write_register (28, struct_addr);
1481 return sp + 32;
1482 }
1483
1484 /*
1485 * Insert the specified number of args and function address
1486 * into a call sequence of the above form stored at DUMMYNAME.
1487 *
1488 * On the hppa we need to call the stack dummy through $$dyncall.
1489 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1490 * real_pc, which is the location where gdb should start up the
1491 * inferior to do the function call.
1492 */
1493
1494 CORE_ADDR
1495 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1496 char *dummy;
1497 CORE_ADDR pc;
1498 CORE_ADDR fun;
1499 int nargs;
1500 value_ptr *args;
1501 struct type *type;
1502 int gcc_p;
1503 {
1504 CORE_ADDR dyncall_addr;
1505 struct minimal_symbol *msymbol;
1506 struct minimal_symbol *trampoline;
1507 int flags = read_register (FLAGS_REGNUM);
1508 struct unwind_table_entry *u;
1509
1510 trampoline = NULL;
1511 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1512 if (msymbol == NULL)
1513 error ("Can't find an address for $$dyncall trampoline");
1514
1515 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1516
1517 /* FUN could be a procedure label, in which case we have to get
1518 its real address and the value of its GOT/DP. */
1519 if (fun & 0x2)
1520 {
1521 /* Get the GOT/DP value for the target function. It's
1522 at *(fun+4). Note the call dummy is *NOT* allowed to
1523 trash %r19 before calling the target function. */
1524 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1525
1526 /* Now get the real address for the function we are calling, it's
1527 at *fun. */
1528 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1529 }
1530 else
1531 {
1532
1533 #ifndef GDB_TARGET_IS_PA_ELF
1534 /* FUN could be either an export stub, or the real address of a
1535 function in a shared library. We must call an import stub
1536 rather than the export stub or real function for lazy binding
1537 to work correctly. */
1538 if (som_solib_get_got_by_pc (fun))
1539 {
1540 struct objfile *objfile;
1541 struct minimal_symbol *funsymbol, *stub_symbol;
1542 CORE_ADDR newfun = 0;
1543
1544 funsymbol = lookup_minimal_symbol_by_pc (fun);
1545 if (!funsymbol)
1546 error ("Unable to find minimal symbol for target fucntion.\n");
1547
1548 /* Search all the object files for an import symbol with the
1549 right name. */
1550 ALL_OBJFILES (objfile)
1551 {
1552 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1553 NULL, objfile);
1554 /* Found a symbol with the right name. */
1555 if (stub_symbol)
1556 {
1557 struct unwind_table_entry *u;
1558 /* It must be a shared library trampoline. */
1559 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1560 continue;
1561
1562 /* It must also be an import stub. */
1563 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1564 if (!u || u->stub_type != IMPORT)
1565 continue;
1566
1567 /* OK. Looks like the correct import stub. */
1568 newfun = SYMBOL_VALUE (stub_symbol);
1569 fun = newfun;
1570 }
1571 }
1572 if (newfun == 0)
1573 write_register (19, som_solib_get_got_by_pc (fun));
1574 }
1575 #endif
1576 }
1577
1578 /* If we are calling an import stub (eg calling into a dynamic library)
1579 then have sr4export call the magic __d_plt_call routine which is linked
1580 in from end.o. (You can't use _sr4export to call the import stub as
1581 the value in sp-24 will get fried and you end up returning to the
1582 wrong location. You can't call the import stub directly as the code
1583 to bind the PLT entry to a function can't return to a stack address.) */
1584 u = find_unwind_entry (fun);
1585 if (u && u->stub_type == IMPORT)
1586 {
1587 CORE_ADDR new_fun;
1588
1589 /* Prefer __gcc_plt_call over the HP supplied routine because
1590 __gcc_plt_call works for any number of arguments. */
1591 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1592 if (trampoline == NULL)
1593 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1594
1595 if (trampoline == NULL)
1596 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1597
1598 /* This is where sr4export will jump to. */
1599 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1600
1601 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1602 {
1603 /* We have to store the address of the stub in __shlib_funcptr. */
1604 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1605 (struct objfile *)NULL);
1606 if (msymbol == NULL)
1607 error ("Can't find an address for __shlib_funcptr");
1608
1609 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1610
1611 /* We want sr4export to call __d_plt_call, so we claim it is
1612 the final target. Clear trampoline. */
1613 fun = new_fun;
1614 trampoline = NULL;
1615 }
1616 }
1617
1618 /* Store upper 21 bits of function address into ldil. fun will either be
1619 the final target (most cases) or __d_plt_call when calling into a shared
1620 library and __gcc_plt_call is not available. */
1621 store_unsigned_integer
1622 (&dummy[FUNC_LDIL_OFFSET],
1623 INSTRUCTION_SIZE,
1624 deposit_21 (fun >> 11,
1625 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1626 INSTRUCTION_SIZE)));
1627
1628 /* Store lower 11 bits of function address into ldo */
1629 store_unsigned_integer
1630 (&dummy[FUNC_LDO_OFFSET],
1631 INSTRUCTION_SIZE,
1632 deposit_14 (fun & MASK_11,
1633 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1634 INSTRUCTION_SIZE)));
1635 #ifdef SR4EXPORT_LDIL_OFFSET
1636
1637 {
1638 CORE_ADDR trampoline_addr;
1639
1640 /* We may still need sr4export's address too. */
1641
1642 if (trampoline == NULL)
1643 {
1644 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1645 if (msymbol == NULL)
1646 error ("Can't find an address for _sr4export trampoline");
1647
1648 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1649 }
1650 else
1651 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1652
1653
1654 /* Store upper 21 bits of trampoline's address into ldil */
1655 store_unsigned_integer
1656 (&dummy[SR4EXPORT_LDIL_OFFSET],
1657 INSTRUCTION_SIZE,
1658 deposit_21 (trampoline_addr >> 11,
1659 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1660 INSTRUCTION_SIZE)));
1661
1662 /* Store lower 11 bits of trampoline's address into ldo */
1663 store_unsigned_integer
1664 (&dummy[SR4EXPORT_LDO_OFFSET],
1665 INSTRUCTION_SIZE,
1666 deposit_14 (trampoline_addr & MASK_11,
1667 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1668 INSTRUCTION_SIZE)));
1669 }
1670 #endif
1671
1672 write_register (22, pc);
1673
1674 /* If we are in a syscall, then we should call the stack dummy
1675 directly. $$dyncall is not needed as the kernel sets up the
1676 space id registers properly based on the value in %r31. In
1677 fact calling $$dyncall will not work because the value in %r22
1678 will be clobbered on the syscall exit path.
