2003-10-16 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "value.h"
31 #include "regcache.h"
32 #include "completer.h"
33 #include "language.h"
34 #include "osabi.h"
35 #include "gdb_assert.h"
36 #include "infttrace.h"
37 /* For argument passing to the inferior */
38 #include "symtab.h"
39 #include "infcall.h"
40 #include "dis-asm.h"
41
42 #ifdef USG
43 #include <sys/types.h>
44 #endif
45
46 #include <dl.h>
47 #include <sys/param.h>
48 #include <signal.h>
49
50 #include <sys/ptrace.h>
51 #include <machine/save_state.h>
52
53 #ifdef COFF_ENCAPSULATE
54 #include "a.out.encap.h"
55 #else
56 #endif
57
58 /*#include <sys/user.h> After a.out.h */
59 #include <sys/file.h>
60 #include "gdb_stat.h"
61 #include "gdb_wait.h"
62
63 #include "gdbcore.h"
64 #include "gdbcmd.h"
65 #include "target.h"
66 #include "symfile.h"
67 #include "objfiles.h"
68 #include "hppa-tdep.h"
69
70 /* Some local constants. */
71 static const int hppa32_num_regs = 128;
72 static const int hppa64_num_regs = 96;
73
74 static const int hppa64_call_dummy_breakpoint_offset = 22 * 4;
75
76 /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
77 word on the target machine, not the size of an instruction. Since
78 a word on this target holds two instructions we have to divide the
79 instruction size by two to get the word size of the dummy. */
80 static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28;
81 static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2;
82
83 /* Get at various relevent fields of an instruction word. */
84 #define MASK_5 0x1f
85 #define MASK_11 0x7ff
86 #define MASK_14 0x3fff
87 #define MASK_21 0x1fffff
88
89 /* Define offsets into the call dummy for the target function address.
90 See comments related to CALL_DUMMY for more info. */
91 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
92 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
93
94 /* Define offsets into the call dummy for the _sr4export address.
95 See comments related to CALL_DUMMY for more info. */
96 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
97 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
98
99 /* To support detection of the pseudo-initial frame
100 that threads have. */
101 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
102 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
103
104 /* Sizes (in bytes) of the native unwind entries. */
105 #define UNWIND_ENTRY_SIZE 16
106 #define STUB_UNWIND_ENTRY_SIZE 8
107
108 static int get_field (unsigned word, int from, int to);
109
110 static int extract_5_load (unsigned int);
111
112 static unsigned extract_5R_store (unsigned int);
113
114 static unsigned extract_5r_store (unsigned int);
115
116 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
117
118 static int find_proc_framesize (CORE_ADDR);
119
120 static int find_return_regnum (CORE_ADDR);
121
122 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
123
124 static int extract_17 (unsigned int);
125
126 static unsigned deposit_21 (unsigned int, unsigned int);
127
128 static int extract_21 (unsigned);
129
130 static unsigned deposit_14 (int, unsigned int);
131
132 static int extract_14 (unsigned);
133
134 static void unwind_command (char *, int);
135
136 static int low_sign_extend (unsigned int, unsigned int);
137
138 static int sign_extend (unsigned int, unsigned int);
139
140 static int restore_pc_queue (CORE_ADDR *);
141
142 static int hppa_alignof (struct type *);
143
144 static int prologue_inst_adjust_sp (unsigned long);
145
146 static int is_branch (unsigned long);
147
148 static int inst_saves_gr (unsigned long);
149
150 static int inst_saves_fr (unsigned long);
151
152 static int pc_in_interrupt_handler (CORE_ADDR);
153
154 static int pc_in_linker_stub (CORE_ADDR);
155
156 static int compare_unwind_entries (const void *, const void *);
157
158 static void read_unwind_info (struct objfile *);
159
160 static void internalize_unwinds (struct objfile *,
161 struct unwind_table_entry *,
162 asection *, unsigned int,
163 unsigned int, CORE_ADDR);
164 static void pa_print_registers (char *, int, int);
165 static void pa_strcat_registers (char *, int, int, struct ui_file *);
166 static void pa_register_look_aside (char *, int, long *);
167 static void pa_print_fp_reg (int);
168 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
169 static void record_text_segment_lowaddr (bfd *, asection *, void *);
170 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
171 following functions static, once we hppa is partially multiarched. */
172 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
173 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
174 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
175 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
176 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
177 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
178 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
179 CORE_ADDR hppa32_stack_align (CORE_ADDR sp);
180 CORE_ADDR hppa64_stack_align (CORE_ADDR sp);
181 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
182 int hppa_instruction_nullified (void);
183 int hppa_register_raw_size (int reg_nr);
184 int hppa_register_byte (int reg_nr);
185 struct type * hppa32_register_virtual_type (int reg_nr);
186 struct type * hppa64_register_virtual_type (int reg_nr);
187 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
188 void hppa32_extract_return_value (struct type *type, char *regbuf,
189 char *valbuf);
190 void hppa64_extract_return_value (struct type *type, char *regbuf,
191 char *valbuf);
192 int hppa32_use_struct_convention (int gcc_p, struct type *type);
193 int hppa64_use_struct_convention (int gcc_p, struct type *type);
194 void hppa32_store_return_value (struct type *type, char *valbuf);
195 void hppa64_store_return_value (struct type *type, char *valbuf);
196 CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
197 int hppa_cannot_store_register (int regnum);
198 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
199 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
200 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
201 int hppa_frameless_function_invocation (struct frame_info *frame);
202 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
203 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
204 int hppa_frame_num_args (struct frame_info *frame);
205 void hppa_push_dummy_frame (void);
206 void hppa_pop_frame (void);
207 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
208 int nargs, struct value **args,
209 struct type *type, int gcc_p);
210 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
211 int struct_return, CORE_ADDR struct_addr);
212 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
213 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
214 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
215 CORE_ADDR hppa_target_read_fp (void);
216
217 typedef struct
218 {
219 struct minimal_symbol *msym;
220 CORE_ADDR solib_handle;
221 CORE_ADDR return_val;
222 }
223 args_for_find_stub;
224
225 static int cover_find_stub_with_shl_get (void *);
226
227 static int is_pa_2 = 0; /* False */
228
229 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
230 extern int hp_som_som_object_present;
231
232 /* In breakpoint.c */
233 extern int exception_catchpoints_are_fragile;
234
235 /* Should call_function allocate stack space for a struct return? */
236
237 int
238 hppa32_use_struct_convention (int gcc_p, struct type *type)
239 {
240 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
241 }
242
243 /* Same as hppa32_use_struct_convention() for the PA64 ABI. */
244
245 int
246 hppa64_use_struct_convention (int gcc_p, struct type *type)
247 {
248 /* RM: struct upto 128 bits are returned in registers */
249 return TYPE_LENGTH (type) > 16;
250 }
251
252 /* Routines to extract various sized constants out of hppa
253 instructions. */
254
255 /* This assumes that no garbage lies outside of the lower bits of
256 value. */
257
258 static int
259 sign_extend (unsigned val, unsigned bits)
260 {
261 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
262 }
263
264 /* For many immediate values the sign bit is the low bit! */
265
266 static int
267 low_sign_extend (unsigned val, unsigned bits)
268 {
269 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
270 }
271
272 /* Extract the bits at positions between FROM and TO, using HP's numbering
273 (MSB = 0). */
274
275 static int
276 get_field (unsigned word, int from, int to)
277 {
278 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
279 }
280
281 /* extract the immediate field from a ld{bhw}s instruction */
282
283 static int
284 extract_5_load (unsigned word)
285 {
286 return low_sign_extend (word >> 16 & MASK_5, 5);
287 }
288
289 /* extract the immediate field from a break instruction */
290
291 static unsigned
292 extract_5r_store (unsigned word)
293 {
294 return (word & MASK_5);
295 }
296
297 /* extract the immediate field from a {sr}sm instruction */
298
299 static unsigned
300 extract_5R_store (unsigned word)
301 {
302 return (word >> 16 & MASK_5);
303 }
304
305 /* extract a 14 bit immediate field */
306
307 static int
308 extract_14 (unsigned word)
309 {
310 return low_sign_extend (word & MASK_14, 14);
311 }
312
313 /* deposit a 14 bit constant in a word */
314
315 static unsigned
316 deposit_14 (int opnd, unsigned word)
317 {
318 unsigned sign = (opnd < 0 ? 1 : 0);
319
320 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
321 }
322
323 /* extract a 21 bit constant */
324
325 static int
326 extract_21 (unsigned word)
327 {
328 int val;
329
330 word &= MASK_21;
331 word <<= 11;
332 val = get_field (word, 20, 20);
333 val <<= 11;
334 val |= get_field (word, 9, 19);
335 val <<= 2;
336 val |= get_field (word, 5, 6);
337 val <<= 5;
338 val |= get_field (word, 0, 4);
339 val <<= 2;
340 val |= get_field (word, 7, 8);
341 return sign_extend (val, 21) << 11;
342 }
343
344 /* deposit a 21 bit constant in a word. Although 21 bit constants are
345 usually the top 21 bits of a 32 bit constant, we assume that only
346 the low 21 bits of opnd are relevant */
347
348 static unsigned
349 deposit_21 (unsigned opnd, unsigned word)
350 {
351 unsigned val = 0;
352
353 val |= get_field (opnd, 11 + 14, 11 + 18);
354 val <<= 2;
355 val |= get_field (opnd, 11 + 12, 11 + 13);
356 val <<= 2;
357 val |= get_field (opnd, 11 + 19, 11 + 20);
358 val <<= 11;
359 val |= get_field (opnd, 11 + 1, 11 + 11);
360 val <<= 1;
361 val |= get_field (opnd, 11 + 0, 11 + 0);
362 return word | val;
363 }
364
365 /* extract a 17 bit constant from branch instructions, returning the
366 19 bit signed value. */
367
368 static int
369 extract_17 (unsigned word)
370 {
371 return sign_extend (get_field (word, 19, 28) |
372 get_field (word, 29, 29) << 10 |
373 get_field (word, 11, 15) << 11 |
374 (word & 0x1) << 16, 17) << 2;
375 }
376 \f
377
378 /* Compare the start address for two unwind entries returning 1 if
379 the first address is larger than the second, -1 if the second is
380 larger than the first, and zero if they are equal. */
381
382 static int
383 compare_unwind_entries (const void *arg1, const void *arg2)
384 {
385 const struct unwind_table_entry *a = arg1;
386 const struct unwind_table_entry *b = arg2;
387
388 if (a->region_start > b->region_start)
389 return 1;
390 else if (a->region_start < b->region_start)
391 return -1;
392 else
393 return 0;
394 }
395
396 static CORE_ADDR low_text_segment_address;
397
398 static void
399 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
400 {
401 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
402 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
403 && section->vma < low_text_segment_address)
404 low_text_segment_address = section->vma;
405 }
406
407 static void
408 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
409 asection *section, unsigned int entries, unsigned int size,
410 CORE_ADDR text_offset)
411 {
412 /* We will read the unwind entries into temporary memory, then
413 fill in the actual unwind table. */
414 if (size > 0)
415 {
416 unsigned long tmp;
417 unsigned i;
418 char *buf = alloca (size);
419
420 low_text_segment_address = -1;
421
422 /* If addresses are 64 bits wide, then unwinds are supposed to
423 be segment relative offsets instead of absolute addresses.
424
425 Note that when loading a shared library (text_offset != 0) the
426 unwinds are already relative to the text_offset that will be
427 passed in. */
428 if (TARGET_PTR_BIT == 64 && text_offset == 0)
429 {
430 bfd_map_over_sections (objfile->obfd,
431 record_text_segment_lowaddr, NULL);
432
433 /* ?!? Mask off some low bits. Should this instead subtract
434 out the lowest section's filepos or something like that?
435 This looks very hokey to me. */
436 low_text_segment_address &= ~0xfff;
437 text_offset += low_text_segment_address;
438 }
439
440 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
441
442 /* Now internalize the information being careful to handle host/target
443 endian issues. */
444 for (i = 0; i < entries; i++)
445 {
446 table[i].region_start = bfd_get_32 (objfile->obfd,
447 (bfd_byte *) buf);
448 table[i].region_start += text_offset;
449 buf += 4;
450 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
451 table[i].region_end += text_offset;
452 buf += 4;
453 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
454 buf += 4;
455 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
456 table[i].Millicode = (tmp >> 30) & 0x1;
457 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
458 table[i].Region_description = (tmp >> 27) & 0x3;
459 table[i].reserved1 = (tmp >> 26) & 0x1;
460 table[i].Entry_SR = (tmp >> 25) & 0x1;
461 table[i].Entry_FR = (tmp >> 21) & 0xf;
462 table[i].Entry_GR = (tmp >> 16) & 0x1f;
463 table[i].Args_stored = (tmp >> 15) & 0x1;
464 table[i].Variable_Frame = (tmp >> 14) & 0x1;
465 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
466 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
467 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
468 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
469 table[i].Ada_Region = (tmp >> 9) & 0x1;
470 table[i].cxx_info = (tmp >> 8) & 0x1;
471 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
472 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
473 table[i].reserved2 = (tmp >> 5) & 0x1;
474 table[i].Save_SP = (tmp >> 4) & 0x1;
475 table[i].Save_RP = (tmp >> 3) & 0x1;
476 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
477 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
478 table[i].Cleanup_defined = tmp & 0x1;
479 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
480 buf += 4;
481 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
482 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
483 table[i].Large_frame = (tmp >> 29) & 0x1;
484 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
485 table[i].reserved4 = (tmp >> 27) & 0x1;
486 table[i].Total_frame_size = tmp & 0x7ffffff;
487
488 /* Stub unwinds are handled elsewhere. */
489 table[i].stub_unwind.stub_type = 0;
490 table[i].stub_unwind.padding = 0;
491 }
492 }
493 }
494
495 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
496 the object file. This info is used mainly by find_unwind_entry() to find
497 out the stack frame size and frame pointer used by procedures. We put
498 everything on the psymbol obstack in the objfile so that it automatically
499 gets freed when the objfile is destroyed. */
500
501 static void
502 read_unwind_info (struct objfile *objfile)
503 {
504 asection *unwind_sec, *stub_unwind_sec;
505 unsigned unwind_size, stub_unwind_size, total_size;
506 unsigned index, unwind_entries;
507 unsigned stub_entries, total_entries;
508 CORE_ADDR text_offset;
509 struct obj_unwind_info *ui;
510 obj_private_data_t *obj_private;
511
512 text_offset = ANOFFSET (objfile->section_offsets, 0);
513 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
514 sizeof (struct obj_unwind_info));
515
516 ui->table = NULL;
517 ui->cache = NULL;
518 ui->last = -1;
519
520 /* For reasons unknown the HP PA64 tools generate multiple unwinder
521 sections in a single executable. So we just iterate over every
522 section in the BFD looking for unwinder sections intead of trying
523 to do a lookup with bfd_get_section_by_name.
524
525 First determine the total size of the unwind tables so that we
526 can allocate memory in a nice big hunk. */
527 total_entries = 0;
528 for (unwind_sec = objfile->obfd->sections;
529 unwind_sec;
530 unwind_sec = unwind_sec->next)
531 {
532 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
533 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
534 {
535 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
536 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
537
538 total_entries += unwind_entries;
539 }
540 }
541
542 /* Now compute the size of the stub unwinds. Note the ELF tools do not
543 use stub unwinds at the curren time. */
544 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
545
546 if (stub_unwind_sec)
547 {
548 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
549 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
550 }
551 else
552 {
553 stub_unwind_size = 0;
554 stub_entries = 0;
555 }
556
557 /* Compute total number of unwind entries and their total size. */
558 total_entries += stub_entries;
559 total_size = total_entries * sizeof (struct unwind_table_entry);
560
561 /* Allocate memory for the unwind table. */
562 ui->table = (struct unwind_table_entry *)
563 obstack_alloc (&objfile->psymbol_obstack, total_size);
564 ui->last = total_entries - 1;
565
566 /* Now read in each unwind section and internalize the standard unwind
567 entries. */
568 index = 0;
569 for (unwind_sec = objfile->obfd->sections;
570 unwind_sec;
571 unwind_sec = unwind_sec->next)
572 {
573 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
574 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
575 {
576 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
577 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
578
579 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
580 unwind_entries, unwind_size, text_offset);
581 index += unwind_entries;
582 }
583 }
584
585 /* Now read in and internalize the stub unwind entries. */
586 if (stub_unwind_size > 0)
587 {
588 unsigned int i;
589 char *buf = alloca (stub_unwind_size);
590
591 /* Read in the stub unwind entries. */
592 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
593 0, stub_unwind_size);
594
595 /* Now convert them into regular unwind entries. */
596 for (i = 0; i < stub_entries; i++, index++)
597 {
598 /* Clear out the next unwind entry. */
599 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
600
601 /* Convert offset & size into region_start and region_end.
602 Stuff away the stub type into "reserved" fields. */
603 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
604 (bfd_byte *) buf);
605 ui->table[index].region_start += text_offset;
606 buf += 4;
607 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
608 (bfd_byte *) buf);
609 buf += 2;
610 ui->table[index].region_end
611 = ui->table[index].region_start + 4 *
612 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
613 buf += 2;
614 }
615
616 }
617
618 /* Unwind table needs to be kept sorted. */
619 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
620 compare_unwind_entries);
621
622 /* Keep a pointer to the unwind information. */
623 if (objfile->obj_private == NULL)
624 {
625 obj_private = (obj_private_data_t *)
626 obstack_alloc (&objfile->psymbol_obstack,
627 sizeof (obj_private_data_t));
628 obj_private->unwind_info = NULL;
629 obj_private->so_info = NULL;
630 obj_private->dp = 0;
631
632 objfile->obj_private = obj_private;
633 }
634 obj_private = (obj_private_data_t *) objfile->obj_private;
635 obj_private->unwind_info = ui;
636 }
637
638 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
639 of the objfiles seeking the unwind table entry for this PC. Each objfile
640 contains a sorted list of struct unwind_table_entry. Since we do a binary
641 search of the unwind tables, we depend upon them to be sorted. */
642
643 struct unwind_table_entry *
644 find_unwind_entry (CORE_ADDR pc)
645 {
646 int first, middle, last;
647 struct objfile *objfile;
648
649 /* A function at address 0? Not in HP-UX! */
650 if (pc == (CORE_ADDR) 0)
651 return NULL;
652
653 ALL_OBJFILES (objfile)
654 {
655 struct obj_unwind_info *ui;
656 ui = NULL;
657 if (objfile->obj_private)
658 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
659
660 if (!ui)
661 {
662 read_unwind_info (objfile);
663 if (objfile->obj_private == NULL)
664 error ("Internal error reading unwind information.");
665 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
666 }
667
668 /* First, check the cache */
669
670 if (ui->cache
671 && pc >= ui->cache->region_start
672 && pc <= ui->cache->region_end)
673 return ui->cache;
674
675 /* Not in the cache, do a binary search */
676
677 first = 0;
678 last = ui->last;
679
680 while (first <= last)
681 {
682 middle = (first + last) / 2;
683 if (pc >= ui->table[middle].region_start
684 && pc <= ui->table[middle].region_end)
685 {
686 ui->cache = &ui->table[middle];
687 return &ui->table[middle];
688 }
689
690 if (pc < ui->table[middle].region_start)
691 last = middle - 1;
692 else
693 first = middle + 1;
694 }
695 } /* ALL_OBJFILES() */
696 return NULL;
697 }
698
699 const unsigned char *
700 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
701 {
702 static const char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
703 (*len) = sizeof (breakpoint);
704 return breakpoint;
705 }
706
707 /* Return the name of a register. */
708
709 const char *
710 hppa32_register_name (int i)
711 {
712 static char *names[] = {
713 "flags", "r1", "rp", "r3",
714 "r4", "r5", "r6", "r7",
715 "r8", "r9", "r10", "r11",
716 "r12", "r13", "r14", "r15",
717 "r16", "r17", "r18", "r19",
718 "r20", "r21", "r22", "r23",
719 "r24", "r25", "r26", "dp",
720 "ret0", "ret1", "sp", "r31",
721 "sar", "pcoqh", "pcsqh", "pcoqt",
722 "pcsqt", "eiem", "iir", "isr",
723 "ior", "ipsw", "goto", "sr4",
724 "sr0", "sr1", "sr2", "sr3",
725 "sr5", "sr6", "sr7", "cr0",
726 "cr8", "cr9", "ccr", "cr12",
727 "cr13", "cr24", "cr25", "cr26",
728 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
729 "fpsr", "fpe1", "fpe2", "fpe3",
730 "fpe4", "fpe5", "fpe6", "fpe7",
731 "fr4", "fr4R", "fr5", "fr5R",
732 "fr6", "fr6R", "fr7", "fr7R",
733 "fr8", "fr8R", "fr9", "fr9R",
734 "fr10", "fr10R", "fr11", "fr11R",
735 "fr12", "fr12R", "fr13", "fr13R",
736 "fr14", "fr14R", "fr15", "fr15R",
737 "fr16", "fr16R", "fr17", "fr17R",
738 "fr18", "fr18R", "fr19", "fr19R",
739 "fr20", "fr20R", "fr21", "fr21R",
740 "fr22", "fr22R", "fr23", "fr23R",
741 "fr24", "fr24R", "fr25", "fr25R",
742 "fr26", "fr26R", "fr27", "fr27R",
743 "fr28", "fr28R", "fr29", "fr29R",
744 "fr30", "fr30R", "fr31", "fr31R"
745 };
746 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
747 return NULL;
748 else
749 return names[i];
750 }
751
752 const char *
753 hppa64_register_name (int i)
754 {
755 static char *names[] = {
756 "flags", "r1", "rp", "r3",
757 "r4", "r5", "r6", "r7",
758 "r8", "r9", "r10", "r11",
759 "r12", "r13", "r14", "r15",
760 "r16", "r17", "r18", "r19",
761 "r20", "r21", "r22", "r23",
762 "r24", "r25", "r26", "dp",
763 "ret0", "ret1", "sp", "r31",
764 "sar", "pcoqh", "pcsqh", "pcoqt",
765 "pcsqt", "eiem", "iir", "isr",
766 "ior", "ipsw", "goto", "sr4",
767 "sr0", "sr1", "sr2", "sr3",
768 "sr5", "sr6", "sr7", "cr0",
769 "cr8", "cr9", "ccr", "cr12",
770 "cr13", "cr24", "cr25", "cr26",
771 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
772 "fpsr", "fpe1", "fpe2", "fpe3",
773 "fr4", "fr5", "fr6", "fr7",
774 "fr8", "fr9", "fr10", "fr11",
775 "fr12", "fr13", "fr14", "fr15",
776 "fr16", "fr17", "fr18", "fr19",
777 "fr20", "fr21", "fr22", "fr23",
778 "fr24", "fr25", "fr26", "fr27",
779 "fr28", "fr29", "fr30", "fr31"
780 };
781 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
782 return NULL;
783 else
784 return names[i];
785 }
786
787
788
789 /* Return the adjustment necessary to make for addresses on the stack
790 as presented by hpread.c.
