2004-02-22 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "bfd.h"
30 #include "inferior.h"
31 #include "value.h"
32 #include "regcache.h"
33 #include "completer.h"
34 #include "language.h"
35 #include "osabi.h"
36 #include "gdb_assert.h"
37 #include "infttrace.h"
38 #include "arch-utils.h"
39 /* For argument passing to the inferior */
40 #include "symtab.h"
41 #include "infcall.h"
42 #include "dis-asm.h"
43
44 #ifdef USG
45 #include <sys/types.h>
46 #endif
47
48 #include <dl.h>
49 #include <sys/param.h>
50 #include <signal.h>
51
52 #include <sys/ptrace.h>
53 #include <machine/save_state.h>
54
55 #ifdef COFF_ENCAPSULATE
56 #include "a.out.encap.h"
57 #else
58 #endif
59
60 /*#include <sys/user.h> After a.out.h */
61 #include <sys/file.h>
62 #include "gdb_stat.h"
63 #include "gdb_wait.h"
64
65 #include "gdbcore.h"
66 #include "gdbcmd.h"
67 #include "target.h"
68 #include "symfile.h"
69 #include "objfiles.h"
70 #include "hppa-tdep.h"
71
72 /* Some local constants. */
73 static const int hppa32_num_regs = 128;
74 static const int hppa64_num_regs = 96;
75
76 static const int hppa64_call_dummy_breakpoint_offset = 22 * 4;
77
78 /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
79 word on the target machine, not the size of an instruction. Since
80 a word on this target holds two instructions we have to divide the
81 instruction size by two to get the word size of the dummy. */
82 static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28;
83 static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2;
84
85 /* Get at various relevent fields of an instruction word. */
86 #define MASK_5 0x1f
87 #define MASK_11 0x7ff
88 #define MASK_14 0x3fff
89 #define MASK_21 0x1fffff
90
91 /* Define offsets into the call dummy for the target function address.
92 See comments related to CALL_DUMMY for more info. */
93 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
94 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
95
96 /* Define offsets into the call dummy for the _sr4export address.
97 See comments related to CALL_DUMMY for more info. */
98 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
99 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
100
101 /* To support detection of the pseudo-initial frame
102 that threads have. */
103 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
104 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
105
106 /* Sizes (in bytes) of the native unwind entries. */
107 #define UNWIND_ENTRY_SIZE 16
108 #define STUB_UNWIND_ENTRY_SIZE 8
109
110 static int get_field (unsigned word, int from, int to);
111
112 static int extract_5_load (unsigned int);
113
114 static unsigned extract_5R_store (unsigned int);
115
116 static unsigned extract_5r_store (unsigned int);
117
118 static void hppa_frame_init_saved_regs (struct frame_info *frame);
119
120 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
121
122 static int find_proc_framesize (CORE_ADDR);
123
124 static int find_return_regnum (CORE_ADDR);
125
126 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
127
128 static int extract_17 (unsigned int);
129
130 static unsigned deposit_21 (unsigned int, unsigned int);
131
132 static int extract_21 (unsigned);
133
134 static unsigned deposit_14 (int, unsigned int);
135
136 static int extract_14 (unsigned);
137
138 static void unwind_command (char *, int);
139
140 static int low_sign_extend (unsigned int, unsigned int);
141
142 static int sign_extend (unsigned int, unsigned int);
143
144 static int restore_pc_queue (CORE_ADDR *);
145
146 static int hppa_alignof (struct type *);
147
148 static int prologue_inst_adjust_sp (unsigned long);
149
150 static int is_branch (unsigned long);
151
152 static int inst_saves_gr (unsigned long);
153
154 static int inst_saves_fr (unsigned long);
155
156 static int pc_in_interrupt_handler (CORE_ADDR);
157
158 static int pc_in_linker_stub (CORE_ADDR);
159
160 static int compare_unwind_entries (const void *, const void *);
161
162 static void read_unwind_info (struct objfile *);
163
164 static void internalize_unwinds (struct objfile *,
165 struct unwind_table_entry *,
166 asection *, unsigned int,
167 unsigned int, CORE_ADDR);
168 static void pa_print_registers (char *, int, int);
169 static void pa_strcat_registers (char *, int, int, struct ui_file *);
170 static void pa_register_look_aside (char *, int, long *);
171 static void pa_print_fp_reg (int);
172 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
173 static void record_text_segment_lowaddr (bfd *, asection *, void *);
174 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
175 following functions static, once we hppa is partially multiarched. */
176 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
177 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
178 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
179 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
180 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
181 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
182 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
183 CORE_ADDR hppa32_stack_align (CORE_ADDR sp);
184 CORE_ADDR hppa64_stack_align (CORE_ADDR sp);
185 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
186 int hppa_instruction_nullified (void);
187 int hppa_register_raw_size (int reg_nr);
188 int hppa_register_byte (int reg_nr);
189 struct type * hppa32_register_virtual_type (int reg_nr);
190 struct type * hppa64_register_virtual_type (int reg_nr);
191 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
192 void hppa32_extract_return_value (struct type *type, char *regbuf,
193 char *valbuf);
194 void hppa64_extract_return_value (struct type *type, char *regbuf,
195 char *valbuf);
196 int hppa32_use_struct_convention (int gcc_p, struct type *type);
197 int hppa64_use_struct_convention (int gcc_p, struct type *type);
198 void hppa32_store_return_value (struct type *type, char *valbuf);
199 void hppa64_store_return_value (struct type *type, char *valbuf);
200 int hppa_cannot_store_register (int regnum);
201 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
202 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
203 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
204 int hppa_frameless_function_invocation (struct frame_info *frame);
205 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
206 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
207 int hppa_frame_num_args (struct frame_info *frame);
208 void hppa_push_dummy_frame (void);
209 void hppa_pop_frame (void);
210 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
211 int nargs, struct value **args,
212 struct type *type, int gcc_p);
213 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
214 int struct_return, CORE_ADDR struct_addr);
215 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
216 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
217 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
218 CORE_ADDR hppa_target_read_fp (void);
219
220 typedef struct
221 {
222 struct minimal_symbol *msym;
223 CORE_ADDR solib_handle;
224 CORE_ADDR return_val;
225 }
226 args_for_find_stub;
227
228 static int cover_find_stub_with_shl_get (void *);
229
230 static int is_pa_2 = 0; /* False */
231
232 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
233 extern int hp_som_som_object_present;
234
235 /* In breakpoint.c */
236 extern int exception_catchpoints_are_fragile;
237
238 /* Should call_function allocate stack space for a struct return? */
239
240 int
241 hppa32_use_struct_convention (int gcc_p, struct type *type)
242 {
243 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
244 }
245
246 /* Same as hppa32_use_struct_convention() for the PA64 ABI. */
247
248 int
249 hppa64_use_struct_convention (int gcc_p, struct type *type)
250 {
251 /* RM: struct upto 128 bits are returned in registers */
252 return TYPE_LENGTH (type) > 16;
253 }
254
255 /* Routines to extract various sized constants out of hppa
256 instructions. */
257
258 /* This assumes that no garbage lies outside of the lower bits of
259 value. */
260
261 static int
262 sign_extend (unsigned val, unsigned bits)
263 {
264 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
