gdb/
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
5 2011 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "bfd.h"
27 #include "inferior.h"
28 #include "regcache.h"
29 #include "completer.h"
30 #include "osabi.h"
31 #include "gdb_assert.h"
32 #include "arch-utils.h"
33 /* For argument passing to the inferior. */
34 #include "symtab.h"
35 #include "dis-asm.h"
36 #include "trad-frame.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39
40 #include "gdbcore.h"
41 #include "gdbcmd.h"
42 #include "gdbtypes.h"
43 #include "objfiles.h"
44 #include "hppa-tdep.h"
45
46 static int hppa_debug = 0;
47
48 /* Some local constants. */
49 static const int hppa32_num_regs = 128;
50 static const int hppa64_num_regs = 96;
51
52 /* hppa-specific object data -- unwind and solib info.
53 TODO/maybe: think about splitting this into two parts; the unwind data is
54 common to all hppa targets, but is only used in this file; we can register
55 that separately and make this static. The solib data is probably hpux-
56 specific, so we can create a separate extern objfile_data that is registered
57 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
58 const struct objfile_data *hppa_objfile_priv_data = NULL;
59
60 /* Get at various relevent fields of an instruction word. */
61 #define MASK_5 0x1f
62 #define MASK_11 0x7ff
63 #define MASK_14 0x3fff
64 #define MASK_21 0x1fffff
65
66 /* Sizes (in bytes) of the native unwind entries. */
67 #define UNWIND_ENTRY_SIZE 16
68 #define STUB_UNWIND_ENTRY_SIZE 8
69
70 /* Routines to extract various sized constants out of hppa
71 instructions. */
72
73 /* This assumes that no garbage lies outside of the lower bits of
74 value. */
75
76 static int
77 hppa_sign_extend (unsigned val, unsigned bits)
78 {
79 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
80 }
81
82 /* For many immediate values the sign bit is the low bit! */
83
84 static int
85 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
86 {
87 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
88 }
89
90 /* Extract the bits at positions between FROM and TO, using HP's numbering
91 (MSB = 0). */
92
93 int
94 hppa_get_field (unsigned word, int from, int to)
95 {
96 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
97 }
98
99 /* Extract the immediate field from a ld{bhw}s instruction. */
100
101 int
102 hppa_extract_5_load (unsigned word)
103 {
104 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
105 }
106
107 /* Extract the immediate field from a break instruction. */
108
109 unsigned
110 hppa_extract_5r_store (unsigned word)
111 {
112 return (word & MASK_5);
113 }
114
115 /* Extract the immediate field from a {sr}sm instruction. */
116
117 unsigned
118 hppa_extract_5R_store (unsigned word)
119 {
120 return (word >> 16 & MASK_5);
121 }
122
123 /* Extract a 14 bit immediate field. */
124
125 int
126 hppa_extract_14 (unsigned word)
127 {
128 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
129 }
130
131 /* Extract a 21 bit constant. */
132
133 int
134 hppa_extract_21 (unsigned word)
135 {
136 int val;
137
138 word &= MASK_21;
139 word <<= 11;
140 val = hppa_get_field (word, 20, 20);
141 val <<= 11;
142 val |= hppa_get_field (word, 9, 19);
143 val <<= 2;
144 val |= hppa_get_field (word, 5, 6);
145 val <<= 5;
146 val |= hppa_get_field (word, 0, 4);
147 val <<= 2;
148 val |= hppa_get_field (word, 7, 8);
149 return hppa_sign_extend (val, 21) << 11;
150 }
151
152 /* extract a 17 bit constant from branch instructions, returning the
153 19 bit signed value. */
154
155 int
156 hppa_extract_17 (unsigned word)
157 {
158 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
159 hppa_get_field (word, 29, 29) << 10 |
160 hppa_get_field (word, 11, 15) << 11 |
161 (word & 0x1) << 16, 17) << 2;
162 }
163
164 CORE_ADDR
165 hppa_symbol_address(const char *sym)
166 {
167 struct minimal_symbol *minsym;
168
169 minsym = lookup_minimal_symbol (sym, NULL, NULL);
170 if (minsym)
171 return SYMBOL_VALUE_ADDRESS (minsym);
172 else
173 return (CORE_ADDR)-1;
174 }
175
176 struct hppa_objfile_private *
177 hppa_init_objfile_priv_data (struct objfile *objfile)
178 {
179 struct hppa_objfile_private *priv;
180
181 priv = (struct hppa_objfile_private *)
182 obstack_alloc (&objfile->objfile_obstack,
183 sizeof (struct hppa_objfile_private));
184 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
185 memset (priv, 0, sizeof (*priv));
186
187 return priv;
188 }
189 \f
190
191 /* Compare the start address for two unwind entries returning 1 if
192 the first address is larger than the second, -1 if the second is
193 larger than the first, and zero if they are equal. */
194
195 static int
196 compare_unwind_entries (const void *arg1, const void *arg2)
197 {
198 const struct unwind_table_entry *a = arg1;
199 const struct unwind_table_entry *b = arg2;
200
201 if (a->region_start > b->region_start)
202 return 1;
203 else if (a->region_start < b->region_start)
204 return -1;
205 else
206 return 0;
207 }
208
209 static void
210 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
211 {
212 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
213 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
214 {
215 bfd_vma value = section->vma - section->filepos;
216 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
217
218 if (value < *low_text_segment_address)
219 *low_text_segment_address = value;
220 }
221 }
222
223 static void
224 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
225 asection *section, unsigned int entries,
226 unsigned int size, CORE_ADDR text_offset)
227 {
228 /* We will read the unwind entries into temporary memory, then
229 fill in the actual unwind table. */
230
231 if (size > 0)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 unsigned long tmp;
235 unsigned i;
236 char *buf = alloca (size);
237 CORE_ADDR low_text_segment_address;
238
239 /* For ELF targets, then unwinds are supposed to
240 be segment relative offsets instead of absolute addresses.
241
242 Note that when loading a shared library (text_offset != 0) the
243 unwinds are already relative to the text_offset that will be
244 passed in. */
245 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
246 {
247 low_text_segment_address = -1;
248
249 bfd_map_over_sections (objfile->obfd,
250 record_text_segment_lowaddr,
251 &low_text_segment_address);
252
253 text_offset = low_text_segment_address;
254 }
255 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
256 {
257 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
258 }
259
260 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
261
262 /* Now internalize the information being careful to handle host/target
263 endian issues. */
264 for (i = 0; i < entries; i++)
265 {
266 table[i].region_start = bfd_get_32 (objfile->obfd,
267 (bfd_byte *) buf);
268 table[i].region_start += text_offset;
269 buf += 4;
270 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
271 table[i].region_end += text_offset;
272 buf += 4;
273 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
274 buf += 4;
275 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
276 table[i].Millicode = (tmp >> 30) & 0x1;
277 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
278 table[i].Region_description = (tmp >> 27) & 0x3;
279 table[i].reserved = (tmp >> 26) & 0x1;
280 table[i].Entry_SR = (tmp >> 25) & 0x1;
281 table[i].Entry_FR = (tmp >> 21) & 0xf;
282 table[i].Entry_GR = (tmp >> 16) & 0x1f;
283 table[i].Args_stored = (tmp >> 15) & 0x1;
284 table[i].Variable_Frame = (tmp >> 14) & 0x1;
285 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
286 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
287 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
288 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
289 table[i].sr4export = (tmp >> 9) & 0x1;
290 table[i].cxx_info = (tmp >> 8) & 0x1;
291 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
292 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
293 table[i].reserved1 = (tmp >> 5) & 0x1;
294 table[i].Save_SP = (tmp >> 4) & 0x1;
295 table[i].Save_RP = (tmp >> 3) & 0x1;
296 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
297 table[i].save_r19 = (tmp >> 1) & 0x1;
298 table[i].Cleanup_defined = tmp & 0x1;
299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
300 buf += 4;
301 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
302 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
303 table[i].Large_frame = (tmp >> 29) & 0x1;
304 table[i].alloca_frame = (tmp >> 28) & 0x1;
305 table[i].reserved2 = (tmp >> 27) & 0x1;
306 table[i].Total_frame_size = tmp & 0x7ffffff;
307
308 /* Stub unwinds are handled elsewhere. */
309 table[i].stub_unwind.stub_type = 0;
310 table[i].stub_unwind.padding = 0;
311 }
312 }
313 }
314
315 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
316 the object file. This info is used mainly by find_unwind_entry() to find
317 out the stack frame size and frame pointer used by procedures. We put
318 everything on the psymbol obstack in the objfile so that it automatically
319 gets freed when the objfile is destroyed. */
320
321 static void
322 read_unwind_info (struct objfile *objfile)
323 {
324 asection *unwind_sec, *stub_unwind_sec;
325 unsigned unwind_size, stub_unwind_size, total_size;
326 unsigned index, unwind_entries;
327 unsigned stub_entries, total_entries;
328 CORE_ADDR text_offset;
329 struct hppa_unwind_info *ui;
330 struct hppa_objfile_private *obj_private;
331
332 text_offset = ANOFFSET (objfile->section_offsets, 0);
333 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
334 sizeof (struct hppa_unwind_info));
335
336 ui->table = NULL;
337 ui->cache = NULL;
338 ui->last = -1;
339
340 /* For reasons unknown the HP PA64 tools generate multiple unwinder
341 sections in a single executable. So we just iterate over every
342 section in the BFD looking for unwinder sections intead of trying
343 to do a lookup with bfd_get_section_by_name.
344
345 First determine the total size of the unwind tables so that we
346 can allocate memory in a nice big hunk. */
347 total_entries = 0;
348 for (unwind_sec = objfile->obfd->sections;
349 unwind_sec;
350 unwind_sec = unwind_sec->next)
351 {
352 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
353 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
354 {
355 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
356 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
357
358 total_entries += unwind_entries;
359 }
360 }
361
362 /* Now compute the size of the stub unwinds. Note the ELF tools do not
363 use stub unwinds at the current time. */
364 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
365
366 if (stub_unwind_sec)
367 {
368 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
369 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
370 }
371 else
372 {
373 stub_unwind_size = 0;
374 stub_entries = 0;
375 }
376
377 /* Compute total number of unwind entries and their total size. */
378 total_entries += stub_entries;
379 total_size = total_entries * sizeof (struct unwind_table_entry);
380
381 /* Allocate memory for the unwind table. */
382 ui->table = (struct unwind_table_entry *)
383 obstack_alloc (&objfile->objfile_obstack, total_size);
384 ui->last = total_entries - 1;
385
386 /* Now read in each unwind section and internalize the standard unwind
387 entries. */
388 index = 0;
389 for (unwind_sec = objfile->obfd->sections;
390 unwind_sec;
391 unwind_sec = unwind_sec->next)
392 {
393 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
394 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398
399 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
400 unwind_entries, unwind_size, text_offset);
401 index += unwind_entries;
402 }
403 }
404
405 /* Now read in and internalize the stub unwind entries. */
406 if (stub_unwind_size > 0)
407 {
408 unsigned int i;
409 char *buf = alloca (stub_unwind_size);
410
411 /* Read in the stub unwind entries. */
412 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
413 0, stub_unwind_size);
414
415 /* Now convert them into regular unwind entries. */
416 for (i = 0; i < stub_entries; i++, index++)
417 {
418 /* Clear out the next unwind entry. */
419 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
420
421 /* Convert offset & size into region_start and region_end.