791
792 This is necessary because of the stack direction on the PA and the
793 bizarre way in which someone (?) decided they wanted to handle
794 frame pointerless code in GDB. */
795 int
796 hpread_adjust_stack_address (CORE_ADDR func_addr)
797 {
798 struct unwind_table_entry *u;
799
800 u = find_unwind_entry (func_addr);
801 if (!u)
802 return 0;
803 else
804 return u->Total_frame_size << 3;
805 }
806
807 /* Called to determine if PC is in an interrupt handler of some
808 kind. */
809
810 static int
811 pc_in_interrupt_handler (CORE_ADDR pc)
812 {
813 struct unwind_table_entry *u;
814 struct minimal_symbol *msym_us;
815
816 u = find_unwind_entry (pc);
817 if (!u)
818 return 0;
819
820 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
821 its frame isn't a pure interrupt frame. Deal with this. */
822 msym_us = lookup_minimal_symbol_by_pc (pc);
823
824 return (u->HP_UX_interrupt_marker
825 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
826 }
827
828 /* Called when no unwind descriptor was found for PC. Returns 1 if it
829 appears that PC is in a linker stub.
830
831 ?!? Need to handle stubs which appear in PA64 code. */
832
833 static int
834 pc_in_linker_stub (CORE_ADDR pc)
835 {
836 int found_magic_instruction = 0;
837 int i;
838 char buf[4];
839
840 /* If unable to read memory, assume pc is not in a linker stub. */
841 if (target_read_memory (pc, buf, 4) != 0)
842 return 0;
843
844 /* We are looking for something like
845
846 ; $$dyncall jams RP into this special spot in the frame (RP')
847 ; before calling the "call stub"
848 ldw -18(sp),rp
849
850 ldsid (rp),r1 ; Get space associated with RP into r1
851 mtsp r1,sp ; Move it into space register 0
852 be,n 0(sr0),rp) ; back to your regularly scheduled program */
853
854 /* Maximum known linker stub size is 4 instructions. Search forward
855 from the given PC, then backward. */
856 for (i = 0; i < 4; i++)
857 {
858 /* If we hit something with an unwind, stop searching this direction. */
859
860 if (find_unwind_entry (pc + i * 4) != 0)
861 break;
862
863 /* Check for ldsid (rp),r1 which is the magic instruction for a
864 return from a cross-space function call. */
865 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
866 {
867 found_magic_instruction = 1;
868 break;
869 }
870 /* Add code to handle long call/branch and argument relocation stubs
871 here. */
872 }
873
874 if (found_magic_instruction != 0)
875 return 1;
876
877 /* Now look backward. */
878 for (i = 0; i < 4; i++)
879 {
880 /* If we hit something with an unwind, stop searching this direction. */
881
882 if (find_unwind_entry (pc - i * 4) != 0)
883 break;
884
885 /* Check for ldsid (rp),r1 which is the magic instruction for a
886 return from a cross-space function call. */
887 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
888 {
889 found_magic_instruction = 1;
890 break;
891 }
892 /* Add code to handle long call/branch and argument relocation stubs
893 here. */
894 }
895 return found_magic_instruction;
896 }
897
898 static int
899 find_return_regnum (CORE_ADDR pc)
900 {
901 struct unwind_table_entry *u;
902
903 u = find_unwind_entry (pc);
904
905 if (!u)
906 return RP_REGNUM;
907
908 if (u->Millicode)
909 return 31;
910
911 return RP_REGNUM;
912 }
913
914 /* Return size of frame, or -1 if we should use a frame pointer. */
915 static int
916 find_proc_framesize (CORE_ADDR pc)
917 {
918 struct unwind_table_entry *u;
919 struct minimal_symbol *msym_us;
920
921 /* This may indicate a bug in our callers... */
922 if (pc == (CORE_ADDR) 0)
923 return -1;
924
925 u = find_unwind_entry (pc);
926
927 if (!u)
928 {
929 if (pc_in_linker_stub (pc))
930 /* Linker stubs have a zero size frame. */
931 return 0;
932 else
933 return -1;
934 }
935
936 msym_us = lookup_minimal_symbol_by_pc (pc);
937
938 /* If Save_SP is set, and we're not in an interrupt or signal caller,
939 then we have a frame pointer. Use it. */
940 if (u->Save_SP
941 && !pc_in_interrupt_handler (pc)
942 && msym_us
943 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
944 return -1;
945
946 return u->Total_frame_size << 3;
947 }
948
949 /* Return offset from sp at which rp is saved, or 0 if not saved. */
950 static int rp_saved (CORE_ADDR);
951
952 static int
953 rp_saved (CORE_ADDR pc)
954 {
955 struct unwind_table_entry *u;
956
957 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
958 if (pc == (CORE_ADDR) 0)
959 return 0;
960
961 u = find_unwind_entry (pc);
962
963 if (!u)
964 {
965 if (pc_in_linker_stub (pc))
966 /* This is the so-called RP'. */
967 return -24;
968 else
969 return 0;
970 }
971
972 if (u->Save_RP)
973 return (TARGET_PTR_BIT == 64 ? -16 : -20);
974 else if (u->stub_unwind.stub_type != 0)
975 {
976 switch (u->stub_unwind.stub_type)
977 {
978 case EXPORT:
979 case IMPORT:
980 return -24;
981 case PARAMETER_RELOCATION:
982 return -8;
983 default:
984 return 0;
985 }
986 }
987 else
988 return 0;
989 }
990 \f
991 int
992 hppa_frameless_function_invocation (struct frame_info *frame)
993 {
994 struct unwind_table_entry *u;
995
996 u = find_unwind_entry (get_frame_pc (frame));
997
998 if (u == 0)
999 return 0;
1000
1001 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
1002 }
1003
1004 /* Immediately after a function call, return the saved pc.
1005 Can't go through the frames for this because on some machines
1006 the new frame is not set up until the new function executes
1007 some instructions. */
1008
1009 CORE_ADDR
1010 hppa_saved_pc_after_call (struct frame_info *frame)
1011 {
1012 int ret_regnum;
1013 CORE_ADDR pc;
1014 struct unwind_table_entry *u;
1015
1016 ret_regnum = find_return_regnum (get_frame_pc (frame));
1017 pc = read_register (ret_regnum) & ~0x3;
1018
1019 /* If PC is in a linker stub, then we need to dig the address
1020 the stub will return to out of the stack. */
1021 u = find_unwind_entry (pc);
1022 if (u && u->stub_unwind.stub_type != 0)
1023 return DEPRECATED_FRAME_SAVED_PC (frame);
1024 else
1025 return pc;
1026 }
1027 \f
1028 CORE_ADDR
1029 hppa_frame_saved_pc (struct frame_info *frame)
1030 {
1031 CORE_ADDR pc = get_frame_pc (frame);
1032 struct unwind_table_entry *u;
1033 CORE_ADDR old_pc = 0;
1034 int spun_around_loop = 0;
1035 int rp_offset = 0;
1036
1037 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1038 at the base of the frame in an interrupt handler. Registers within
1039 are saved in the exact same order as GDB numbers registers. How
1040 convienent. */
1041 if (pc_in_interrupt_handler (pc))
1042 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
1043 TARGET_PTR_BIT / 8) & ~0x3;
1044
1045 if ((get_frame_pc (frame) >= get_frame_base (frame)
1046 && (get_frame_pc (frame)
1047 <= (get_frame_base (frame)
1048 /* A call dummy is sized in words, but it is actually a
1049 series of instructions. Account for that scaling
1050 factor. */
1051 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1052 * DEPRECATED_CALL_DUMMY_LENGTH)
1053 /* Similarly we have to account for 64bit wide register
1054 saves. */
1055 + (32 * DEPRECATED_REGISTER_SIZE)
1056 /* We always consider FP regs 8 bytes long. */
1057 + (NUM_REGS - FP0_REGNUM) * 8
1058 /* Similarly we have to account for 64bit wide register
1059 saves. */
1060 + (6 * DEPRECATED_REGISTER_SIZE)))))
1061 {
1062 return read_memory_integer ((get_frame_base (frame)
1063 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1064 TARGET_PTR_BIT / 8) & ~0x3;
1065 }
1066
1067 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1068 /* Deal with signal handler caller frames too. */
1069 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1070 {
1071 CORE_ADDR rp;
1072 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1073 return rp & ~0x3;
1074 }
1075 #endif
1076
1077 if (hppa_frameless_function_invocation (frame))
1078 {
1079 int ret_regnum;
1080
1081 ret_regnum = find_return_regnum (pc);
1082
1083 /* If the next frame is an interrupt frame or a signal
1084 handler caller, then we need to look in the saved
1085 register area to get the return pointer (the values
1086 in the registers may not correspond to anything useful). */
1087 if (get_next_frame (frame)
1088 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1089 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1090 {
1091 CORE_ADDR *saved_regs;
1092 hppa_frame_init_saved_regs (get_next_frame (frame));
1093 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1094 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1095 TARGET_PTR_BIT / 8) & 0x2)
1096 {
1097 pc = read_memory_integer (saved_regs[31],
1098 TARGET_PTR_BIT / 8) & ~0x3;
1099
1100 /* Syscalls are really two frames. The syscall stub itself
1101 with a return pointer in %rp and the kernel call with
1102 a return pointer in %r31. We return the %rp variant
1103 if %r31 is the same as frame->pc. */
1104 if (pc == get_frame_pc (frame))
1105 pc = read_memory_integer (saved_regs[RP_REGNUM],
1106 TARGET_PTR_BIT / 8) & ~0x3;
1107 }
1108 else
1109 pc = read_memory_integer (saved_regs[RP_REGNUM],
1110 TARGET_PTR_BIT / 8) & ~0x3;
1111 }
1112 else
1113 pc = read_register (ret_regnum) & ~0x3;
1114 }
1115 else
1116 {
1117 spun_around_loop = 0;
1118 old_pc = pc;
1119
1120 restart:
1121 rp_offset = rp_saved (pc);
1122
1123 /* Similar to code in frameless function case. If the next
1124 frame is a signal or interrupt handler, then dig the right
1125 information out of the saved register info. */
1126 if (rp_offset == 0
1127 && get_next_frame (frame)
1128 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1129 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1130 {
1131 CORE_ADDR *saved_regs;
1132 hppa_frame_init_saved_regs (get_next_frame (frame));
1133 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1134 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1135 TARGET_PTR_BIT / 8) & 0x2)
1136 {
1137 pc = read_memory_integer (saved_regs[31],
1138 TARGET_PTR_BIT / 8) & ~0x3;
1139
1140 /* Syscalls are really two frames. The syscall stub itself
1141 with a return pointer in %rp and the kernel call with
1142 a return pointer in %r31. We return the %rp variant
1143 if %r31 is the same as frame->pc. */
1144 if (pc == get_frame_pc (frame))
1145 pc = read_memory_integer (saved_regs[RP_REGNUM],
1146 TARGET_PTR_BIT / 8) & ~0x3;
1147 }
1148 else
1149 pc = read_memory_integer (saved_regs[RP_REGNUM],
1150 TARGET_PTR_BIT / 8) & ~0x3;
1151 }
1152 else if (rp_offset == 0)
1153 {
1154 old_pc = pc;
1155 pc = read_register (RP_REGNUM) & ~0x3;
1156 }
1157 else
1158 {
1159 old_pc = pc;
1160 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1161 TARGET_PTR_BIT / 8) & ~0x3;
1162 }
1163 }
1164
1165 /* If PC is inside a linker stub, then dig out the address the stub
1166 will return to.
1167
1168 Don't do this for long branch stubs. Why? For some unknown reason
1169 _start is marked as a long branch stub in hpux10. */
1170 u = find_unwind_entry (pc);
1171 if (u && u->stub_unwind.stub_type != 0
1172 && u->stub_unwind.stub_type != LONG_BRANCH)
1173 {
1174 unsigned int insn;
1175
1176 /* If this is a dynamic executable, and we're in a signal handler,
1177 then the call chain will eventually point us into the stub for
1178 _sigreturn. Unlike most cases, we'll be pointed to the branch
1179 to the real sigreturn rather than the code after the real branch!.
1180
1181 Else, try to dig the address the stub will return to in the normal
1182 fashion. */
1183 insn = read_memory_integer (pc, 4);
1184 if ((insn & 0xfc00e000) == 0xe8000000)
1185 return (pc + extract_17 (insn) + 8) & ~0x3;
1186 else
1187 {
1188 if (old_pc == pc)
1189 spun_around_loop++;
1190
1191 if (spun_around_loop > 1)
1192 {
1193 /* We're just about to go around the loop again with
1194 no more hope of success. Die. */
1195 error ("Unable to find return pc for this frame");
1196 }
1197 else
1198 goto restart;
1199 }
1200 }
1201
1202 return pc;
1203 }
1204 \f
1205 /* We need to correct the PC and the FP for the outermost frame when we are
1206 in a system call. */
1207
1208 void
1209 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1210 {
1211 int flags;
1212 int framesize;
1213
1214 if (get_next_frame (frame) && !fromleaf)
1215 return;
1216
1217 /* If the next frame represents a frameless function invocation then
1218 we have to do some adjustments that are normally done by
1219 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1220 this case.) */
1221 if (fromleaf)
1222 {
1223 /* Find the framesize of *this* frame without peeking at the PC
1224 in the current frame structure (it isn't set yet). */
1225 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1226
1227 /* Now adjust our base frame accordingly. If we have a frame pointer
1228 use it, else subtract the size of this frame from the current
1229 frame. (we always want frame->frame to point at the lowest address
1230 in the frame). */
1231 if (framesize == -1)
1232 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1233 else
1234 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1235 return;
1236 }
1237
1238 flags = read_register (FLAGS_REGNUM);
1239 if (flags & 2) /* In system call? */
1240 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1241
1242 /* The outermost frame is always derived from PC-framesize
1243
1244 One might think frameless innermost frames should have
1245 a frame->frame that is the same as the parent's frame->frame.
1246 That is wrong; frame->frame in that case should be the *high*
1247 address of the parent's frame. It's complicated as hell to
1248 explain, but the parent *always* creates some stack space for
1249 the child. So the child actually does have a frame of some
1250 sorts, and its base is the high address in its parent's frame. */
1251 framesize = find_proc_framesize (get_frame_pc (frame));
1252 if (framesize == -1)
1253 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1254 else
1255 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1256 }
1257 \f
1258 /* Given a GDB frame, determine the address of the calling function's
1259 frame. This will be used to create a new GDB frame struct, and
1260 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1261 will be called for the new frame.
1262
1263 This may involve searching through prologues for several functions
1264 at boundaries where GCC calls HP C code, or where code which has
1265 a frame pointer calls code without a frame pointer. */
1266
1267 CORE_ADDR
1268 hppa_frame_chain (struct frame_info *frame)
1269 {
1270 int my_framesize, caller_framesize;
1271 struct unwind_table_entry *u;
1272 CORE_ADDR frame_base;
1273 struct frame_info *tmp_frame;
1274
1275 /* A frame in the current frame list, or zero. */
1276 struct frame_info *saved_regs_frame = 0;
1277 /* Where the registers were saved in saved_regs_frame. If
1278 saved_regs_frame is zero, this is garbage. */
1279 CORE_ADDR *saved_regs = NULL;
1280
1281 CORE_ADDR caller_pc;
1282
1283 struct minimal_symbol *min_frame_symbol;
1284 struct symbol *frame_symbol;
1285 char *frame_symbol_name;
1286
1287 /* If this is a threaded application, and we see the
1288 routine "__pthread_exit", treat it as the stack root
1289 for this thread. */
1290 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1291 frame_symbol = find_pc_function (get_frame_pc (frame));
1292
1293 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1294 {
1295 /* The test above for "no user function name" would defend
1296 against the slim likelihood that a user might define a
1297 routine named "__pthread_exit" and then try to debug it.
1298
1299 If it weren't commented out, and you tried to debug the
1300 pthread library itself, you'd get errors.
1301
1302 So for today, we don't make that check. */
1303 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1304 if (frame_symbol_name != 0)
1305 {
1306 if (0 == strncmp (frame_symbol_name,
1307 THREAD_INITIAL_FRAME_SYMBOL,
1308 THREAD_INITIAL_FRAME_SYM_LEN))
1309 {
1310 /* Pretend we've reached the bottom of the stack. */
1311 return (CORE_ADDR) 0;
1312 }
1313 }
1314 } /* End of hacky code for threads. */
1315
1316 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1317 are easy; at *sp we have a full save state strucutre which we can
1318 pull the old stack pointer from. Also see frame_saved_pc for
1319 code to dig a saved PC out of the save state structure. */
1320 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1321 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1322 TARGET_PTR_BIT / 8);
1323 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1324 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1325 {
1326 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1327 }
1328 #endif
1329 else
1330 frame_base = get_frame_base (frame);
1331
1332 /* Get frame sizes for the current frame and the frame of the
1333 caller. */
1334 my_framesize = find_proc_framesize (get_frame_pc (frame));
1335 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1336
1337 /* If we can't determine the caller's PC, then it's not likely we can
1338 really determine anything meaningful about its frame. We'll consider
1339 this to be stack bottom. */
1340 if (caller_pc == (CORE_ADDR) 0)
1341 return (CORE_ADDR) 0;
1342
1343 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1344
1345 /* If caller does not have a frame pointer, then its frame
1346 can be found at current_frame - caller_framesize. */
1347 if (caller_framesize != -1)
1348 {
1349 return frame_base - caller_framesize;
1350 }
1351 /* Both caller and callee have frame pointers and are GCC compiled
1352 (SAVE_SP bit in unwind descriptor is on for both functions.
1353 The previous frame pointer is found at the top of the current frame. */
1354 if (caller_framesize == -1 && my_framesize == -1)
1355 {
1356 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1357 }
1358 /* Caller has a frame pointer, but callee does not. This is a little
1359 more difficult as GCC and HP C lay out locals and callee register save
1360 areas very differently.
1361
1362 The previous frame pointer could be in a register, or in one of
1363 several areas on the stack.
1364
1365 Walk from the current frame to the innermost frame examining
1366 unwind descriptors to determine if %r3 ever gets saved into the
1367 stack. If so return whatever value got saved into the stack.
1368 If it was never saved in the stack, then the value in %r3 is still
1369 valid, so use it.