265 }
266
267 /* For many immediate values the sign bit is the low bit! */
268
269 static int
270 low_sign_extend (unsigned val, unsigned bits)
271 {
272 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
273 }
274
275 /* Extract the bits at positions between FROM and TO, using HP's numbering
276 (MSB = 0). */
277
278 static int
279 get_field (unsigned word, int from, int to)
280 {
281 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
282 }
283
284 /* extract the immediate field from a ld{bhw}s instruction */
285
286 static int
287 extract_5_load (unsigned word)
288 {
289 return low_sign_extend (word >> 16 & MASK_5, 5);
290 }
291
292 /* extract the immediate field from a break instruction */
293
294 static unsigned
295 extract_5r_store (unsigned word)
296 {
297 return (word & MASK_5);
298 }
299
300 /* extract the immediate field from a {sr}sm instruction */
301
302 static unsigned
303 extract_5R_store (unsigned word)
304 {
305 return (word >> 16 & MASK_5);
306 }
307
308 /* extract a 14 bit immediate field */
309
310 static int
311 extract_14 (unsigned word)
312 {
313 return low_sign_extend (word & MASK_14, 14);
314 }
315
316 /* deposit a 14 bit constant in a word */
317
318 static unsigned
319 deposit_14 (int opnd, unsigned word)
320 {
321 unsigned sign = (opnd < 0 ? 1 : 0);
322
323 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
324 }
325
326 /* extract a 21 bit constant */
327
328 static int
329 extract_21 (unsigned word)
330 {
331 int val;
332
333 word &= MASK_21;
334 word <<= 11;
335 val = get_field (word, 20, 20);
336 val <<= 11;
337 val |= get_field (word, 9, 19);
338 val <<= 2;
339 val |= get_field (word, 5, 6);
340 val <<= 5;
341 val |= get_field (word, 0, 4);
342 val <<= 2;
343 val |= get_field (word, 7, 8);
344 return sign_extend (val, 21) << 11;
345 }
346
347 /* deposit a 21 bit constant in a word. Although 21 bit constants are
348 usually the top 21 bits of a 32 bit constant, we assume that only
349 the low 21 bits of opnd are relevant */
350
351 static unsigned
352 deposit_21 (unsigned opnd, unsigned word)
353 {
354 unsigned val = 0;
355
356 val |= get_field (opnd, 11 + 14, 11 + 18);
357 val <<= 2;
358 val |= get_field (opnd, 11 + 12, 11 + 13);
359 val <<= 2;
360 val |= get_field (opnd, 11 + 19, 11 + 20);
361 val <<= 11;
362 val |= get_field (opnd, 11 + 1, 11 + 11);
363 val <<= 1;
364 val |= get_field (opnd, 11 + 0, 11 + 0);
365 return word | val;
366 }
367
368 /* extract a 17 bit constant from branch instructions, returning the
369 19 bit signed value. */
370
371 static int
372 extract_17 (unsigned word)
373 {
374 return sign_extend (get_field (word, 19, 28) |
375 get_field (word, 29, 29) << 10 |
376 get_field (word, 11, 15) << 11 |
377 (word & 0x1) << 16, 17) << 2;
378 }
379 \f
380
381 /* Compare the start address for two unwind entries returning 1 if
382 the first address is larger than the second, -1 if the second is
383 larger than the first, and zero if they are equal. */
384
385 static int
386 compare_unwind_entries (const void *arg1, const void *arg2)
387 {
388 const struct unwind_table_entry *a = arg1;
389 const struct unwind_table_entry *b = arg2;
390
391 if (a->region_start > b->region_start)
392 return 1;
393 else if (a->region_start < b->region_start)
394 return -1;
395 else
396 return 0;
397 }
398
399 static CORE_ADDR low_text_segment_address;
400
401 static void
402 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
403 {
404 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
405 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
406 && section->vma < low_text_segment_address)
407 low_text_segment_address = section->vma;
408 }
409
410 static void
411 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
412 asection *section, unsigned int entries, unsigned int size,
413 CORE_ADDR text_offset)
414 {
415 /* We will read the unwind entries into temporary memory, then
416 fill in the actual unwind table. */
417 if (size > 0)
418 {
419 unsigned long tmp;
420 unsigned i;
421 char *buf = alloca (size);
422
423 low_text_segment_address = -1;
424
425 /* If addresses are 64 bits wide, then unwinds are supposed to
426 be segment relative offsets instead of absolute addresses.
427
428 Note that when loading a shared library (text_offset != 0) the
429 unwinds are already relative to the text_offset that will be
430 passed in. */
431 if (TARGET_PTR_BIT == 64 && text_offset == 0)
432 {
433 bfd_map_over_sections (objfile->obfd,
434 record_text_segment_lowaddr, NULL);
435
436 /* ?!? Mask off some low bits. Should this instead subtract
437 out the lowest section's filepos or something like that?
438 This looks very hokey to me. */
439 low_text_segment_address &= ~0xfff;
440 text_offset += low_text_segment_address;
441 }
442
443 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
444
445 /* Now internalize the information being careful to handle host/target
446 endian issues. */
447 for (i = 0; i < entries; i++)
448 {
449 table[i].region_start = bfd_get_32 (objfile->obfd,
450 (bfd_byte *) buf);
451 table[i].region_start += text_offset;
452 buf += 4;
453 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
454 table[i].region_end += text_offset;
455 buf += 4;
456 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
457 buf += 4;
458 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
459 table[i].Millicode = (tmp >> 30) & 0x1;
460 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
461 table[i].Region_description = (tmp >> 27) & 0x3;
462 table[i].reserved1 = (tmp >> 26) & 0x1;
463 table[i].Entry_SR = (tmp >> 25) & 0x1;
464 table[i].Entry_FR = (tmp >> 21) & 0xf;
465 table[i].Entry_GR = (tmp >> 16) & 0x1f;
466 table[i].Args_stored = (tmp >> 15) & 0x1;
467 table[i].Variable_Frame = (tmp >> 14) & 0x1;
468 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
469 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
470 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
471 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
472 table[i].Ada_Region = (tmp >> 9) & 0x1;
473 table[i].cxx_info = (tmp >> 8) & 0x1;
474 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
475 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
476 table[i].reserved2 = (tmp >> 5) & 0x1;
477 table[i].Save_SP = (tmp >> 4) & 0x1;
478 table[i].Save_RP = (tmp >> 3) & 0x1;
479 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
480 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
481 table[i].Cleanup_defined = tmp & 0x1;
482 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
483 buf += 4;
484 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
485 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
486 table[i].Large_frame = (tmp >> 29) & 0x1;
487 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
488 table[i].reserved4 = (tmp >> 27) & 0x1;
489 table[i].Total_frame_size = tmp & 0x7ffffff;
490
491 /* Stub unwinds are handled elsewhere. */
492 table[i].stub_unwind.stub_type = 0;
493 table[i].stub_unwind.padding = 0;
494 }
495 }
496 }
497
498 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
499 the object file. This info is used mainly by find_unwind_entry() to find
500 out the stack frame size and frame pointer used by procedures. We put
501 everything on the psymbol obstack in the objfile so that it automatically
502 gets freed when the objfile is destroyed. */
503
504 static void
505 read_unwind_info (struct objfile *objfile)
506 {
507 asection *unwind_sec, *stub_unwind_sec;
508 unsigned unwind_size, stub_unwind_size, total_size;
509 unsigned index, unwind_entries;
510 unsigned stub_entries, total_entries;
511 CORE_ADDR text_offset;
512 struct obj_unwind_info *ui;
513 obj_private_data_t *obj_private;
514
515 text_offset = ANOFFSET (objfile->section_offsets, 0);
516 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
517 sizeof (struct obj_unwind_info));
518
519 ui->table = NULL;
520 ui->cache = NULL;
521 ui->last = -1;
522
523 /* For reasons unknown the HP PA64 tools generate multiple unwinder
524 sections in a single executable. So we just iterate over every
525 section in the BFD looking for unwinder sections intead of trying
526 to do a lookup with bfd_get_section_by_name.