422 Stuff away the stub type into "reserved" fields. */
423 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
424 (bfd_byte *) buf);
425 ui->table[index].region_start += text_offset;
426 buf += 4;
427 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
428 (bfd_byte *) buf);
429 buf += 2;
430 ui->table[index].region_end
431 = ui->table[index].region_start + 4 *
432 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
433 buf += 2;
434 }
435
436 }
437
438 /* Unwind table needs to be kept sorted. */
439 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
440 compare_unwind_entries);
441
442 /* Keep a pointer to the unwind information. */
443 obj_private = (struct hppa_objfile_private *)
444 objfile_data (objfile, hppa_objfile_priv_data);
445 if (obj_private == NULL)
446 obj_private = hppa_init_objfile_priv_data (objfile);
447
448 obj_private->unwind_info = ui;
449 }
450
451 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
452 of the objfiles seeking the unwind table entry for this PC. Each objfile
453 contains a sorted list of struct unwind_table_entry. Since we do a binary
454 search of the unwind tables, we depend upon them to be sorted. */
455
456 struct unwind_table_entry *
457 find_unwind_entry (CORE_ADDR pc)
458 {
459 int first, middle, last;
460 struct objfile *objfile;
461 struct hppa_objfile_private *priv;
462
463 if (hppa_debug)
464 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
465 hex_string (pc));
466
467 /* A function at address 0? Not in HP-UX! */
468 if (pc == (CORE_ADDR) 0)
469 {
470 if (hppa_debug)
471 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
472 return NULL;
473 }
474
475 ALL_OBJFILES (objfile)
476 {
477 struct hppa_unwind_info *ui;
478 ui = NULL;
479 priv = objfile_data (objfile, hppa_objfile_priv_data);
480 if (priv)
481 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
482
483 if (!ui)
484 {
485 read_unwind_info (objfile);
486 priv = objfile_data (objfile, hppa_objfile_priv_data);
487 if (priv == NULL)
488 error (_("Internal error reading unwind information."));
489 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
490 }
491
492 /* First, check the cache. */
493
494 if (ui->cache
495 && pc >= ui->cache->region_start
496 && pc <= ui->cache->region_end)
497 {
498 if (hppa_debug)
499 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
500 hex_string ((uintptr_t) ui->cache));
501 return ui->cache;
502 }
503
504 /* Not in the cache, do a binary search. */
505
506 first = 0;
507 last = ui->last;
508
509 while (first <= last)
510 {
511 middle = (first + last) / 2;
512 if (pc >= ui->table[middle].region_start
513 && pc <= ui->table[middle].region_end)
514 {
515 ui->cache = &ui->table[middle];
516 if (hppa_debug)
517 fprintf_unfiltered (gdb_stdlog, "%s }\n",
518 hex_string ((uintptr_t) ui->cache));
519 return &ui->table[middle];
520 }
521
522 if (pc < ui->table[middle].region_start)
523 last = middle - 1;
524 else
525 first = middle + 1;
526 }
527 } /* ALL_OBJFILES() */
528
529 if (hppa_debug)
530 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
531
532 return NULL;
533 }
534
535 /* The epilogue is defined here as the area either on the `bv' instruction
536 itself or an instruction which destroys the function's stack frame.
537
538 We do not assume that the epilogue is at the end of a function as we can
539 also have return sequences in the middle of a function. */
540 static int
541 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
542 {
543 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
544 unsigned long status;
545 unsigned int inst;
546 char buf[4];
547 int off;
548
549 status = target_read_memory (pc, buf, 4);
550 if (status != 0)
551 return 0;
552
553 inst = extract_unsigned_integer (buf, 4, byte_order);
554
555 /* The most common way to perform a stack adjustment ldo X(sp),sp
556 We are destroying a stack frame if the offset is negative. */
557 if ((inst & 0xffffc000) == 0x37de0000
558 && hppa_extract_14 (inst) < 0)
559 return 1;
560
561 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
562 if (((inst & 0x0fc010e0) == 0x0fc010e0
563 || (inst & 0x0fc010e0) == 0x0fc010e0)
564 && hppa_extract_14 (inst) < 0)
565 return 1;
566
567 /* bv %r0(%rp) or bv,n %r0(%rp) */
568 if (inst == 0xe840c000 || inst == 0xe840c002)
569 return 1;
570
571 return 0;
572 }
573
574 static const unsigned char *
575 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
576 {
577 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
578 (*len) = sizeof (breakpoint);
579 return breakpoint;
580 }
581
582 /* Return the name of a register. */
583
584 static const char *
585 hppa32_register_name (struct gdbarch *gdbarch, int i)
586 {
587 static char *names[] = {
588 "flags", "r1", "rp", "r3",
589 "r4", "r5", "r6", "r7",
590 "r8", "r9", "r10", "r11",
591 "r12", "r13", "r14", "r15",
592 "r16", "r17", "r18", "r19",
593 "r20", "r21", "r22", "r23",
594 "r24", "r25", "r26", "dp",
595 "ret0", "ret1", "sp", "r31",
596 "sar", "pcoqh", "pcsqh", "pcoqt",
597 "pcsqt", "eiem", "iir", "isr",
598 "ior", "ipsw", "goto", "sr4",
599 "sr0", "sr1", "sr2", "sr3",
600 "sr5", "sr6", "sr7", "cr0",
601 "cr8", "cr9", "ccr", "cr12",
602 "cr13", "cr24", "cr25", "cr26",
603 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
604 "fpsr", "fpe1", "fpe2", "fpe3",
605 "fpe4", "fpe5", "fpe6", "fpe7",
606 "fr4", "fr4R", "fr5", "fr5R",
607 "fr6", "fr6R", "fr7", "fr7R",
608 "fr8", "fr8R", "fr9", "fr9R",
609 "fr10", "fr10R", "fr11", "fr11R",
610 "fr12", "fr12R", "fr13", "fr13R",
611 "fr14", "fr14R", "fr15", "fr15R",
612 "fr16", "fr16R", "fr17", "fr17R",
613 "fr18", "fr18R", "fr19", "fr19R",
614 "fr20", "fr20R", "fr21", "fr21R",
615 "fr22", "fr22R", "fr23", "fr23R",
616 "fr24", "fr24R", "fr25", "fr25R",
617 "fr26", "fr26R", "fr27", "fr27R",
618 "fr28", "fr28R", "fr29", "fr29R",
619 "fr30", "fr30R", "fr31", "fr31R"
620 };
621 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
622 return NULL;
623 else
624 return names[i];
625 }
626
627 static const char *
628 hppa64_register_name (struct gdbarch *gdbarch, int i)
629 {
630 static char *names[] = {
631 "flags", "r1", "rp", "r3",
632 "r4", "r5", "r6", "r7",
633 "r8", "r9", "r10", "r11",
634 "r12", "r13", "r14", "r15",
635 "r16", "r17", "r18", "r19",
636 "r20", "r21", "r22", "r23",
637 "r24", "r25", "r26", "dp",
638 "ret0", "ret1", "sp", "r31",
639 "sar", "pcoqh", "pcsqh", "pcoqt",
640 "pcsqt", "eiem", "iir", "isr",
641 "ior", "ipsw", "goto", "sr4",
642 "sr0", "sr1", "sr2", "sr3",
643 "sr5", "sr6", "sr7", "cr0",
644 "cr8", "cr9", "ccr", "cr12",
645 "cr13", "cr24", "cr25", "cr26",
646 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
647 "fpsr", "fpe1", "fpe2", "fpe3",
648 "fr4", "fr5", "fr6", "fr7",
649 "fr8", "fr9", "fr10", "fr11",
650 "fr12", "fr13", "fr14", "fr15",
651 "fr16", "fr17", "fr18", "fr19",
652 "fr20", "fr21", "fr22", "fr23",
653 "fr24", "fr25", "fr26", "fr27",
654 "fr28", "fr29", "fr30", "fr31"
655 };
656 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
657 return NULL;
658 else
659 return names[i];
660 }
661
662 /* Map dwarf DBX register numbers to GDB register numbers. */
663 static int
664 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
665 {
666 /* The general registers and the sar are the same in both sets. */
667 if (reg <= 32)
668 return reg;
669
670 /* fr4-fr31 are mapped from 72 in steps of 2. */
671 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
672 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
673
674 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
675 return -1;
676 }
677
678 /* This function pushes a stack frame with arguments as part of the
679 inferior function calling mechanism.
680
681 This is the version of the function for the 32-bit PA machines, in
682 which later arguments appear at lower addresses. (The stack always
683 grows towards higher addresses.)
684
685 We simply allocate the appropriate amount of stack space and put
686 arguments into their proper slots. */
687
688 static CORE_ADDR
689 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
690 struct regcache *regcache, CORE_ADDR bp_addr,
691 int nargs, struct value **args, CORE_ADDR sp,
692 int struct_return, CORE_ADDR struct_addr)
693 {
694 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
695
696 /* Stack base address at which any pass-by-reference parameters are
697 stored. */
698 CORE_ADDR struct_end = 0;
699 /* Stack base address at which the first parameter is stored. */
700 CORE_ADDR param_end = 0;
701
702 /* The inner most end of the stack after all the parameters have
703 been pushed. */
704 CORE_ADDR new_sp = 0;
705
706 /* Two passes. First pass computes the location of everything,
707 second pass writes the bytes out. */
708 int write_pass;
709
710 /* Global pointer (r19) of the function we are trying to call. */
711 CORE_ADDR gp;
712
713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
714
715 for (write_pass = 0; write_pass < 2; write_pass++)
716 {
717 CORE_ADDR struct_ptr = 0;
718 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
719 struct_ptr is adjusted for each argument below, so the first
720 argument will end up at sp-36. */
721 CORE_ADDR param_ptr = 32;
722 int i;
723 int small_struct = 0;
724
725 for (i = 0; i < nargs; i++)
726 {
727 struct value *arg = args[i];
728 struct type *type = check_typedef (value_type (arg));
729 /* The corresponding parameter that is pushed onto the
730 stack, and [possibly] passed in a register. */
731 char param_val[8];
732 int param_len;
733 memset (param_val, 0, sizeof param_val);
734 if (TYPE_LENGTH (type) > 8)
735 {
736 /* Large parameter, pass by reference. Store the value
737 in "struct" area and then pass its address. */
738 param_len = 4;
739 struct_ptr += align_up (TYPE_LENGTH (type), 8);
740 if (write_pass)
741 write_memory (struct_end - struct_ptr, value_contents (arg),
742 TYPE_LENGTH (type));
743 store_unsigned_integer (param_val, 4, byte_order,
744 struct_end - struct_ptr);
745 }
746 else if (TYPE_CODE (type) == TYPE_CODE_INT
747 || TYPE_CODE (type) == TYPE_CODE_ENUM)
748 {
749 /* Integer value store, right aligned. "unpack_long"
750 takes care of any sign-extension problems. */
751 param_len = align_up (TYPE_LENGTH (type), 4);
752 store_unsigned_integer (param_val, param_len, byte_order,
753 unpack_long (type,
754 value_contents (arg)));
755 }
756 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
757 {
758 /* Floating point value store, right aligned. */
759 param_len = align_up (TYPE_LENGTH (type), 4);
760 memcpy (param_val, value_contents (arg), param_len);
761 }
762 else
763 {
764 param_len = align_up (TYPE_LENGTH (type), 4);
765
766 /* Small struct value are stored right-aligned. */
767 memcpy (param_val + param_len - TYPE_LENGTH (type),
768 value_contents (arg), TYPE_LENGTH (type));
769
770 /* Structures of size 5, 6 and 7 bytes are special in that
771 the higher-ordered word is stored in the lower-ordered
772 argument, and even though it is a 8-byte quantity the
773 registers need not be 8-byte aligned. */
774 if (param_len > 4 && param_len < 8)
775 small_struct = 1;
776 }
777
778 param_ptr += param_len;
779 if (param_len == 8 && !small_struct)
780 param_ptr = align_up (param_ptr, 8);
781
782 /* First 4 non-FP arguments are passed in gr26-gr23.