1370
1371 We use information from unwind descriptors to determine if %r3
1372 is saved into the stack (Entry_GR field has this information). */
1373
1374 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1375 {
1376 u = find_unwind_entry (get_frame_pc (tmp_frame));
1377
1378 if (!u)
1379 {
1380 /* We could find this information by examining prologues. I don't
1381 think anyone has actually written any tools (not even "strip")
1382 which leave them out of an executable, so maybe this is a moot
1383 point. */
1384 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1385 code that doesn't have unwind entries. For example, stepping into
1386 the dynamic linker will give you a PC that has none. Thus, I've
1387 disabled this warning. */
1388 #if 0
1389 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1390 #endif
1391 return (CORE_ADDR) 0;
1392 }
1393
1394 if (u->Save_SP
1395 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1396 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1397 break;
1398
1399 /* Entry_GR specifies the number of callee-saved general registers
1400 saved in the stack. It starts at %r3, so %r3 would be 1. */
1401 if (u->Entry_GR >= 1)
1402 {
1403 /* The unwind entry claims that r3 is saved here. However,
1404 in optimized code, GCC often doesn't actually save r3.
1405 We'll discover this if we look at the prologue. */
1406 hppa_frame_init_saved_regs (tmp_frame);
1407 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1408 saved_regs_frame = tmp_frame;
1409
1410 /* If we have an address for r3, that's good. */
1411 if (saved_regs[DEPRECATED_FP_REGNUM])
1412 break;
1413 }
1414 }
1415
1416 if (tmp_frame)
1417 {
1418 /* We may have walked down the chain into a function with a frame
1419 pointer. */
1420 if (u->Save_SP
1421 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1422 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1423 {
1424 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1425 }
1426 /* %r3 was saved somewhere in the stack. Dig it out. */
1427 else
1428 {
1429 /* Sick.
1430
1431 For optimization purposes many kernels don't have the
1432 callee saved registers into the save_state structure upon
1433 entry into the kernel for a syscall; the optimization
1434 is usually turned off if the process is being traced so
1435 that the debugger can get full register state for the
1436 process.
1437
1438 This scheme works well except for two cases:
1439
1440 * Attaching to a process when the process is in the
1441 kernel performing a system call (debugger can't get
1442 full register state for the inferior process since
1443 the process wasn't being traced when it entered the
1444 system call).
1445
1446 * Register state is not complete if the system call
1447 causes the process to core dump.
1448
1449
1450 The following heinous code is an attempt to deal with
1451 the lack of register state in a core dump. It will
1452 fail miserably if the function which performs the
1453 system call has a variable sized stack frame. */
1454
1455 if (tmp_frame != saved_regs_frame)
1456 {
1457 hppa_frame_init_saved_regs (tmp_frame);
1458 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1459 }
1460
1461 /* Abominable hack. */
1462 if (current_target.to_has_execution == 0
1463 && ((saved_regs[FLAGS_REGNUM]
1464 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1465 TARGET_PTR_BIT / 8)
1466 & 0x2))
1467 || (saved_regs[FLAGS_REGNUM] == 0
1468 && read_register (FLAGS_REGNUM) & 0x2)))
1469 {
1470 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1471 if (!u)
1472 {
1473 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1474 TARGET_PTR_BIT / 8);
1475 }
1476 else
1477 {
1478 return frame_base - (u->Total_frame_size << 3);
1479 }
1480 }
1481
1482 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1483 TARGET_PTR_BIT / 8);
1484 }
1485 }
1486 else
1487 {
1488 /* Get the innermost frame. */
1489 tmp_frame = frame;
1490 while (get_next_frame (tmp_frame) != NULL)
1491 tmp_frame = get_next_frame (tmp_frame);
1492
1493 if (tmp_frame != saved_regs_frame)
1494 {
1495 hppa_frame_init_saved_regs (tmp_frame);
1496 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1497 }
1498
1499 /* Abominable hack. See above. */
1500 if (current_target.to_has_execution == 0
1501 && ((saved_regs[FLAGS_REGNUM]
1502 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1503 TARGET_PTR_BIT / 8)
1504 & 0x2))
1505 || (saved_regs[FLAGS_REGNUM] == 0
1506 && read_register (FLAGS_REGNUM) & 0x2)))
1507 {
1508 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1509 if (!u)
1510 {
1511 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1512 TARGET_PTR_BIT / 8);
1513 }
1514 else
1515 {
1516 return frame_base - (u->Total_frame_size << 3);
1517 }
1518 }
1519
1520 /* The value in %r3 was never saved into the stack (thus %r3 still
1521 holds the value of the previous frame pointer). */
1522 return deprecated_read_fp ();
1523 }
1524 }
1525 \f
1526
1527 /* To see if a frame chain is valid, see if the caller looks like it
1528 was compiled with gcc. */
1529
1530 int
1531 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1532 {
1533 struct minimal_symbol *msym_us;
1534 struct minimal_symbol *msym_start;
1535 struct unwind_table_entry *u, *next_u = NULL;
1536 struct frame_info *next;
1537
1538 u = find_unwind_entry (get_frame_pc (thisframe));
1539
1540 if (u == NULL)
1541 return 1;
1542
1543 /* We can't just check that the same of msym_us is "_start", because
1544 someone idiotically decided that they were going to make a Ltext_end
1545 symbol with the same address. This Ltext_end symbol is totally
1546 indistinguishable (as nearly as I can tell) from the symbol for a function
1547 which is (legitimately, since it is in the user's namespace)
1548 named Ltext_end, so we can't just ignore it. */
1549 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1550 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1551 if (msym_us
1552 && msym_start
1553 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1554 return 0;
1555
1556 /* Grrrr. Some new idiot decided that they don't want _start for the
1557 PRO configurations; $START$ calls main directly.... Deal with it. */
1558 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1559 if (msym_us
1560 && msym_start
1561 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1562 return 0;
1563
1564 next = get_next_frame (thisframe);
1565 if (next)
1566 next_u = find_unwind_entry (get_frame_pc (next));
1567
1568 /* If this frame does not save SP, has no stack, isn't a stub,
1569 and doesn't "call" an interrupt routine or signal handler caller,
1570 then its not valid. */
1571 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1572 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1573 || (next_u && next_u->HP_UX_interrupt_marker))
1574 return 1;
1575
1576 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1577 return 1;
1578
1579 return 0;
1580 }
1581
1582 /* These functions deal with saving and restoring register state
1583 around a function call in the inferior. They keep the stack
1584 double-word aligned; eventually, on an hp700, the stack will have
1585 to be aligned to a 64-byte boundary. */
1586
1587 void
1588 hppa_push_dummy_frame (void)
1589 {
1590 CORE_ADDR sp, pc, pcspace;
1591 int regnum;
1592 CORE_ADDR int_buffer;
1593 double freg_buffer;
1594
1595 pc = hppa_target_read_pc (inferior_ptid);
1596 int_buffer = read_register (FLAGS_REGNUM);
1597 if (int_buffer & 0x2)
1598 {
1599 const unsigned int sid = (pc >> 30) & 0x3;
1600 if (sid == 0)
1601 pcspace = read_register (SR4_REGNUM);
1602 else
1603 pcspace = read_register (SR4_REGNUM + 4 + sid);
1604 }
1605 else
1606 pcspace = read_register (PCSQ_HEAD_REGNUM);
1607
1608 /* Space for "arguments"; the RP goes in here. */
1609 sp = read_register (SP_REGNUM) + 48;
1610 int_buffer = read_register (RP_REGNUM) | 0x3;
1611
1612 /* The 32bit and 64bit ABIs save the return pointer into different
1613 stack slots. */
1614 if (DEPRECATED_REGISTER_SIZE == 8)
1615 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1616 else
1617 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1618
1619 int_buffer = deprecated_read_fp ();
1620 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1621
1622 write_register (DEPRECATED_FP_REGNUM, sp);
1623
1624 sp += 2 * DEPRECATED_REGISTER_SIZE;
1625
1626 for (regnum = 1; regnum < 32; regnum++)
1627 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1628 sp = push_word (sp, read_register (regnum));
1629
1630 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1631 if (DEPRECATED_REGISTER_SIZE != 8)
1632 sp += 4;
1633
1634 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1635 {
1636 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1637 (char *) &freg_buffer, 8);
1638 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1639 }
1640 sp = push_word (sp, read_register (IPSW_REGNUM));
1641 sp = push_word (sp, read_register (SAR_REGNUM));
1642 sp = push_word (sp, pc);
1643 sp = push_word (sp, pcspace);
1644 sp = push_word (sp, pc + 4);
1645 sp = push_word (sp, pcspace);
1646 write_register (SP_REGNUM, sp);
1647 }
1648
1649 static void
1650 find_dummy_frame_regs (struct frame_info *frame,
1651 CORE_ADDR frame_saved_regs[])
1652 {
1653 CORE_ADDR fp = get_frame_base (frame);
1654 int i;
1655
1656 /* The 32bit and 64bit ABIs save RP into different locations. */
1657 if (DEPRECATED_REGISTER_SIZE == 8)
1658 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1659 else
1660 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1661
1662 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1663
1664 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1665
1666 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1667 {
1668 if (i != DEPRECATED_FP_REGNUM)
1669 {
1670 frame_saved_regs[i] = fp;
1671 fp += DEPRECATED_REGISTER_SIZE;
1672 }
1673 }
1674
1675 /* This is not necessary or desirable for the 64bit ABI. */
1676 if (DEPRECATED_REGISTER_SIZE != 8)
1677 fp += 4;
1678
1679 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1680 frame_saved_regs[i] = fp;
1681
1682 frame_saved_regs[IPSW_REGNUM] = fp;
1683 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1684 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1685 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1686 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1687 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1688 }
1689
1690 void
1691 hppa_pop_frame (void)
1692 {
1693 struct frame_info *frame = get_current_frame ();
1694 CORE_ADDR fp, npc, target_pc;
1695 int regnum;
1696 CORE_ADDR *fsr;
1697 double freg_buffer;
1698
1699 fp = get_frame_base (frame);
1700 hppa_frame_init_saved_regs (frame);
1701 fsr = deprecated_get_frame_saved_regs (frame);
1702
1703 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1704 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1705 restore_pc_queue (fsr);
1706 #endif
1707
1708 for (regnum = 31; regnum > 0; regnum--)
1709 if (fsr[regnum])
1710 write_register (regnum, read_memory_integer (fsr[regnum],
1711 DEPRECATED_REGISTER_SIZE));
1712
1713 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1714 if (fsr[regnum])
1715 {
1716 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1717 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1718 (char *) &freg_buffer, 8);
1719 }
1720
1721 if (fsr[IPSW_REGNUM])
1722 write_register (IPSW_REGNUM,
1723 read_memory_integer (fsr[IPSW_REGNUM],
1724 DEPRECATED_REGISTER_SIZE));
1725
1726 if (fsr[SAR_REGNUM])
1727 write_register (SAR_REGNUM,
1728 read_memory_integer (fsr[SAR_REGNUM],
1729 DEPRECATED_REGISTER_SIZE));
1730
1731 /* If the PC was explicitly saved, then just restore it. */
1732 if (fsr[PCOQ_TAIL_REGNUM])
1733 {
1734 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1735 DEPRECATED_REGISTER_SIZE);
1736 write_register (PCOQ_TAIL_REGNUM, npc);
1737 }
1738 /* Else use the value in %rp to set the new PC. */
1739 else
1740 {
1741 npc = read_register (RP_REGNUM);
1742 write_pc (npc);
1743 }
1744
1745 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1746
1747 if (fsr[IPSW_REGNUM]) /* call dummy */
1748 write_register (SP_REGNUM, fp - 48);
1749 else
1750 write_register (SP_REGNUM, fp);
1751
1752 /* The PC we just restored may be inside a return trampoline. If so
1753 we want to restart the inferior and run it through the trampoline.
1754
1755 Do this by setting a momentary breakpoint at the location the
1756 trampoline returns to.
1757
1758 Don't skip through the trampoline if we're popping a dummy frame. */
1759 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1760 if (target_pc && !fsr[IPSW_REGNUM])
1761 {
1762 struct symtab_and_line sal;
1763 struct breakpoint *breakpoint;
1764 struct cleanup *old_chain;
1765
1766 /* Set up our breakpoint. Set it to be silent as the MI code
1767 for "return_command" will print the frame we returned to. */
1768 sal = find_pc_line (target_pc, 0);
1769 sal.pc = target_pc;
1770 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1771 breakpoint->silent = 1;
1772
1773 /* So we can clean things up. */
1774 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1775
1776 /* Start up the inferior. */
1777 clear_proceed_status ();
1778 proceed_to_finish = 1;
1779 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1780
1781 /* Perform our cleanups. */
1782 do_cleanups (old_chain);
1783 }
1784 flush_cached_frames ();
1785 }
1786
1787 /* After returning to a dummy on the stack, restore the instruction
1788 queue space registers. */
1789
1790 static int
1791 restore_pc_queue (CORE_ADDR *fsr)
1792 {
1793 CORE_ADDR pc = read_pc ();
1794 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1795 TARGET_PTR_BIT / 8);
1796 struct target_waitstatus w;
1797 int insn_count;
1798
1799 /* Advance past break instruction in the call dummy. */
1800 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1801 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1802
1803 /* HPUX doesn't let us set the space registers or the space
1804 registers of the PC queue through ptrace. Boo, hiss.
1805 Conveniently, the call dummy has this sequence of instructions
1806 after the break:
1807 mtsp r21, sr0
1808 ble,n 0(sr0, r22)
1809
1810 So, load up the registers and single step until we are in the
1811 right place. */
1812
1813 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1814 DEPRECATED_REGISTER_SIZE));
1815 write_register (22, new_pc);
1816
1817 for (insn_count = 0; insn_count < 3; insn_count++)
1818 {
1819 /* FIXME: What if the inferior gets a signal right now? Want to
1820 merge this into wait_for_inferior (as a special kind of
1821 watchpoint? By setting a breakpoint at the end? Is there
1822 any other choice? Is there *any* way to do this stuff with
1823 ptrace() or some equivalent?). */
1824 resume (1, 0);
1825 target_wait (inferior_ptid, &w);
1826
1827 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1828 {
1829 stop_signal = w.value.sig;
1830 terminal_ours_for_output ();
1831 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1832 target_signal_to_name (stop_signal),
1833 target_signal_to_string (stop_signal));
1834 gdb_flush (gdb_stdout);
1835 return 0;
1836 }
1837 }
1838 target_terminal_ours ();
1839 target_fetch_registers (-1);
1840 return 1;
1841 }
1842
1843
1844 #ifdef PA20W_CALLING_CONVENTIONS
1845
1846 /* This function pushes a stack frame with arguments as part of the
1847 inferior function calling mechanism.
1848
1849 This is the version for the PA64, in which later arguments appear
1850 at higher addresses. (The stack always grows towards higher
1851 addresses.)
1852
1853 We simply allocate the appropriate amount of stack space and put
1854 arguments into their proper slots. The call dummy code will copy
1855 arguments into registers as needed by the ABI.
1856
1857 This ABI also requires that the caller provide an argument pointer
1858 to the callee, so we do that too. */
1859
1860 CORE_ADDR
1861 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1862 int struct_return, CORE_ADDR struct_addr)
1863 {
1864 /* array of arguments' offsets */
1865 int *offset = (int *) alloca (nargs * sizeof (int));
1866
1867 /* array of arguments' lengths: real lengths in bytes, not aligned to
1868 word size */
1869 int *lengths = (int *) alloca (nargs * sizeof (int));
1870
1871 /* The value of SP as it was passed into this function after
1872 aligning. */
1873 CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp);
1874
1875 /* The number of stack bytes occupied by the current argument. */
1876 int bytes_reserved;
1877
1878 /* The total number of bytes reserved for the arguments. */
1879 int cum_bytes_reserved = 0;
1880
1881 /* Similarly, but aligned. */
1882 int cum_bytes_aligned = 0;
1883 int i;
1884
1885 /* Iterate over each argument provided by the user. */
1886 for (i = 0; i < nargs; i++)
1887 {
1888 struct type *arg_type = VALUE_TYPE (args[i]);
1889
1890 /* Integral scalar values smaller than a register are padded on
1891 the left. We do this by promoting them to full-width,
1892 although the ABI says to pad them with garbage. */
1893 if (is_integral_type (arg_type)
1894 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1895 {
1896 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1897 ? builtin_type_unsigned_long
1898 : builtin_type_long),
1899 args[i]);
1900 arg_type = VALUE_TYPE (args[i]);
1901 }
1902
1903 lengths[i] = TYPE_LENGTH (arg_type);
1904
1905 /* Align the size of the argument to the word size for this
1906 target. */
1907 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1908
1909 offset[i] = cum_bytes_reserved;
1910
1911 /* Aggregates larger than eight bytes (the only types larger
1912 than eight bytes we have) are aligned on a 16-byte boundary,
1913 possibly padded on the right with garbage. This may leave an
1914 empty word on the stack, and thus an unused register, as per
1915 the ABI. */
1916 if (bytes_reserved > 8)
1917 {
1918 /* Round up the offset to a multiple of two slots. */
1919 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1920 & -(2*DEPRECATED_REGISTER_SIZE));
1921
1922 /* Note the space we've wasted, if any. */
1923 bytes_reserved += new_offset - offset[i];
1924 offset[i] = new_offset;
1925 }
1926
1927 cum_bytes_reserved += bytes_reserved;
1928 }
1929
1930 /* CUM_BYTES_RESERVED already accounts for all the arguments
1931 passed by the user. However, the ABIs mandate minimum stack space
1932 allocations for outgoing arguments.
1933
1934 The ABIs also mandate minimum stack alignments which we must
1935 preserve. */
1936 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
1937 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1938
1939 /* Now write each of the args at the proper offset down the stack. */
1940 for (i = 0; i < nargs; i++)
1941 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1942
1943 /* If a structure has to be returned, set up register 28 to hold its
1944 address */
1945 if (struct_return)
1946 write_register (28, struct_addr);
1947
1948 /* For the PA64 we must pass a pointer to the outgoing argument list.
1949 The ABI mandates that the pointer should point to the first byte of
1950 storage beyond the register flushback area.
1951
1952 However, the call dummy expects the outgoing argument pointer to
1953 be passed in register %r4. */
1954 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1955
1956 /* ?!? This needs further work. We need to set up the global data
1957 pointer for this procedure. This assumes the same global pointer
1958 for every procedure. The call dummy expects the dp value to
1959 be passed in register %r6. */
1960 write_register (6, read_register (27));
1961
1962 /* The stack will have 64 bytes of additional space for a frame marker. */
1963 return sp + 64;
1964 }
1965
1966 #else
1967
1968 /* This function pushes a stack frame with arguments as part of the
1969 inferior function calling mechanism.
1970
1971 This is the version of the function for the 32-bit PA machines, in
1972 which later arguments appear at lower addresses. (The stack always
1973 grows towards higher addresses.)
1974
1975 We simply allocate the appropriate amount of stack space and put
1976 arguments into their proper slots. The call dummy code will copy
1977 arguments into registers as needed by the ABI. */
1978
1979 CORE_ADDR
1980 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1981 int struct_return, CORE_ADDR struct_addr)
1982 {
1983 /* array of arguments' offsets */
1984 int *offset = (int *) alloca (nargs * sizeof (int));
1985
1986 /* array of arguments' lengths: real lengths in bytes, not aligned to
1987 word size */
1988 int *lengths = (int *) alloca (nargs * sizeof (int));
1989
1990 /* The number of stack bytes occupied by the current argument. */
1991 int bytes_reserved;
1992
1993 /* The total number of bytes reserved for the arguments. */
1994 int cum_bytes_reserved = 0;
1995
1996 /* Similarly, but aligned. */
1997 int cum_bytes_aligned = 0;
1998 int i;
1999
2000 /* Iterate over each argument provided by the user. */
2001 for (i = 0; i < nargs; i++)
2002 {
2003 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2004
2005 /* Align the size of the argument to the word size for this
2006 target. */
2007 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2008
2009 offset[i] = (cum_bytes_reserved
2010 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
2011
2012 /* If the argument is a double word argument, then it needs to be
2013 double word aligned. */
2014 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
2015 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
2016 {
2017 int new_offset = 0;
2018 /* BYTES_RESERVED is already aligned to the word, so we put
2019 the argument at one word more down the stack.
2020
2021 This will leave one empty word on the stack, and one unused
2022 register as mandated by the ABI. */
2023 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
2024 & -(2 * DEPRECATED_REGISTER_SIZE));
2025
2026 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
2027 {
2028 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2029 offset[i] += DEPRECATED_REGISTER_SIZE;
2030 }
2031 }
2032
2033 cum_bytes_reserved += bytes_reserved;
2034
2035 }
2036
2037 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2038 by the user. However, the ABI mandates minimum stack space
2039 allocations for outgoing arguments.
2040
2041 The ABI also mandates minimum stack alignments which we must
2042 preserve. */
2043 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
2044 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2045
2046 /* Now write each of the args at the proper offset down the stack.