527
528 First determine the total size of the unwind tables so that we
529 can allocate memory in a nice big hunk. */
530 total_entries = 0;
531 for (unwind_sec = objfile->obfd->sections;
532 unwind_sec;
533 unwind_sec = unwind_sec->next)
534 {
535 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
536 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
537 {
538 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
539 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
540
541 total_entries += unwind_entries;
542 }
543 }
544
545 /* Now compute the size of the stub unwinds. Note the ELF tools do not
546 use stub unwinds at the curren time. */
547 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
548
549 if (stub_unwind_sec)
550 {
551 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
552 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
553 }
554 else
555 {
556 stub_unwind_size = 0;
557 stub_entries = 0;
558 }
559
560 /* Compute total number of unwind entries and their total size. */
561 total_entries += stub_entries;
562 total_size = total_entries * sizeof (struct unwind_table_entry);
563
564 /* Allocate memory for the unwind table. */
565 ui->table = (struct unwind_table_entry *)
566 obstack_alloc (&objfile->objfile_obstack, total_size);
567 ui->last = total_entries - 1;
568
569 /* Now read in each unwind section and internalize the standard unwind
570 entries. */
571 index = 0;
572 for (unwind_sec = objfile->obfd->sections;
573 unwind_sec;
574 unwind_sec = unwind_sec->next)
575 {
576 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
577 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
578 {
579 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
580 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
581
582 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
583 unwind_entries, unwind_size, text_offset);
584 index += unwind_entries;
585 }
586 }
587
588 /* Now read in and internalize the stub unwind entries. */
589 if (stub_unwind_size > 0)
590 {
591 unsigned int i;
592 char *buf = alloca (stub_unwind_size);
593
594 /* Read in the stub unwind entries. */
595 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
596 0, stub_unwind_size);
597
598 /* Now convert them into regular unwind entries. */
599 for (i = 0; i < stub_entries; i++, index++)
600 {
601 /* Clear out the next unwind entry. */
602 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
603
604 /* Convert offset & size into region_start and region_end.
605 Stuff away the stub type into "reserved" fields. */
606 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
607 (bfd_byte *) buf);
608 ui->table[index].region_start += text_offset;
609 buf += 4;
610 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
611 (bfd_byte *) buf);
612 buf += 2;
613 ui->table[index].region_end
614 = ui->table[index].region_start + 4 *
615 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
616 buf += 2;
617 }
618
619 }
620
621 /* Unwind table needs to be kept sorted. */
622 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
623 compare_unwind_entries);
624
625 /* Keep a pointer to the unwind information. */
626 if (objfile->obj_private == NULL)
627 {
628 obj_private = (obj_private_data_t *)
629 obstack_alloc (&objfile->objfile_obstack,
630 sizeof (obj_private_data_t));
631 obj_private->unwind_info = NULL;
632 obj_private->so_info = NULL;
633 obj_private->dp = 0;
634
635 objfile->obj_private = obj_private;
636 }
637 obj_private = (obj_private_data_t *) objfile->obj_private;
638 obj_private->unwind_info = ui;
639 }
640
641 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
642 of the objfiles seeking the unwind table entry for this PC. Each objfile
643 contains a sorted list of struct unwind_table_entry. Since we do a binary
644 search of the unwind tables, we depend upon them to be sorted. */
645
646 struct unwind_table_entry *
647 find_unwind_entry (CORE_ADDR pc)
648 {
649 int first, middle, last;
650 struct objfile *objfile;
651
652 /* A function at address 0? Not in HP-UX! */
653 if (pc == (CORE_ADDR) 0)
654 return NULL;
655
656 ALL_OBJFILES (objfile)
657 {
658 struct obj_unwind_info *ui;
659 ui = NULL;
660 if (objfile->obj_private)
661 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
662
663 if (!ui)
664 {
665 read_unwind_info (objfile);
666 if (objfile->obj_private == NULL)
667 error ("Internal error reading unwind information.");
668 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
669 }
670
671 /* First, check the cache */
672
673 if (ui->cache
674 && pc >= ui->cache->region_start
675 && pc <= ui->cache->region_end)
676 return ui->cache;
677
678 /* Not in the cache, do a binary search */
679
680 first = 0;
681 last = ui->last;
682
683 while (first <= last)
684 {
685 middle = (first + last) / 2;
686 if (pc >= ui->table[middle].region_start
687 && pc <= ui->table[middle].region_end)
688 {
689 ui->cache = &ui->table[middle];
690 return &ui->table[middle];
691 }
692
693 if (pc < ui->table[middle].region_start)
694 last = middle - 1;
695 else
696 first = middle + 1;
697 }
698 } /* ALL_OBJFILES() */
699 return NULL;
700 }
701
702 const unsigned char *
703 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
704 {
705 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
706 (*len) = sizeof (breakpoint);
707 return breakpoint;
708 }
709
710 /* Return the name of a register. */
711
712 const char *
713 hppa32_register_name (int i)
714 {
715 static char *names[] = {
716 "flags", "r1", "rp", "r3",
717 "r4", "r5", "r6", "r7",
718 "r8", "r9", "r10", "r11",
719 "r12", "r13", "r14", "r15",
720 "r16", "r17", "r18", "r19",
721 "r20", "r21", "r22", "r23",
722 "r24", "r25", "r26", "dp",
723 "ret0", "ret1", "sp", "r31",
724 "sar", "pcoqh", "pcsqh", "pcoqt",
725 "pcsqt", "eiem", "iir", "isr",
726 "ior", "ipsw", "goto", "sr4",
727 "sr0", "sr1", "sr2", "sr3",
728 "sr5", "sr6", "sr7", "cr0",
729 "cr8", "cr9", "ccr", "cr12",
730 "cr13", "cr24", "cr25", "cr26",
731 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
732 "fpsr", "fpe1", "fpe2", "fpe3",
733 "fpe4", "fpe5", "fpe6", "fpe7",
734 "fr4", "fr4R", "fr5", "fr5R",
735 "fr6", "fr6R", "fr7", "fr7R",
736 "fr8", "fr8R", "fr9", "fr9R",
737 "fr10", "fr10R", "fr11", "fr11R",
738 "fr12", "fr12R", "fr13", "fr13R",
739 "fr14", "fr14R", "fr15", "fr15R",
740 "fr16", "fr16R", "fr17", "fr17R",
741 "fr18", "fr18R", "fr19", "fr19R",
742 "fr20", "fr20R", "fr21", "fr21R",
743 "fr22", "fr22R", "fr23", "fr23R",
744 "fr24", "fr24R", "fr25", "fr25R",
745 "fr26", "fr26R", "fr27", "fr27R",
746 "fr28", "fr28R", "fr29", "fr29R",