783 First 4 32-bit FP arguments are passed in fr4L-fr7L.
784 First 2 64-bit FP arguments are passed in fr5 and fr7.
785
786 The rest go on the stack, starting at sp-36, towards lower
787 addresses. 8-byte arguments must be aligned to a 8-byte
788 stack boundary. */
789 if (write_pass)
790 {
791 write_memory (param_end - param_ptr, param_val, param_len);
792
793 /* There are some cases when we don't know the type
794 expected by the callee (e.g. for variadic functions), so
795 pass the parameters in both general and fp regs. */
796 if (param_ptr <= 48)
797 {
798 int grreg = 26 - (param_ptr - 36) / 4;
799 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
800 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
801
802 regcache_cooked_write (regcache, grreg, param_val);
803 regcache_cooked_write (regcache, fpLreg, param_val);
804
805 if (param_len > 4)
806 {
807 regcache_cooked_write (regcache, grreg + 1,
808 param_val + 4);
809
810 regcache_cooked_write (regcache, fpreg, param_val);
811 regcache_cooked_write (regcache, fpreg + 1,
812 param_val + 4);
813 }
814 }
815 }
816 }
817
818 /* Update the various stack pointers. */
819 if (!write_pass)
820 {
821 struct_end = sp + align_up (struct_ptr, 64);
822 /* PARAM_PTR already accounts for all the arguments passed
823 by the user. However, the ABI mandates minimum stack
824 space allocations for outgoing arguments. The ABI also
825 mandates minimum stack alignments which we must
826 preserve. */
827 param_end = struct_end + align_up (param_ptr, 64);
828 }
829 }
830
831 /* If a structure has to be returned, set up register 28 to hold its
832 address. */
833 if (struct_return)
834 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
835
836 gp = tdep->find_global_pointer (gdbarch, function);
837
838 if (gp != 0)
839 regcache_cooked_write_unsigned (regcache, 19, gp);
840
841 /* Set the return address. */
842 if (!gdbarch_push_dummy_code_p (gdbarch))
843 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
844
845 /* Update the Stack Pointer. */
846 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
847
848 return param_end;
849 }
850
851 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
852 Runtime Architecture for PA-RISC 2.0", which is distributed as part
853 as of the HP-UX Software Transition Kit (STK). This implementation
854 is based on version 3.3, dated October 6, 1997. */
855
856 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
857
858 static int
859 hppa64_integral_or_pointer_p (const struct type *type)
860 {
861 switch (TYPE_CODE (type))
862 {
863 case TYPE_CODE_INT:
864 case TYPE_CODE_BOOL:
865 case TYPE_CODE_CHAR:
866 case TYPE_CODE_ENUM:
867 case TYPE_CODE_RANGE:
868 {
869 int len = TYPE_LENGTH (type);
870 return (len == 1 || len == 2 || len == 4 || len == 8);
871 }
872 case TYPE_CODE_PTR:
873 case TYPE_CODE_REF:
874 return (TYPE_LENGTH (type) == 8);
875 default:
876 break;
877 }
878
879 return 0;
880 }
881
882 /* Check whether TYPE is a "Floating Scalar Type". */
883
884 static int
885 hppa64_floating_p (const struct type *type)
886 {
887 switch (TYPE_CODE (type))
888 {
889 case TYPE_CODE_FLT:
890 {
891 int len = TYPE_LENGTH (type);
892 return (len == 4 || len == 8 || len == 16);
893 }
894 default:
895 break;
896 }
897
898 return 0;
899 }
900
901 /* If CODE points to a function entry address, try to look up the corresponding
902 function descriptor and return its address instead. If CODE is not a
903 function entry address, then just return it unchanged. */
904 static CORE_ADDR
905 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
906 {
907 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
908 struct obj_section *sec, *opd;
909
910 sec = find_pc_section (code);
911
912 if (!sec)
913 return code;
914
915 /* If CODE is in a data section, assume it's already a fptr. */
916 if (!(sec->the_bfd_section->flags & SEC_CODE))
917 return code;
918
919 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
920 {
921 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
922 break;
923 }
924
925 if (opd < sec->objfile->sections_end)
926 {
927 CORE_ADDR addr;
928
929 for (addr = obj_section_addr (opd);
930 addr < obj_section_endaddr (opd);
931 addr += 2 * 8)
932 {
933 ULONGEST opdaddr;
934 char tmp[8];
935
936 if (target_read_memory (addr, tmp, sizeof (tmp)))
937 break;
938 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
939
940 if (opdaddr == code)
941 return addr - 16;
942 }
943 }
944
945 return code;
946 }
947
948 static CORE_ADDR
949 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
950 struct regcache *regcache, CORE_ADDR bp_addr,
951 int nargs, struct value **args, CORE_ADDR sp,
952 int struct_return, CORE_ADDR struct_addr)
953 {
954 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
955 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
956 int i, offset = 0;
957 CORE_ADDR gp;
958
959 /* "The outgoing parameter area [...] must be aligned at a 16-byte
960 boundary." */
961 sp = align_up (sp, 16);
962
963 for (i = 0; i < nargs; i++)
964 {
965 struct value *arg = args[i];
966 struct type *type = value_type (arg);
967 int len = TYPE_LENGTH (type);
968 const bfd_byte *valbuf;
969 bfd_byte fptrbuf[8];
970 int regnum;
971
972 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
973 offset = align_up (offset, 8);
974
975 if (hppa64_integral_or_pointer_p (type))
976 {
977 /* "Integral scalar parameters smaller than 64 bits are
978 padded on the left (i.e., the value is in the
979 least-significant bits of the 64-bit storage unit, and
980 the high-order bits are undefined)." Therefore we can
981 safely sign-extend them. */
982 if (len < 8)
983 {
984 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
985 len = 8;
986 }
987 }
988 else if (hppa64_floating_p (type))
989 {
990 if (len > 8)
991 {
992 /* "Quad-precision (128-bit) floating-point scalar
993 parameters are aligned on a 16-byte boundary." */
994 offset = align_up (offset, 16);
995
996 /* "Double-extended- and quad-precision floating-point
997 parameters within the first 64 bytes of the parameter
998 list are always passed in general registers." */
999 }
1000 else
1001 {
1002 if (len == 4)
1003 {
1004 /* "Single-precision (32-bit) floating-point scalar
1005 parameters are padded on the left with 32 bits of
1006 garbage (i.e., the floating-point value is in the
1007 least-significant 32 bits of a 64-bit storage
1008 unit)." */
1009 offset += 4;
1010 }
1011
1012 /* "Single- and double-precision floating-point
1013 parameters in this area are passed according to the
1014 available formal parameter information in a function
1015 prototype. [...] If no prototype is in scope,
1016 floating-point parameters must be passed both in the
1017 corresponding general registers and in the
1018 corresponding floating-point registers." */
1019 regnum = HPPA64_FP4_REGNUM + offset / 8;
1020
1021 if (regnum < HPPA64_FP4_REGNUM + 8)
1022 {
1023 /* "Single-precision floating-point parameters, when
1024 passed in floating-point registers, are passed in
1025 the right halves of the floating point registers;
1026 the left halves are unused." */
1027 regcache_cooked_write_part (regcache, regnum, offset % 8,
1028 len, value_contents (arg));
1029 }
1030 }
1031 }
1032 else
1033 {
1034 if (len > 8)
1035 {
1036 /* "Aggregates larger than 8 bytes are aligned on a
1037 16-byte boundary, possibly leaving an unused argument
1038 slot, which is filled with garbage. If necessary,
1039 they are padded on the right (with garbage), to a
1040 multiple of 8 bytes." */
1041 offset = align_up (offset, 16);
1042 }
1043 }
1044
1045 /* If we are passing a function pointer, make sure we pass a function
1046 descriptor instead of the function entry address. */
1047 if (TYPE_CODE (type) == TYPE_CODE_PTR
1048 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1049 {
1050 ULONGEST codeptr, fptr;
1051
1052 codeptr = unpack_long (type, value_contents (arg));
1053 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1054 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1055 fptr);
1056 valbuf = fptrbuf;
1057 }
1058 else
1059 {
1060 valbuf = value_contents (arg);
1061 }
1062
1063 /* Always store the argument in memory. */
1064 write_memory (sp + offset, valbuf, len);
1065
1066 regnum = HPPA_ARG0_REGNUM - offset / 8;
1067 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1068 {
1069 regcache_cooked_write_part (regcache, regnum,
1070 offset % 8, min (len, 8), valbuf);
1071 offset += min (len, 8);
1072 valbuf += min (len, 8);
1073 len -= min (len, 8);
1074 regnum--;
1075 }
1076
1077 offset += len;
1078 }
1079
1080 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1081 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1082
1083 /* Allocate the outgoing parameter area. Make sure the outgoing
1084 parameter area is multiple of 16 bytes in length. */
1085 sp += max (align_up (offset, 16), 64);
1086
1087 /* Allocate 32-bytes of scratch space. The documentation doesn't
1088 mention this, but it seems to be needed. */
1089 sp += 32;
1090
1091 /* Allocate the frame marker area. */
1092 sp += 16;
1093
1094 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1095 its address. */
1096 if (struct_return)
1097 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1098
1099 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1100 gp = tdep->find_global_pointer (gdbarch, function);
1101 if (gp != 0)
1102 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1103
1104 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1105 if (!gdbarch_push_dummy_code_p (gdbarch))
1106 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1107
1108 /* Set up GR30 to hold the stack pointer (sp). */
1109 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1110
1111 return sp;
1112 }
1113 \f
1114
1115 /* Handle 32/64-bit struct return conventions. */
1116
1117 static enum return_value_convention
1118 hppa32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1119 struct type *type, struct regcache *regcache,
1120 gdb_byte *readbuf, const gdb_byte *writebuf)
1121 {
1122 if (TYPE_LENGTH (type) <= 2 * 4)
1123 {
1124 /* The value always lives in the right hand end of the register
1125 (or register pair)? */
1126 int b;
1127 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1128 int part = TYPE_LENGTH (type) % 4;
1129 /* The left hand register contains only part of the value,
1130 transfer that first so that the rest can be xfered as entire
1131 4-byte registers. */
1132 if (part > 0)
1133 {
1134 if (readbuf != NULL)
1135 regcache_cooked_read_part (regcache, reg, 4 - part,
1136 part, readbuf);
1137 if (writebuf != NULL)
1138 regcache_cooked_write_part (regcache, reg, 4 - part,
1139 part, writebuf);
1140 reg++;
1141 }
1142 /* Now transfer the remaining register values. */
1143 for (b = part; b < TYPE_LENGTH (type); b += 4)
1144 {
1145 if (readbuf != NULL)
1146 regcache_cooked_read (regcache, reg, readbuf + b);
1147 if (writebuf != NULL)
1148 regcache_cooked_write (regcache, reg, writebuf + b);
1149 reg++;
1150 }
1151 return RETURN_VALUE_REGISTER_CONVENTION;
1152 }
1153 else
1154 return RETURN_VALUE_STRUCT_CONVENTION;
1155 }
1156
1157 static enum return_value_convention
1158 hppa64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1159 struct type *type, struct regcache *regcache,
1160 gdb_byte *readbuf, const gdb_byte *writebuf)
1161 {
1162 int len = TYPE_LENGTH (type);
1163 int regnum, offset;
1164
1165 if (len > 16)
1166 {
1167 /* All return values larget than 128 bits must be aggregate
1168 return values. */
1169 gdb_assert (!hppa64_integral_or_pointer_p (type));
1170 gdb_assert (!hppa64_floating_p (type));
1171
1172 /* "Aggregate return values larger than 128 bits are returned in
1173 a buffer allocated by the caller. The address of the buffer
1174 must be passed in GR 28." */
1175 return RETURN_VALUE_STRUCT_CONVENTION;
1176 }
1177
1178 if (hppa64_integral_or_pointer_p (type))
1179 {
1180 /* "Integral return values are returned in GR 28. Values
1181 smaller than 64 bits are padded on the left (with garbage)." */
1182 regnum = HPPA_RET0_REGNUM;
1183 offset = 8 - len;
1184 }
1185 else if (hppa64_floating_p (type))
1186 {
1187 if (len > 8)
1188 {
1189 /* "Double-extended- and quad-precision floating-point
1190 values are returned in GRs 28 and 29. The sign,
1191 exponent, and most-significant bits of the mantissa are
1192 returned in GR 28; the least-significant bits of the
1193 mantissa are passed in GR 29. For double-extended
1194 precision values, GR 29 is padded on the right with 48
1195 bits of garbage." */
1196 regnum = HPPA_RET0_REGNUM;
1197 offset = 0;
1198 }
1199 else
1200 {
1201 /* "Single-precision and double-precision floating-point
1202 return values are returned in FR 4R (single precision) or
1203 FR 4 (double-precision)." */
1204 regnum = HPPA64_FP4_REGNUM;
1205 offset = 8 - len;
1206 }
1207 }
1208 else
1209 {
1210 /* "Aggregate return values up to 64 bits in size are returned
1211 in GR 28. Aggregates smaller than 64 bits are left aligned
1212 in the register; the pad bits on the right are undefined."