2047 ?!? We need to promote values to a full register instead of skipping
2048 words in the stack. */
2049 for (i = 0; i < nargs; i++)
2050 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2051
2052 /* If a structure has to be returned, set up register 28 to hold its
2053 address */
2054 if (struct_return)
2055 write_register (28, struct_addr);
2056
2057 /* The stack will have 32 bytes of additional space for a frame marker. */
2058 return sp + 32;
2059 }
2060
2061 #endif
2062
2063 /* elz: this function returns a value which is built looking at the given address.
2064 It is called from call_function_by_hand, in case we need to return a
2065 value which is larger than 64 bits, and it is stored in the stack rather than
2066 in the registers r28 and r29 or fr4.
2067 This function does the same stuff as value_being_returned in values.c, but
2068 gets the value from the stack rather than from the buffer where all the
2069 registers were saved when the function called completed. */
2070 /* FIXME: cagney/2003-09-27: This function is no longer needed. The
2071 inferior function call code now directly handles the case described
2072 above. */
2073 struct value *
2074 hppa_value_returned_from_stack (struct type *valtype, CORE_ADDR addr)
2075 {
2076 struct value *val;
2077
2078 val = allocate_value (valtype);
2079 CHECK_TYPEDEF (valtype);
2080 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
2081
2082 return val;
2083 }
2084
2085
2086
2087 /* elz: Used to lookup a symbol in the shared libraries.
2088 This function calls shl_findsym, indirectly through a
2089 call to __d_shl_get. __d_shl_get is in end.c, which is always
2090 linked in by the hp compilers/linkers.
2091 The call to shl_findsym cannot be made directly because it needs
2092 to be active in target address space.
2093 inputs: - minimal symbol pointer for the function we want to look up
2094 - address in target space of the descriptor for the library
2095 where we want to look the symbol up.
2096 This address is retrieved using the
2097 som_solib_get_solib_by_pc function (somsolib.c).
2098 output: - real address in the library of the function.
2099 note: the handle can be null, in which case shl_findsym will look for
2100 the symbol in all the loaded shared libraries.
2101 files to look at if you need reference on this stuff:
2102 dld.c, dld_shl_findsym.c
2103 end.c
2104 man entry for shl_findsym */
2105
2106 CORE_ADDR
2107 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
2108 {
2109 struct symbol *get_sym, *symbol2;
2110 struct minimal_symbol *buff_minsym, *msymbol;
2111 struct type *ftype;
2112 struct value **args;
2113 struct value *funcval;
2114 struct value *val;
2115
2116 int x, namelen, err_value, tmp = -1;
2117 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2118 CORE_ADDR stub_addr;
2119
2120
2121 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
2122 funcval = find_function_in_inferior ("__d_shl_get");
2123 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
2124 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2125 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
2126 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
2127 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
2128 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
2129 value_return_addr = endo_buff_addr + namelen;
2130 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2131
2132 /* do alignment */
2133 if ((x = value_return_addr % 64) != 0)
2134 value_return_addr = value_return_addr + 64 - x;
2135
2136 errno_return_addr = value_return_addr + 64;
2137
2138
2139 /* set up stuff needed by __d_shl_get in buffer in end.o */
2140
2141 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
2142
2143 target_write_memory (value_return_addr, (char *) &tmp, 4);
2144
2145 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2146
2147 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2148 (char *) &handle, 4);
2149
2150 /* now prepare the arguments for the call */
2151
2152 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2153 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2154 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2155 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2156 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2157 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2158
2159 /* now call the function */
2160
2161 val = call_function_by_hand (funcval, 6, args);
2162
2163 /* now get the results */
2164
2165 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2166
2167 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2168 if (stub_addr <= 0)
2169 error ("call to __d_shl_get failed, error code is %d", err_value);
2170
2171 return (stub_addr);
2172 }
2173
2174 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2175 static int
2176 cover_find_stub_with_shl_get (void *args_untyped)
2177 {
2178 args_for_find_stub *args = args_untyped;
2179 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2180 return 0;
2181 }
2182
2183 /* Insert the specified number of args and function address
2184 into a call sequence of the above form stored at DUMMYNAME.
2185
2186 On the hppa we need to call the stack dummy through $$dyncall.
2187 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2188 argument, real_pc, which is the location where gdb should start up
2189 the inferior to do the function call.
2190
2191 This has to work across several versions of hpux, bsd, osf1. It has to
2192 work regardless of what compiler was used to build the inferior program.
2193 It should work regardless of whether or not end.o is available. It has
2194 to work even if gdb can not call into the dynamic loader in the inferior
2195 to query it for symbol names and addresses.
2196
2197 Yes, all those cases should work. Luckily code exists to handle most
2198 of them. The complexity is in selecting exactly what scheme should
2199 be used to perform the inferior call.
2200
2201 At the current time this routine is known not to handle cases where
2202 the program was linked with HP's compiler without including end.o.
2203
2204 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2205
2206 CORE_ADDR
2207 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2208 struct value **args, struct type *type, int gcc_p)
2209 {
2210 CORE_ADDR dyncall_addr;
2211 struct minimal_symbol *msymbol;
2212 struct minimal_symbol *trampoline;
2213 int flags = read_register (FLAGS_REGNUM);
2214 struct unwind_table_entry *u = NULL;
2215 CORE_ADDR new_stub = 0;
2216 CORE_ADDR solib_handle = 0;
2217
2218 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2219 passed an import stub, not a PLABEL. It is also necessary to set %r19
2220 (the PIC register) before performing the call.
2221
2222 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2223 are calling the target directly. When using __d_plt_call we want to
2224 use a PLABEL instead of an import stub. */
2225 int using_gcc_plt_call = 1;
2226
2227 #ifdef GDB_TARGET_IS_HPPA_20W
2228 /* We currently use completely different code for the PA2.0W inferior
2229 function call sequences. This needs to be cleaned up. */
2230 {
2231 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2232 struct target_waitstatus w;
2233 int inst1, inst2;
2234 char buf[4];
2235 int status;
2236 struct objfile *objfile;
2237
2238 /* We can not modify the PC space queues directly, so we start
2239 up the inferior and execute a couple instructions to set the
2240 space queues so that they point to the call dummy in the stack. */
2241 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2242 sr5 = read_register (SR5_REGNUM);
2243 if (1)
2244 {
2245 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2246 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2247 if (target_read_memory (pcoqh, buf, 4) != 0)
2248 error ("Couldn't modify space queue\n");
2249 inst1 = extract_unsigned_integer (buf, 4);
2250
2251 if (target_read_memory (pcoqt, buf, 4) != 0)
2252 error ("Couldn't modify space queue\n");
2253 inst2 = extract_unsigned_integer (buf, 4);
2254
2255 /* BVE (r1) */
2256 *((int *) buf) = 0xe820d000;
2257 if (target_write_memory (pcoqh, buf, 4) != 0)
2258 error ("Couldn't modify space queue\n");
2259
2260 /* NOP */
2261 *((int *) buf) = 0x08000240;
2262 if (target_write_memory (pcoqt, buf, 4) != 0)
2263 {
2264 *((int *) buf) = inst1;
2265 target_write_memory (pcoqh, buf, 4);
2266 error ("Couldn't modify space queue\n");
2267 }
2268
2269 write_register (1, pc);
2270
2271 /* Single step twice, the BVE instruction will set the space queue
2272 such that it points to the PC value written immediately above
2273 (ie the call dummy). */
2274 resume (1, 0);
2275 target_wait (inferior_ptid, &w);
2276 resume (1, 0);
2277 target_wait (inferior_ptid, &w);
2278
2279 /* Restore the two instructions at the old PC locations. */
2280 *((int *) buf) = inst1;
2281 target_write_memory (pcoqh, buf, 4);
2282 *((int *) buf) = inst2;
2283 target_write_memory (pcoqt, buf, 4);
2284 }
2285
2286 /* The call dummy wants the ultimate destination address initially
2287 in register %r5. */
2288 write_register (5, fun);
2289
2290 /* We need to see if this objfile has a different DP value than our
2291 own (it could be a shared library for example). */
2292 ALL_OBJFILES (objfile)
2293 {
2294 struct obj_section *s;
2295 obj_private_data_t *obj_private;
2296
2297 /* See if FUN is in any section within this shared library. */
2298 for (s = objfile->sections; s < objfile->sections_end; s++)
2299 if (s->addr <= fun && fun < s->endaddr)
2300 break;
2301
2302 if (s >= objfile->sections_end)
2303 continue;
2304
2305 obj_private = (obj_private_data_t *) objfile->obj_private;
2306
2307 /* The DP value may be different for each objfile. But within an
2308 objfile each function uses the same dp value. Thus we do not need
2309 to grope around the opd section looking for dp values.
2310
2311 ?!? This is not strictly correct since we may be in a shared library
2312 and want to call back into the main program. To make that case
2313 work correctly we need to set obj_private->dp for the main program's
2314 objfile, then remove this conditional. */
2315 if (obj_private->dp)
2316 write_register (27, obj_private->dp);
2317 break;
2318 }
2319 return pc;
2320 }
2321 #endif
2322
2323 #ifndef GDB_TARGET_IS_HPPA_20W
2324 /* Prefer __gcc_plt_call over the HP supplied routine because
2325 __gcc_plt_call works for any number of arguments. */
2326 trampoline = NULL;
2327 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2328 using_gcc_plt_call = 0;
2329
2330 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2331 if (msymbol == NULL)
2332 error ("Can't find an address for $$dyncall trampoline");
2333
2334 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2335
2336 /* FUN could be a procedure label, in which case we have to get
2337 its real address and the value of its GOT/DP if we plan to
2338 call the routine via gcc_plt_call. */
2339 if ((fun & 0x2) && using_gcc_plt_call)
2340 {
2341 /* Get the GOT/DP value for the target function. It's
2342 at *(fun+4). Note the call dummy is *NOT* allowed to
2343 trash %r19 before calling the target function. */
2344 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2345 DEPRECATED_REGISTER_SIZE));
2346
2347 /* Now get the real address for the function we are calling, it's
2348 at *fun. */
2349 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2350 TARGET_PTR_BIT / 8);
2351 }
2352 else
2353 {
2354
2355 #ifndef GDB_TARGET_IS_PA_ELF
2356 /* FUN could be an export stub, the real address of a function, or
2357 a PLABEL. When using gcc's PLT call routine we must call an import
2358 stub rather than the export stub or real function for lazy binding
2359 to work correctly
2360
2361 If we are using the gcc PLT call routine, then we need to
2362 get the import stub for the target function. */
2363 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2364 {
2365 struct objfile *objfile;
2366 struct minimal_symbol *funsymbol, *stub_symbol;
2367 CORE_ADDR newfun = 0;
2368
2369 funsymbol = lookup_minimal_symbol_by_pc (fun);
2370 if (!funsymbol)
2371 error ("Unable to find minimal symbol for target function.\n");
2372
2373 /* Search all the object files for an import symbol with the
2374 right name. */
2375 ALL_OBJFILES (objfile)
2376 {
2377 stub_symbol
2378 = lookup_minimal_symbol_solib_trampoline
2379 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
2380
2381 if (!stub_symbol)
2382 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2383 NULL, objfile);
2384
2385 /* Found a symbol with the right name. */
2386 if (stub_symbol)
2387 {
2388 struct unwind_table_entry *u;
2389 /* It must be a shared library trampoline. */
2390 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2391 continue;
2392
2393 /* It must also be an import stub. */
2394 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2395 if (u == NULL
2396 || (u->stub_unwind.stub_type != IMPORT
2397 #ifdef GDB_NATIVE_HPUX_11
2398 /* Sigh. The hpux 10.20 dynamic linker will blow
2399 chunks if we perform a call to an unbound function
2400 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2401 linker will blow chunks if we do not call the
2402 unbound function via the IMPORT_SHLIB stub.
2403
2404 We currently have no way to select bevahior on just
2405 the target. However, we only support HPUX/SOM in
2406 native mode. So we conditinalize on a native
2407 #ifdef. Ugly. Ugly. Ugly */
2408 && u->stub_unwind.stub_type != IMPORT_SHLIB
2409 #endif
2410 ))
2411 continue;
2412
2413 /* OK. Looks like the correct import stub. */
2414 newfun = SYMBOL_VALUE (stub_symbol);
2415 fun = newfun;
2416
2417 /* If we found an IMPORT stub, then we want to stop
2418 searching now. If we found an IMPORT_SHLIB, we want
2419 to continue the search in the hopes that we will find
2420 an IMPORT stub. */
2421 if (u->stub_unwind.stub_type == IMPORT)
2422 break;
2423 }
2424 }
2425
2426 /* Ouch. We did not find an import stub. Make an attempt to
2427 do the right thing instead of just croaking. Most of the
2428 time this will actually work. */
2429 if (newfun == 0)
2430 write_register (19, som_solib_get_got_by_pc (fun));
2431
2432 u = find_unwind_entry (fun);
2433 if (u
2434 && (u->stub_unwind.stub_type == IMPORT
2435 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2436 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2437
2438 /* If we found the import stub in the shared library, then we have
2439 to set %r19 before we call the stub. */
2440 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2441 write_register (19, som_solib_get_got_by_pc (fun));
2442 }
2443 #endif
2444 }
2445
2446 /* If we are calling into another load module then have sr4export call the
2447 magic __d_plt_call routine which is linked in from end.o.
2448
2449 You can't use _sr4export to make the call as the value in sp-24 will get
2450 fried and you end up returning to the wrong location. You can't call the
2451 target as the code to bind the PLT entry to a function can't return to a
2452 stack address.
2453
2454 Also, query the dynamic linker in the inferior to provide a suitable
2455 PLABEL for the target function. */
2456 if (!using_gcc_plt_call)
2457 {
2458 CORE_ADDR new_fun;
2459
2460 /* Get a handle for the shared library containing FUN. Given the
2461 handle we can query the shared library for a PLABEL. */
2462 solib_handle = som_solib_get_solib_by_pc (fun);
2463
2464 if (solib_handle)
2465 {
2466 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2467
2468 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2469
2470 if (trampoline == NULL)
2471 {
2472 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2473 }
2474
2475 /* This is where sr4export will jump to. */
2476 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2477
2478 /* If the function is in a shared library, then call __d_shl_get to
2479 get a PLABEL for the target function. */
2480 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2481
2482 if (new_stub == 0)
2483 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2484
2485 /* We have to store the address of the stub in __shlib_funcptr. */
2486 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2487 (struct objfile *) NULL);
2488
2489 if (msymbol == NULL)
2490 error ("Can't find an address for __shlib_funcptr");
2491 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2492 (char *) &new_stub, 4);
2493
2494 /* We want sr4export to call __d_plt_call, so we claim it is
2495 the final target. Clear trampoline. */
2496 fun = new_fun;
2497 trampoline = NULL;
2498 }
2499 }
2500
2501 /* Store upper 21 bits of function address into ldil. fun will either be
2502 the final target (most cases) or __d_plt_call when calling into a shared
2503 library and __gcc_plt_call is not available. */
2504 store_unsigned_integer
2505 (&dummy[FUNC_LDIL_OFFSET],
2506 INSTRUCTION_SIZE,
2507 deposit_21 (fun >> 11,
2508 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2509 INSTRUCTION_SIZE)));
2510
2511 /* Store lower 11 bits of function address into ldo */
2512 store_unsigned_integer
2513 (&dummy[FUNC_LDO_OFFSET],
2514 INSTRUCTION_SIZE,
2515 deposit_14 (fun & MASK_11,
2516 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2517 INSTRUCTION_SIZE)));
2518 #ifdef SR4EXPORT_LDIL_OFFSET
2519
2520 {
2521 CORE_ADDR trampoline_addr;
2522
2523 /* We may still need sr4export's address too. */
2524
2525 if (trampoline == NULL)
2526 {
2527 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2528 if (msymbol == NULL)
2529 error ("Can't find an address for _sr4export trampoline");
2530
2531 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2532 }
2533 else
2534 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2535
2536
2537 /* Store upper 21 bits of trampoline's address into ldil */
2538 store_unsigned_integer
2539 (&dummy[SR4EXPORT_LDIL_OFFSET],
2540 INSTRUCTION_SIZE,
2541 deposit_21 (trampoline_addr >> 11,
2542 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2543 INSTRUCTION_SIZE)));
2544
2545 /* Store lower 11 bits of trampoline's address into ldo */
2546 store_unsigned_integer
2547 (&dummy[SR4EXPORT_LDO_OFFSET],
2548 INSTRUCTION_SIZE,
2549 deposit_14 (trampoline_addr & MASK_11,
2550 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2551 INSTRUCTION_SIZE)));
2552 }
2553 #endif
2554
2555 write_register (22, pc);
2556
2557 /* If we are in a syscall, then we should call the stack dummy
2558 directly. $$dyncall is not needed as the kernel sets up the
2559 space id registers properly based on the value in %r31. In
2560 fact calling $$dyncall will not work because the value in %r22
2561 will be clobbered on the syscall exit path.
2562
2563 Similarly if the current PC is in a shared library. Note however,
2564 this scheme won't work if the shared library isn't mapped into
2565 the same space as the stack. */
2566 if (flags & 2)
2567 return pc;
2568 #ifndef GDB_TARGET_IS_PA_ELF
2569 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2570 return pc;
2571 #endif
2572 else
2573 return dyncall_addr;
2574 #endif
2575 }
2576
2577 /* If the pid is in a syscall, then the FP register is not readable.
2578 We'll return zero in that case, rather than attempting to read it
2579 and cause a warning. */
2580
2581 CORE_ADDR
2582 hppa_read_fp (int pid)
2583 {
2584 int flags = read_register (FLAGS_REGNUM);
2585
2586 if (flags & 2)
2587 {
2588 return (CORE_ADDR) 0;
2589 }
2590
2591 /* This is the only site that may directly read_register () the FP
2592 register. All others must use deprecated_read_fp (). */
2593 return read_register (DEPRECATED_FP_REGNUM);
2594 }
2595
2596 CORE_ADDR
2597 hppa_target_read_fp (void)
2598 {
2599 return hppa_read_fp (PIDGET (inferior_ptid));
2600 }
2601
2602 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2603 bits. */
2604
2605 CORE_ADDR
2606 hppa_target_read_pc (ptid_t ptid)
2607 {
2608 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2609
2610 /* The following test does not belong here. It is OS-specific, and belongs
2611 in native code. */
2612 /* Test SS_INSYSCALL */
2613 if (flags & 2)
2614 return read_register_pid (31, ptid) & ~0x3;
2615
2616 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2617 }
2618
2619 /* Write out the PC. If currently in a syscall, then also write the new
2620 PC value into %r31. */
2621
2622 void
2623 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2624 {
2625 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2626
2627 /* The following test does not belong here. It is OS-specific, and belongs
2628 in native code. */
2629 /* If in a syscall, then set %r31. Also make sure to get the
2630 privilege bits set correctly. */
2631 /* Test SS_INSYSCALL */
2632 if (flags & 2)
2633 write_register_pid (31, v | 0x3, ptid);
2634
2635 write_register_pid (PC_REGNUM, v, ptid);
2636 write_register_pid (DEPRECATED_NPC_REGNUM, v + 4, ptid);
2637 }
2638
2639 /* return the alignment of a type in bytes. Structures have the maximum
2640 alignment required by their fields. */
2641
2642 static int
2643 hppa_alignof (struct type *type)
2644 {
2645 int max_align, align, i;
2646 CHECK_TYPEDEF (type);
2647 switch (TYPE_CODE (type))
2648 {
2649 case TYPE_CODE_PTR:
2650 case TYPE_CODE_INT:
2651 case TYPE_CODE_FLT:
2652 return TYPE_LENGTH (type);
2653 case TYPE_CODE_ARRAY:
2654 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2655 case TYPE_CODE_STRUCT:
2656 case TYPE_CODE_UNION:
2657 max_align = 1;
2658 for (i = 0; i < TYPE_NFIELDS (type); i++)
2659 {
2660 /* Bit fields have no real alignment. */
2661 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2662 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2663 {
2664 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2665 max_align = max (max_align, align);
2666 }
2667 }
2668 return max_align;
2669 default:
2670 return 4;
2671 }
2672 }
2673
2674 /* Print the register regnum, or all registers if regnum is -1 */
2675
2676 void
2677 pa_do_registers_info (int regnum, int fpregs)
2678 {
2679 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2680 int i;
2681
2682 /* Make a copy of gdb's save area (may cause actual
2683 reads from the target). */
2684 for (i = 0; i < NUM_REGS; i++)
2685 frame_register_read (deprecated_selected_frame, i,
2686 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2687
2688 if (regnum == -1)
2689 pa_print_registers (raw_regs, regnum, fpregs);
2690 else if (regnum < FP4_REGNUM)
2691 {
2692 long reg_val[2];
2693
2694 /* Why is the value not passed through "extract_signed_integer"
2695 as in "pa_print_registers" below? */
2696 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2697
2698 if (!is_pa_2)
2699 {
2700 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2701 }
2702 else
2703 {
2704 /* Fancy % formats to prevent leading zeros. */
2705 if (reg_val[0] == 0)
2706 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2707 else
2708 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2709 reg_val[0], reg_val[1]);
2710 }
2711 }
2712 else
2713 /* Note that real floating point values only start at
2714 FP4_REGNUM. FP0 and up are just status and error
2715 registers, which have integral (bit) values. */
2716 pa_print_fp_reg (regnum);
2717 }
2718
2719 /********** new function ********************/
2720 void
2721 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2722 enum precision_type precision)
2723 {
2724 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2725 int i;
2726
2727 /* Make a copy of gdb's save area (may cause actual
2728 reads from the target). */
2729 for (i = 0; i < NUM_REGS; i++)
2730 frame_register_read (deprecated_selected_frame, i,
2731 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2732
2733 if (regnum == -1)
2734 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2735
2736 else if (regnum < FP4_REGNUM)
2737 {
2738 long reg_val[2];
2739
2740 /* Why is the value not passed through "extract_signed_integer"
2741 as in "pa_print_registers" below? */
2742 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2743
2744 if (!is_pa_2)
2745 {
2746 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2747 }
2748 else
2749 {
2750 /* Fancy % formats to prevent leading zeros. */
2751 if (reg_val[0] == 0)
2752 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2753 reg_val[1]);
2754 else
2755 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2756 reg_val[0], reg_val[1]);
2757 }
2758 }
2759 else
2760 /* Note that real floating point values only start at
2761 FP4_REGNUM. FP0 and up are just status and error
2762 registers, which have integral (bit) values. */
2763 pa_strcat_fp_reg (regnum, stream, precision);
2764 }
2765
2766 /* If this is a PA2.0 machine, fetch the real 64-bit register
2767 value. Otherwise use the info from gdb's saved register area.