747 "fr30", "fr30R", "fr31", "fr31R"
748 };
749 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
750 return NULL;
751 else
752 return names[i];
753 }
754
755 const char *
756 hppa64_register_name (int i)
757 {
758 static char *names[] = {
759 "flags", "r1", "rp", "r3",
760 "r4", "r5", "r6", "r7",
761 "r8", "r9", "r10", "r11",
762 "r12", "r13", "r14", "r15",
763 "r16", "r17", "r18", "r19",
764 "r20", "r21", "r22", "r23",
765 "r24", "r25", "r26", "dp",
766 "ret0", "ret1", "sp", "r31",
767 "sar", "pcoqh", "pcsqh", "pcoqt",
768 "pcsqt", "eiem", "iir", "isr",
769 "ior", "ipsw", "goto", "sr4",
770 "sr0", "sr1", "sr2", "sr3",
771 "sr5", "sr6", "sr7", "cr0",
772 "cr8", "cr9", "ccr", "cr12",
773 "cr13", "cr24", "cr25", "cr26",
774 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
775 "fpsr", "fpe1", "fpe2", "fpe3",
776 "fr4", "fr5", "fr6", "fr7",
777 "fr8", "fr9", "fr10", "fr11",
778 "fr12", "fr13", "fr14", "fr15",
779 "fr16", "fr17", "fr18", "fr19",
780 "fr20", "fr21", "fr22", "fr23",
781 "fr24", "fr25", "fr26", "fr27",
782 "fr28", "fr29", "fr30", "fr31"
783 };
784 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
785 return NULL;
786 else
787 return names[i];
788 }
789
790
791
792 /* Return the adjustment necessary to make for addresses on the stack
793 as presented by hpread.c.
794
795 This is necessary because of the stack direction on the PA and the
796 bizarre way in which someone (?) decided they wanted to handle
797 frame pointerless code in GDB. */
798 int
799 hpread_adjust_stack_address (CORE_ADDR func_addr)
800 {
801 struct unwind_table_entry *u;
802
803 u = find_unwind_entry (func_addr);
804 if (!u)
805 return 0;
806 else
807 return u->Total_frame_size << 3;
808 }
809
810 /* Called to determine if PC is in an interrupt handler of some
811 kind. */
812
813 static int
814 pc_in_interrupt_handler (CORE_ADDR pc)
815 {
816 struct unwind_table_entry *u;
817 struct minimal_symbol *msym_us;
818
819 u = find_unwind_entry (pc);
820 if (!u)
821 return 0;
822
823 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
824 its frame isn't a pure interrupt frame. Deal with this. */
825 msym_us = lookup_minimal_symbol_by_pc (pc);
826
827 return (u->HP_UX_interrupt_marker
828 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
829 }
830
831 /* Called when no unwind descriptor was found for PC. Returns 1 if it
832 appears that PC is in a linker stub.
833
834 ?!? Need to handle stubs which appear in PA64 code. */
835
836 static int
837 pc_in_linker_stub (CORE_ADDR pc)
838 {
839 int found_magic_instruction = 0;
840 int i;
841 char buf[4];
842
843 /* If unable to read memory, assume pc is not in a linker stub. */
844 if (target_read_memory (pc, buf, 4) != 0)
845 return 0;
846
847 /* We are looking for something like
848
849 ; $$dyncall jams RP into this special spot in the frame (RP')
850 ; before calling the "call stub"
851 ldw -18(sp),rp
852
853 ldsid (rp),r1 ; Get space associated with RP into r1
854 mtsp r1,sp ; Move it into space register 0
855 be,n 0(sr0),rp) ; back to your regularly scheduled program */
856
857 /* Maximum known linker stub size is 4 instructions. Search forward
858 from the given PC, then backward. */
859 for (i = 0; i < 4; i++)
860 {
861 /* If we hit something with an unwind, stop searching this direction. */
862
863 if (find_unwind_entry (pc + i * 4) != 0)
864 break;
865
866 /* Check for ldsid (rp),r1 which is the magic instruction for a
867 return from a cross-space function call. */
868 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
869 {
870 found_magic_instruction = 1;
871 break;
872 }
873 /* Add code to handle long call/branch and argument relocation stubs
874 here. */
875 }
876
877 if (found_magic_instruction != 0)
878 return 1;
879
880 /* Now look backward. */
881 for (i = 0; i < 4; i++)
882 {
883 /* If we hit something with an unwind, stop searching this direction. */
884
885 if (find_unwind_entry (pc - i * 4) != 0)
886 break;
887
888 /* Check for ldsid (rp),r1 which is the magic instruction for a
889 return from a cross-space function call. */
890 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
891 {
892 found_magic_instruction = 1;
893 break;
894 }
895 /* Add code to handle long call/branch and argument relocation stubs
896 here. */
897 }
898 return found_magic_instruction;
899 }
900
901 static int
902 find_return_regnum (CORE_ADDR pc)
903 {
904 struct unwind_table_entry *u;
905
906 u = find_unwind_entry (pc);
907
908 if (!u)
909 return RP_REGNUM;
910
911 if (u->Millicode)
912 return 31;
913
914 return RP_REGNUM;
915 }
916
917 /* Return size of frame, or -1 if we should use a frame pointer. */
918 static int
919 find_proc_framesize (CORE_ADDR pc)
920 {
921 struct unwind_table_entry *u;
922 struct minimal_symbol *msym_us;
923
924 /* This may indicate a bug in our callers... */
925 if (pc == (CORE_ADDR) 0)
926 return -1;
927
928 u = find_unwind_entry (pc);
929
930 if (!u)
931 {
932 if (pc_in_linker_stub (pc))
933 /* Linker stubs have a zero size frame. */
934 return 0;
935 else
936 return -1;
937 }
938
939 msym_us = lookup_minimal_symbol_by_pc (pc);
940
941 /* If Save_SP is set, and we're not in an interrupt or signal caller,
942 then we have a frame pointer. Use it. */
943 if (u->Save_SP
944 && !pc_in_interrupt_handler (pc)
945 && msym_us
946 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
947 return -1;
948
949 return u->Total_frame_size << 3;
950 }
951
952 /* Return offset from sp at which rp is saved, or 0 if not saved. */
953 static int rp_saved (CORE_ADDR);
954
955 static int
956 rp_saved (CORE_ADDR pc)
957 {
958 struct unwind_table_entry *u;
959
960 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
961 if (pc == (CORE_ADDR) 0)
962 return 0;
963
964 u = find_unwind_entry (pc);
965
966 if (!u)
967 {
968 if (pc_in_linker_stub (pc))
969 /* This is the so-called RP'. */
970 return -24;
971 else
972 return 0;
973 }
974
975 if (u->Save_RP)
976 return (TARGET_PTR_BIT == 64 ? -16 : -20);
977 else if (u->stub_unwind.stub_type != 0)
978 {
979 switch (u->stub_unwind.stub_type)
980 {
981 case EXPORT:
982 case IMPORT:
983 return -24;
984 case PARAMETER_RELOCATION:
985 return -8;
986 default:
987 return 0;
988 }
989 }
990 else
991 return 0;
992 }
993 \f
994 int
995 hppa_frameless_function_invocation (struct frame_info *frame)
996 {
997 struct unwind_table_entry *u;
998
999 u = find_unwind_entry (get_frame_pc (frame));
1000
1001 if (u == 0)
1002 return 0;
1003
1004 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
1005 }
1006
1007 /* Immediately after a function call, return the saved pc.