1679
1680 Similarly if the current PC is in a shared library. Note however,
1681 this scheme won't work if the shared library isn't mapped into
1682 the same space as the stack. */
1683 if (flags & 2)
1684 return pc;
1685 #ifndef GDB_TARGET_IS_PA_ELF
1686 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1687 return pc;
1688 #endif
1689 else
1690 return dyncall_addr;
1691
1692 }
1693
1694 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1695 bits. */
1696
1697 CORE_ADDR
1698 target_read_pc (pid)
1699 int pid;
1700 {
1701 int flags = read_register (FLAGS_REGNUM);
1702
1703 if (flags & 2) {
1704 return read_register (31) & ~0x3;
1705 }
1706 return read_register (PC_REGNUM) & ~0x3;
1707 }
1708
1709 /* Write out the PC. If currently in a syscall, then also write the new
1710 PC value into %r31. */
1711
1712 void
1713 target_write_pc (v, pid)
1714 CORE_ADDR v;
1715 int pid;
1716 {
1717 int flags = read_register (FLAGS_REGNUM);
1718
1719 /* If in a syscall, then set %r31. Also make sure to get the
1720 privilege bits set correctly. */
1721 if (flags & 2)
1722 write_register (31, (long) (v | 0x3));
1723
1724 write_register (PC_REGNUM, (long) v);
1725 write_register (NPC_REGNUM, (long) v + 4);
1726 }
1727
1728 /* return the alignment of a type in bytes. Structures have the maximum
1729 alignment required by their fields. */
1730
1731 static int
1732 hppa_alignof (arg)
1733 struct type *arg;
1734 {
1735 int max_align, align, i;
1736 switch (TYPE_CODE (arg))
1737 {
1738 case TYPE_CODE_PTR:
1739 case TYPE_CODE_INT:
1740 case TYPE_CODE_FLT:
1741 return TYPE_LENGTH (arg);
1742 case TYPE_CODE_ARRAY:
1743 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1744 case TYPE_CODE_STRUCT:
1745 case TYPE_CODE_UNION:
1746 max_align = 2;
1747 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1748 {
1749 /* Bit fields have no real alignment. */
1750 if (!TYPE_FIELD_BITPOS (arg, i))
1751 {
1752 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1753 max_align = max (max_align, align);
1754 }
1755 }
1756 return max_align;
1757 default:
1758 return 4;
1759 }
1760 }
1761
1762 /* Print the register regnum, or all registers if regnum is -1 */
1763
1764 void
1765 pa_do_registers_info (regnum, fpregs)
1766 int regnum;
1767 int fpregs;
1768 {
1769 char raw_regs [REGISTER_BYTES];
1770 int i;
1771
1772 for (i = 0; i < NUM_REGS; i++)
1773 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1774 if (regnum == -1)
1775 pa_print_registers (raw_regs, regnum, fpregs);
1776 else if (regnum < FP0_REGNUM)
1777 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1778 REGISTER_BYTE (regnum)));
1779 else
1780 pa_print_fp_reg (regnum);
1781 }
1782
1783 static void
1784 pa_print_registers (raw_regs, regnum, fpregs)
1785 char *raw_regs;
1786 int regnum;
1787 int fpregs;
1788 {
1789 int i,j;
1790 long val;
1791
1792 for (i = 0; i < 18; i++)
1793 {
1794 for (j = 0; j < 4; j++)
1795 {
1796 val =
1797 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1798 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1799 }
1800 printf_unfiltered ("\n");
1801 }
1802
1803 if (fpregs)
1804 for (i = 72; i < NUM_REGS; i++)
1805 pa_print_fp_reg (i);
1806 }
1807
1808 static void
1809 pa_print_fp_reg (i)
1810 int i;
1811 {
1812 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1813 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1814
1815 /* Get 32bits of data. */
1816 read_relative_register_raw_bytes (i, raw_buffer);
1817
1818 /* Put it in the buffer. No conversions are ever necessary. */
1819 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1820
1821 fputs_filtered (reg_names[i], gdb_stdout);
1822 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1823 fputs_filtered ("(single precision) ", gdb_stdout);
1824
1825 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1826 1, 0, Val_pretty_default);
1827 printf_filtered ("\n");
1828
1829 /* If "i" is even, then this register can also be a double-precision
1830 FP register. Dump it out as such. */
1831 if ((i % 2) == 0)
1832 {
1833 /* Get the data in raw format for the 2nd half. */
1834 read_relative_register_raw_bytes (i + 1, raw_buffer);
1835
1836 /* Copy it into the appropriate part of the virtual buffer. */
1837 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1838 REGISTER_RAW_SIZE (i));
1839
1840 /* Dump it as a double. */
1841 fputs_filtered (reg_names[i], gdb_stdout);
1842 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1843 fputs_filtered ("(double precision) ", gdb_stdout);
1844
1845 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1846 1, 0, Val_pretty_default);
1847 printf_filtered ("\n");
1848 }
1849 }
1850
1851 /* Return one if PC is in the call path of a trampoline, else return zero.