2768
2769 Note that reg_val is really expected to be an array of longs,
2770 with two elements. */
2771 static void
2772 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2773 {
2774 static int know_which = 0; /* False */
2775
2776 int regaddr;
2777 unsigned int offset;
2778 int i;
2779 int start;
2780
2781
2782 char buf[MAX_REGISTER_SIZE];
2783 long long reg_val;
2784
2785 if (!know_which)
2786 {
2787 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2788 {
2789 is_pa_2 = (1 == 1);
2790 }
2791
2792 know_which = 1; /* True */
2793 }
2794
2795 raw_val[0] = 0;
2796 raw_val[1] = 0;
2797
2798 if (!is_pa_2)
2799 {
2800 raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum));
2801 return;
2802 }
2803
2804 /* Code below copied from hppah-nat.c, with fixes for wide
2805 registers, using different area of save_state, etc. */
2806 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2807 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2808 {
2809 /* Use narrow regs area of save_state and default macro. */
2810 offset = U_REGS_OFFSET;
2811 regaddr = register_addr (regnum, offset);
2812 start = 1;
2813 }
2814 else
2815 {
2816 /* Use wide regs area, and calculate registers as 8 bytes wide.
2817
2818 We'd like to do this, but current version of "C" doesn't
2819 permit "offsetof":
2820
2821 offset = offsetof(save_state_t, ss_wide);
2822
2823 Note that to avoid "C" doing typed pointer arithmetic, we
2824 have to cast away the type in our offset calculation:
2825 otherwise we get an offset of 1! */
2826
2827 /* NB: save_state_t is not available before HPUX 9.
2828 The ss_wide field is not available previous to HPUX 10.20,
2829 so to avoid compile-time warnings, we only compile this for
2830 PA 2.0 processors. This control path should only be followed
2831 if we're debugging a PA 2.0 processor, so this should not cause
2832 problems. */
2833
2834 /* #if the following code out so that this file can still be
2835 compiled on older HPUX boxes (< 10.20) which don't have
2836 this structure/structure member. */
2837 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2838 save_state_t temp;
2839
2840 offset = ((int) &temp.ss_wide) - ((int) &temp);
2841 regaddr = offset + regnum * 8;
2842 start = 0;
2843 #endif
2844 }
2845
2846 for (i = start; i < 2; i++)
2847 {
2848 errno = 0;
2849 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2850 (PTRACE_ARG3_TYPE) regaddr, 0);
2851 if (errno != 0)
2852 {
2853 /* Warning, not error, in case we are attached; sometimes the
2854 kernel doesn't let us at the registers. */
2855 char *err = safe_strerror (errno);
2856 char *msg = alloca (strlen (err) + 128);
2857 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2858 warning (msg);
2859 goto error_exit;
2860 }
2861
2862 regaddr += sizeof (long);
2863 }
2864
2865 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2866 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2867
2868 error_exit:
2869 ;
2870 }
2871
2872 /* "Info all-reg" command */
2873
2874 static void
2875 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2876 {
2877 int i, j;
2878 /* Alas, we are compiled so that "long long" is 32 bits */
2879 long raw_val[2];
2880 long long_val;
2881 int rows = 48, columns = 2;
2882
2883 for (i = 0; i < rows; i++)
2884 {
2885 for (j = 0; j < columns; j++)
2886 {
2887 /* We display registers in column-major order. */
2888 int regnum = i + j * rows;
2889
2890 /* Q: Why is the value passed through "extract_signed_integer",
2891 while above, in "pa_do_registers_info" it isn't?
2892 A: ? */
2893 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2894
2895 /* Even fancier % formats to prevent leading zeros
2896 and still maintain the output in columns. */
2897 if (!is_pa_2)
2898 {
2899 /* Being big-endian, on this machine the low bits
2900 (the ones we want to look at) are in the second longword. */
2901 long_val = extract_signed_integer (&raw_val[1], 4);
2902 printf_filtered ("%10.10s: %8lx ",
2903 REGISTER_NAME (regnum), long_val);
2904 }
2905 else
2906 {
2907 /* raw_val = extract_signed_integer(&raw_val, 8); */
2908 if (raw_val[0] == 0)
2909 printf_filtered ("%10.10s: %8lx ",
2910 REGISTER_NAME (regnum), raw_val[1]);
2911 else
2912 printf_filtered ("%10.10s: %8lx%8.8lx ",
2913 REGISTER_NAME (regnum),
2914 raw_val[0], raw_val[1]);
2915 }
2916 }
2917 printf_unfiltered ("\n");
2918 }
2919
2920 if (fpregs)
2921 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2922 pa_print_fp_reg (i);
2923 }
2924
2925 /************* new function ******************/
2926 static void
2927 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2928 struct ui_file *stream)
2929 {
2930 int i, j;
2931 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2932 long long_val;
2933 enum precision_type precision;
2934
2935 precision = unspecified_precision;
2936
2937 for (i = 0; i < 18; i++)
2938 {
2939 for (j = 0; j < 4; j++)
2940 {
2941 /* Q: Why is the value passed through "extract_signed_integer",
2942 while above, in "pa_do_registers_info" it isn't?
2943 A: ? */
2944 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2945
2946 /* Even fancier % formats to prevent leading zeros
2947 and still maintain the output in columns. */
2948 if (!is_pa_2)
2949 {
2950 /* Being big-endian, on this machine the low bits
2951 (the ones we want to look at) are in the second longword. */
2952 long_val = extract_signed_integer (&raw_val[1], 4);
2953 fprintf_filtered (stream, "%8.8s: %8lx ",
2954 REGISTER_NAME (i + (j * 18)), long_val);
2955 }
2956 else
2957 {
2958 /* raw_val = extract_signed_integer(&raw_val, 8); */
2959 if (raw_val[0] == 0)
2960 fprintf_filtered (stream, "%8.8s: %8lx ",
2961 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2962 else
2963 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2964 REGISTER_NAME (i + (j * 18)), raw_val[0],
2965 raw_val[1]);
2966 }
2967 }
2968 fprintf_unfiltered (stream, "\n");
2969 }
2970
2971 if (fpregs)
2972 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2973 pa_strcat_fp_reg (i, stream, precision);
2974 }
2975
2976 static void
2977 pa_print_fp_reg (int i)
2978 {
2979 char raw_buffer[MAX_REGISTER_SIZE];
2980 char virtual_buffer[MAX_REGISTER_SIZE];
2981
2982 /* Get 32bits of data. */
2983 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2984
2985 /* Put it in the buffer. No conversions are ever necessary. */
2986 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
2987
2988 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2989 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2990 fputs_filtered ("(single precision) ", gdb_stdout);
2991
2992 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2993 1, 0, Val_pretty_default);
2994 printf_filtered ("\n");
2995
2996 /* If "i" is even, then this register can also be a double-precision
2997 FP register. Dump it out as such. */
2998 if ((i % 2) == 0)
2999 {
3000 /* Get the data in raw format for the 2nd half. */
3001 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
3002
3003 /* Copy it into the appropriate part of the virtual buffer. */
3004 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buffer,
3005 DEPRECATED_REGISTER_RAW_SIZE (i));
3006
3007 /* Dump it as a double. */
3008 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3009 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3010 fputs_filtered ("(double precision) ", gdb_stdout);
3011
3012 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
3013 1, 0, Val_pretty_default);
3014 printf_filtered ("\n");
3015 }
3016 }
3017
3018 /*************** new function ***********************/
3019 static void
3020 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
3021 {
3022 char raw_buffer[MAX_REGISTER_SIZE];
3023 char virtual_buffer[MAX_REGISTER_SIZE];
3024
3025 fputs_filtered (REGISTER_NAME (i), stream);
3026 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
3027
3028 /* Get 32bits of data. */
3029 frame_register_read (deprecated_selected_frame, i, raw_buffer);
3030
3031 /* Put it in the buffer. No conversions are ever necessary. */
3032 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
3033
3034 if (precision == double_precision && (i % 2) == 0)
3035 {
3036
3037 char raw_buf[MAX_REGISTER_SIZE];
3038
3039 /* Get the data in raw format for the 2nd half. */
3040 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
3041
3042 /* Copy it into the appropriate part of the virtual buffer. */
3043 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buf,
3044 DEPRECATED_REGISTER_RAW_SIZE (i));
3045
3046 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3047 1, 0, Val_pretty_default);
3048
3049 }
3050 else
3051 {
3052 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
3053 1, 0, Val_pretty_default);
3054 }
3055
3056 }
3057
3058 /* Return one if PC is in the call path of a trampoline, else return zero.
3059
3060 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3061 just shared library trampolines (import, export). */
3062
3063 int
3064 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
3065 {
3066 struct minimal_symbol *minsym;
3067 struct unwind_table_entry *u;
3068 static CORE_ADDR dyncall = 0;
3069 static CORE_ADDR sr4export = 0;
3070
3071 #ifdef GDB_TARGET_IS_HPPA_20W
3072 /* PA64 has a completely different stub/trampoline scheme. Is it
3073 better? Maybe. It's certainly harder to determine with any
3074 certainty that we are in a stub because we can not refer to the
3075 unwinders to help.
3076
3077 The heuristic is simple. Try to lookup the current PC value in th
3078 minimal symbol table. If that fails, then assume we are not in a
3079 stub and return.
3080
3081 Then see if the PC value falls within the section bounds for the
3082 section containing the minimal symbol we found in the first
3083 step. If it does, then assume we are not in a stub and return.
3084
3085 Finally peek at the instructions to see if they look like a stub. */
3086 {
3087 struct minimal_symbol *minsym;
3088 asection *sec;
3089 CORE_ADDR addr;
3090 int insn, i;
3091
3092 minsym = lookup_minimal_symbol_by_pc (pc);
3093 if (! minsym)
3094 return 0;
3095
3096 sec = SYMBOL_BFD_SECTION (minsym);
3097
3098 if (bfd_get_section_vma (sec->owner, sec) <= pc
3099 && pc < (bfd_get_section_vma (sec->owner, sec)
3100 + bfd_section_size (sec->owner, sec)))
3101 return 0;
3102
3103 /* We might be in a stub. Peek at the instructions. Stubs are 3
3104 instructions long. */
3105 insn = read_memory_integer (pc, 4);
3106
3107 /* Find out where we think we are within the stub. */
3108 if ((insn & 0xffffc00e) == 0x53610000)
3109 addr = pc;
3110 else if ((insn & 0xffffffff) == 0xe820d000)
3111 addr = pc - 4;
3112 else if ((insn & 0xffffc00e) == 0x537b0000)
3113 addr = pc - 8;
3114 else
3115 return 0;
3116
3117 /* Now verify each insn in the range looks like a stub instruction. */
3118 insn = read_memory_integer (addr, 4);
3119 if ((insn & 0xffffc00e) != 0x53610000)
3120 return 0;
3121
3122 /* Now verify each insn in the range looks like a stub instruction. */
3123 insn = read_memory_integer (addr + 4, 4);
3124 if ((insn & 0xffffffff) != 0xe820d000)
3125 return 0;
3126
3127 /* Now verify each insn in the range looks like a stub instruction. */
3128 insn = read_memory_integer (addr + 8, 4);
3129 if ((insn & 0xffffc00e) != 0x537b0000)
3130 return 0;
3131
3132 /* Looks like a stub. */
3133 return 1;
3134 }
3135 #endif
3136
3137 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3138 new exec file */
3139
3140 /* First see if PC is in one of the two C-library trampolines. */
3141 if (!dyncall)
3142 {
3143 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3144 if (minsym)
3145 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3146 else
3147 dyncall = -1;
3148 }
3149
3150 if (!sr4export)
3151 {
3152 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3153 if (minsym)
3154 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3155 else
3156 sr4export = -1;
3157 }
3158
3159 if (pc == dyncall || pc == sr4export)
3160 return 1;
3161
3162 minsym = lookup_minimal_symbol_by_pc (pc);
3163 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3164 return 1;
3165
3166 /* Get the unwind descriptor corresponding to PC, return zero
3167 if no unwind was found. */
3168 u = find_unwind_entry (pc);
3169 if (!u)
3170 return 0;
3171
3172 /* If this isn't a linker stub, then return now. */
3173 if (u->stub_unwind.stub_type == 0)
3174 return 0;
3175
3176 /* By definition a long-branch stub is a call stub. */
3177 if (u->stub_unwind.stub_type == LONG_BRANCH)
3178 return 1;
3179
3180 /* The call and return path execute the same instructions within
3181 an IMPORT stub! So an IMPORT stub is both a call and return
3182 trampoline. */
3183 if (u->stub_unwind.stub_type == IMPORT)
3184 return 1;
3185
3186 /* Parameter relocation stubs always have a call path and may have a
3187 return path. */
3188 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3189 || u->stub_unwind.stub_type == EXPORT)
3190 {
3191 CORE_ADDR addr;
3192
3193 /* Search forward from the current PC until we hit a branch
3194 or the end of the stub. */
3195 for (addr = pc; addr <= u->region_end; addr += 4)
3196 {
3197 unsigned long insn;
3198
3199 insn = read_memory_integer (addr, 4);
3200
3201 /* Does it look like a bl? If so then it's the call path, if
3202 we find a bv or be first, then we're on the return path. */
3203 if ((insn & 0xfc00e000) == 0xe8000000)
3204 return 1;
3205 else if ((insn & 0xfc00e001) == 0xe800c000
3206 || (insn & 0xfc000000) == 0xe0000000)
3207 return 0;
3208 }
3209
3210 /* Should never happen. */
3211 warning ("Unable to find branch in parameter relocation stub.\n");
3212 return 0;
3213 }
3214
3215 /* Unknown stub type. For now, just return zero. */
3216 return 0;
3217 }
3218
3219 /* Return one if PC is in the return path of a trampoline, else return zero.
3220
3221 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3222 just shared library trampolines (import, export). */
3223
3224 int
3225 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3226 {
3227 struct unwind_table_entry *u;
3228
3229 /* Get the unwind descriptor corresponding to PC, return zero
3230 if no unwind was found. */
3231 u = find_unwind_entry (pc);
3232 if (!u)
3233 return 0;
3234
3235 /* If this isn't a linker stub or it's just a long branch stub, then
3236 return zero. */
3237 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3238 return 0;
3239
3240 /* The call and return path execute the same instructions within
3241 an IMPORT stub! So an IMPORT stub is both a call and return
3242 trampoline. */
3243 if (u->stub_unwind.stub_type == IMPORT)
3244 return 1;
3245
3246 /* Parameter relocation stubs always have a call path and may have a
3247 return path. */
3248 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3249 || u->stub_unwind.stub_type == EXPORT)
3250 {
3251 CORE_ADDR addr;
3252
3253 /* Search forward from the current PC until we hit a branch
3254 or the end of the stub. */
3255 for (addr = pc; addr <= u->region_end; addr += 4)
3256 {
3257 unsigned long insn;
3258
3259 insn = read_memory_integer (addr, 4);
3260
3261 /* Does it look like a bl? If so then it's the call path, if
3262 we find a bv or be first, then we're on the return path. */
3263 if ((insn & 0xfc00e000) == 0xe8000000)
3264 return 0;
3265 else if ((insn & 0xfc00e001) == 0xe800c000
3266 || (insn & 0xfc000000) == 0xe0000000)
3267 return 1;
3268 }
3269
3270 /* Should never happen. */
3271 warning ("Unable to find branch in parameter relocation stub.\n");
3272 return 0;
3273 }
3274
3275 /* Unknown stub type. For now, just return zero. */
3276 return 0;
3277
3278 }
3279
3280 /* Figure out if PC is in a trampoline, and if so find out where
3281 the trampoline will jump to. If not in a trampoline, return zero.
3282
3283 Simple code examination probably is not a good idea since the code
3284 sequences in trampolines can also appear in user code.
3285
3286 We use unwinds and information from the minimal symbol table to
3287 determine when we're in a trampoline. This won't work for ELF
3288 (yet) since it doesn't create stub unwind entries. Whether or
3289 not ELF will create stub unwinds or normal unwinds for linker
3290 stubs is still being debated.
3291
3292 This should handle simple calls through dyncall or sr4export,
3293 long calls, argument relocation stubs, and dyncall/sr4export
3294 calling an argument relocation stub. It even handles some stubs
3295 used in dynamic executables. */
3296
3297 CORE_ADDR
3298 hppa_skip_trampoline_code (CORE_ADDR pc)
3299 {
3300 long orig_pc = pc;
3301 long prev_inst, curr_inst, loc;
3302 static CORE_ADDR dyncall = 0;
3303 static CORE_ADDR dyncall_external = 0;
3304 static CORE_ADDR sr4export = 0;
3305 struct minimal_symbol *msym;
3306 struct unwind_table_entry *u;
3307
3308 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3309 new exec file */
3310
3311 if (!dyncall)
3312 {
3313 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3314 if (msym)
3315 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3316 else
3317 dyncall = -1;
3318 }
3319
3320 if (!dyncall_external)
3321 {
3322 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3323 if (msym)
3324 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3325 else
3326 dyncall_external = -1;
3327 }
3328
3329 if (!sr4export)
3330 {
3331 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3332 if (msym)
3333 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3334 else
3335 sr4export = -1;
3336 }
3337
3338 /* Addresses passed to dyncall may *NOT* be the actual address
3339 of the function. So we may have to do something special. */
3340 if (pc == dyncall)
3341 {
3342 pc = (CORE_ADDR) read_register (22);
3343
3344 /* If bit 30 (counting from the left) is on, then pc is the address of
3345 the PLT entry for this function, not the address of the function
3346 itself. Bit 31 has meaning too, but only for MPE. */
3347 if (pc & 0x2)
3348 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3349 }
3350 if (pc == dyncall_external)
3351 {
3352 pc = (CORE_ADDR) read_register (22);
3353 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3354 }
3355 else if (pc == sr4export)
3356 pc = (CORE_ADDR) (read_register (22));
3357
3358 /* Get the unwind descriptor corresponding to PC, return zero
3359 if no unwind was found. */
3360 u = find_unwind_entry (pc);
3361 if (!u)
3362 return 0;
3363
3364 /* If this isn't a linker stub, then return now. */
3365 /* elz: attention here! (FIXME) because of a compiler/linker
3366 error, some stubs which should have a non zero stub_unwind.stub_type
3367 have unfortunately a value of zero. So this function would return here
3368 as if we were not in a trampoline. To fix this, we go look at the partial
3369 symbol information, which reports this guy as a stub.
3370 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3371 partial symbol information is also wrong sometimes. This is because
3372 when it is entered (somread.c::som_symtab_read()) it can happen that
3373 if the type of the symbol (from the som) is Entry, and the symbol is
3374 in a shared library, then it can also be a trampoline. This would
3375 be OK, except that I believe the way they decide if we are ina shared library
3376 does not work. SOOOO..., even if we have a regular function w/o trampolines
3377 its minimal symbol can be assigned type mst_solib_trampoline.