1213
1214 "Aggregate return values between 65 and 128 bits are returned
1215 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1216 the remaining bits are placed, left aligned, in GR 29. The
1217 pad bits on the right of GR 29 (if any) are undefined." */
1218 regnum = HPPA_RET0_REGNUM;
1219 offset = 0;
1220 }
1221
1222 if (readbuf)
1223 {
1224 while (len > 0)
1225 {
1226 regcache_cooked_read_part (regcache, regnum, offset,
1227 min (len, 8), readbuf);
1228 readbuf += min (len, 8);
1229 len -= min (len, 8);
1230 regnum++;
1231 }
1232 }
1233
1234 if (writebuf)
1235 {
1236 while (len > 0)
1237 {
1238 regcache_cooked_write_part (regcache, regnum, offset,
1239 min (len, 8), writebuf);
1240 writebuf += min (len, 8);
1241 len -= min (len, 8);
1242 regnum++;
1243 }
1244 }
1245
1246 return RETURN_VALUE_REGISTER_CONVENTION;
1247 }
1248 \f
1249
1250 static CORE_ADDR
1251 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1252 struct target_ops *targ)
1253 {
1254 if (addr & 2)
1255 {
1256 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1257 CORE_ADDR plabel = addr & ~3;
1258 return read_memory_typed_address (plabel, func_ptr_type);
1259 }
1260
1261 return addr;
1262 }
1263
1264 static CORE_ADDR
1265 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1266 {
1267 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1268 and not _bit_)! */
1269 return align_up (addr, 64);
1270 }
1271
1272 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1273
1274 static CORE_ADDR
1275 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1276 {
1277 /* Just always 16-byte align. */
1278 return align_up (addr, 16);
1279 }
1280
1281 CORE_ADDR
1282 hppa_read_pc (struct regcache *regcache)
1283 {
1284 ULONGEST ipsw;
1285 ULONGEST pc;
1286
1287 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1288 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1289
1290 /* If the current instruction is nullified, then we are effectively
1291 still executing the previous instruction. Pretend we are still
1292 there. This is needed when single stepping; if the nullified
1293 instruction is on a different line, we don't want GDB to think
1294 we've stepped onto that line. */
1295 if (ipsw & 0x00200000)
1296 pc -= 4;
1297
1298 return pc & ~0x3;
1299 }
1300
1301 void
1302 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1303 {
1304 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1305 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1306 }
1307
1308 /* For the given instruction (INST), return any adjustment it makes
1309 to the stack pointer or zero for no adjustment.
1310
1311 This only handles instructions commonly found in prologues. */
1312
1313 static int
1314 prologue_inst_adjust_sp (unsigned long inst)
1315 {
1316 /* This must persist across calls. */
1317 static int save_high21;
1318
1319 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1320 if ((inst & 0xffffc000) == 0x37de0000)
1321 return hppa_extract_14 (inst);
1322
1323 /* stwm X,D(sp) */
1324 if ((inst & 0xffe00000) == 0x6fc00000)
1325 return hppa_extract_14 (inst);
1326
1327 /* std,ma X,D(sp) */
1328 if ((inst & 0xffe00008) == 0x73c00008)
1329 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1330
1331 /* addil high21,%r30; ldo low11,(%r1),%r30)
1332 save high bits in save_high21 for later use. */
1333 if ((inst & 0xffe00000) == 0x2bc00000)
1334 {
1335 save_high21 = hppa_extract_21 (inst);
1336 return 0;
1337 }
1338
1339 if ((inst & 0xffff0000) == 0x343e0000)
1340 return save_high21 + hppa_extract_14 (inst);
1341
1342 /* fstws as used by the HP compilers. */
1343 if ((inst & 0xffffffe0) == 0x2fd01220)
1344 return hppa_extract_5_load (inst);
1345
1346 /* No adjustment. */
1347 return 0;
1348 }
1349
1350 /* Return nonzero if INST is a branch of some kind, else return zero. */
1351
1352 static int
1353 is_branch (unsigned long inst)
1354 {
1355 switch (inst >> 26)
1356 {
1357 case 0x20:
1358 case 0x21:
1359 case 0x22:
1360 case 0x23:
1361 case 0x27:
1362 case 0x28:
1363 case 0x29:
1364 case 0x2a:
1365 case 0x2b:
1366 case 0x2f:
1367 case 0x30:
1368 case 0x31:
1369 case 0x32:
1370 case 0x33:
1371 case 0x38:
1372 case 0x39:
1373 case 0x3a:
1374 case 0x3b:
1375 return 1;
1376
1377 default:
1378 return 0;
1379 }
1380 }
1381
1382 /* Return the register number for a GR which is saved by INST or
1383 zero it INST does not save a GR. */
1384
1385 static int
1386 inst_saves_gr (unsigned long inst)
1387 {
1388 /* Does it look like a stw? */
1389 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1390 || (inst >> 26) == 0x1f
1391 || ((inst >> 26) == 0x1f
1392 && ((inst >> 6) == 0xa)))
1393 return hppa_extract_5R_store (inst);
1394
1395 /* Does it look like a std? */
1396 if ((inst >> 26) == 0x1c
1397 || ((inst >> 26) == 0x03
1398 && ((inst >> 6) & 0xf) == 0xb))
1399 return hppa_extract_5R_store (inst);
1400
1401 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1402 if ((inst >> 26) == 0x1b)
1403 return hppa_extract_5R_store (inst);
1404
1405 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1406 too. */
1407 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1408 || ((inst >> 26) == 0x3
1409 && (((inst >> 6) & 0xf) == 0x8
1410 || (inst >> 6) & 0xf) == 0x9))
1411 return hppa_extract_5R_store (inst);
1412
1413 return 0;
1414 }
1415
1416 /* Return the register number for a FR which is saved by INST or
1417 zero it INST does not save a FR.
1418
1419 Note we only care about full 64bit register stores (that's the only
1420 kind of stores the prologue will use).
1421
1422 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1423
1424 static int
1425 inst_saves_fr (unsigned long inst)
1426 {
1427 /* Is this an FSTD? */
1428 if ((inst & 0xfc00dfc0) == 0x2c001200)
1429 return hppa_extract_5r_store (inst);
1430 if ((inst & 0xfc000002) == 0x70000002)
1431 return hppa_extract_5R_store (inst);
1432 /* Is this an FSTW? */
1433 if ((inst & 0xfc00df80) == 0x24001200)
1434 return hppa_extract_5r_store (inst);
1435 if ((inst & 0xfc000002) == 0x7c000000)
1436 return hppa_extract_5R_store (inst);
1437 return 0;
1438 }
1439
1440 /* Advance PC across any function entry prologue instructions
1441 to reach some "real" code.
1442
1443 Use information in the unwind table to determine what exactly should
1444 be in the prologue. */
1445
1446
1447 static CORE_ADDR
1448 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1449 int stop_before_branch)
1450 {
1451 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1452 char buf[4];
1453 CORE_ADDR orig_pc = pc;
1454 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1455 unsigned long args_stored, status, i, restart_gr, restart_fr;
1456 struct unwind_table_entry *u;
1457 int final_iteration;
1458
1459 restart_gr = 0;
1460 restart_fr = 0;
1461
1462 restart:
1463 u = find_unwind_entry (pc);
1464 if (!u)
1465 return pc;
1466
1467 /* If we are not at the beginning of a function, then return now. */
1468 if ((pc & ~0x3) != u->region_start)
1469 return pc;
1470
1471 /* This is how much of a frame adjustment we need to account for. */
1472 stack_remaining = u->Total_frame_size << 3;
1473
1474 /* Magic register saves we want to know about. */
1475 save_rp = u->Save_RP;
1476 save_sp = u->Save_SP;
1477
1478 /* An indication that args may be stored into the stack. Unfortunately
1479 the HPUX compilers tend to set this in cases where no args were
1480 stored too!. */
1481 args_stored = 1;
1482
1483 /* Turn the Entry_GR field into a bitmask. */
1484 save_gr = 0;
1485 for (i = 3; i < u->Entry_GR + 3; i++)
1486 {
1487 /* Frame pointer gets saved into a special location. */
1488 if (u->Save_SP && i == HPPA_FP_REGNUM)
1489 continue;
1490
1491 save_gr |= (1 << i);
1492 }
1493 save_gr &= ~restart_gr;
1494
1495 /* Turn the Entry_FR field into a bitmask too. */
1496 save_fr = 0;
1497 for (i = 12; i < u->Entry_FR + 12; i++)
1498 save_fr |= (1 << i);
1499 save_fr &= ~restart_fr;
1500
1501 final_iteration = 0;
1502
1503 /* Loop until we find everything of interest or hit a branch.
1504
1505 For unoptimized GCC code and for any HP CC code this will never ever
1506 examine any user instructions.
1507
1508 For optimzied GCC code we're faced with problems. GCC will schedule
1509 its prologue and make prologue instructions available for delay slot
1510 filling. The end result is user code gets mixed in with the prologue
1511 and a prologue instruction may be in the delay slot of the first branch
1512 or call.
1513
1514 Some unexpected things are expected with debugging optimized code, so
1515 we allow this routine to walk past user instructions in optimized
1516 GCC code. */
1517 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1518 || args_stored)
1519 {
1520 unsigned int reg_num;
1521 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1522 unsigned long old_save_rp, old_save_sp, next_inst;
1523
1524 /* Save copies of all the triggers so we can compare them later
1525 (only for HPC). */
1526 old_save_gr = save_gr;
1527 old_save_fr = save_fr;
1528 old_save_rp = save_rp;
1529 old_save_sp = save_sp;
1530 old_stack_remaining = stack_remaining;
1531
1532 status = target_read_memory (pc, buf, 4);
1533 inst = extract_unsigned_integer (buf, 4, byte_order);
1534
1535 /* Yow! */
1536 if (status != 0)
1537 return pc;
1538
1539 /* Note the interesting effects of this instruction. */
1540 stack_remaining -= prologue_inst_adjust_sp (inst);
1541
1542 /* There are limited ways to store the return pointer into the
1543 stack. */
1544 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1545 save_rp = 0;
1546
1547 /* These are the only ways we save SP into the stack. At this time
1548 the HP compilers never bother to save SP into the stack. */
1549 if ((inst & 0xffffc000) == 0x6fc10000
1550 || (inst & 0xffffc00c) == 0x73c10008)
1551 save_sp = 0;
1552
1553 /* Are we loading some register with an offset from the argument
1554 pointer? */
1555 if ((inst & 0xffe00000) == 0x37a00000
1556 || (inst & 0xffffffe0) == 0x081d0240)
1557 {
1558 pc += 4;
1559 continue;
1560 }
1561
1562 /* Account for general and floating-point register saves. */
1563 reg_num = inst_saves_gr (inst);
1564 save_gr &= ~(1 << reg_num);
1565
1566 /* Ugh. Also account for argument stores into the stack.