1852
1853 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1854 just shared library trampolines (import, export). */
1855
1856 int
1857 in_solib_call_trampoline (pc, name)
1858 CORE_ADDR pc;
1859 char *name;
1860 {
1861 struct minimal_symbol *minsym;
1862 struct unwind_table_entry *u;
1863 static CORE_ADDR dyncall = 0;
1864 static CORE_ADDR sr4export = 0;
1865
1866 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1867 new exec file */
1868
1869 /* First see if PC is in one of the two C-library trampolines. */
1870 if (!dyncall)
1871 {
1872 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1873 if (minsym)
1874 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1875 else
1876 dyncall = -1;
1877 }
1878
1879 if (!sr4export)
1880 {
1881 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1882 if (minsym)
1883 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1884 else
1885 sr4export = -1;
1886 }
1887
1888 if (pc == dyncall || pc == sr4export)
1889 return 1;
1890
1891 /* Get the unwind descriptor corresponding to PC, return zero
1892 if no unwind was found. */
1893 u = find_unwind_entry (pc);
1894 if (!u)
1895 return 0;
1896
1897 /* If this isn't a linker stub, then return now. */
1898 if (u->stub_type == 0)
1899 return 0;
1900
1901 /* By definition a long-branch stub is a call stub. */
1902 if (u->stub_type == LONG_BRANCH)
1903 return 1;
1904
1905 /* The call and return path execute the same instructions within
1906 an IMPORT stub! So an IMPORT stub is both a call and return
1907 trampoline. */
1908 if (u->stub_type == IMPORT)
1909 return 1;
1910
1911 /* Parameter relocation stubs always have a call path and may have a
1912 return path. */
1913 if (u->stub_type == PARAMETER_RELOCATION
1914 || u->stub_type == EXPORT)
1915 {
1916 CORE_ADDR addr;
1917
1918 /* Search forward from the current PC until we hit a branch
1919 or the end of the stub. */
1920 for (addr = pc; addr <= u->region_end; addr += 4)
1921 {
1922 unsigned long insn;
1923
1924 insn = read_memory_integer (addr, 4);
1925
1926 /* Does it look like a bl? If so then it's the call path, if
1927 we find a bv or be first, then we're on the return path. */
1928 if ((insn & 0xfc00e000) == 0xe8000000)
1929 return 1;
1930 else if ((insn & 0xfc00e001) == 0xe800c000
1931 || (insn & 0xfc000000) == 0xe0000000)
1932 return 0;
1933 }
1934
1935 /* Should never happen. */
1936 warning ("Unable to find branch in parameter relocation stub.\n");
1937 return 0;
1938 }
1939
1940 /* Unknown stub type. For now, just return zero. */
1941 return 0;
1942 }
1943
1944 /* Return one if PC is in the return path of a trampoline, else return zero.
1945
1946 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1947 just shared library trampolines (import, export). */
1948
1949 int
1950 in_solib_return_trampoline (pc, name)
1951 CORE_ADDR pc;
1952 char *name;
1953 {
1954 struct unwind_table_entry *u;
1955
1956 /* Get the unwind descriptor corresponding to PC, return zero
1957 if no unwind was found. */
1958 u = find_unwind_entry (pc);
1959 if (!u)
1960 return 0;
1961
1962 /* If this isn't a linker stub or it's just a long branch stub, then
1963 return zero. */
1964 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
1965 return 0;
1966
1967 /* The call and return path execute the same instructions within
1968 an IMPORT stub! So an IMPORT stub is both a call and return
1969 trampoline. */
1970 if (u->stub_type == IMPORT)
1971 return 1;
1972
1973 /* Parameter relocation stubs always have a call path and may have a
1974 return path. */
1975 if (u->stub_type == PARAMETER_RELOCATION
1976 || u->stub_type == EXPORT)
1977 {
1978 CORE_ADDR addr;
1979
1980 /* Search forward from the current PC until we hit a branch
1981 or the end of the stub. */
1982 for (addr = pc; addr <= u->region_end; addr += 4)
1983 {
1984 unsigned long insn;
1985
1986 insn = read_memory_integer (addr, 4);
1987
1988 /* Does it look like a bl? If so then it's the call path, if
1989 we find a bv or be first, then we're on the return path. */
1990 if ((insn & 0xfc00e000) == 0xe8000000)
1991 return 0;
1992 else if ((insn & 0xfc00e001) == 0xe800c000
1993 || (insn & 0xfc000000) == 0xe0000000)
1994 return 1;
1995 }
1996
1997 /* Should never happen. */
1998 warning ("Unable to find branch in parameter relocation stub.\n");
1999 return 0;
2000 }
2001
2002 /* Unknown stub type. For now, just return zero. */
2003 return 0;
2004
2005 }
2006
2007 /* Figure out if PC is in a trampoline, and if so find out where
2008 the trampoline will jump to. If not in a trampoline, return zero.