3378 Also, if we find that the symbol is a real stub, then we fix the unwind
3379 descriptor, and define the stub type to be EXPORT.
3380 Hopefully this is correct most of the times. */
3381 if (u->stub_unwind.stub_type == 0)
3382 {
3383
3384 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3385 we can delete all the code which appears between the lines */
3386 /*--------------------------------------------------------------------------*/
3387 msym = lookup_minimal_symbol_by_pc (pc);
3388
3389 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3390 return orig_pc == pc ? 0 : pc & ~0x3;
3391
3392 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3393 {
3394 struct objfile *objfile;
3395 struct minimal_symbol *msymbol;
3396 int function_found = 0;
3397
3398 /* go look if there is another minimal symbol with the same name as
3399 this one, but with type mst_text. This would happen if the msym
3400 is an actual trampoline, in which case there would be another
3401 symbol with the same name corresponding to the real function */
3402
3403 ALL_MSYMBOLS (objfile, msymbol)
3404 {
3405 if (MSYMBOL_TYPE (msymbol) == mst_text
3406 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3407 {
3408 function_found = 1;
3409 break;
3410 }
3411 }
3412
3413 if (function_found)
3414 /* the type of msym is correct (mst_solib_trampoline), but
3415 the unwind info is wrong, so set it to the correct value */
3416 u->stub_unwind.stub_type = EXPORT;
3417 else
3418 /* the stub type info in the unwind is correct (this is not a
3419 trampoline), but the msym type information is wrong, it
3420 should be mst_text. So we need to fix the msym, and also
3421 get out of this function */
3422 {
3423 MSYMBOL_TYPE (msym) = mst_text;
3424 return orig_pc == pc ? 0 : pc & ~0x3;
3425 }
3426 }
3427
3428 /*--------------------------------------------------------------------------*/
3429 }
3430
3431 /* It's a stub. Search for a branch and figure out where it goes.
3432 Note we have to handle multi insn branch sequences like ldil;ble.
3433 Most (all?) other branches can be determined by examining the contents
3434 of certain registers and the stack. */
3435
3436 loc = pc;
3437 curr_inst = 0;
3438 prev_inst = 0;
3439 while (1)
3440 {
3441 /* Make sure we haven't walked outside the range of this stub. */
3442 if (u != find_unwind_entry (loc))
3443 {
3444 warning ("Unable to find branch in linker stub");
3445 return orig_pc == pc ? 0 : pc & ~0x3;
3446 }
3447
3448 prev_inst = curr_inst;
3449 curr_inst = read_memory_integer (loc, 4);
3450
3451 /* Does it look like a branch external using %r1? Then it's the
3452 branch from the stub to the actual function. */
3453 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3454 {
3455 /* Yup. See if the previous instruction loaded
3456 a value into %r1. If so compute and return the jump address. */
3457 if ((prev_inst & 0xffe00000) == 0x20200000)
3458 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3459 else
3460 {
3461 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3462 return orig_pc == pc ? 0 : pc & ~0x3;
3463 }
3464 }
3465
3466 /* Does it look like a be 0(sr0,%r21)? OR
3467 Does it look like a be, n 0(sr0,%r21)? OR
3468 Does it look like a bve (r21)? (this is on PA2.0)
3469 Does it look like a bve, n(r21)? (this is also on PA2.0)
3470 That's the branch from an
3471 import stub to an export stub.
3472
3473 It is impossible to determine the target of the branch via
3474 simple examination of instructions and/or data (consider
3475 that the address in the plabel may be the address of the
3476 bind-on-reference routine in the dynamic loader).
3477
3478 So we have try an alternative approach.
3479
3480 Get the name of the symbol at our current location; it should
3481 be a stub symbol with the same name as the symbol in the
3482 shared library.
3483
3484 Then lookup a minimal symbol with the same name; we should
3485 get the minimal symbol for the target routine in the shared
3486 library as those take precedence of import/export stubs. */
3487 if ((curr_inst == 0xe2a00000) ||
3488 (curr_inst == 0xe2a00002) ||
3489 (curr_inst == 0xeaa0d000) ||
3490 (curr_inst == 0xeaa0d002))
3491 {
3492 struct minimal_symbol *stubsym, *libsym;
3493
3494 stubsym = lookup_minimal_symbol_by_pc (loc);
3495 if (stubsym == NULL)
3496 {
3497 warning ("Unable to find symbol for 0x%lx", loc);
3498 return orig_pc == pc ? 0 : pc & ~0x3;
3499 }
3500
3501 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3502 if (libsym == NULL)
3503 {
3504 warning ("Unable to find library symbol for %s\n",
3505 DEPRECATED_SYMBOL_NAME (stubsym));
3506 return orig_pc == pc ? 0 : pc & ~0x3;
3507 }
3508
3509 return SYMBOL_VALUE (libsym);
3510 }
3511
3512 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3513 branch from the stub to the actual function. */
3514 /*elz */
3515 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3516 || (curr_inst & 0xffe0e000) == 0xe8000000
3517 || (curr_inst & 0xffe0e000) == 0xe800A000)
3518 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3519
3520 /* Does it look like bv (rp)? Note this depends on the
3521 current stack pointer being the same as the stack
3522 pointer in the stub itself! This is a branch on from the
3523 stub back to the original caller. */
3524 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3525 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3526 {
3527 /* Yup. See if the previous instruction loaded
3528 rp from sp - 8. */
3529 if (prev_inst == 0x4bc23ff1)
3530 return (read_memory_integer
3531 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3532 else
3533 {
3534 warning ("Unable to find restore of %%rp before bv (%%rp).");
3535 return orig_pc == pc ? 0 : pc & ~0x3;
3536 }
3537 }
3538
3539 /* elz: added this case to capture the new instruction
3540 at the end of the return part of an export stub used by
3541 the PA2.0: BVE, n (rp) */
3542 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3543 {
3544 return (read_memory_integer
3545 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3546 }
3547
3548 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3549 the original caller from the stub. Used in dynamic executables. */
3550 else if (curr_inst == 0xe0400002)
3551 {
3552 /* The value we jump to is sitting in sp - 24. But that's
3553 loaded several instructions before the be instruction.
3554 I guess we could check for the previous instruction being
3555 mtsp %r1,%sr0 if we want to do sanity checking. */
3556 return (read_memory_integer
3557 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3558 }
3559
3560 /* Haven't found the branch yet, but we're still in the stub.
3561 Keep looking. */
3562 loc += 4;
3563 }
3564 }
3565
3566
3567 /* For the given instruction (INST), return any adjustment it makes
3568 to the stack pointer or zero for no adjustment.
3569
3570 This only handles instructions commonly found in prologues. */
3571
3572 static int
3573 prologue_inst_adjust_sp (unsigned long inst)
3574 {
3575 /* This must persist across calls. */
3576 static int save_high21;
3577
3578 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3579 if ((inst & 0xffffc000) == 0x37de0000)
3580 return extract_14 (inst);
3581
3582 /* stwm X,D(sp) */
3583 if ((inst & 0xffe00000) == 0x6fc00000)
3584 return extract_14 (inst);
3585
3586 /* std,ma X,D(sp) */
3587 if ((inst & 0xffe00008) == 0x73c00008)
3588 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3589
3590 /* addil high21,%r1; ldo low11,(%r1),%r30)
3591 save high bits in save_high21 for later use. */
3592 if ((inst & 0xffe00000) == 0x28200000)
3593 {
3594 save_high21 = extract_21 (inst);
3595 return 0;
3596 }
3597
3598 if ((inst & 0xffff0000) == 0x343e0000)
3599 return save_high21 + extract_14 (inst);
3600
3601 /* fstws as used by the HP compilers. */
3602 if ((inst & 0xffffffe0) == 0x2fd01220)
3603 return extract_5_load (inst);
3604
3605 /* No adjustment. */
3606 return 0;
3607 }
3608
3609 /* Return nonzero if INST is a branch of some kind, else return zero. */
3610
3611 static int
3612 is_branch (unsigned long inst)
3613 {
3614 switch (inst >> 26)
3615 {
3616 case 0x20:
3617 case 0x21:
3618 case 0x22:
3619 case 0x23:
3620 case 0x27:
3621 case 0x28:
3622 case 0x29:
3623 case 0x2a:
3624 case 0x2b:
3625 case 0x2f:
3626 case 0x30:
3627 case 0x31:
3628 case 0x32:
3629 case 0x33:
3630 case 0x38:
3631 case 0x39:
3632 case 0x3a:
3633 case 0x3b:
3634 return 1;
3635
3636 default:
3637 return 0;
3638 }
3639 }
3640
3641 /* Return the register number for a GR which is saved by INST or
3642 zero it INST does not save a GR. */
3643
3644 static int
3645 inst_saves_gr (unsigned long inst)
3646 {
3647 /* Does it look like a stw? */
3648 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3649 || (inst >> 26) == 0x1f
3650 || ((inst >> 26) == 0x1f
3651 && ((inst >> 6) == 0xa)))
3652 return extract_5R_store (inst);
3653
3654 /* Does it look like a std? */
3655 if ((inst >> 26) == 0x1c
3656 || ((inst >> 26) == 0x03
3657 && ((inst >> 6) & 0xf) == 0xb))
3658 return extract_5R_store (inst);
3659
3660 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3661 if ((inst >> 26) == 0x1b)
3662 return extract_5R_store (inst);
3663
3664 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3665 too. */
3666 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3667 || ((inst >> 26) == 0x3
3668 && (((inst >> 6) & 0xf) == 0x8
3669 || (inst >> 6) & 0xf) == 0x9))
3670 return extract_5R_store (inst);
3671
3672 return 0;
3673 }
3674
3675 /* Return the register number for a FR which is saved by INST or
3676 zero it INST does not save a FR.
3677
3678 Note we only care about full 64bit register stores (that's the only
3679 kind of stores the prologue will use).
3680
3681 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3682
3683 static int
3684 inst_saves_fr (unsigned long inst)
3685 {
3686 /* is this an FSTD ? */
3687 if ((inst & 0xfc00dfc0) == 0x2c001200)
3688 return extract_5r_store (inst);
3689 if ((inst & 0xfc000002) == 0x70000002)
3690 return extract_5R_store (inst);
3691 /* is this an FSTW ? */
3692 if ((inst & 0xfc00df80) == 0x24001200)
3693 return extract_5r_store (inst);
3694 if ((inst & 0xfc000002) == 0x7c000000)
3695 return extract_5R_store (inst);
3696 return 0;
3697 }
3698
3699 /* Advance PC across any function entry prologue instructions
3700 to reach some "real" code.
3701
3702 Use information in the unwind table to determine what exactly should
3703 be in the prologue. */
3704
3705
3706 CORE_ADDR
3707 skip_prologue_hard_way (CORE_ADDR pc)
3708 {
3709 char buf[4];
3710 CORE_ADDR orig_pc = pc;
3711 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3712 unsigned long args_stored, status, i, restart_gr, restart_fr;
3713 struct unwind_table_entry *u;
3714
3715 restart_gr = 0;
3716 restart_fr = 0;
3717
3718 restart:
3719 u = find_unwind_entry (pc);
3720 if (!u)
3721 return pc;
3722
3723 /* If we are not at the beginning of a function, then return now. */
3724 if ((pc & ~0x3) != u->region_start)
3725 return pc;
3726
3727 /* This is how much of a frame adjustment we need to account for. */
3728 stack_remaining = u->Total_frame_size << 3;
3729
3730 /* Magic register saves we want to know about. */
3731 save_rp = u->Save_RP;
3732 save_sp = u->Save_SP;
3733
3734 /* An indication that args may be stored into the stack. Unfortunately
3735 the HPUX compilers tend to set this in cases where no args were
3736 stored too!. */
3737 args_stored = 1;
3738
3739 /* Turn the Entry_GR field into a bitmask. */
3740 save_gr = 0;
3741 for (i = 3; i < u->Entry_GR + 3; i++)
3742 {
3743 /* Frame pointer gets saved into a special location. */
3744 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3745 continue;
3746
3747 save_gr |= (1 << i);
3748 }
3749 save_gr &= ~restart_gr;
3750
3751 /* Turn the Entry_FR field into a bitmask too. */
3752 save_fr = 0;
3753 for (i = 12; i < u->Entry_FR + 12; i++)
3754 save_fr |= (1 << i);
3755 save_fr &= ~restart_fr;
3756
3757 /* Loop until we find everything of interest or hit a branch.
3758
3759 For unoptimized GCC code and for any HP CC code this will never ever
3760 examine any user instructions.
3761
3762 For optimzied GCC code we're faced with problems. GCC will schedule
3763 its prologue and make prologue instructions available for delay slot
3764 filling. The end result is user code gets mixed in with the prologue
3765 and a prologue instruction may be in the delay slot of the first branch
3766 or call.
3767
3768 Some unexpected things are expected with debugging optimized code, so
3769 we allow this routine to walk past user instructions in optimized
3770 GCC code. */
3771 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3772 || args_stored)
3773 {
3774 unsigned int reg_num;
3775 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3776 unsigned long old_save_rp, old_save_sp, next_inst;
3777
3778 /* Save copies of all the triggers so we can compare them later
3779 (only for HPC). */
3780 old_save_gr = save_gr;
3781 old_save_fr = save_fr;
3782 old_save_rp = save_rp;
3783 old_save_sp = save_sp;
3784 old_stack_remaining = stack_remaining;
3785
3786 status = target_read_memory (pc, buf, 4);
3787 inst = extract_unsigned_integer (buf, 4);
3788
3789 /* Yow! */
3790 if (status != 0)
3791 return pc;
3792
3793 /* Note the interesting effects of this instruction. */
3794 stack_remaining -= prologue_inst_adjust_sp (inst);
3795
3796 /* There are limited ways to store the return pointer into the
3797 stack. */
3798 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3799 save_rp = 0;
3800
3801 /* These are the only ways we save SP into the stack. At this time
3802 the HP compilers never bother to save SP into the stack. */
3803 if ((inst & 0xffffc000) == 0x6fc10000
3804 || (inst & 0xffffc00c) == 0x73c10008)
3805 save_sp = 0;
3806
3807 /* Are we loading some register with an offset from the argument
3808 pointer? */
3809 if ((inst & 0xffe00000) == 0x37a00000
3810 || (inst & 0xffffffe0) == 0x081d0240)
3811 {
3812 pc += 4;
3813 continue;
3814 }
3815
3816 /* Account for general and floating-point register saves. */
3817 reg_num = inst_saves_gr (inst);
3818 save_gr &= ~(1 << reg_num);
3819
3820 /* Ugh. Also account for argument stores into the stack.
3821 Unfortunately args_stored only tells us that some arguments
3822 where stored into the stack. Not how many or what kind!
3823
3824 This is a kludge as on the HP compiler sets this bit and it
3825 never does prologue scheduling. So once we see one, skip past
3826 all of them. We have similar code for the fp arg stores below.
3827
3828 FIXME. Can still die if we have a mix of GR and FR argument
3829 stores! */
3830 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3831 {
3832 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3833 {
3834 pc += 4;
3835 status = target_read_memory (pc, buf, 4);
3836 inst = extract_unsigned_integer (buf, 4);
3837 if (status != 0)
3838 return pc;
3839 reg_num = inst_saves_gr (inst);
3840 }
3841 args_stored = 0;
3842 continue;
3843 }
3844
3845 reg_num = inst_saves_fr (inst);
3846 save_fr &= ~(1 << reg_num);
3847
3848 status = target_read_memory (pc + 4, buf, 4);
3849 next_inst = extract_unsigned_integer (buf, 4);
3850
3851 /* Yow! */
3852 if (status != 0)
3853 return pc;
3854
3855 /* We've got to be read to handle the ldo before the fp register
3856 save. */
3857 if ((inst & 0xfc000000) == 0x34000000
3858 && inst_saves_fr (next_inst) >= 4
3859 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3860 {
3861 /* So we drop into the code below in a reasonable state. */
3862 reg_num = inst_saves_fr (next_inst);
3863 pc -= 4;
3864 }
3865
3866 /* Ugh. Also account for argument stores into the stack.
3867 This is a kludge as on the HP compiler sets this bit and it
3868 never does prologue scheduling. So once we see one, skip past
3869 all of them. */
3870 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3871 {
3872 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3873 {
3874 pc += 8;
3875 status = target_read_memory (pc, buf, 4);
3876 inst = extract_unsigned_integer (buf, 4);
3877 if (status != 0)
3878 return pc;
3879 if ((inst & 0xfc000000) != 0x34000000)
3880 break;
3881 status = target_read_memory (pc + 4, buf, 4);
3882 next_inst = extract_unsigned_integer (buf, 4);
3883 if (status != 0)
3884 return pc;
3885 reg_num = inst_saves_fr (next_inst);
3886 }
3887 args_stored = 0;
3888 continue;
3889 }
3890
3891 /* Quit if we hit any kind of branch. This can happen if a prologue
3892 instruction is in the delay slot of the first call/branch. */
3893 if (is_branch (inst))
3894 break;
3895
3896 /* What a crock. The HP compilers set args_stored even if no
3897 arguments were stored into the stack (boo hiss). This could
3898 cause this code to then skip a bunch of user insns (up to the
3899 first branch).
3900
3901 To combat this we try to identify when args_stored was bogusly
3902 set and clear it. We only do this when args_stored is nonzero,
3903 all other resources are accounted for, and nothing changed on
3904 this pass. */
3905 if (args_stored
3906 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3907 && old_save_gr == save_gr && old_save_fr == save_fr
3908 && old_save_rp == save_rp && old_save_sp == save_sp
3909 && old_stack_remaining == stack_remaining)
3910 break;
3911
3912 /* Bump the PC. */
3913 pc += 4;
3914 }
3915
3916 /* We've got a tenative location for the end of the prologue. However
3917 because of limitations in the unwind descriptor mechanism we may
3918 have went too far into user code looking for the save of a register
3919 that does not exist. So, if there registers we expected to be saved
3920 but never were, mask them out and restart.
3921
3922 This should only happen in optimized code, and should be very rare. */
3923 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3924 {
3925 pc = orig_pc;
3926 restart_gr = save_gr;
3927 restart_fr = save_fr;
3928 goto restart;
3929 }
3930
3931 return pc;
3932 }
3933
3934
3935 /* Return the address of the PC after the last prologue instruction if
3936 we can determine it from the debug symbols. Else return zero. */
3937
3938 static CORE_ADDR
3939 after_prologue (CORE_ADDR pc)
3940 {
3941 struct symtab_and_line sal;
3942 CORE_ADDR func_addr, func_end;
3943 struct symbol *f;
3944
3945 /* If we can not find the symbol in the partial symbol table, then
3946 there is no hope we can determine the function's start address
3947 with this code. */
3948 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3949 return 0;
3950
3951 /* Get the line associated with FUNC_ADDR. */
3952 sal = find_pc_line (func_addr, 0);
3953
3954 /* There are only two cases to consider. First, the end of the source line
3955 is within the function bounds. In that case we return the end of the
3956 source line. Second is the end of the source line extends beyond the
3957 bounds of the current function. We need to use the slow code to
3958 examine instructions in that case.
3959
3960 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3961 the wrong thing to do. In fact, it should be entirely possible for this
3962 function to always return zero since the slow instruction scanning code
3963 is supposed to *always* work. If it does not, then it is a bug. */
3964 if (sal.end < func_end)
3965 return sal.end;
3966 else
3967 return 0;
3968 }
3969
3970 /* To skip prologues, I use this predicate. Returns either PC itself
3971 if the code at PC does not look like a function prologue; otherwise
3972 returns an address that (if we're lucky) follows the prologue. If
3973 LENIENT, then we must skip everything which is involved in setting
3974 up the frame (it's OK to skip more, just so long as we don't skip
3975 anything which might clobber the registers which are being saved.
3976 Currently we must not skip more on the alpha, but we might the lenient
3977 stuff some day. */
3978
3979 CORE_ADDR
3980 hppa_skip_prologue (CORE_ADDR pc)
3981 {
3982 unsigned long inst;
3983 int offset;
3984 CORE_ADDR post_prologue_pc;
3985 char buf[4];
3986
3987 /* See if we can determine the end of the prologue via the symbol table.
3988 If so, then return either PC, or the PC after the prologue, whichever
3989 is greater. */
3990
3991 post_prologue_pc = after_prologue (pc);
3992
3993 /* If after_prologue returned a useful address, then use it. Else
3994 fall back on the instruction skipping code.