1567 Unfortunately args_stored only tells us that some arguments
1568 where stored into the stack. Not how many or what kind!
1569
1570 This is a kludge as on the HP compiler sets this bit and it
1571 never does prologue scheduling. So once we see one, skip past
1572 all of them. We have similar code for the fp arg stores below.
1573
1574 FIXME. Can still die if we have a mix of GR and FR argument
1575 stores! */
1576 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1577 && reg_num <= 26)
1578 {
1579 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1580 && reg_num <= 26)
1581 {
1582 pc += 4;
1583 status = target_read_memory (pc, buf, 4);
1584 inst = extract_unsigned_integer (buf, 4, byte_order);
1585 if (status != 0)
1586 return pc;
1587 reg_num = inst_saves_gr (inst);
1588 }
1589 args_stored = 0;
1590 continue;
1591 }
1592
1593 reg_num = inst_saves_fr (inst);
1594 save_fr &= ~(1 << reg_num);
1595
1596 status = target_read_memory (pc + 4, buf, 4);
1597 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1598
1599 /* Yow! */
1600 if (status != 0)
1601 return pc;
1602
1603 /* We've got to be read to handle the ldo before the fp register
1604 save. */
1605 if ((inst & 0xfc000000) == 0x34000000
1606 && inst_saves_fr (next_inst) >= 4
1607 && inst_saves_fr (next_inst)
1608 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1609 {
1610 /* So we drop into the code below in a reasonable state. */
1611 reg_num = inst_saves_fr (next_inst);
1612 pc -= 4;
1613 }
1614
1615 /* Ugh. Also account for argument stores into the stack.
1616 This is a kludge as on the HP compiler sets this bit and it
1617 never does prologue scheduling. So once we see one, skip past
1618 all of them. */
1619 if (reg_num >= 4
1620 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1621 {
1622 while (reg_num >= 4
1623 && reg_num
1624 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1625 {
1626 pc += 8;
1627 status = target_read_memory (pc, buf, 4);
1628 inst = extract_unsigned_integer (buf, 4, byte_order);
1629 if (status != 0)
1630 return pc;
1631 if ((inst & 0xfc000000) != 0x34000000)
1632 break;
1633 status = target_read_memory (pc + 4, buf, 4);
1634 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1635 if (status != 0)
1636 return pc;
1637 reg_num = inst_saves_fr (next_inst);
1638 }
1639 args_stored = 0;
1640 continue;
1641 }
1642
1643 /* Quit if we hit any kind of branch. This can happen if a prologue
1644 instruction is in the delay slot of the first call/branch. */
1645 if (is_branch (inst) && stop_before_branch)
1646 break;
1647
1648 /* What a crock. The HP compilers set args_stored even if no
1649 arguments were stored into the stack (boo hiss). This could
1650 cause this code to then skip a bunch of user insns (up to the
1651 first branch).
1652
1653 To combat this we try to identify when args_stored was bogusly
1654 set and clear it. We only do this when args_stored is nonzero,
1655 all other resources are accounted for, and nothing changed on
1656 this pass. */
1657 if (args_stored
1658 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1659 && old_save_gr == save_gr && old_save_fr == save_fr
1660 && old_save_rp == save_rp && old_save_sp == save_sp
1661 && old_stack_remaining == stack_remaining)
1662 break;
1663
1664 /* Bump the PC. */
1665 pc += 4;
1666
1667 /* !stop_before_branch, so also look at the insn in the delay slot
1668 of the branch. */
1669 if (final_iteration)
1670 break;
1671 if (is_branch (inst))
1672 final_iteration = 1;
1673 }
1674
1675 /* We've got a tenative location for the end of the prologue. However
1676 because of limitations in the unwind descriptor mechanism we may
1677 have went too far into user code looking for the save of a register
1678 that does not exist. So, if there registers we expected to be saved
1679 but never were, mask them out and restart.
1680
1681 This should only happen in optimized code, and should be very rare. */
1682 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1683 {
1684 pc = orig_pc;
1685 restart_gr = save_gr;
1686 restart_fr = save_fr;
1687 goto restart;
1688 }
1689
1690 return pc;
1691 }
1692
1693
1694 /* Return the address of the PC after the last prologue instruction if
1695 we can determine it from the debug symbols. Else return zero. */
1696
1697 static CORE_ADDR
1698 after_prologue (CORE_ADDR pc)
1699 {
1700 struct symtab_and_line sal;
1701 CORE_ADDR func_addr, func_end;
1702 struct symbol *f;
1703
1704 /* If we can not find the symbol in the partial symbol table, then
1705 there is no hope we can determine the function's start address
1706 with this code. */
1707 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1708 return 0;
1709
1710 /* Get the line associated with FUNC_ADDR. */
1711 sal = find_pc_line (func_addr, 0);
1712
1713 /* There are only two cases to consider. First, the end of the source line
1714 is within the function bounds. In that case we return the end of the
1715 source line. Second is the end of the source line extends beyond the
1716 bounds of the current function. We need to use the slow code to
1717 examine instructions in that case.
1718
1719 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1720 the wrong thing to do. In fact, it should be entirely possible for this
1721 function to always return zero since the slow instruction scanning code
1722 is supposed to *always* work. If it does not, then it is a bug. */
1723 if (sal.end < func_end)
1724 return sal.end;
1725 else
1726 return 0;
1727 }
1728
1729 /* To skip prologues, I use this predicate. Returns either PC itself
1730 if the code at PC does not look like a function prologue; otherwise
1731 returns an address that (if we're lucky) follows the prologue.
1732
1733 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1734 It doesn't necessarily skips all the insns in the prologue. In fact
1735 we might not want to skip all the insns because a prologue insn may
1736 appear in the delay slot of the first branch, and we don't want to
1737 skip over the branch in that case. */
1738
1739 static CORE_ADDR
1740 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1741 {
1742 unsigned long inst;
1743 int offset;
1744 CORE_ADDR post_prologue_pc;
1745 char buf[4];
1746
1747 /* See if we can determine the end of the prologue via the symbol table.
1748 If so, then return either PC, or the PC after the prologue, whichever
1749 is greater. */
1750
1751 post_prologue_pc = after_prologue (pc);
1752
1753 /* If after_prologue returned a useful address, then use it. Else
1754 fall back on the instruction skipping code.
1755
1756 Some folks have claimed this causes problems because the breakpoint
1757 may be the first instruction of the prologue. If that happens, then
1758 the instruction skipping code has a bug that needs to be fixed. */
1759 if (post_prologue_pc != 0)
1760 return max (pc, post_prologue_pc);
1761 else
1762 return (skip_prologue_hard_way (gdbarch, pc, 1));
1763 }
1764
1765 /* Return an unwind entry that falls within the frame's code block. */
1766
1767 static struct unwind_table_entry *
1768 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1769 {
1770 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1771
1772 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1773 result of get_frame_address_in_block implies a problem.
1774 The bits should have been removed earlier, before the return
1775 value of gdbarch_unwind_pc. That might be happening already;
1776 if it isn't, it should be fixed. Then this call can be
1777 removed. */
1778 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1779 return find_unwind_entry (pc);
1780 }
1781
1782 struct hppa_frame_cache
1783 {
1784 CORE_ADDR base;
1785 struct trad_frame_saved_reg *saved_regs;
1786 };
1787
1788 static struct hppa_frame_cache *
1789 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1790 {
1791 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1792 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1793 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1794 struct hppa_frame_cache *cache;
1795 long saved_gr_mask;
1796 long saved_fr_mask;
1797 CORE_ADDR this_sp;
1798 long frame_size;
1799 struct unwind_table_entry *u;
1800 CORE_ADDR prologue_end;
1801 int fp_in_r1 = 0;
1802 int i;
1803
1804 if (hppa_debug)
1805 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1806 frame_relative_level(this_frame));
1807
1808 if ((*this_cache) != NULL)
1809 {
1810 if (hppa_debug)
1811 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1812 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1813 return (*this_cache);
1814 }
1815 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1816 (*this_cache) = cache;
1817 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1818
1819 /* Yow! */
1820 u = hppa_find_unwind_entry_in_block (this_frame);
1821 if (!u)
1822 {
1823 if (hppa_debug)
1824 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1825 return (*this_cache);
1826 }
1827
1828 /* Turn the Entry_GR field into a bitmask. */
1829 saved_gr_mask = 0;
1830 for (i = 3; i < u->Entry_GR + 3; i++)
1831 {
1832 /* Frame pointer gets saved into a special location. */
1833 if (u->Save_SP && i == HPPA_FP_REGNUM)
1834 continue;
1835
1836 saved_gr_mask |= (1 << i);
1837 }
1838
1839 /* Turn the Entry_FR field into a bitmask too. */
1840 saved_fr_mask = 0;
1841 for (i = 12; i < u->Entry_FR + 12; i++)
1842 saved_fr_mask |= (1 << i);
1843
1844 /* Loop until we find everything of interest or hit a branch.
1845
1846 For unoptimized GCC code and for any HP CC code this will never ever
1847 examine any user instructions.
1848
1849 For optimized GCC code we're faced with problems. GCC will schedule
1850 its prologue and make prologue instructions available for delay slot
1851 filling. The end result is user code gets mixed in with the prologue
1852 and a prologue instruction may be in the delay slot of the first branch
1853 or call.
1854
1855 Some unexpected things are expected with debugging optimized code, so
1856 we allow this routine to walk past user instructions in optimized
1857 GCC code. */
1858 {
1859 int final_iteration = 0;
1860 CORE_ADDR pc, start_pc, end_pc;
1861 int looking_for_sp = u->Save_SP;
1862 int looking_for_rp = u->Save_RP;
1863 int fp_loc = -1;
1864
1865 /* We have to use skip_prologue_hard_way instead of just
1866 skip_prologue_using_sal, in case we stepped into a function without
1867 symbol information. hppa_skip_prologue also bounds the returned
1868 pc by the passed in pc, so it will not return a pc in the next
1869 function.
1870
1871 We used to call hppa_skip_prologue to find the end of the prologue,
1872 but if some non-prologue instructions get scheduled into the prologue,
1873 and the program is compiled with debug information, the "easy" way
1874 in hppa_skip_prologue will return a prologue end that is too early
1875 for us to notice any potential frame adjustments. */
1876
1877 /* We used to use get_frame_func to locate the beginning of the
1878 function to pass to skip_prologue. However, when objects are
1879 compiled without debug symbols, get_frame_func can return the wrong
1880 function (or 0). We can do better than that by using unwind records.
1881 This only works if the Region_description of the unwind record
1882 indicates that it includes the entry point of the function.