1008 Can't go through the frames for this because on some machines
1009 the new frame is not set up until the new function executes
1010 some instructions. */
1011
1012 CORE_ADDR
1013 hppa_saved_pc_after_call (struct frame_info *frame)
1014 {
1015 int ret_regnum;
1016 CORE_ADDR pc;
1017 struct unwind_table_entry *u;
1018
1019 ret_regnum = find_return_regnum (get_frame_pc (frame));
1020 pc = read_register (ret_regnum) & ~0x3;
1021
1022 /* If PC is in a linker stub, then we need to dig the address
1023 the stub will return to out of the stack. */
1024 u = find_unwind_entry (pc);
1025 if (u && u->stub_unwind.stub_type != 0)
1026 return DEPRECATED_FRAME_SAVED_PC (frame);
1027 else
1028 return pc;
1029 }
1030 \f
1031 CORE_ADDR
1032 hppa_frame_saved_pc (struct frame_info *frame)
1033 {
1034 CORE_ADDR pc = get_frame_pc (frame);
1035 struct unwind_table_entry *u;
1036 CORE_ADDR old_pc = 0;
1037 int spun_around_loop = 0;
1038 int rp_offset = 0;
1039
1040 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1041 at the base of the frame in an interrupt handler. Registers within
1042 are saved in the exact same order as GDB numbers registers. How
1043 convienent. */
1044 if (pc_in_interrupt_handler (pc))
1045 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
1046 TARGET_PTR_BIT / 8) & ~0x3;
1047
1048 if ((get_frame_pc (frame) >= get_frame_base (frame)
1049 && (get_frame_pc (frame)
1050 <= (get_frame_base (frame)
1051 /* A call dummy is sized in words, but it is actually a
1052 series of instructions. Account for that scaling
1053 factor. */
1054 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1055 * DEPRECATED_CALL_DUMMY_LENGTH)
1056 /* Similarly we have to account for 64bit wide register
1057 saves. */
1058 + (32 * DEPRECATED_REGISTER_SIZE)
1059 /* We always consider FP regs 8 bytes long. */
1060 + (NUM_REGS - FP0_REGNUM) * 8
1061 /* Similarly we have to account for 64bit wide register
1062 saves. */
1063 + (6 * DEPRECATED_REGISTER_SIZE)))))
1064 {
1065 return read_memory_integer ((get_frame_base (frame)
1066 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1067 TARGET_PTR_BIT / 8) & ~0x3;
1068 }
1069
1070 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1071 /* Deal with signal handler caller frames too. */
1072 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1073 {
1074 CORE_ADDR rp;
1075 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1076 return rp & ~0x3;
1077 }
1078 #endif
1079
1080 if (hppa_frameless_function_invocation (frame))
1081 {
1082 int ret_regnum;
1083
1084 ret_regnum = find_return_regnum (pc);
1085
1086 /* If the next frame is an interrupt frame or a signal
1087 handler caller, then we need to look in the saved
1088 register area to get the return pointer (the values
1089 in the registers may not correspond to anything useful). */
1090 if (get_next_frame (frame)
1091 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1092 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1093 {
1094 CORE_ADDR *saved_regs;
1095 hppa_frame_init_saved_regs (get_next_frame (frame));
1096 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1097 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1098 TARGET_PTR_BIT / 8) & 0x2)
1099 {
1100 pc = read_memory_integer (saved_regs[31],
1101 TARGET_PTR_BIT / 8) & ~0x3;
1102
1103 /* Syscalls are really two frames. The syscall stub itself
1104 with a return pointer in %rp and the kernel call with
1105 a return pointer in %r31. We return the %rp variant
1106 if %r31 is the same as frame->pc. */
1107 if (pc == get_frame_pc (frame))
1108 pc = read_memory_integer (saved_regs[RP_REGNUM],
1109 TARGET_PTR_BIT / 8) & ~0x3;
1110 }
1111 else
1112 pc = read_memory_integer (saved_regs[RP_REGNUM],
1113 TARGET_PTR_BIT / 8) & ~0x3;
1114 }
1115 else
1116 pc = read_register (ret_regnum) & ~0x3;
1117 }
1118 else
1119 {
1120 spun_around_loop = 0;
1121 old_pc = pc;
1122
1123 restart:
1124 rp_offset = rp_saved (pc);
1125
1126 /* Similar to code in frameless function case. If the next
1127 frame is a signal or interrupt handler, then dig the right
1128 information out of the saved register info. */
1129 if (rp_offset == 0
1130 && get_next_frame (frame)
1131 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1132 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1133 {
1134 CORE_ADDR *saved_regs;
1135 hppa_frame_init_saved_regs (get_next_frame (frame));
1136 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1137 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1138 TARGET_PTR_BIT / 8) & 0x2)
1139 {
1140 pc = read_memory_integer (saved_regs[31],
1141 TARGET_PTR_BIT / 8) & ~0x3;
1142
1143 /* Syscalls are really two frames. The syscall stub itself
1144 with a return pointer in %rp and the kernel call with
1145 a return pointer in %r31. We return the %rp variant
1146 if %r31 is the same as frame->pc. */
1147 if (pc == get_frame_pc (frame))
1148 pc = read_memory_integer (saved_regs[RP_REGNUM],
1149 TARGET_PTR_BIT / 8) & ~0x3;
1150 }
1151 else
1152 pc = read_memory_integer (saved_regs[RP_REGNUM],
1153 TARGET_PTR_BIT / 8) & ~0x3;
1154 }
1155 else if (rp_offset == 0)
1156 {
1157 old_pc = pc;
1158 pc = read_register (RP_REGNUM) & ~0x3;
1159 }
1160 else
1161 {
1162 old_pc = pc;
1163 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1164 TARGET_PTR_BIT / 8) & ~0x3;
1165 }
1166 }
1167
1168 /* If PC is inside a linker stub, then dig out the address the stub
1169 will return to.