3995
3996 Some folks have claimed this causes problems because the breakpoint
3997 may be the first instruction of the prologue. If that happens, then
3998 the instruction skipping code has a bug that needs to be fixed. */
3999 if (post_prologue_pc != 0)
4000 return max (pc, post_prologue_pc);
4001 else
4002 return (skip_prologue_hard_way (pc));
4003 }
4004
4005 /* Put here the code to store, into the SAVED_REGS, the addresses of
4006 the saved registers of frame described by FRAME_INFO. This
4007 includes special registers such as pc and fp saved in special ways
4008 in the stack frame. sp is even more special: the address we return
4009 for it IS the sp for the next frame. */
4010
4011 void
4012 hppa_frame_find_saved_regs (struct frame_info *frame_info,
4013 CORE_ADDR frame_saved_regs[])
4014 {
4015 CORE_ADDR pc;
4016 struct unwind_table_entry *u;
4017 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4018 int status, i, reg;
4019 char buf[4];
4020 int fp_loc = -1;
4021 int final_iteration;
4022
4023 /* Zero out everything. */
4024 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
4025
4026 /* Call dummy frames always look the same, so there's no need to
4027 examine the dummy code to determine locations of saved registers;
4028 instead, let find_dummy_frame_regs fill in the correct offsets
4029 for the saved registers. */
4030 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
4031 && (get_frame_pc (frame_info)
4032 <= (get_frame_base (frame_info)
4033 /* A call dummy is sized in words, but it is actually a
4034 series of instructions. Account for that scaling
4035 factor. */
4036 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4037 * DEPRECATED_CALL_DUMMY_LENGTH)
4038 /* Similarly we have to account for 64bit wide register
4039 saves. */
4040 + (32 * DEPRECATED_REGISTER_SIZE)
4041 /* We always consider FP regs 8 bytes long. */
4042 + (NUM_REGS - FP0_REGNUM) * 8
4043 /* Similarly we have to account for 64bit wide register
4044 saves. */
4045 + (6 * DEPRECATED_REGISTER_SIZE)))))
4046 find_dummy_frame_regs (frame_info, frame_saved_regs);
4047
4048 /* Interrupt handlers are special too. They lay out the register
4049 state in the exact same order as the register numbers in GDB. */
4050 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
4051 {
4052 for (i = 0; i < NUM_REGS; i++)
4053 {
4054 /* SP is a little special. */
4055 if (i == SP_REGNUM)
4056 frame_saved_regs[SP_REGNUM]
4057 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
4058 TARGET_PTR_BIT / 8);
4059 else
4060 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
4061 }
4062 return;
4063 }
4064
4065 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4066 /* Handle signal handler callers. */
4067 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
4068 {
4069 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4070 return;
4071 }
4072 #endif
4073
4074 /* Get the starting address of the function referred to by the PC
4075 saved in frame. */
4076 pc = get_frame_func (frame_info);
4077
4078 /* Yow! */
4079 u = find_unwind_entry (pc);
4080 if (!u)
4081 return;
4082
4083 /* This is how much of a frame adjustment we need to account for. */
4084 stack_remaining = u->Total_frame_size << 3;
4085
4086 /* Magic register saves we want to know about. */
4087 save_rp = u->Save_RP;
4088 save_sp = u->Save_SP;
4089
4090 /* Turn the Entry_GR field into a bitmask. */
4091 save_gr = 0;
4092 for (i = 3; i < u->Entry_GR + 3; i++)
4093 {
4094 /* Frame pointer gets saved into a special location. */
4095 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4096 continue;
4097
4098 save_gr |= (1 << i);
4099 }
4100
4101 /* Turn the Entry_FR field into a bitmask too. */
4102 save_fr = 0;
4103 for (i = 12; i < u->Entry_FR + 12; i++)
4104 save_fr |= (1 << i);
4105
4106 /* The frame always represents the value of %sp at entry to the
4107 current function (and is thus equivalent to the "saved" stack
4108 pointer. */
4109 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
4110
4111 /* Loop until we find everything of interest or hit a branch.
4112
4113 For unoptimized GCC code and for any HP CC code this will never ever
4114 examine any user instructions.
4115
4116 For optimized GCC code we're faced with problems. GCC will schedule
4117 its prologue and make prologue instructions available for delay slot
4118 filling. The end result is user code gets mixed in with the prologue
4119 and a prologue instruction may be in the delay slot of the first branch
4120 or call.
4121
4122 Some unexpected things are expected with debugging optimized code, so
4123 we allow this routine to walk past user instructions in optimized
4124 GCC code. */
4125 final_iteration = 0;
4126 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4127 && pc <= get_frame_pc (frame_info))
4128 {
4129 status = target_read_memory (pc, buf, 4);
4130 inst = extract_unsigned_integer (buf, 4);
4131
4132 /* Yow! */
4133 if (status != 0)
4134 return;
4135
4136 /* Note the interesting effects of this instruction. */
4137 stack_remaining -= prologue_inst_adjust_sp (inst);
4138
4139 /* There are limited ways to store the return pointer into the
4140 stack. */
4141 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4142 {
4143 save_rp = 0;
4144 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
4145 }
4146 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4147 {
4148 save_rp = 0;
4149 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4150 }
4151
4152 /* Note if we saved SP into the stack. This also happens to indicate
4153 the location of the saved frame pointer. */
4154 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4155 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4156 {
4157 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4158 save_sp = 0;
4159 }
4160
4161 /* Account for general and floating-point register saves. */
4162 reg = inst_saves_gr (inst);
4163 if (reg >= 3 && reg <= 18
4164 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4165 {
4166 save_gr &= ~(1 << reg);
4167
4168 /* stwm with a positive displacement is a *post modify*. */
4169 if ((inst >> 26) == 0x1b
4170 && extract_14 (inst) >= 0)
4171 frame_saved_regs[reg] = get_frame_base (frame_info);
4172 /* A std has explicit post_modify forms. */
4173 else if ((inst & 0xfc00000c0) == 0x70000008)
4174 frame_saved_regs[reg] = get_frame_base (frame_info);
4175 else
4176 {
4177 CORE_ADDR offset;
4178
4179 if ((inst >> 26) == 0x1c)
4180 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4181 else if ((inst >> 26) == 0x03)
4182 offset = low_sign_extend (inst & 0x1f, 5);
4183 else
4184 offset = extract_14 (inst);
4185
4186 /* Handle code with and without frame pointers. */
4187 if (u->Save_SP)
4188 frame_saved_regs[reg]
4189 = get_frame_base (frame_info) + offset;
4190 else
4191 frame_saved_regs[reg]
4192 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4193 + offset);
4194 }
4195 }
4196
4197
4198 /* GCC handles callee saved FP regs a little differently.
4199
4200 It emits an instruction to put the value of the start of
4201 the FP store area into %r1. It then uses fstds,ma with
4202 a basereg of %r1 for the stores.
4203
4204 HP CC emits them at the current stack pointer modifying
4205 the stack pointer as it stores each register. */
4206
4207 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4208 if ((inst & 0xffffc000) == 0x34610000
4209 || (inst & 0xffffc000) == 0x37c10000)
4210 fp_loc = extract_14 (inst);
4211
4212 reg = inst_saves_fr (inst);
4213 if (reg >= 12 && reg <= 21)
4214 {
4215 /* Note +4 braindamage below is necessary because the FP status
4216 registers are internally 8 registers rather than the expected
4217 4 registers. */
4218 save_fr &= ~(1 << reg);
4219 if (fp_loc == -1)
4220 {
4221 /* 1st HP CC FP register store. After this instruction
4222 we've set enough state that the GCC and HPCC code are
4223 both handled in the same manner. */
4224 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4225 fp_loc = 8;
4226 }
4227 else
4228 {
4229 frame_saved_regs[reg + FP0_REGNUM + 4]
4230 = get_frame_base (frame_info) + fp_loc;
4231 fp_loc += 8;
4232 }
4233 }
4234
4235 /* Quit if we hit any kind of branch the previous iteration. */
4236 if (final_iteration)
4237 break;
4238
4239 /* We want to look precisely one instruction beyond the branch
4240 if we have not found everything yet. */
4241 if (is_branch (inst))
4242 final_iteration = 1;
4243
4244 /* Bump the PC. */
4245 pc += 4;
4246 }
4247 }
4248
4249 /* XXX - deprecated. This is a compatibility function for targets
4250 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4251 /* Find the addresses in which registers are saved in FRAME. */
4252
4253 void
4254 hppa_frame_init_saved_regs (struct frame_info *frame)
4255 {
4256 if (deprecated_get_frame_saved_regs (frame) == NULL)
4257 frame_saved_regs_zalloc (frame);
4258 hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame));
4259 }
4260
4261 /* Exception handling support for the HP-UX ANSI C++ compiler.
4262 The compiler (aCC) provides a callback for exception events;
4263 GDB can set a breakpoint on this callback and find out what
4264 exception event has occurred. */
4265
4266 /* The name of the hook to be set to point to the callback function */
4267 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4268 /* The name of the function to be used to set the hook value */
4269 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4270 /* The name of the callback function in end.o */
4271 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4272 /* Name of function in end.o on which a break is set (called by above) */
4273 static char HP_ACC_EH_break[] = "__d_eh_break";
4274 /* Name of flag (in end.o) that enables catching throws */
4275 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4276 /* Name of flag (in end.o) that enables catching catching */
4277 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4278 /* The enum used by aCC */
4279 typedef enum
4280 {
4281 __EH_NOTIFY_THROW,
4282 __EH_NOTIFY_CATCH
4283 }
4284 __eh_notification;
4285
4286 /* Is exception-handling support available with this executable? */
4287 static int hp_cxx_exception_support = 0;
4288 /* Has the initialize function been run? */
4289 int hp_cxx_exception_support_initialized = 0;
4290 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4291 extern int exception_support_initialized;
4292 /* Address of __eh_notify_hook */
4293 static CORE_ADDR eh_notify_hook_addr = 0;
4294 /* Address of __d_eh_notify_callback */
4295 static CORE_ADDR eh_notify_callback_addr = 0;
4296 /* Address of __d_eh_break */
4297 static CORE_ADDR eh_break_addr = 0;
4298 /* Address of __d_eh_catch_catch */
4299 static CORE_ADDR eh_catch_catch_addr = 0;
4300 /* Address of __d_eh_catch_throw */
4301 static CORE_ADDR eh_catch_throw_addr = 0;
4302 /* Sal for __d_eh_break */
4303 static struct symtab_and_line *break_callback_sal = 0;
4304
4305 /* Code in end.c expects __d_pid to be set in the inferior,
4306 otherwise __d_eh_notify_callback doesn't bother to call
4307 __d_eh_break! So we poke the pid into this symbol
4308 ourselves.
4309 0 => success
4310 1 => failure */
4311 int
4312 setup_d_pid_in_inferior (void)
4313 {
4314 CORE_ADDR anaddr;
4315 struct minimal_symbol *msymbol;
4316 char buf[4]; /* FIXME 32x64? */
4317
4318 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4319 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4320 if (msymbol == NULL)
4321 {
4322 warning ("Unable to find __d_pid symbol in object file.");
4323 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4324 return 1;
4325 }
4326
4327 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4328 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4329 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4330 {
4331 warning ("Unable to write __d_pid");
4332 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4333 return 1;
4334 }
4335 return 0;
4336 }
4337
4338 /* Initialize exception catchpoint support by looking for the
4339 necessary hooks/callbacks in end.o, etc., and set the hook value to
4340 point to the required debug function
4341
4342 Return 0 => failure
4343 1 => success */
4344
4345 static int
4346 initialize_hp_cxx_exception_support (void)
4347 {
4348 struct symtabs_and_lines sals;
4349 struct cleanup *old_chain;
4350 struct cleanup *canonical_strings_chain = NULL;
4351 int i;
4352 char *addr_start;
4353 char *addr_end = NULL;
4354 char **canonical = (char **) NULL;
4355 int thread = -1;
4356 struct symbol *sym = NULL;
4357 struct minimal_symbol *msym = NULL;
4358 struct objfile *objfile;
4359 asection *shlib_info;
4360
4361 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4362 recursion is a possibility because finding the hook for exception
4363 callbacks involves making a call in the inferior, which means
4364 re-inserting breakpoints which can re-invoke this code */
4365
4366 static int recurse = 0;
4367 if (recurse > 0)
4368 {
4369 hp_cxx_exception_support_initialized = 0;
4370 exception_support_initialized = 0;
4371 return 0;
4372 }
4373
4374 hp_cxx_exception_support = 0;
4375
4376 /* First check if we have seen any HP compiled objects; if not,
4377 it is very unlikely that HP's idiosyncratic callback mechanism
4378 for exception handling debug support will be available!
4379 This will percolate back up to breakpoint.c, where our callers
4380 will decide to try the g++ exception-handling support instead. */
4381 if (!hp_som_som_object_present)
4382 return 0;
4383
4384 /* We have a SOM executable with SOM debug info; find the hooks */
4385
4386 /* First look for the notify hook provided by aCC runtime libs */
4387 /* If we find this symbol, we conclude that the executable must
4388 have HP aCC exception support built in. If this symbol is not
4389 found, even though we're a HP SOM-SOM file, we may have been
4390 built with some other compiler (not aCC). This results percolates
4391 back up to our callers in breakpoint.c which can decide to
4392 try the g++ style of exception support instead.
4393 If this symbol is found but the other symbols we require are
4394 not found, there is something weird going on, and g++ support
4395 should *not* be tried as an alternative.
4396
4397 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4398 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4399
4400 /* libCsup has this hook; it'll usually be non-debuggable */
4401 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4402 if (msym)
4403 {
4404 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4405 hp_cxx_exception_support = 1;
4406 }
4407 else
4408 {
4409 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4410 warning ("Executable may not have been compiled debuggable with HP aCC.");
4411 warning ("GDB will be unable to intercept exception events.");
4412 eh_notify_hook_addr = 0;
4413 hp_cxx_exception_support = 0;
4414 return 0;
4415 }
4416
4417 /* Next look for the notify callback routine in end.o */
4418 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4419 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4420 if (msym)
4421 {
4422 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4423 hp_cxx_exception_support = 1;
4424 }
4425 else
4426 {
4427 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4428 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4429 warning ("GDB will be unable to intercept exception events.");
4430 eh_notify_callback_addr = 0;
4431 return 0;
4432 }
4433
4434 #ifndef GDB_TARGET_IS_HPPA_20W
4435 /* Check whether the executable is dynamically linked or archive bound */
4436 /* With an archive-bound executable we can use the raw addresses we find
4437 for the callback function, etc. without modification. For an executable
4438 with shared libraries, we have to do more work to find the plabel, which
4439 can be the target of a call through $$dyncall from the aCC runtime support
4440 library (libCsup) which is linked shared by default by aCC. */
4441 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4442 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4443 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4444 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4445 {
4446 /* The minsym we have has the local code address, but that's not the
4447 plabel that can be used by an inter-load-module call. */
4448 /* Find solib handle for main image (which has end.o), and use that
4449 and the min sym as arguments to __d_shl_get() (which does the equivalent
4450 of shl_findsym()) to find the plabel. */
4451
4452 args_for_find_stub args;
4453 static char message[] = "Error while finding exception callback hook:\n";
4454
4455 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4456 args.msym = msym;
4457 args.return_val = 0;
4458
4459 recurse++;
4460 catch_errors (cover_find_stub_with_shl_get, &args, message,
4461 RETURN_MASK_ALL);
4462 eh_notify_callback_addr = args.return_val;
4463 recurse--;
4464
4465 exception_catchpoints_are_fragile = 1;
4466
4467 if (!eh_notify_callback_addr)
4468 {
4469 /* We can get here either if there is no plabel in the export list
4470 for the main image, or if something strange happened (?) */
4471 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4472 warning ("GDB will not be able to intercept exception events.");
4473 return 0;
4474 }
4475 }
4476 else
4477 exception_catchpoints_are_fragile = 0;
4478 #endif
4479
4480 /* Now, look for the breakpointable routine in end.o */
4481 /* This should also be available in the SOM symbol dict. if end.o linked in */
4482 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4483 if (msym)
4484 {
4485 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4486 hp_cxx_exception_support = 1;
4487 }
4488 else
4489 {
4490 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4491 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4492 warning ("GDB will be unable to intercept exception events.");
4493 eh_break_addr = 0;
4494 return 0;
4495 }
4496
4497 /* Next look for the catch enable flag provided in end.o */
4498 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4499 VAR_DOMAIN, 0, (struct symtab **) NULL);
4500 if (sym) /* sometimes present in debug info */
4501 {
4502 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4503 hp_cxx_exception_support = 1;
4504 }
4505 else
4506 /* otherwise look in SOM symbol dict. */
4507 {
4508 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4509 if (msym)
4510 {
4511 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4512 hp_cxx_exception_support = 1;
4513 }
4514 else
4515 {
4516 warning ("Unable to enable interception of exception catches.");
4517 warning ("Executable may not have been compiled debuggable with HP aCC.");
4518 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4519 return 0;
4520 }
4521 }
4522
4523 /* Next look for the catch enable flag provided end.o */
4524 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4525 VAR_DOMAIN, 0, (struct symtab **) NULL);
4526 if (sym) /* sometimes present in debug info */
4527 {
4528 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4529 hp_cxx_exception_support = 1;
4530 }
4531 else
4532 /* otherwise look in SOM symbol dict. */
4533 {
4534 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4535 if (msym)
4536 {
4537 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4538 hp_cxx_exception_support = 1;
4539 }
4540 else
4541 {
4542 warning ("Unable to enable interception of exception throws.");
4543 warning ("Executable may not have been compiled debuggable with HP aCC.");
4544 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4545 return 0;
4546 }
4547 }
4548
4549 /* Set the flags */
4550 hp_cxx_exception_support = 2; /* everything worked so far */
4551 hp_cxx_exception_support_initialized = 1;
4552 exception_support_initialized = 1;
4553
4554 return 1;
4555 }
4556
4557 /* Target operation for enabling or disabling interception of
4558 exception events.
4559 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4560 ENABLE is either 0 (disable) or 1 (enable).
4561 Return value is NULL if no support found;
4562 -1 if something went wrong,
4563 or a pointer to a symtab/line struct if the breakpointable
4564 address was found. */
4565
4566 struct symtab_and_line *
4567 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4568 {
4569 char buf[4];
4570
4571 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4572 if (!initialize_hp_cxx_exception_support ())
4573 return NULL;
4574
4575 switch (hp_cxx_exception_support)
4576 {
4577 case 0:
4578 /* Assuming no HP support at all */
4579 return NULL;
4580 case 1:
4581 /* HP support should be present, but something went wrong */
4582 return (struct symtab_and_line *) -1; /* yuck! */
4583 /* there may be other cases in the future */
4584 }
4585
4586 /* Set the EH hook to point to the callback routine */
4587 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4588 /* pai: (temp) FIXME should there be a pack operation first? */
4589 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4590 {
4591 warning ("Could not write to target memory for exception event callback.");
4592 warning ("Interception of exception events may not work.");
4593 return (struct symtab_and_line *) -1;
4594 }
4595 if (enable)
4596 {
4597 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4598 if (PIDGET (inferior_ptid) > 0)
4599 {
4600 if (setup_d_pid_in_inferior ())
4601 return (struct symtab_and_line *) -1;
4602 }
4603 else
4604 {
4605 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4606 return (struct symtab_and_line *) -1;
4607 }
4608 }
4609
4610 switch (kind)
4611 {
4612 case EX_EVENT_THROW:
4613 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4614 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4615 {
4616 warning ("Couldn't enable exception throw interception.");
4617 return (struct symtab_and_line *) -1;
4618 }
4619 break;
4620 case EX_EVENT_CATCH:
4621 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4622 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4623 {
4624 warning ("Couldn't enable exception catch interception.");
4625 return (struct symtab_and_line *) -1;
4626 }
4627 break;
4628 default:
4629 error ("Request to enable unknown or unsupported exception event.");
4630 }
4631
4632 /* Copy break address into new sal struct, malloc'ing if needed. */
4633 if (!break_callback_sal)
4634 {
4635 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4636 }
4637 init_sal (break_callback_sal);
4638 break_callback_sal->symtab = NULL;
4639 break_callback_sal->pc = eh_break_addr;
4640 break_callback_sal->line = 0;
4641 break_callback_sal->end = eh_break_addr;
4642
4643 return break_callback_sal;
4644 }
4645
4646 /* Record some information about the current exception event */
4647 static struct exception_event_record current_ex_event;
4648 /* Convenience struct */
4649 static struct symtab_and_line null_symtab_and_line =
4650 {NULL, 0, 0, 0};
4651
4652 /* Report current exception event. Returns a pointer to a record
4653 that describes the kind of the event, where it was thrown from,
4654 and where it will be caught. More information may be reported
4655 in the future */
4656 struct exception_event_record *
4657 child_get_current_exception_event (void)
4658 {
4659 CORE_ADDR event_kind;
4660 CORE_ADDR throw_addr;
4661 CORE_ADDR catch_addr;
4662 struct frame_info *fi, *curr_frame;
4663 int level = 1;
4664
4665 curr_frame = get_current_frame ();
4666 if (!curr_frame)
4667 return (struct exception_event_record *) NULL;
4668
4669 /* Go up one frame to __d_eh_notify_callback, because at the
4670 point when this code is executed, there's garbage in the
4671 arguments of __d_eh_break. */
4672 fi = find_relative_frame (curr_frame, &level);
4673 if (level != 0)
4674 return (struct exception_event_record *) NULL;
4675
4676 select_frame (fi);
4677
4678 /* Read in the arguments */
4679 /* __d_eh_notify_callback() is called with 3 arguments:
4680 1. event kind catch or throw
4681 2. the target address if known
4682 3. a flag -- not sure what this is. pai/1997-07-17 */
4683 event_kind = read_register (ARG0_REGNUM);
4684 catch_addr = read_register (ARG1_REGNUM);
4685
4686 /* Now go down to a user frame */
4687 /* For a throw, __d_eh_break is called by
4688 __d_eh_notify_callback which is called by
4689 __notify_throw which is called
4690 from user code.