2009
2010 Simple code examination probably is not a good idea since the code
2011 sequences in trampolines can also appear in user code.
2012
2013 We use unwinds and information from the minimal symbol table to
2014 determine when we're in a trampoline. This won't work for ELF
2015 (yet) since it doesn't create stub unwind entries. Whether or
2016 not ELF will create stub unwinds or normal unwinds for linker
2017 stubs is still being debated.
2018
2019 This should handle simple calls through dyncall or sr4export,
2020 long calls, argument relocation stubs, and dyncall/sr4export
2021 calling an argument relocation stub. It even handles some stubs
2022 used in dynamic executables. */
2023
2024 CORE_ADDR
2025 skip_trampoline_code (pc, name)
2026 CORE_ADDR pc;
2027 char *name;
2028 {
2029 long orig_pc = pc;
2030 long prev_inst, curr_inst, loc;
2031 static CORE_ADDR dyncall = 0;
2032 static CORE_ADDR sr4export = 0;
2033 struct minimal_symbol *msym;
2034 struct unwind_table_entry *u;
2035
2036 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2037 new exec file */
2038
2039 if (!dyncall)
2040 {
2041 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2042 if (msym)
2043 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2044 else
2045 dyncall = -1;
2046 }
2047
2048 if (!sr4export)
2049 {
2050 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2051 if (msym)
2052 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2053 else
2054 sr4export = -1;
2055 }
2056
2057 /* Addresses passed to dyncall may *NOT* be the actual address
2058 of the function. So we may have to do something special. */
2059 if (pc == dyncall)
2060 {
2061 pc = (CORE_ADDR) read_register (22);
2062
2063 /* If bit 30 (counting from the left) is on, then pc is the address of
2064 the PLT entry for this function, not the address of the function
2065 itself. Bit 31 has meaning too, but only for MPE. */
2066 if (pc & 0x2)
2067 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2068 }
2069 else if (pc == sr4export)
2070 pc = (CORE_ADDR) (read_register (22));
2071
2072 /* Get the unwind descriptor corresponding to PC, return zero
2073 if no unwind was found. */
2074 u = find_unwind_entry (pc);
2075 if (!u)
2076 return 0;
2077
2078 /* If this isn't a linker stub, then return now. */
2079 if (u->stub_type == 0)
2080 return orig_pc == pc ? 0 : pc & ~0x3;
2081
2082 /* It's a stub. Search for a branch and figure out where it goes.
2083 Note we have to handle multi insn branch sequences like ldil;ble.
2084 Most (all?) other branches can be determined by examining the contents
2085 of certain registers and the stack. */
2086 loc = pc;
2087 curr_inst = 0;
2088 prev_inst = 0;
2089 while (1)
2090 {
2091 /* Make sure we haven't walked outside the range of this stub. */
2092 if (u != find_unwind_entry (loc))
2093 {
2094 warning ("Unable to find branch in linker stub");
2095 return orig_pc == pc ? 0 : pc & ~0x3;
2096 }
2097
2098 prev_inst = curr_inst;
2099 curr_inst = read_memory_integer (loc, 4);
2100
2101 /* Does it look like a branch external using %r1? Then it's the
2102 branch from the stub to the actual function. */
2103 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2104 {
2105 /* Yup. See if the previous instruction loaded
2106 a value into %r1. If so compute and return the jump address. */
2107 if ((prev_inst & 0xffe00000) == 0x20200000)
2108 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2109 else
2110 {
2111 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2112 return orig_pc == pc ? 0 : pc & ~0x3;
2113 }
2114 }
2115
2116 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2117 import stub to an export stub.
2118
2119 It is impossible to determine the target of the branch via
2120 simple examination of instructions and/or data (consider
2121 that the address in the plabel may be the address of the
2122 bind-on-reference routine in the dynamic loader).
2123
2124 So we have try an alternative approach.
2125
2126 Get the name of the symbol at our current location; it should
2127 be a stub symbol with the same name as the symbol in the
2128 shared library.
2129
2130 Then lookup a minimal symbol with the same name; we should
2131 get the minimal symbol for the target routine in the shared
2132 library as those take precedence of import/export stubs. */
2133 if (curr_inst == 0xe2a00000)
2134 {
2135 struct minimal_symbol *stubsym, *libsym;
2136
2137 stubsym = lookup_minimal_symbol_by_pc (loc);
2138 if (stubsym == NULL)
2139 {
2140 warning ("Unable to find symbol for 0x%x", loc);
2141 return orig_pc == pc ? 0 : pc & ~0x3;
2142 }
2143
2144 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2145 if (libsym == NULL)
2146 {
2147 warning ("Unable to find library symbol for %s\n",
2148 SYMBOL_NAME (stubsym));
2149 return orig_pc == pc ? 0 : pc & ~0x3;
2150 }
2151
2152 return SYMBOL_VALUE (libsym);
2153 }
2154
2155 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2156 branch from the stub to the actual function. */
2157 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2158 || (curr_inst & 0xffe0e000) == 0xe8000000)
2159 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2160
2161 /* Does it look like bv (rp)? Note this depends on the
2162 current stack pointer being the same as the stack
2163 pointer in the stub itself! This is a branch on from the
2164 stub back to the original caller. */
2165 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2166 {
2167 /* Yup. See if the previous instruction loaded
2168 rp from sp - 8. */
2169 if (prev_inst == 0x4bc23ff1)
2170 return (read_memory_integer
2171 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2172 else
2173 {
2174 warning ("Unable to find restore of %%rp before bv (%%rp).");
2175 return orig_pc == pc ? 0 : pc & ~0x3;
2176 }
2177 }
2178
2179 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2180 the original caller from the stub. Used in dynamic executables. */
2181 else if (curr_inst == 0xe0400002)
2182 {
2183 /* The value we jump to is sitting in sp - 24. But that's
2184 loaded several instructions before the be instruction.