1170
1171 Don't do this for long branch stubs. Why? For some unknown reason
1172 _start is marked as a long branch stub in hpux10. */
1173 u = find_unwind_entry (pc);
1174 if (u && u->stub_unwind.stub_type != 0
1175 && u->stub_unwind.stub_type != LONG_BRANCH)
1176 {
1177 unsigned int insn;
1178
1179 /* If this is a dynamic executable, and we're in a signal handler,
1180 then the call chain will eventually point us into the stub for
1181 _sigreturn. Unlike most cases, we'll be pointed to the branch
1182 to the real sigreturn rather than the code after the real branch!.
1183
1184 Else, try to dig the address the stub will return to in the normal
1185 fashion. */
1186 insn = read_memory_integer (pc, 4);
1187 if ((insn & 0xfc00e000) == 0xe8000000)
1188 return (pc + extract_17 (insn) + 8) & ~0x3;
1189 else
1190 {
1191 if (old_pc == pc)
1192 spun_around_loop++;
1193
1194 if (spun_around_loop > 1)
1195 {
1196 /* We're just about to go around the loop again with
1197 no more hope of success. Die. */
1198 error ("Unable to find return pc for this frame");
1199 }
1200 else
1201 goto restart;
1202 }
1203 }
1204
1205 return pc;
1206 }
1207 \f
1208 /* We need to correct the PC and the FP for the outermost frame when we are
1209 in a system call. */
1210
1211 void
1212 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1213 {
1214 int flags;
1215 int framesize;
1216
1217 if (get_next_frame (frame) && !fromleaf)
1218 return;
1219
1220 /* If the next frame represents a frameless function invocation then
1221 we have to do some adjustments that are normally done by
1222 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1223 this case.) */
1224 if (fromleaf)
1225 {
1226 /* Find the framesize of *this* frame without peeking at the PC
1227 in the current frame structure (it isn't set yet). */
1228 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1229
1230 /* Now adjust our base frame accordingly. If we have a frame pointer
1231 use it, else subtract the size of this frame from the current
1232 frame. (we always want frame->frame to point at the lowest address
1233 in the frame). */
1234 if (framesize == -1)
1235 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1236 else
1237 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1238 return;
1239 }
1240
1241 flags = read_register (FLAGS_REGNUM);
1242 if (flags & 2) /* In system call? */
1243 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1244
1245 /* The outermost frame is always derived from PC-framesize
1246
1247 One might think frameless innermost frames should have
1248 a frame->frame that is the same as the parent's frame->frame.
1249 That is wrong; frame->frame in that case should be the *high*
1250 address of the parent's frame. It's complicated as hell to
1251 explain, but the parent *always* creates some stack space for
1252 the child. So the child actually does have a frame of some
1253 sorts, and its base is the high address in its parent's frame. */
1254 framesize = find_proc_framesize (get_frame_pc (frame));
1255 if (framesize == -1)
1256 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1257 else
1258 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1259 }
1260 \f
1261 /* Given a GDB frame, determine the address of the calling function's
1262 frame. This will be used to create a new GDB frame struct, and
1263 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1264 will be called for the new frame.
1265
1266 This may involve searching through prologues for several functions
1267 at boundaries where GCC calls HP C code, or where code which has
1268 a frame pointer calls code without a frame pointer. */
1269
1270 CORE_ADDR
1271 hppa_frame_chain (struct frame_info *frame)
1272 {
1273 int my_framesize, caller_framesize;
1274 struct unwind_table_entry *u;
1275 CORE_ADDR frame_base;
1276 struct frame_info *tmp_frame;
1277
1278 /* A frame in the current frame list, or zero. */
1279 struct frame_info *saved_regs_frame = 0;
1280 /* Where the registers were saved in saved_regs_frame. If
1281 saved_regs_frame is zero, this is garbage. */
1282 CORE_ADDR *saved_regs = NULL;
1283
1284 CORE_ADDR caller_pc;
1285
1286 struct minimal_symbol *min_frame_symbol;
1287 struct symbol *frame_symbol;
1288 char *frame_symbol_name;
1289
1290 /* If this is a threaded application, and we see the
1291 routine "__pthread_exit", treat it as the stack root
1292 for this thread. */
1293 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1294 frame_symbol = find_pc_function (get_frame_pc (frame));
1295
1296 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1297 {
1298 /* The test above for "no user function name" would defend
1299 against the slim likelihood that a user might define a
1300 routine named "__pthread_exit" and then try to debug it.
1301
1302 If it weren't commented out, and you tried to debug the
1303 pthread library itself, you'd get errors.
1304
1305 So for today, we don't make that check. */
1306 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1307 if (frame_symbol_name != 0)
1308 {
1309 if (0 == strncmp (frame_symbol_name,
1310 THREAD_INITIAL_FRAME_SYMBOL,
1311 THREAD_INITIAL_FRAME_SYM_LEN))
1312 {
1313 /* Pretend we've reached the bottom of the stack. */
1314 return (CORE_ADDR) 0;
1315 }
1316 }
1317 } /* End of hacky code for threads. */
1318
1319 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1320 are easy; at *sp we have a full save state strucutre which we can
1321 pull the old stack pointer from. Also see frame_saved_pc for
1322 code to dig a saved PC out of the save state structure. */
1323 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1324 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1325 TARGET_PTR_BIT / 8);
1326 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1327 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1328 {
1329 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1330 }
1331 #endif
1332 else
1333 frame_base = get_frame_base (frame);
1334
1335 /* Get frame sizes for the current frame and the frame of the
1336 caller. */
1337 my_framesize = find_proc_framesize (get_frame_pc (frame));
1338 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1339
1340 /* If we can't determine the caller's PC, then it's not likely we can
1341 really determine anything meaningful about its frame. We'll consider
1342 this to be stack bottom. */
1343 if (caller_pc == (CORE_ADDR) 0)
1344 return (CORE_ADDR) 0;
1345
1346 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1347
1348 /* If caller does not have a frame pointer, then its frame
1349 can be found at current_frame - caller_framesize. */
1350 if (caller_framesize != -1)
1351 {
1352 return frame_base - caller_framesize;
1353 }
1354 /* Both caller and callee have frame pointers and are GCC compiled
1355 (SAVE_SP bit in unwind descriptor is on for both functions.
1356 The previous frame pointer is found at the top of the current frame. */
1357 if (caller_framesize == -1 && my_framesize == -1)
1358 {
1359 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1360 }
1361 /* Caller has a frame pointer, but callee does not. This is a little
1362 more difficult as GCC and HP C lay out locals and callee register save
1363 areas very differently.
1364
1365 The previous frame pointer could be in a register, or in one of
1366 several areas on the stack.
1367
1368 Walk from the current frame to the innermost frame examining
1369 unwind descriptors to determine if %r3 ever gets saved into the
1370 stack. If so return whatever value got saved into the stack.
1371 If it was never saved in the stack, then the value in %r3 is still
1372 valid, so use it.