4691 For a catch, __d_eh_break is called by
4692 __d_eh_notify_callback which is called by
4693 <stackwalking stuff> which is called by
4694 __throw__<stuff> or __rethrow_<stuff> which is called
4695 from user code. */
4696 /* FIXME: Don't use such magic numbers; search for the frames */
4697 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4698 fi = find_relative_frame (curr_frame, &level);
4699 if (level != 0)
4700 return (struct exception_event_record *) NULL;
4701
4702 select_frame (fi);
4703 throw_addr = get_frame_pc (fi);
4704
4705 /* Go back to original (top) frame */
4706 select_frame (curr_frame);
4707
4708 current_ex_event.kind = (enum exception_event_kind) event_kind;
4709 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4710 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4711
4712 return &current_ex_event;
4713 }
4714
4715 /* Instead of this nasty cast, add a method pvoid() that prints out a
4716 host VOID data type (remember %p isn't portable). */
4717
4718 static CORE_ADDR
4719 hppa_pointer_to_address_hack (void *ptr)
4720 {
4721 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4722 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4723 }
4724
4725 static void
4726 unwind_command (char *exp, int from_tty)
4727 {
4728 CORE_ADDR address;
4729 struct unwind_table_entry *u;
4730
4731 /* If we have an expression, evaluate it and use it as the address. */
4732
4733 if (exp != 0 && *exp != 0)
4734 address = parse_and_eval_address (exp);
4735 else
4736 return;
4737
4738 u = find_unwind_entry (address);
4739
4740 if (!u)
4741 {
4742 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4743 return;
4744 }
4745
4746 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4747 paddr_nz (hppa_pointer_to_address_hack (u)));
4748
4749 printf_unfiltered ("\tregion_start = ");
4750 print_address (u->region_start, gdb_stdout);
4751
4752 printf_unfiltered ("\n\tregion_end = ");
4753 print_address (u->region_end, gdb_stdout);
4754
4755 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4756
4757 printf_unfiltered ("\n\tflags =");
4758 pif (Cannot_unwind);
4759 pif (Millicode);
4760 pif (Millicode_save_sr0);
4761 pif (Entry_SR);
4762 pif (Args_stored);
4763 pif (Variable_Frame);
4764 pif (Separate_Package_Body);
4765 pif (Frame_Extension_Millicode);
4766 pif (Stack_Overflow_Check);
4767 pif (Two_Instruction_SP_Increment);
4768 pif (Ada_Region);
4769 pif (Save_SP);
4770 pif (Save_RP);
4771 pif (Save_MRP_in_frame);
4772 pif (extn_ptr_defined);
4773 pif (Cleanup_defined);
4774 pif (MPE_XL_interrupt_marker);
4775 pif (HP_UX_interrupt_marker);
4776 pif (Large_frame);
4777
4778 putchar_unfiltered ('\n');
4779
4780 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4781
4782 pin (Region_description);
4783 pin (Entry_FR);
4784 pin (Entry_GR);
4785 pin (Total_frame_size);
4786 }
4787
4788 void
4789 hppa_skip_permanent_breakpoint (void)
4790 {
4791 /* To step over a breakpoint instruction on the PA takes some
4792 fiddling with the instruction address queue.
4793
4794 When we stop at a breakpoint, the IA queue front (the instruction
4795 we're executing now) points at the breakpoint instruction, and
4796 the IA queue back (the next instruction to execute) points to
4797 whatever instruction we would execute after the breakpoint, if it
4798 were an ordinary instruction. This is the case even if the
4799 breakpoint is in the delay slot of a branch instruction.
4800
4801 Clearly, to step past the breakpoint, we need to set the queue
4802 front to the back. But what do we put in the back? What
4803 instruction comes after that one? Because of the branch delay
4804 slot, the next insn is always at the back + 4. */
4805 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4806 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4807
4808 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4809 /* We can leave the tail's space the same, since there's no jump. */
4810 }
4811
4812 /* Copy the function value from VALBUF into the proper location
4813 for a function return.
4814
4815 Called only in the context of the "return" command. */
4816
4817 void
4818 hppa32_store_return_value (struct type *type, char *valbuf)
4819 {
4820 /* For software floating point, the return value goes into the
4821 integer registers. But we do not have any flag to key this on,
4822 so we always store the value into the integer registers.
4823
4824 If its a float value, then we also store it into the floating
4825 point registers. */
4826 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28)
4827 + (TYPE_LENGTH (type) > 4
4828 ? (8 - TYPE_LENGTH (type))
4829 : (4 - TYPE_LENGTH (type))),
4830 valbuf, TYPE_LENGTH (type));
4831 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4832 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP4_REGNUM),
4833 valbuf, TYPE_LENGTH (type));
4834 }
4835
4836 /* Same as hppa32_store_return_value(), but for the PA64 ABI. */
4837
4838 void
4839 hppa64_store_return_value (struct type *type, char *valbuf)
4840 {
4841 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4842 deprecated_write_register_bytes
4843 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
4844 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4845 valbuf, TYPE_LENGTH (type));
4846 else if (is_integral_type(type))
4847 deprecated_write_register_bytes
4848 (DEPRECATED_REGISTER_BYTE (28)
4849 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4850 valbuf, TYPE_LENGTH (type));
4851 else if (TYPE_LENGTH (type) <= 8)
4852 deprecated_write_register_bytes
4853 (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type));
4854 else if (TYPE_LENGTH (type) <= 16)
4855 {
4856 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8);
4857 deprecated_write_register_bytes
4858 (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8);
4859 }
4860 }
4861
4862 /* Copy the function's return value into VALBUF.
4863
4864 This function is called only in the context of "target function calls",
4865 ie. when the debugger forces a function to be called in the child, and
4866 when the debugger forces a fucntion to return prematurely via the
4867 "return" command. */
4868
4869 void
4870 hppa32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4871 {
4872 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4873 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM), TYPE_LENGTH (type));
4874 else
4875 memcpy (valbuf,
4876 (regbuf
4877 + DEPRECATED_REGISTER_BYTE (28)
4878 + (TYPE_LENGTH (type) > 4
4879 ? (8 - TYPE_LENGTH (type))
4880 : (4 - TYPE_LENGTH (type)))),
4881 TYPE_LENGTH (type));
4882 }
4883
4884 /* Same as hppa32_extract_return_value but for the PA64 ABI case. */
4885
4886 void
4887 hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4888 {
4889 /* RM: Floats are returned in FR4R, doubles in FR4.
4890 Integral values are in r28, padded on the left.
4891 Aggregates less that 65 bits are in r28, right padded.
4892 Aggregates upto 128 bits are in r28 and r29, right padded. */
4893 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4894 memcpy (valbuf,
4895 regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
4896 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4897 TYPE_LENGTH (type));
4898 else if (is_integral_type(type))
4899 memcpy (valbuf,
4900 regbuf + DEPRECATED_REGISTER_BYTE (28)
4901 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4902 TYPE_LENGTH (type));
4903 else if (TYPE_LENGTH (type) <= 8)
4904 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28),
4905 TYPE_LENGTH (type));
4906 else if (TYPE_LENGTH (type) <= 16)
4907 {
4908 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8);
4909 memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29),
4910 TYPE_LENGTH (type) - 8);
4911 }
4912 }
4913
4914 int
4915 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4916 {
4917 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4918 via a pointer regardless of its type or the compiler used. */
4919 return (TYPE_LENGTH (type) > 8);
4920 }
4921
4922 int
4923 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4924 {
4925 /* Stack grows upward */
4926 return (lhs > rhs);
4927 }
4928
4929 CORE_ADDR
4930 hppa32_stack_align (CORE_ADDR sp)
4931 {
4932 /* elz: adjust the quantity to the next highest value which is
4933 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4934 On hppa the sp must always be kept 64-bit aligned */
4935 return ((sp % 8) ? (sp + 7) & -8 : sp);
4936 }
4937
4938 CORE_ADDR
4939 hppa64_stack_align (CORE_ADDR sp)
4940 {
4941 /* The PA64 ABI mandates a 16 byte stack alignment. */
4942 return ((sp % 16) ? (sp + 15) & -16 : sp);
4943 }
4944
4945 int
4946 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4947 {
4948 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4949
4950 An example of this occurs when an a.out is linked against a foo.sl.
4951 The foo.sl defines a global bar(), and the a.out declares a signature
4952 for bar(). However, the a.out doesn't directly call bar(), but passes
4953 its address in another call.
4954
4955 If you have this scenario and attempt to "break bar" before running,
4956 gdb will find a minimal symbol for bar() in the a.out. But that
4957 symbol's address will be negative. What this appears to denote is
4958 an index backwards from the base of the procedure linkage table (PLT)
4959 into the data linkage table (DLT), the end of which is contiguous
4960 with the start of the PLT. This is clearly not a valid address for
4961 us to set a breakpoint on.
4962
4963 Note that one must be careful in how one checks for a negative address.
4964 0xc0000000 is a legitimate address of something in a shared text
4965 segment, for example. Since I don't know what the possible range
4966 is of these "really, truly negative" addresses that come from the
4967 minimal symbols, I'm resorting to the gross hack of checking the
4968 top byte of the address for all 1's. Sigh. */
4969
4970 return (!target_has_stack && (pc & 0xFF000000));
4971 }
4972
4973 int
4974 hppa_instruction_nullified (void)
4975 {
4976 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4977 avoid the type cast. I'm leaving it as is for now as I'm doing
4978 semi-mechanical multiarching-related changes. */
4979 const int ipsw = (int) read_register (IPSW_REGNUM);
4980 const int flags = (int) read_register (FLAGS_REGNUM);
4981
4982 return ((ipsw & 0x00200000) && !(flags & 0x2));
4983 }
4984
4985 int
4986 hppa_register_raw_size (int reg_nr)
4987 {
4988 /* All registers have the same size. */
4989 return DEPRECATED_REGISTER_SIZE;
4990 }
4991
4992 /* Index within the register vector of the first byte of the space i
4993 used for register REG_NR. */
4994
4995 int
4996 hppa_register_byte (int reg_nr)
4997 {
4998 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4999
5000 return reg_nr * tdep->bytes_per_address;
5001 }
5002
5003 /* Return the GDB type object for the "standard" data type of data
5004 in register N. */
5005
5006 struct type *
5007 hppa32_register_virtual_type (int reg_nr)
5008 {
5009 if (reg_nr < FP4_REGNUM)
5010 return builtin_type_int;
5011 else
5012 return builtin_type_float;
5013 }
5014
5015 /* Return the GDB type object for the "standard" data type of data
5016 in register N. hppa64 version. */
5017
5018 struct type *
5019 hppa64_register_virtual_type (int reg_nr)
5020 {
5021 if (reg_nr < FP4_REGNUM)
5022 return builtin_type_unsigned_long_long;
5023 else
5024 return builtin_type_double;
5025 }
5026
5027 /* Store the address of the place in which to copy the structure the
5028 subroutine will return. This is called from call_function. */
5029
5030 void
5031 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5032 {
5033 write_register (28, addr);
5034 }
5035
5036 CORE_ADDR
5037 hppa_extract_struct_value_address (char *regbuf)
5038 {
5039 /* Extract from an array REGBUF containing the (raw) register state
5040 the address in which a function should return its structure value,
5041 as a CORE_ADDR (or an expression that can be used as one). */
5042 /* FIXME: brobecker 2002-12-26.
5043 The current implementation is historical, but we should eventually
5044 implement it in a more robust manner as it relies on the fact that
5045 the address size is equal to the size of an int* _on the host_...
5046 One possible implementation that crossed my mind is to use
5047 extract_address. */
5048 /* FIXME: cagney/2003-09-27: This function can probably go. ELZ
5049 writes: We cannot assume on the pa that r28 still contains the
5050 address of the returned structure. Usually this will be
5051 overwritten by the callee. */
5052 return (*(int *)(regbuf + DEPRECATED_REGISTER_BYTE (28)));
5053 }
5054
5055 /* Return True if REGNUM is not a register available to the user
5056 through ptrace(). */
5057
5058 int
5059 hppa_cannot_store_register (int regnum)
5060 {
5061 return (regnum == 0
5062 || regnum == PCSQ_HEAD_REGNUM
5063 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
5064 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
5065
5066 }
5067
5068 CORE_ADDR
5069 hppa_smash_text_address (CORE_ADDR addr)
5070 {
5071 /* The low two bits of the PC on the PA contain the privilege level.
5072 Some genius implementing a (non-GCC) compiler apparently decided
5073 this means that "addresses" in a text section therefore include a
5074 privilege level, and thus symbol tables should contain these bits.
5075 This seems like a bonehead thing to do--anyway, it seems to work
5076 for our purposes to just ignore those bits. */
5077
5078 return (addr &= ~0x3);
5079 }
5080
5081 /* Get the ith function argument for the current function. */
5082 CORE_ADDR
5083 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
5084 struct type *type)
5085 {
5086 CORE_ADDR addr;
5087 get_frame_register (frame, R0_REGNUM + 26 - argi, &addr);
5088 return addr;
5089 }
5090
5091 static struct gdbarch *
5092 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5093 {
5094 struct gdbarch_tdep *tdep;
5095 struct gdbarch *gdbarch;
5096
5097 /* Try to determine the ABI of the object we are loading. */
5098 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
5099 {
5100 /* If it's a SOM file, assume it's HP/UX SOM. */
5101 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5102 info.osabi = GDB_OSABI_HPUX_SOM;
5103 }
5104
5105 /* find a candidate among the list of pre-declared architectures. */
5106 arches = gdbarch_list_lookup_by_info (arches, &info);
5107 if (arches != NULL)
5108 return (arches->gdbarch);
5109
5110 /* If none found, then allocate and initialize one. */
5111 tdep = XMALLOC (struct gdbarch_tdep);
5112 gdbarch = gdbarch_alloc (&info, tdep);
5113
5114 /* Determine from the bfd_arch_info structure if we are dealing with
5115 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5116 then default to a 32bit machine. */
5117 if (info.bfd_arch_info != NULL)
5118 tdep->bytes_per_address =
5119 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
5120 else
5121 tdep->bytes_per_address = 4;
5122
5123 /* Some parts of the gdbarch vector depend on whether we are running
5124 on a 32 bits or 64 bits target. */
5125 switch (tdep->bytes_per_address)
5126 {
5127 case 4:
5128 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
5129 set_gdbarch_register_name (gdbarch, hppa32_register_name);
5130 set_gdbarch_deprecated_register_virtual_type
5131 (gdbarch, hppa32_register_virtual_type);
5132 set_gdbarch_deprecated_call_dummy_length
5133 (gdbarch, hppa32_call_dummy_length);
5134 set_gdbarch_deprecated_stack_align (gdbarch, hppa32_stack_align);
5135 set_gdbarch_deprecated_reg_struct_has_addr
5136 (gdbarch, hppa_reg_struct_has_addr);
5137 set_gdbarch_deprecated_extract_return_value
5138 (gdbarch, hppa32_extract_return_value);
5139 set_gdbarch_use_struct_convention
5140 (gdbarch, hppa32_use_struct_convention);
5141 set_gdbarch_deprecated_store_return_value
5142 (gdbarch, hppa32_store_return_value);
5143 break;
5144 case 8:
5145 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
5146 set_gdbarch_register_name (gdbarch, hppa64_register_name);
5147 set_gdbarch_deprecated_register_virtual_type
5148 (gdbarch, hppa64_register_virtual_type);
5149 set_gdbarch_deprecated_call_dummy_breakpoint_offset
5150 (gdbarch, hppa64_call_dummy_breakpoint_offset);
5151 set_gdbarch_deprecated_call_dummy_length
5152 (gdbarch, hppa64_call_dummy_length);
5153 set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align);
5154 set_gdbarch_deprecated_extract_return_value
5155 (gdbarch, hppa64_extract_return_value);
5156 set_gdbarch_use_struct_convention
5157 (gdbarch, hppa64_use_struct_convention);
5158 set_gdbarch_deprecated_store_return_value
5159 (gdbarch, hppa64_store_return_value);
5160 break;
5161 default:
5162 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
5163 tdep->bytes_per_address);
5164 }
5165
5166 /* The following gdbarch vector elements depend on other parts of this
5167 vector which have been set above, depending on the ABI. */
5168 set_gdbarch_deprecated_register_bytes
5169 (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address);
5170 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5171 set_gdbarch_long_long_bit (gdbarch, 64);
5172 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5173
5174 /* The following gdbarch vector elements do not depend on the address
5175 size, or in any other gdbarch element previously set. */
5176 set_gdbarch_function_start_offset (gdbarch, 0);
5177 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5178 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5179 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5180 set_gdbarch_in_solib_return_trampoline (gdbarch,
5181 hppa_in_solib_return_trampoline);
5182 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
5183 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
5184 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5185 set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address);
5186 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
5187 set_gdbarch_sp_regnum (gdbarch, 30);
5188 set_gdbarch_fp0_regnum (gdbarch, 64);
5189 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
5190 set_gdbarch_deprecated_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
5191 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
5192 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5193 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
5194 set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address);
5195 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5196 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5197 set_gdbarch_deprecated_extract_struct_value_address
5198 (gdbarch, hppa_extract_struct_value_address);
5199 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5200 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5201 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5202 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5203 set_gdbarch_frameless_function_invocation
5204 (gdbarch, hppa_frameless_function_invocation);
5205 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5206 set_gdbarch_frame_args_skip (gdbarch, 0);
5207 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5208 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5209 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5210 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5211 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
5212 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5213 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5214 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5215 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5216 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5217
5218 /* Helper for function argument information. */
5219 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5220
5221 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
5222
5223 /* When a hardware watchpoint triggers, we'll move the inferior past
5224 it by removing all eventpoints; stepping past the instruction
5225 that caused the trigger; reinserting eventpoints; and checking
5226 whether any watched location changed. */
5227 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5228
5229 /* Hook in ABI-specific overrides, if they have been registered. */
5230 gdbarch_init_osabi (info, gdbarch);
5231
5232 return gdbarch;
5233 }
5234
5235 static void
5236 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5237 {
5238 /* Nothing to print for the moment. */
5239 }
5240
5241 void
5242 _initialize_hppa_tdep (void)
5243 {
5244 struct cmd_list_element *c;
5245 void break_at_finish_command (char *arg, int from_tty);
5246 void tbreak_at_finish_command (char *arg, int from_tty);
5247 void break_at_finish_at_depth_command (char *arg, int from_tty);
5248
5249 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5250
5251 add_cmd ("unwind", class_maintenance, unwind_command,
5252 "Print unwind table entry at given address.",
5253 &maintenanceprintlist);
5254
5255 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5256 break_at_finish_command,
5257 concat ("Set breakpoint at procedure exit. \n\
5258 Argument may be function name, or \"*\" and an address.\n\
5259 If function is specified, break at end of code for that function.\n\
5260 If an address is specified, break at the end of the function that contains \n\
5261 that exact address.\n",
5262 "With no arg, uses current execution address of selected stack frame.\n\
5263 This is useful for breaking on return to a stack frame.\n\
5264 \n\
5265 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5266 \n\
5267 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5268 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5269 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5270 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5271 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5272
5273 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5274 tbreak_at_finish_command,
5275 "Set temporary breakpoint at procedure exit. Either there should\n\
5276 be no argument or the argument must be a depth.\n"), NULL);
5277 set_cmd_completer (c, location_completer);
5278
5279 if (xdb_commands)
5280 deprecate_cmd (add_com ("bx", class_breakpoint,
5281 break_at_finish_at_depth_command,
5282 "Set breakpoint at procedure exit. Either there should\n\
5283 be no argument or the argument must be a depth.\n"), NULL);
5284 }
5285
This page took 0.212442 seconds and 5 git commands to generate.