2185 I guess we could check for the previous instruction being
2186 mtsp %r1,%sr0 if we want to do sanity checking. */
2187 return (read_memory_integer
2188 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2189 }
2190
2191 /* Haven't found the branch yet, but we're still in the stub.
2192 Keep looking. */
2193 loc += 4;
2194 }
2195 }
2196
2197 /* For the given instruction (INST), return any adjustment it makes
2198 to the stack pointer or zero for no adjustment.
2199
2200 This only handles instructions commonly found in prologues. */
2201
2202 static int
2203 prologue_inst_adjust_sp (inst)
2204 unsigned long inst;
2205 {
2206 /* This must persist across calls. */
2207 static int save_high21;
2208
2209 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2210 if ((inst & 0xffffc000) == 0x37de0000)
2211 return extract_14 (inst);
2212
2213 /* stwm X,D(sp) */
2214 if ((inst & 0xffe00000) == 0x6fc00000)
2215 return extract_14 (inst);
2216
2217 /* addil high21,%r1; ldo low11,(%r1),%r30)
2218 save high bits in save_high21 for later use. */
2219 if ((inst & 0xffe00000) == 0x28200000)
2220 {
2221 save_high21 = extract_21 (inst);
2222 return 0;
2223 }
2224
2225 if ((inst & 0xffff0000) == 0x343e0000)
2226 return save_high21 + extract_14 (inst);
2227
2228 /* fstws as used by the HP compilers. */
2229 if ((inst & 0xffffffe0) == 0x2fd01220)
2230 return extract_5_load (inst);
2231
2232 /* No adjustment. */
2233 return 0;
2234 }
2235
2236 /* Return nonzero if INST is a branch of some kind, else return zero. */
2237
2238 static int
2239 is_branch (inst)
2240 unsigned long inst;
2241 {
2242 switch (inst >> 26)
2243 {
2244 case 0x20:
2245 case 0x21:
2246 case 0x22:
2247 case 0x23:
2248 case 0x28:
2249 case 0x29:
2250 case 0x2a:
2251 case 0x2b:
2252 case 0x30:
2253 case 0x31:
2254 case 0x32:
2255 case 0x33:
2256 case 0x38:
2257 case 0x39:
2258 case 0x3a:
2259 return 1;
2260
2261 default:
2262 return 0;
2263 }
2264 }
2265
2266 /* Return the register number for a GR which is saved by INST or
2267 zero it INST does not save a GR. */
2268
2269 static int
2270 inst_saves_gr (inst)
2271 unsigned long inst;
2272 {
2273 /* Does it look like a stw? */
2274 if ((inst >> 26) == 0x1a)
2275 return extract_5R_store (inst);
2276
2277 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2278 if ((inst >> 26) == 0x1b)
2279 return extract_5R_store (inst);
2280
2281 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2282 too. */
2283 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2284 return extract_5R_store (inst);
2285
2286 return 0;
2287 }
2288
2289 /* Return the register number for a FR which is saved by INST or
2290 zero it INST does not save a FR.
2291
2292 Note we only care about full 64bit register stores (that's the only
2293 kind of stores the prologue will use).
2294
2295 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2296
2297 static int
2298 inst_saves_fr (inst)
2299 unsigned long inst;
2300 {
2301 if ((inst & 0xfc00dfc0) == 0x2c001200)
2302 return extract_5r_store (inst);
2303 return 0;
2304 }
2305
2306 /* Advance PC across any function entry prologue instructions
2307 to reach some "real" code.
2308
2309 Use information in the unwind table to determine what exactly should
2310 be in the prologue. */
2311
2312 CORE_ADDR
2313 skip_prologue (pc)
2314 CORE_ADDR pc;
2315 {
2316 char buf[4];
2317 CORE_ADDR orig_pc = pc;
2318 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2319 unsigned long args_stored, status, i, restart_gr, restart_fr;
2320 struct unwind_table_entry *u;
2321
2322 restart_gr = 0;
2323 restart_fr = 0;
2324
2325 restart:
2326 u = find_unwind_entry (pc);
2327 if (!u)
2328 return pc;
2329
2330 /* If we are not at the beginning of a function, then return now. */
2331 if ((pc & ~0x3) != u->region_start)
2332 return pc;
2333
2334 /* This is how much of a frame adjustment we need to account for. */
2335 stack_remaining = u->Total_frame_size << 3;
2336
2337 /* Magic register saves we want to know about. */
2338 save_rp = u->Save_RP;
2339 save_sp = u->Save_SP;
2340
2341 /* An indication that args may be stored into the stack. Unfortunately
2342 the HPUX compilers tend to set this in cases where no args were
2343 stored too!. */
2344 args_stored = 1;
2345
2346 /* Turn the Entry_GR field into a bitmask. */
2347 save_gr = 0;
2348 for (i = 3; i < u->Entry_GR + 3; i++)
2349 {
2350 /* Frame pointer gets saved into a special location. */
2351 if (u->Save_SP && i == FP_REGNUM)
2352 continue;
2353
2354 save_gr |= (1 << i);
2355 }
2356 save_gr &= ~restart_gr;
2357
2358 /* Turn the Entry_FR field into a bitmask too. */
2359 save_fr = 0;
2360 for (i = 12; i < u->Entry_FR + 12; i++)
2361 save_fr |= (1 << i);
2362 save_fr &= ~restart_fr;
2363
2364 /* Loop until we find everything of interest or hit a branch.