1883 HP compilers sometimes generate unwind records for regions that
1884 do not include the entry or exit point of a function. GNU tools
1885 do not do this. */
1886
1887 if ((u->Region_description & 0x2) == 0)
1888 start_pc = u->region_start;
1889 else
1890 start_pc = get_frame_func (this_frame);
1891
1892 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1893 end_pc = get_frame_pc (this_frame);
1894
1895 if (prologue_end != 0 && end_pc > prologue_end)
1896 end_pc = prologue_end;
1897
1898 frame_size = 0;
1899
1900 for (pc = start_pc;
1901 ((saved_gr_mask || saved_fr_mask
1902 || looking_for_sp || looking_for_rp
1903 || frame_size < (u->Total_frame_size << 3))
1904 && pc < end_pc);
1905 pc += 4)
1906 {
1907 int reg;
1908 char buf4[4];
1909 long inst;
1910
1911 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1912 {
1913 error (_("Cannot read instruction at %s."),
1914 paddress (gdbarch, pc));
1915 return (*this_cache);
1916 }
1917
1918 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
1919
1920 /* Note the interesting effects of this instruction. */
1921 frame_size += prologue_inst_adjust_sp (inst);
1922
1923 /* There are limited ways to store the return pointer into the
1924 stack. */
1925 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1926 {
1927 looking_for_rp = 0;
1928 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1929 }
1930 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1931 {
1932 looking_for_rp = 0;
1933 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1934 }
1935 else if (inst == 0x0fc212c1
1936 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1937 {
1938 looking_for_rp = 0;
1939 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1940 }
1941
1942 /* Check to see if we saved SP into the stack. This also
1943 happens to indicate the location of the saved frame
1944 pointer. */
1945 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1946 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1947 {
1948 looking_for_sp = 0;
1949 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1950 }
1951 else if (inst == 0x08030241) /* copy %r3, %r1 */
1952 {
1953 fp_in_r1 = 1;
1954 }
1955
1956 /* Account for general and floating-point register saves. */
1957 reg = inst_saves_gr (inst);
1958 if (reg >= 3 && reg <= 18
1959 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1960 {
1961 saved_gr_mask &= ~(1 << reg);
1962 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1963 /* stwm with a positive displacement is a _post_
1964 _modify_. */
1965 cache->saved_regs[reg].addr = 0;
1966 else if ((inst & 0xfc00000c) == 0x70000008)
1967 /* A std has explicit post_modify forms. */
1968 cache->saved_regs[reg].addr = 0;
1969 else
1970 {
1971 CORE_ADDR offset;
1972
1973 if ((inst >> 26) == 0x1c)
1974 offset = (inst & 0x1 ? -1 << 13 : 0)
1975 | (((inst >> 4) & 0x3ff) << 3);
1976 else if ((inst >> 26) == 0x03)
1977 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1978 else
1979 offset = hppa_extract_14 (inst);
1980
1981 /* Handle code with and without frame pointers. */
1982 if (u->Save_SP)
1983 cache->saved_regs[reg].addr = offset;
1984 else
1985 cache->saved_regs[reg].addr
1986 = (u->Total_frame_size << 3) + offset;
1987 }
1988 }
1989
1990 /* GCC handles callee saved FP regs a little differently.
1991
1992 It emits an instruction to put the value of the start of
1993 the FP store area into %r1. It then uses fstds,ma with a
1994 basereg of %r1 for the stores.
1995
1996 HP CC emits them at the current stack pointer modifying the
1997 stack pointer as it stores each register. */
1998
1999 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2000 if ((inst & 0xffffc000) == 0x34610000
2001 || (inst & 0xffffc000) == 0x37c10000)
2002 fp_loc = hppa_extract_14 (inst);
2003
2004 reg = inst_saves_fr (inst);
2005 if (reg >= 12 && reg <= 21)
2006 {
2007 /* Note +4 braindamage below is necessary because the FP
2008 status registers are internally 8 registers rather than
2009 the expected 4 registers. */
2010 saved_fr_mask &= ~(1 << reg);
2011 if (fp_loc == -1)
2012 {
2013 /* 1st HP CC FP register store. After this
2014 instruction we've set enough state that the GCC and
2015 HPCC code are both handled in the same manner. */
2016 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2017 fp_loc = 8;
2018 }
2019 else
2020 {
2021 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2022 fp_loc += 8;
2023 }
2024 }
2025
2026 /* Quit if we hit any kind of branch the previous iteration. */
2027 if (final_iteration)
2028 break;
2029 /* We want to look precisely one instruction beyond the branch
2030 if we have not found everything yet. */
2031 if (is_branch (inst))
2032 final_iteration = 1;
2033 }
2034 }
2035
2036 {
2037 /* The frame base always represents the value of %sp at entry to
2038 the current function (and is thus equivalent to the "saved"
2039 stack pointer. */
2040 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2041 HPPA_SP_REGNUM);
2042 CORE_ADDR fp;
2043
2044 if (hppa_debug)
2045 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2046 "prologue_end=%s) ",
2047 paddress (gdbarch, this_sp),
2048 paddress (gdbarch, get_frame_pc (this_frame)),
2049 paddress (gdbarch, prologue_end));
2050
2051 /* Check to see if a frame pointer is available, and use it for
2052 frame unwinding if it is.
2053
2054 There are some situations where we need to rely on the frame
2055 pointer to do stack unwinding. For example, if a function calls
2056 alloca (), the stack pointer can get adjusted inside the body of
2057 the function. In this case, the ABI requires that the compiler
2058 maintain a frame pointer for the function.
2059
2060 The unwind record has a flag (alloca_frame) that indicates that
2061 a function has a variable frame; unfortunately, gcc/binutils
2062 does not set this flag. Instead, whenever a frame pointer is used
2063 and saved on the stack, the Save_SP flag is set. We use this to
2064 decide whether to use the frame pointer for unwinding.
2065
2066 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2067 instead of Save_SP. */
2068
2069 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2070
2071 if (u->alloca_frame)
2072 fp -= u->Total_frame_size << 3;
2073
2074 if (get_frame_pc (this_frame) >= prologue_end
2075 && (u->Save_SP || u->alloca_frame) && fp != 0)
2076 {
2077 cache->base = fp;
2078
2079 if (hppa_debug)
2080 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2081 paddress (gdbarch, cache->base));
2082 }
2083 else if (u->Save_SP
2084 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2085 {
2086 /* Both we're expecting the SP to be saved and the SP has been
2087 saved. The entry SP value is saved at this frame's SP
2088 address. */
2089 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2090
2091 if (hppa_debug)
2092 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2093 paddress (gdbarch, cache->base));
2094 }
2095 else
2096 {
2097 /* The prologue has been slowly allocating stack space. Adjust
2098 the SP back. */
2099 cache->base = this_sp - frame_size;
2100 if (hppa_debug)
2101 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2102 paddress (gdbarch, cache->base));
2103
2104 }
2105 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2106 }
2107
2108 /* The PC is found in the "return register", "Millicode" uses "r31"
2109 as the return register while normal code uses "rp". */
2110 if (u->Millicode)
2111 {
2112 if (trad_frame_addr_p (cache->saved_regs, 31))
2113 {
2114 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2115 if (hppa_debug)
2116 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2117 }
2118 else
2119 {
2120 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2121 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2122 if (hppa_debug)
2123 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2124 }
2125 }
2126 else
2127 {
2128 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2129 {
2130 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2131 cache->saved_regs[HPPA_RP_REGNUM];
2132 if (hppa_debug)
2133 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2134 }
2135 else
2136 {
2137 ULONGEST rp = get_frame_register_unsigned (this_frame,
2138 HPPA_RP_REGNUM);
2139 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2140 if (hppa_debug)
2141 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2142 }
2143 }
2144
2145 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2146 frame. However, there is a one-insn window where we haven't saved it
2147 yet, but we've already clobbered it. Detect this case and fix it up.
2148
2149 The prologue sequence for frame-pointer functions is:
2150 0: stw %rp, -20(%sp)
2151 4: copy %r3, %r1
2152 8: copy %sp, %r3
2153 c: stw,ma %r1, XX(%sp)
2154
2155 So if we are at offset c, the r3 value that we want is not yet saved
2156 on the stack, but it's been overwritten. The prologue analyzer will
2157 set fp_in_r1 when it sees the copy insn so we know to get the value
2158 from r1 instead. */
2159 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2160 && fp_in_r1)
2161 {
2162 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2163 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2164 }
2165
2166 {
2167 /* Convert all the offsets into addresses. */
2168 int reg;
2169 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2170 {
2171 if (trad_frame_addr_p (cache->saved_regs, reg))
2172 cache->saved_regs[reg].addr += cache->base;
2173 }
2174 }
2175
2176 {
2177 struct gdbarch_tdep *tdep;
2178
2179 tdep = gdbarch_tdep (gdbarch);
2180
2181 if (tdep->unwind_adjust_stub)
2182 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2183 }
2184
2185 if (hppa_debug)
2186 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2187 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2188 return (*this_cache);
2189 }
2190
2191 static void
2192 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2193 struct frame_id *this_id)
2194 {
2195 struct hppa_frame_cache *info;
2196 CORE_ADDR pc = get_frame_pc (this_frame);
2197 struct unwind_table_entry *u;
2198
2199 info = hppa_frame_cache (this_frame, this_cache);
2200 u = hppa_find_unwind_entry_in_block (this_frame);
2201
2202 (*this_id) = frame_id_build (info->base, u->region_start);
2203 }
2204
2205 static struct value *
2206 hppa_frame_prev_register (struct frame_info *this_frame,
2207 void **this_cache, int regnum)
2208 {
2209 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2210
2211 return hppa_frame_prev_register_helper (this_frame,
2212 info->saved_regs, regnum);
2213 }
2214
2215 static int
2216 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2217 struct frame_info *this_frame, void **this_cache)
2218 {
2219 if (hppa_find_unwind_entry_in_block (this_frame))
2220 return 1;
2221
2222 return 0;
2223 }
2224
2225 static const struct frame_unwind hppa_frame_unwind =
2226 {
2227 NORMAL_FRAME,
2228 default_frame_unwind_stop_reason,
2229 hppa_frame_this_id,
2230 hppa_frame_prev_register,
2231 NULL,
2232 hppa_frame_unwind_sniffer
2233 };
2234
2235 /* This is a generic fallback frame unwinder that kicks in if we fail all
2236 the other ones. Normally we would expect the stub and regular unwinder
2237 to work, but in some cases we might hit a function that just doesn't
2238 have any unwind information available. In this case we try to do
2239 unwinding solely based on code reading. This is obviously going to be
2240 slow, so only use this as a last resort. Currently this will only
2241 identify the stack and pc for the frame. */
2242
2243 static struct hppa_frame_cache *
2244 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2245 {
2246 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2248 struct hppa_frame_cache *cache;
2249 unsigned int frame_size = 0;
2250 int found_rp = 0;
2251 CORE_ADDR start_pc;
2252
2253 if (hppa_debug)
2254 fprintf_unfiltered (gdb_stdlog,
2255 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2256 frame_relative_level (this_frame));
2257
2258 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2259 (*this_cache) = cache;
2260 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2261
2262 start_pc = get_frame_func (this_frame);
2263 if (start_pc)
2264 {
2265 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2266 CORE_ADDR pc;
2267
2268 for (pc = start_pc; pc < cur_pc; pc += 4)
2269 {
2270 unsigned int insn;
2271
2272 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2273 frame_size += prologue_inst_adjust_sp (insn);
2274
2275 /* There are limited ways to store the return pointer into the
2276 stack. */
2277 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2278 {