1373
1374 We use information from unwind descriptors to determine if %r3
1375 is saved into the stack (Entry_GR field has this information). */
1376
1377 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1378 {
1379 u = find_unwind_entry (get_frame_pc (tmp_frame));
1380
1381 if (!u)
1382 {
1383 /* We could find this information by examining prologues. I don't
1384 think anyone has actually written any tools (not even "strip")
1385 which leave them out of an executable, so maybe this is a moot
1386 point. */
1387 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1388 code that doesn't have unwind entries. For example, stepping into
1389 the dynamic linker will give you a PC that has none. Thus, I've
1390 disabled this warning. */
1391 #if 0
1392 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1393 #endif
1394 return (CORE_ADDR) 0;
1395 }
1396
1397 if (u->Save_SP
1398 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1399 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1400 break;
1401
1402 /* Entry_GR specifies the number of callee-saved general registers
1403 saved in the stack. It starts at %r3, so %r3 would be 1. */
1404 if (u->Entry_GR >= 1)
1405 {
1406 /* The unwind entry claims that r3 is saved here. However,
1407 in optimized code, GCC often doesn't actually save r3.
1408 We'll discover this if we look at the prologue. */
1409 hppa_frame_init_saved_regs (tmp_frame);
1410 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1411 saved_regs_frame = tmp_frame;
1412
1413 /* If we have an address for r3, that's good. */
1414 if (saved_regs[DEPRECATED_FP_REGNUM])
1415 break;
1416 }
1417 }
1418
1419 if (tmp_frame)
1420 {
1421 /* We may have walked down the chain into a function with a frame
1422 pointer. */
1423 if (u->Save_SP
1424 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1425 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1426 {
1427 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1428 }
1429 /* %r3 was saved somewhere in the stack. Dig it out. */
1430 else
1431 {
1432 /* Sick.
1433
1434 For optimization purposes many kernels don't have the
1435 callee saved registers into the save_state structure upon
1436 entry into the kernel for a syscall; the optimization
1437 is usually turned off if the process is being traced so
1438 that the debugger can get full register state for the
1439 process.
1440
1441 This scheme works well except for two cases:
1442
1443 * Attaching to a process when the process is in the
1444 kernel performing a system call (debugger can't get
1445 full register state for the inferior process since
1446 the process wasn't being traced when it entered the
1447 system call).
1448
1449 * Register state is not complete if the system call
1450 causes the process to core dump.
1451
1452
1453 The following heinous code is an attempt to deal with
1454 the lack of register state in a core dump. It will
1455 fail miserably if the function which performs the
1456 system call has a variable sized stack frame. */
1457
1458 if (tmp_frame != saved_regs_frame)
1459 {
1460 hppa_frame_init_saved_regs (tmp_frame);
1461 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1462 }
1463
1464 /* Abominable hack. */
1465 if (current_target.to_has_execution == 0
1466 && ((saved_regs[FLAGS_REGNUM]
1467 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1468 TARGET_PTR_BIT / 8)
1469 & 0x2))
1470 || (saved_regs[FLAGS_REGNUM] == 0
1471 && read_register (FLAGS_REGNUM) & 0x2)))
1472 {
1473 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1474 if (!u)
1475 {
1476 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1477 TARGET_PTR_BIT / 8);
1478 }
1479 else
1480 {
1481 return frame_base - (u->Total_frame_size << 3);
1482 }
1483 }
1484
1485 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1486 TARGET_PTR_BIT / 8);
1487 }
1488 }
1489 else
1490 {
1491 /* Get the innermost frame. */
1492 tmp_frame = frame;
1493 while (get_next_frame (tmp_frame) != NULL)
1494 tmp_frame = get_next_frame (tmp_frame);
1495
1496 if (tmp_frame != saved_regs_frame)
1497 {
1498 hppa_frame_init_saved_regs (tmp_frame);
1499 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1500 }
1501
1502 /* Abominable hack. See above. */
1503 if (current_target.to_has_execution == 0
1504 && ((saved_regs[FLAGS_REGNUM]
1505 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1506 TARGET_PTR_BIT / 8)
1507 & 0x2))
1508 || (saved_regs[FLAGS_REGNUM] == 0
1509 && read_register (FLAGS_REGNUM) & 0x2)))
1510 {
1511 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1512 if (!u)
1513 {
1514 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1515 TARGET_PTR_BIT / 8);
1516 }
1517 else
1518 {
1519 return frame_base - (u->Total_frame_size << 3);
1520 }
1521 }
1522
1523 /* The value in %r3 was never saved into the stack (thus %r3 still
1524 holds the value of the previous frame pointer). */
1525 return deprecated_read_fp ();
1526 }
1527 }
1528 \f
1529
1530 /* To see if a frame chain is valid, see if the caller looks like it
1531 was compiled with gcc. */
1532
1533 int
1534 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1535 {
1536 struct minimal_symbol *msym_us;
1537 struct minimal_symbol *msym_start;
1538 struct unwind_table_entry *u, *next_u = NULL;
1539 struct frame_info *next;
1540
1541 u = find_unwind_entry (get_frame_pc (thisframe));
1542
1543 if (u == NULL)
1544 return 1;
1545
1546 /* We can't just check that the same of msym_us is "_start", because
1547 someone idiotically decided that they were going to make a Ltext_end
1548 symbol with the same address. This Ltext_end symbol is totally
1549 indistinguishable (as nearly as I can tell) from the symbol for a function
1550 which is (legitimately, since it is in the user's namespace)
1551 named Ltext_end, so we can't just ignore it. */
1552 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1553 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1554 if (msym_us
1555 && msym_start
1556 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1557 return 0;
1558
1559 /* Grrrr. Some new idiot decided that they don't want _start for the
1560 PRO configurations; $START$ calls main directly.... Deal with it. */
1561 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1562 if (msym_us
1563 && msym_start
1564 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1565 return 0;
1566
1567 next = get_next_frame (thisframe);
1568 if (next)
1569 next_u = find_unwind_entry (get_frame_pc (next));
1570
1571 /* If this frame does not save SP, has no stack, isn't a stub,
1572 and doesn't "call" an interrupt routine or signal handler caller,
1573 then its not valid. */
1574 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1575 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1576 || (next_u && next_u->HP_UX_interrupt_marker))
1577 return 1;
1578
1579 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1580 return 1;
1581
1582 return 0;
1583 }
1584
1585 /* These functions deal with saving and restoring register state
1586 around a function call in the inferior. They keep the stack
1587 double-word aligned; eventually, on an hp700, the stack will have
1588 to be aligned to a 64-byte boundary. */
1589
1590 void
1591 hppa_push_dummy_frame (void)
1592 {
1593 CORE_ADDR sp, pc, pcspace;
1594 int regnum;