2365
2366 For unoptimized GCC code and for any HP CC code this will never ever
2367 examine any user instructions.
2368
2369 For optimzied GCC code we're faced with problems. GCC will schedule
2370 its prologue and make prologue instructions available for delay slot
2371 filling. The end result is user code gets mixed in with the prologue
2372 and a prologue instruction may be in the delay slot of the first branch
2373 or call.
2374
2375 Some unexpected things are expected with debugging optimized code, so
2376 we allow this routine to walk past user instructions in optimized
2377 GCC code. */
2378 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2379 || args_stored)
2380 {
2381 unsigned int reg_num;
2382 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2383 unsigned long old_save_rp, old_save_sp, next_inst;
2384
2385 /* Save copies of all the triggers so we can compare them later
2386 (only for HPC). */
2387 old_save_gr = save_gr;
2388 old_save_fr = save_fr;
2389 old_save_rp = save_rp;
2390 old_save_sp = save_sp;
2391 old_stack_remaining = stack_remaining;
2392
2393 status = target_read_memory (pc, buf, 4);
2394 inst = extract_unsigned_integer (buf, 4);
2395
2396 /* Yow! */
2397 if (status != 0)
2398 return pc;
2399
2400 /* Note the interesting effects of this instruction. */
2401 stack_remaining -= prologue_inst_adjust_sp (inst);
2402
2403 /* There is only one instruction used for saving RP into the stack. */
2404 if (inst == 0x6bc23fd9)
2405 save_rp = 0;
2406
2407 /* This is the only way we save SP into the stack. At this time
2408 the HP compilers never bother to save SP into the stack. */
2409 if ((inst & 0xffffc000) == 0x6fc10000)
2410 save_sp = 0;
2411
2412 /* Account for general and floating-point register saves. */
2413 reg_num = inst_saves_gr (inst);
2414 save_gr &= ~(1 << reg_num);
2415
2416 /* Ugh. Also account for argument stores into the stack.
2417 Unfortunately args_stored only tells us that some arguments
2418 where stored into the stack. Not how many or what kind!
2419
2420 This is a kludge as on the HP compiler sets this bit and it
2421 never does prologue scheduling. So once we see one, skip past
2422 all of them. We have similar code for the fp arg stores below.
2423
2424 FIXME. Can still die if we have a mix of GR and FR argument
2425 stores! */
2426 if (reg_num >= 23 && reg_num <= 26)
2427 {
2428 while (reg_num >= 23 && reg_num <= 26)
2429 {
2430 pc += 4;
2431 status = target_read_memory (pc, buf, 4);
2432 inst = extract_unsigned_integer (buf, 4);
2433 if (status != 0)
2434 return pc;
2435 reg_num = inst_saves_gr (inst);
2436 }
2437 args_stored = 0;
2438 continue;
2439 }
2440
2441 reg_num = inst_saves_fr (inst);
2442 save_fr &= ~(1 << reg_num);
2443
2444 status = target_read_memory (pc + 4, buf, 4);
2445 next_inst = extract_unsigned_integer (buf, 4);
2446
2447 /* Yow! */
2448 if (status != 0)
2449 return pc;
2450
2451 /* We've got to be read to handle the ldo before the fp register
2452 save. */
2453 if ((inst & 0xfc000000) == 0x34000000
2454 && inst_saves_fr (next_inst) >= 4
2455 && inst_saves_fr (next_inst) <= 7)
2456 {
2457 /* So we drop into the code below in a reasonable state. */
2458 reg_num = inst_saves_fr (next_inst);
2459 pc -= 4;
2460 }
2461
2462 /* Ugh. Also account for argument stores into the stack.
2463 This is a kludge as on the HP compiler sets this bit and it
2464 never does prologue scheduling. So once we see one, skip past
2465 all of them. */
2466 if (reg_num >= 4 && reg_num <= 7)
2467 {
2468 while (reg_num >= 4 && reg_num <= 7)
2469 {
2470 pc += 8;
2471 status = target_read_memory (pc, buf, 4);
2472 inst = extract_unsigned_integer (buf, 4);
2473 if (status != 0)
2474 return pc;
2475 if ((inst & 0xfc000000) != 0x34000000)
2476 break;
2477 status = target_read_memory (pc + 4, buf, 4);
2478 next_inst = extract_unsigned_integer (buf, 4);
2479 if (status != 0)
2480 return pc;
2481 reg_num = inst_saves_fr (next_inst);
2482 }
2483 args_stored = 0;
2484 continue;
2485 }
2486
2487 /* Quit if we hit any kind of branch. This can happen if a prologue
2488 instruction is in the delay slot of the first call/branch. */
2489 if (is_branch (inst))
2490 break;
2491
2492 /* What a crock. The HP compilers set args_stored even if no
2493 arguments were stored into the stack (boo hiss). This could
2494 cause this code to then skip a bunch of user insns (up to the
2495 first branch).