2279 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2280 found_rp = 1;
2281 }
2282 else if (insn == 0x0fc212c1
2283 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2284 {
2285 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2286 found_rp = 1;
2287 }
2288 }
2289 }
2290
2291 if (hppa_debug)
2292 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2293 frame_size, found_rp);
2294
2295 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2296 cache->base -= frame_size;
2297 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2298
2299 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2300 {
2301 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2302 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2303 cache->saved_regs[HPPA_RP_REGNUM];
2304 }
2305 else
2306 {
2307 ULONGEST rp;
2308 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2309 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2310 }
2311
2312 return cache;
2313 }
2314
2315 static void
2316 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2317 struct frame_id *this_id)
2318 {
2319 struct hppa_frame_cache *info =
2320 hppa_fallback_frame_cache (this_frame, this_cache);
2321
2322 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2323 }
2324
2325 static struct value *
2326 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2327 void **this_cache, int regnum)
2328 {
2329 struct hppa_frame_cache *info
2330 = hppa_fallback_frame_cache (this_frame, this_cache);
2331
2332 return hppa_frame_prev_register_helper (this_frame,
2333 info->saved_regs, regnum);
2334 }
2335
2336 static const struct frame_unwind hppa_fallback_frame_unwind =
2337 {
2338 NORMAL_FRAME,
2339 default_frame_unwind_stop_reason,
2340 hppa_fallback_frame_this_id,
2341 hppa_fallback_frame_prev_register,
2342 NULL,
2343 default_frame_sniffer
2344 };
2345
2346 /* Stub frames, used for all kinds of call stubs. */
2347 struct hppa_stub_unwind_cache
2348 {
2349 CORE_ADDR base;
2350 struct trad_frame_saved_reg *saved_regs;
2351 };
2352
2353 static struct hppa_stub_unwind_cache *
2354 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2355 void **this_cache)
2356 {
2357 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2358 struct hppa_stub_unwind_cache *info;
2359 struct unwind_table_entry *u;
2360
2361 if (*this_cache)
2362 return *this_cache;
2363
2364 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2365 *this_cache = info;
2366 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2367
2368 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2369
2370 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2371 {
2372 /* HPUX uses export stubs in function calls; the export stub clobbers
2373 the return value of the caller, and, later restores it from the
2374 stack. */
2375 u = find_unwind_entry (get_frame_pc (this_frame));
2376
2377 if (u && u->stub_unwind.stub_type == EXPORT)
2378 {
2379 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2380
2381 return info;
2382 }
2383 }
2384
2385 /* By default we assume that stubs do not change the rp. */
2386 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2387
2388 return info;
2389 }
2390
2391 static void
2392 hppa_stub_frame_this_id (struct frame_info *this_frame,
2393 void **this_prologue_cache,
2394 struct frame_id *this_id)
2395 {
2396 struct hppa_stub_unwind_cache *info
2397 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2398
2399 if (info)
2400 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2401 }
2402
2403 static struct value *
2404 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2405 void **this_prologue_cache, int regnum)
2406 {
2407 struct hppa_stub_unwind_cache *info
2408 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2409
2410 if (info == NULL)
2411 error (_("Requesting registers from null frame."));
2412
2413 return hppa_frame_prev_register_helper (this_frame,
2414 info->saved_regs, regnum);
2415 }
2416
2417 static int
2418 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2419 struct frame_info *this_frame,
2420 void **this_cache)
2421 {
2422 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2423 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2424 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2425
2426 if (pc == 0
2427 || (tdep->in_solib_call_trampoline != NULL
2428 && tdep->in_solib_call_trampoline (gdbarch, pc, NULL))
2429 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2430 return 1;
2431 return 0;
2432 }
2433
2434 static const struct frame_unwind hppa_stub_frame_unwind = {
2435 NORMAL_FRAME,
2436 default_frame_unwind_stop_reason,
2437 hppa_stub_frame_this_id,
2438 hppa_stub_frame_prev_register,
2439 NULL,
2440 hppa_stub_unwind_sniffer
2441 };
2442
2443 static struct frame_id
2444 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2445 {
2446 return frame_id_build (get_frame_register_unsigned (this_frame,
2447 HPPA_SP_REGNUM),
2448 get_frame_pc (this_frame));
2449 }
2450
2451 CORE_ADDR
2452 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2453 {
2454 ULONGEST ipsw;
2455 CORE_ADDR pc;
2456
2457 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2458 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2459
2460 /* If the current instruction is nullified, then we are effectively
2461 still executing the previous instruction. Pretend we are still
2462 there. This is needed when single stepping; if the nullified
2463 instruction is on a different line, we don't want GDB to think
2464 we've stepped onto that line. */
2465 if (ipsw & 0x00200000)
2466 pc -= 4;
2467
2468 return pc & ~0x3;
2469 }
2470
2471 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2472 Return NULL if no such symbol was found. */
2473
2474 struct minimal_symbol *
2475 hppa_lookup_stub_minimal_symbol (const char *name,
2476 enum unwind_stub_types stub_type)
2477 {
2478 struct objfile *objfile;
2479 struct minimal_symbol *msym;
2480
2481 ALL_MSYMBOLS (objfile, msym)
2482 {
2483 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2484 {
2485 struct unwind_table_entry *u;
2486
2487 u = find_unwind_entry (SYMBOL_VALUE (msym));
2488 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2489 return msym;
2490 }
2491 }
2492
2493 return NULL;
2494 }
2495
2496 static void
2497 unwind_command (char *exp, int from_tty)
2498 {
2499 CORE_ADDR address;
2500 struct unwind_table_entry *u;
2501
2502 /* If we have an expression, evaluate it and use it as the address. */
2503
2504 if (exp != 0 && *exp != 0)
2505 address = parse_and_eval_address (exp);
2506 else
2507 return;
2508
2509 u = find_unwind_entry (address);
2510
2511 if (!u)
2512 {
2513 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2514 return;
2515 }
2516
2517 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2518
2519 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2520 gdb_flush (gdb_stdout);
2521
2522 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2523 gdb_flush (gdb_stdout);
2524
2525 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2526
2527 printf_unfiltered ("\n\tflags =");
2528 pif (Cannot_unwind);
2529 pif (Millicode);
2530 pif (Millicode_save_sr0);
2531 pif (Entry_SR);
2532 pif (Args_stored);
2533 pif (Variable_Frame);
2534 pif (Separate_Package_Body);
2535 pif (Frame_Extension_Millicode);
2536 pif (Stack_Overflow_Check);
2537 pif (Two_Instruction_SP_Increment);
2538 pif (sr4export);
2539 pif (cxx_info);
2540 pif (cxx_try_catch);
2541 pif (sched_entry_seq);
2542 pif (Save_SP);
2543 pif (Save_RP);
2544 pif (Save_MRP_in_frame);
2545 pif (save_r19);
2546 pif (Cleanup_defined);
2547 pif (MPE_XL_interrupt_marker);
2548 pif (HP_UX_interrupt_marker);
2549 pif (Large_frame);
2550 pif (alloca_frame);
2551
2552 putchar_unfiltered ('\n');
2553
2554 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2555
2556 pin (Region_description);
2557 pin (Entry_FR);
2558 pin (Entry_GR);
2559 pin (Total_frame_size);
2560
2561 if (u->stub_unwind.stub_type)
2562 {
2563 printf_unfiltered ("\tstub type = ");
2564 switch (u->stub_unwind.stub_type)
2565 {
2566 case LONG_BRANCH:
2567 printf_unfiltered ("long branch\n");
2568 break;
2569 case PARAMETER_RELOCATION:
2570 printf_unfiltered ("parameter relocation\n");
2571 break;
2572 case EXPORT:
2573 printf_unfiltered ("export\n");
2574 break;
2575 case IMPORT:
2576 printf_unfiltered ("import\n");
2577 break;
2578 case IMPORT_SHLIB:
2579 printf_unfiltered ("import shlib\n");
2580 break;
2581 default:
2582 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2583 }
2584 }
2585 }
2586
2587 /* Return the GDB type object for the "standard" data type of data in
2588 register REGNUM. */
2589
2590 static struct type *
2591 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2592 {
2593 if (regnum < HPPA_FP4_REGNUM)
2594 return builtin_type (gdbarch)->builtin_uint32;
2595 else
2596 return builtin_type (gdbarch)->builtin_float;
2597 }
2598
2599 static struct type *
2600 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2601 {
2602 if (regnum < HPPA64_FP4_REGNUM)
2603 return builtin_type (gdbarch)->builtin_uint64;
2604 else
2605 return builtin_type (gdbarch)->builtin_double;
2606 }
2607
2608 /* Return non-zero if REGNUM is not a register available to the user
2609 through ptrace/ttrace. */
2610
2611 static int
2612 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2613 {
2614 return (regnum == 0
2615 || regnum == HPPA_PCSQ_HEAD_REGNUM
2616 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2617 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2618 }
2619
2620 static int
2621 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2622 {
2623 /* cr26 and cr27 are readable (but not writable) from userspace. */
2624 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2625 return 0;
2626 else
2627 return hppa32_cannot_store_register (gdbarch, regnum);
2628 }
2629
2630 static int
2631 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2632 {
2633 return (regnum == 0
2634 || regnum == HPPA_PCSQ_HEAD_REGNUM
2635 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2636 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2637 }
2638
2639 static int
2640 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2641 {
2642 /* cr26 and cr27 are readable (but not writable) from userspace. */
2643 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2644 return 0;
2645 else
2646 return hppa64_cannot_store_register (gdbarch, regnum);
2647 }
2648
2649 static CORE_ADDR
2650 hppa_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR addr)
2651 {
2652 /* The low two bits of the PC on the PA contain the privilege level.
2653 Some genius implementing a (non-GCC) compiler apparently decided
2654 this means that "addresses" in a text section therefore include a
2655 privilege level, and thus symbol tables should contain these bits.
2656 This seems like a bonehead thing to do--anyway, it seems to work
2657 for our purposes to just ignore those bits. */
2658
2659 return (addr &= ~0x3);
2660 }
2661
2662 /* Get the ARGIth function argument for the current function. */
2663
2664 static CORE_ADDR
2665 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2666 struct type *type)
2667 {
2668 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2669 }
2670
2671 static enum register_status
2672 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2673 int regnum, gdb_byte *buf)
2674 {
2675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2676 ULONGEST tmp;
2677 enum register_status status;
2678
2679 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2680 if (status == REG_VALID)
2681 {
2682 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2683 tmp &= ~0x3;
2684 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2685 }
2686 return status;
2687 }
2688
2689 static CORE_ADDR
2690 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2691 {
2692 return 0;
2693 }
2694
2695 struct value *
2696 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2697 struct trad_frame_saved_reg saved_regs[],
2698 int regnum)
2699 {
2700 struct gdbarch *arch = get_frame_arch (this_frame);
2701 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2702
2703 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2704 {
2705 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2706 CORE_ADDR pc;
2707 struct value *pcoq_val =
2708 trad_frame_get_prev_register (this_frame, saved_regs,
2709 HPPA_PCOQ_HEAD_REGNUM);
2710
2711 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2712 size, byte_order);
2713 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2714 }
2715
2716 /* Make sure the "flags" register is zero in all unwound frames.