2496
2497 To combat this we try to identify when args_stored was bogusly
2498 set and clear it. We only do this when args_stored is nonzero,
2499 all other resources are accounted for, and nothing changed on
2500 this pass. */
2501 if (args_stored
2502 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2503 && old_save_gr == save_gr && old_save_fr == save_fr
2504 && old_save_rp == save_rp && old_save_sp == save_sp
2505 && old_stack_remaining == stack_remaining)
2506 break;
2507
2508 /* Bump the PC. */
2509 pc += 4;
2510 }
2511
2512 /* We've got a tenative location for the end of the prologue. However
2513 because of limitations in the unwind descriptor mechanism we may
2514 have went too far into user code looking for the save of a register
2515 that does not exist. So, if there registers we expected to be saved
2516 but never were, mask them out and restart.
2517
2518 This should only happen in optimized code, and should be very rare. */
2519 if (save_gr || save_fr
2520 && ! (restart_fr || restart_gr))
2521 {
2522 pc = orig_pc;
2523 restart_gr = save_gr;
2524 restart_fr = save_fr;
2525 goto restart;
2526 }
2527
2528 return pc;
2529 }
2530
2531 /* Put here the code to store, into a struct frame_saved_regs,
2532 the addresses of the saved registers of frame described by FRAME_INFO.
2533 This includes special registers such as pc and fp saved in special
2534 ways in the stack frame. sp is even more special:
2535 the address we return for it IS the sp for the next frame. */
2536
2537 void
2538 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2539 struct frame_info *frame_info;
2540 struct frame_saved_regs *frame_saved_regs;
2541 {
2542 CORE_ADDR pc;
2543 struct unwind_table_entry *u;
2544 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2545 int status, i, reg;
2546 char buf[4];
2547 int fp_loc = -1;
2548
2549 /* Zero out everything. */
2550 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2551
2552 /* Call dummy frames always look the same, so there's no need to
2553 examine the dummy code to determine locations of saved registers;
2554 instead, let find_dummy_frame_regs fill in the correct offsets
2555 for the saved registers. */
2556 if ((frame_info->pc >= frame_info->frame
2557 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2558 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2559 + 6 * 4)))
2560 find_dummy_frame_regs (frame_info, frame_saved_regs);
2561
2562 /* Interrupt handlers are special too. They lay out the register
2563 state in the exact same order as the register numbers in GDB. */
2564 if (pc_in_interrupt_handler (frame_info->pc))
2565 {
2566 for (i = 0; i < NUM_REGS; i++)
2567 {
2568 /* SP is a little special. */
2569 if (i == SP_REGNUM)
2570 frame_saved_regs->regs[SP_REGNUM]
2571 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2572 else
2573 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2574 }
2575 return;
2576 }
2577
2578 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2579 /* Handle signal handler callers. */
2580 if (frame_info->signal_handler_caller)
2581 {
2582 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2583 return;
2584 }
2585 #endif
2586
2587 /* Get the starting address of the function referred to by the PC
2588 saved in frame. */
2589 pc = get_pc_function_start (frame_info->pc);
2590
2591 /* Yow! */
2592 u = find_unwind_entry (pc);
2593 if (!u)
2594 return;
2595
2596 /* This is how much of a frame adjustment we need to account for. */
2597 stack_remaining = u->Total_frame_size << 3;
2598
2599 /* Magic register saves we want to know about. */
2600 save_rp = u->Save_RP;
2601 save_sp = u->Save_SP;
2602
2603 /* Turn the Entry_GR field into a bitmask. */
2604 save_gr = 0;
2605 for (i = 3; i < u->Entry_GR + 3; i++)
2606 {
2607 /* Frame pointer gets saved into a special location. */
2608 if (u->Save_SP && i == FP_REGNUM)
2609 continue;
2610
2611 save_gr |= (1 << i);
2612 }
2613
2614 /* Turn the Entry_FR field into a bitmask too. */
2615 save_fr = 0;
2616 for (i = 12; i < u->Entry_FR + 12; i++)
2617 save_fr |= (1 << i);
2618
2619 /* The frame always represents the value of %sp at entry to the
2620 current function (and is thus equivalent to the "saved" stack
2621 pointer. */
2622 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2623
2624 /* Loop until we find everything of interest or hit a branch.
2625
2626 For unoptimized GCC code and for any HP CC code this will never ever
2627 examine any user instructions.
2628
2629 For optimzied GCC code we're faced with problems. GCC will schedule
2630 its prologue and make prologue instructions available for delay slot
2631 filling. The end result is user code gets mixed in with the prologue
2632 and a prologue instruction may be in the delay slot of the first branch
2633 or call.