2717 The "flags" registers is a HP-UX specific wart, and only the code
2718 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2719 with it here. This shouldn't affect other systems since those
2720 should provide zero for the "flags" register anyway. */
2721 if (regnum == HPPA_FLAGS_REGNUM)
2722 return frame_unwind_got_constant (this_frame, regnum, 0);
2723
2724 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2725 }
2726 \f
2727
2728 /* An instruction to match. */
2729 struct insn_pattern
2730 {
2731 unsigned int data; /* See if it matches this.... */
2732 unsigned int mask; /* ... with this mask. */
2733 };
2734
2735 /* See bfd/elf32-hppa.c */
2736 static struct insn_pattern hppa_long_branch_stub[] = {
2737 /* ldil LR'xxx,%r1 */
2738 { 0x20200000, 0xffe00000 },
2739 /* be,n RR'xxx(%sr4,%r1) */
2740 { 0xe0202002, 0xffe02002 },
2741 { 0, 0 }
2742 };
2743
2744 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2745 /* b,l .+8, %r1 */
2746 { 0xe8200000, 0xffe00000 },
2747 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2748 { 0x28200000, 0xffe00000 },
2749 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2750 { 0xe0202002, 0xffe02002 },
2751 { 0, 0 }
2752 };
2753
2754 static struct insn_pattern hppa_import_stub[] = {
2755 /* addil LR'xxx, %dp */
2756 { 0x2b600000, 0xffe00000 },
2757 /* ldw RR'xxx(%r1), %r21 */
2758 { 0x48350000, 0xffffb000 },
2759 /* bv %r0(%r21) */
2760 { 0xeaa0c000, 0xffffffff },
2761 /* ldw RR'xxx+4(%r1), %r19 */
2762 { 0x48330000, 0xffffb000 },
2763 { 0, 0 }
2764 };
2765
2766 static struct insn_pattern hppa_import_pic_stub[] = {
2767 /* addil LR'xxx,%r19 */
2768 { 0x2a600000, 0xffe00000 },
2769 /* ldw RR'xxx(%r1),%r21 */
2770 { 0x48350000, 0xffffb000 },
2771 /* bv %r0(%r21) */
2772 { 0xeaa0c000, 0xffffffff },
2773 /* ldw RR'xxx+4(%r1),%r19 */
2774 { 0x48330000, 0xffffb000 },
2775 { 0, 0 },
2776 };
2777
2778 static struct insn_pattern hppa_plt_stub[] = {
2779 /* b,l 1b, %r20 - 1b is 3 insns before here */
2780 { 0xea9f1fdd, 0xffffffff },
2781 /* depi 0,31,2,%r20 */
2782 { 0xd6801c1e, 0xffffffff },
2783 { 0, 0 }
2784 };
2785
2786 static struct insn_pattern hppa_sigtramp[] = {
2787 /* ldi 0, %r25 or ldi 1, %r25 */
2788 { 0x34190000, 0xfffffffd },
2789 /* ldi __NR_rt_sigreturn, %r20 */
2790 { 0x3414015a, 0xffffffff },
2791 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2792 { 0xe4008200, 0xffffffff },
2793 /* nop */
2794 { 0x08000240, 0xffffffff },
2795 { 0, 0 }
2796 };
2797
2798 /* Maximum number of instructions on the patterns above. */
2799 #define HPPA_MAX_INSN_PATTERN_LEN 4
2800
2801 /* Return non-zero if the instructions at PC match the series
2802 described in PATTERN, or zero otherwise. PATTERN is an array of
2803 'struct insn_pattern' objects, terminated by an entry whose mask is
2804 zero.
2805
2806 When the match is successful, fill INSN[i] with what PATTERN[i]
2807 matched. */
2808
2809 static int
2810 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2811 struct insn_pattern *pattern, unsigned int *insn)
2812 {
2813 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2814 CORE_ADDR npc = pc;
2815 int i;
2816
2817 for (i = 0; pattern[i].mask; i++)
2818 {
2819 gdb_byte buf[HPPA_INSN_SIZE];
2820
2821 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2822 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2823 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2824 npc += 4;
2825 else
2826 return 0;
2827 }
2828
2829 return 1;
2830 }
2831
2832 /* This relaxed version of the insstruction matcher allows us to match
2833 from somewhere inside the pattern, by looking backwards in the
2834 instruction scheme. */
2835
2836 static int
2837 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2838 struct insn_pattern *pattern, unsigned int *insn)
2839 {
2840 int offset, len = 0;
2841
2842 while (pattern[len].mask)
2843 len++;
2844
2845 for (offset = 0; offset < len; offset++)
2846 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2847 pattern, insn))
2848 return 1;
2849
2850 return 0;
2851 }
2852
2853 static int
2854 hppa_in_dyncall (CORE_ADDR pc)
2855 {
2856 struct unwind_table_entry *u;
2857
2858 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2859 if (!u)
2860 return 0;
2861
2862 return (pc >= u->region_start && pc <= u->region_end);
2863 }
2864
2865 int
2866 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch,
2867 CORE_ADDR pc, char *name)
2868 {
2869 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2870 struct unwind_table_entry *u;
2871
2872 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2873 return 1;
2874
2875 /* The GNU toolchain produces linker stubs without unwind
2876 information. Since the pattern matching for linker stubs can be
2877 quite slow, so bail out if we do have an unwind entry. */
2878
2879 u = find_unwind_entry (pc);
2880 if (u != NULL)
2881 return 0;
2882
2883 return
2884 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2885 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2886 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2887 || hppa_match_insns_relaxed (gdbarch, pc,
2888 hppa_long_branch_pic_stub, insn));
2889 }
2890
2891 /* This code skips several kind of "trampolines" used on PA-RISC
2892 systems: $$dyncall, import stubs and PLT stubs. */
2893
2894 CORE_ADDR
2895 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2896 {
2897 struct gdbarch *gdbarch = get_frame_arch (frame);
2898 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2899
2900 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2901 int dp_rel;
2902
2903 /* $$dyncall handles both PLABELs and direct addresses. */
2904 if (hppa_in_dyncall (pc))
2905 {
2906 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2907
2908 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2909 if (pc & 0x2)
2910 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2911
2912 return pc;
2913 }
2914
2915 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2916 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2917 {
2918 /* Extract the target address from the addil/ldw sequence. */
2919 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2920
2921 if (dp_rel)
2922 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2923 else
2924 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2925
2926 /* fallthrough */
2927 }
2928
2929 if (in_plt_section (pc, NULL))
2930 {
2931 pc = read_memory_typed_address (pc, func_ptr_type);
2932
2933 /* If the PLT slot has not yet been resolved, the target will be
2934 the PLT stub. */
2935 if (in_plt_section (pc, NULL))
2936 {
2937 /* Sanity check: are we pointing to the PLT stub? */
2938 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
2939 {
2940 warning (_("Cannot resolve PLT stub at %s."),
2941 paddress (gdbarch, pc));
2942 return 0;
2943 }
2944
2945 /* This should point to the fixup routine. */
2946 pc = read_memory_typed_address (pc + 8, func_ptr_type);
2947 }
2948 }
2949
2950 return pc;
2951 }
2952 \f
2953
2954 /* Here is a table of C type sizes on hppa with various compiles
2955 and options. I measured this on PA 9000/800 with HP-UX 11.11
2956 and these compilers:
2957
2958 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2959 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2960 /opt/aCC/bin/aCC B3910B A.03.45
2961 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2962
2963 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2964 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2965 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2966 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2967 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2968 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2969 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2970 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2971
2972 Each line is:
2973
2974 compiler and options
2975 char, short, int, long, long long
2976 float, double, long double
2977 char *, void (*)()
2978
2979 So all these compilers use either ILP32 or LP64 model.
2980 TODO: gcc has more options so it needs more investigation.
2981
2982 For floating point types, see:
2983
2984 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2985 HP-UX floating-point guide, hpux 11.00
2986
2987 -- chastain 2003-12-18 */
2988
2989 static struct gdbarch *
2990 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2991 {
2992 struct gdbarch_tdep *tdep;
2993 struct gdbarch *gdbarch;
2994
2995 /* Try to determine the ABI of the object we are loading. */
2996 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2997 {
2998 /* If it's a SOM file, assume it's HP/UX SOM. */
2999 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3000 info.osabi = GDB_OSABI_HPUX_SOM;
3001 }
3002
3003 /* find a candidate among the list of pre-declared architectures. */
3004 arches = gdbarch_list_lookup_by_info (arches, &info);
3005 if (arches != NULL)
3006 return (arches->gdbarch);
3007
3008 /* If none found, then allocate and initialize one. */
3009 tdep = XZALLOC (struct gdbarch_tdep);
3010 gdbarch = gdbarch_alloc (&info, tdep);
3011
3012 /* Determine from the bfd_arch_info structure if we are dealing with
3013 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3014 then default to a 32bit machine. */
3015 if (info.bfd_arch_info != NULL)
3016 tdep->bytes_per_address =
3017 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3018 else
3019 tdep->bytes_per_address = 4;
3020
3021 tdep->find_global_pointer = hppa_find_global_pointer;
3022
3023 /* Some parts of the gdbarch vector depend on whether we are running
3024 on a 32 bits or 64 bits target. */
3025 switch (tdep->bytes_per_address)
3026 {
3027 case 4:
3028 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3029 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3030 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3031 set_gdbarch_cannot_store_register (gdbarch,
3032 hppa32_cannot_store_register);
3033 set_gdbarch_cannot_fetch_register (gdbarch,
3034 hppa32_cannot_fetch_register);
3035 break;
3036 case 8:
3037 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3038 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3039 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3040 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3041 set_gdbarch_cannot_store_register (gdbarch,
3042 hppa64_cannot_store_register);
3043 set_gdbarch_cannot_fetch_register (gdbarch,
3044 hppa64_cannot_fetch_register);
3045 break;
3046 default:
3047 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3048 tdep->bytes_per_address);
3049 }
3050
3051 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3052 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3053
3054 /* The following gdbarch vector elements are the same in both ILP32
3055 and LP64, but might show differences some day. */
3056 set_gdbarch_long_long_bit (gdbarch, 64);
3057 set_gdbarch_long_double_bit (gdbarch, 128);
3058 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3059
3060 /* The following gdbarch vector elements do not depend on the address
3061 size, or in any other gdbarch element previously set. */
3062 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3063 set_gdbarch_in_function_epilogue_p (gdbarch,
3064 hppa_in_function_epilogue_p);
3065 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3066 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3067 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3068 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3069 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3070 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3071 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3072 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3073
3074 /* Helper for function argument information. */
3075 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3076
3077 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3078
3079 /* When a hardware watchpoint triggers, we'll move the inferior past
3080 it by removing all eventpoints; stepping past the instruction
3081 that caused the trigger; reinserting eventpoints; and checking
3082 whether any watched location changed. */
3083 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3084
3085 /* Inferior function call methods. */
3086 switch (tdep->bytes_per_address)
3087 {
3088 case 4:
3089 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3090 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3091 set_gdbarch_convert_from_func_ptr_addr
3092 (gdbarch, hppa32_convert_from_func_ptr_addr);
3093 break;
3094 case 8:
3095 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3096 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3097 break;
3098 default:
3099 internal_error (__FILE__, __LINE__, _("bad switch"));
3100 }
3101
3102 /* Struct return methods. */
3103 switch (tdep->bytes_per_address)
3104 {
3105 case 4:
3106 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3107 break;
3108 case 8:
3109 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3110 break;
3111 default:
3112 internal_error (__FILE__, __LINE__, _("bad switch"));
3113 }
3114
3115 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3116 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3117
3118 /* Frame unwind methods. */
3119 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3120 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3121
3122 /* Hook in ABI-specific overrides, if they have been registered. */
3123 gdbarch_init_osabi (info, gdbarch);
3124
3125 /* Hook in the default unwinders. */
3126 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3127 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3128 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3129
3130 return gdbarch;
3131 }
3132
3133 static void
3134 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3135 {
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137
3138 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3139 tdep->bytes_per_address);
3140 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3141 }
3142
3143 /* Provide a prototype to silence -Wmissing-prototypes. */
3144 extern initialize_file_ftype _initialize_hppa_tdep;
3145
3146 void
3147 _initialize_hppa_tdep (void)
3148 {
3149 struct cmd_list_element *c;
3150
3151 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3152
3153 hppa_objfile_priv_data = register_objfile_data ();
3154
3155 add_cmd ("unwind", class_maintenance, unwind_command,
3156 _("Print unwind table entry at given address."),
3157 &maintenanceprintlist);
3158
3159 /* Debug this files internals. */
3160 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3161 Set whether hppa target specific debugging information should be displayed."),
3162 _("\
3163 Show whether hppa target specific debugging information is displayed."), _("\
3164 This flag controls whether hppa target specific debugging information is\n\
3165 displayed. This information is particularly useful for debugging frame\n\
3166 unwinding problems."),
3167 NULL,
3168 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3169 &setdebuglist, &showdebuglist);
3170 }
This page took 0.130581 seconds and 5 git commands to generate.