2634
2635 Some unexpected things are expected with debugging optimized code, so
2636 we allow this routine to walk past user instructions in optimized
2637 GCC code. */
2638 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2639 {
2640 status = target_read_memory (pc, buf, 4);
2641 inst = extract_unsigned_integer (buf, 4);
2642
2643 /* Yow! */
2644 if (status != 0)
2645 return;
2646
2647 /* Note the interesting effects of this instruction. */
2648 stack_remaining -= prologue_inst_adjust_sp (inst);
2649
2650 /* There is only one instruction used for saving RP into the stack. */
2651 if (inst == 0x6bc23fd9)
2652 {
2653 save_rp = 0;
2654 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2655 }
2656
2657 /* Just note that we found the save of SP into the stack. The
2658 value for frame_saved_regs was computed above. */
2659 if ((inst & 0xffffc000) == 0x6fc10000)
2660 save_sp = 0;
2661
2662 /* Account for general and floating-point register saves. */
2663 reg = inst_saves_gr (inst);
2664 if (reg >= 3 && reg <= 18
2665 && (!u->Save_SP || reg != FP_REGNUM))
2666 {
2667 save_gr &= ~(1 << reg);
2668
2669 /* stwm with a positive displacement is a *post modify*. */
2670 if ((inst >> 26) == 0x1b
2671 && extract_14 (inst) >= 0)
2672 frame_saved_regs->regs[reg] = frame_info->frame;
2673 else
2674 {
2675 /* Handle code with and without frame pointers. */
2676 if (u->Save_SP)
2677 frame_saved_regs->regs[reg]
2678 = frame_info->frame + extract_14 (inst);
2679 else
2680 frame_saved_regs->regs[reg]
2681 = frame_info->frame + (u->Total_frame_size << 3)
2682 + extract_14 (inst);
2683 }
2684 }
2685
2686
2687 /* GCC handles callee saved FP regs a little differently.
2688
2689 It emits an instruction to put the value of the start of
2690 the FP store area into %r1. It then uses fstds,ma with
2691 a basereg of %r1 for the stores.
2692
2693 HP CC emits them at the current stack pointer modifying
2694 the stack pointer as it stores each register. */
2695
2696 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2697 if ((inst & 0xffffc000) == 0x34610000
2698 || (inst & 0xffffc000) == 0x37c10000)
2699 fp_loc = extract_14 (inst);
2700
2701 reg = inst_saves_fr (inst);
2702 if (reg >= 12 && reg <= 21)
2703 {
2704 /* Note +4 braindamage below is necessary because the FP status
2705 registers are internally 8 registers rather than the expected
2706 4 registers. */
2707 save_fr &= ~(1 << reg);
2708 if (fp_loc == -1)
2709 {
2710 /* 1st HP CC FP register store. After this instruction
2711 we've set enough state that the GCC and HPCC code are
2712 both handled in the same manner. */
2713 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2714 fp_loc = 8;
2715 }
2716 else
2717 {
2718 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2719 = frame_info->frame + fp_loc;
2720 fp_loc += 8;
2721 }
2722 }
2723
2724 /* Quit if we hit any kind of branch. This can happen if a prologue
2725 instruction is in the delay slot of the first call/branch. */
2726 if (is_branch (inst))
2727 break;
2728
2729 /* Bump the PC. */
2730 pc += 4;
2731 }
2732 }
2733
2734 #ifdef MAINTENANCE_CMDS
2735
2736 static void
2737 unwind_command (exp, from_tty)
2738 char *exp;
2739 int from_tty;
2740 {
2741 CORE_ADDR address;
2742 struct unwind_table_entry *u;
2743
2744 /* If we have an expression, evaluate it and use it as the address. */
2745
2746 if (exp != 0 && *exp != 0)
2747 address = parse_and_eval_address (exp);
2748 else
2749 return;
2750
2751 u = find_unwind_entry (address);
2752
2753 if (!u)
2754 {
2755 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2756 return;
2757 }
2758
2759 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2760
2761 printf_unfiltered ("\tregion_start = ");
2762 print_address (u->region_start, gdb_stdout);
2763
2764 printf_unfiltered ("\n\tregion_end = ");
2765 print_address (u->region_end, gdb_stdout);
2766
2767 #ifdef __STDC__
2768 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2769 #else
2770 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2771 #endif
2772
2773 printf_unfiltered ("\n\tflags =");
2774 pif (Cannot_unwind);
2775 pif (Millicode);
2776 pif (Millicode_save_sr0);
2777 pif (Entry_SR);
2778 pif (Args_stored);
2779 pif (Variable_Frame);
2780 pif (Separate_Package_Body);
2781 pif (Frame_Extension_Millicode);
2782 pif (Stack_Overflow_Check);
2783 pif (Two_Instruction_SP_Increment);
2784 pif (Ada_Region);
2785 pif (Save_SP);
2786 pif (Save_RP);
2787 pif (Save_MRP_in_frame);
2788 pif (extn_ptr_defined);
2789 pif (Cleanup_defined);
2790 pif (MPE_XL_interrupt_marker);
2791 pif (HP_UX_interrupt_marker);
2792 pif (Large_frame);
2793
2794 putchar_unfiltered ('\n');
2795
2796 #ifdef __STDC__
2797 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2798 #else
2799 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2800 #endif
2801
2802 pin (Region_description);
2803 pin (Entry_FR);
2804 pin (Entry_GR);
2805 pin (Total_frame_size);
2806 }
2807 #endif /* MAINTENANCE_CMDS */
2808
2809 void
2810 _initialize_hppa_tdep ()
2811 {
2812 tm_print_insn = print_insn_hppa;
2813
2814 #ifdef MAINTENANCE_CMDS
2815 add_cmd ("unwind", class_maintenance, unwind_command,
2816 "Print unwind table entry at given address.",
2817 &maintenanceprintlist);
2818 #endif /* MAINTENANCE_CMDS */
2819 }
This page took 0.085254 seconds and 5 git commands to generate.