1595 CORE_ADDR int_buffer;
1596 double freg_buffer;
1597
1598 pc = hppa_target_read_pc (inferior_ptid);
1599 int_buffer = read_register (FLAGS_REGNUM);
1600 if (int_buffer & 0x2)
1601 {
1602 const unsigned int sid = (pc >> 30) & 0x3;
1603 if (sid == 0)
1604 pcspace = read_register (SR4_REGNUM);
1605 else
1606 pcspace = read_register (SR4_REGNUM + 4 + sid);
1607 }
1608 else
1609 pcspace = read_register (PCSQ_HEAD_REGNUM);
1610
1611 /* Space for "arguments"; the RP goes in here. */
1612 sp = read_register (SP_REGNUM) + 48;
1613 int_buffer = read_register (RP_REGNUM) | 0x3;
1614
1615 /* The 32bit and 64bit ABIs save the return pointer into different
1616 stack slots. */
1617 if (DEPRECATED_REGISTER_SIZE == 8)
1618 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1619 else
1620 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1621
1622 int_buffer = deprecated_read_fp ();
1623 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1624
1625 write_register (DEPRECATED_FP_REGNUM, sp);
1626
1627 sp += 2 * DEPRECATED_REGISTER_SIZE;
1628
1629 for (regnum = 1; regnum < 32; regnum++)
1630 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1631 sp = push_word (sp, read_register (regnum));
1632
1633 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1634 if (DEPRECATED_REGISTER_SIZE != 8)
1635 sp += 4;
1636
1637 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1638 {
1639 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1640 (char *) &freg_buffer, 8);
1641 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1642 }
1643 sp = push_word (sp, read_register (IPSW_REGNUM));
1644 sp = push_word (sp, read_register (SAR_REGNUM));
1645 sp = push_word (sp, pc);
1646 sp = push_word (sp, pcspace);
1647 sp = push_word (sp, pc + 4);
1648 sp = push_word (sp, pcspace);
1649 write_register (SP_REGNUM, sp);
1650 }
1651
1652 static void
1653 find_dummy_frame_regs (struct frame_info *frame,
1654 CORE_ADDR frame_saved_regs[])
1655 {
1656 CORE_ADDR fp = get_frame_base (frame);
1657 int i;
1658
1659 /* The 32bit and 64bit ABIs save RP into different locations. */
1660 if (DEPRECATED_REGISTER_SIZE == 8)
1661 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1662 else
1663 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1664
1665 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1666
1667 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1668
1669 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1670 {
1671 if (i != DEPRECATED_FP_REGNUM)
1672 {
1673 frame_saved_regs[i] = fp;
1674 fp += DEPRECATED_REGISTER_SIZE;
1675 }
1676 }
1677
1678 /* This is not necessary or desirable for the 64bit ABI. */
1679 if (DEPRECATED_REGISTER_SIZE != 8)
1680 fp += 4;
1681
1682 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1683 frame_saved_regs[i] = fp;
1684
1685 frame_saved_regs[IPSW_REGNUM] = fp;
1686 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1687 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1688 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1689 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1690 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1691 }
1692
1693 void
1694 hppa_pop_frame (void)
1695 {
1696 struct frame_info *frame = get_current_frame ();
1697 CORE_ADDR fp, npc, target_pc;
1698 int regnum;
1699 CORE_ADDR *fsr;
1700 double freg_buffer;
1701
1702 fp = get_frame_base (frame);
1703 hppa_frame_init_saved_regs (frame);
1704 fsr = deprecated_get_frame_saved_regs (frame);
1705
1706 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1707 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1708 restore_pc_queue (fsr);
1709 #endif
1710
1711 for (regnum = 31; regnum > 0; regnum--)
1712 if (fsr[regnum])
1713 write_register (regnum, read_memory_integer (fsr[regnum],
1714 DEPRECATED_REGISTER_SIZE));
1715
1716 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1717 if (fsr[regnum])
1718 {
1719 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1720 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1721 (char *) &freg_buffer, 8);
1722 }
1723
1724 if (fsr[IPSW_REGNUM])
1725 write_register (IPSW_REGNUM,
1726 read_memory_integer (fsr[IPSW_REGNUM],
1727 DEPRECATED_REGISTER_SIZE));
1728
1729 if (fsr[SAR_REGNUM])
1730 write_register (SAR_REGNUM,
1731 read_memory_integer (fsr[SAR_REGNUM],
1732 DEPRECATED_REGISTER_SIZE));
1733
1734 /* If the PC was explicitly saved, then just restore it. */
1735 if (fsr[PCOQ_TAIL_REGNUM])
1736 {
1737 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1738 DEPRECATED_REGISTER_SIZE);
1739 write_register (PCOQ_TAIL_REGNUM, npc);
1740 }
1741 /* Else use the value in %rp to set the new PC. */
1742 else
1743 {
1744 npc = read_register (RP_REGNUM);
1745 write_pc (npc);
1746 }
1747
1748 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1749
1750 if (fsr[IPSW_REGNUM]) /* call dummy */
1751 write_register (SP_REGNUM, fp - 48);
1752 else
1753 write_register (SP_REGNUM, fp);
1754
1755 /* The PC we just restored may be inside a return trampoline. If so
1756 we want to restart the inferior and run it through the trampoline.
1757
1758 Do this by setting a momentary breakpoint at the location the
1759 trampoline returns to.
1760
1761 Don't skip through the trampoline if we're popping a dummy frame. */
1762 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1763 if (target_pc && !fsr[IPSW_REGNUM])
1764 {
1765 struct symtab_and_line sal;
1766 struct breakpoint *breakpoint;
1767 struct cleanup *old_chain;
1768
1769 /* Set up our breakpoint. Set it to be silent as the MI code
1770 for "return_command" will print the frame we returned to. */
1771 sal = find_pc_line (target_pc, 0);
1772 sal.pc = target_pc;
1773 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1774 breakpoint->silent = 1;
1775
1776 /* So we can clean things up. */
1777 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1778
1779 /* Start up the inferior. */
1780 clear_proceed_status ();
1781 proceed_to_finish = 1;
1782 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1783
1784 /* Perform our cleanups. */
1785 do_cleanups (old_chain);
1786 }
1787 flush_cached_frames ();
1788 }
1789
1790 /* After returning to a dummy on the stack, restore the instruction
1791 queue space registers. */
1792
1793 static int
1794 restore_pc_queue (CORE_ADDR *fsr)
1795 {
1796 CORE_ADDR pc = read_pc ();
1797 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1798 TARGET_PTR_BIT / 8);
1799 struct target_waitstatus w;
1800 int insn_count;
1801
1802 /* Advance past break instruction in the call dummy. */
1803 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1804 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1805
1806 /* HPUX doesn't let us set the space registers or the space
1807 registers of the PC queue through ptrace. Boo, hiss.
1808 Conveniently, the call dummy has this sequence of instructions
1809 after the break:
1810 mtsp r21, sr0
1811 ble,n 0(sr0, r22)
1812
1813 So, load up the registers and single step until we are in the
1814 right place. */
1815
1816 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1817 DEPRECATED_REGISTER_SIZE));
1818 write_register (22, new_pc);
1819
1820 for (insn_count = 0; insn_count < 3; insn_count++)
1821 {
1822 /* FIXME: What if the inferior gets a signal right now? Want to
1823 merge this into wait_for_inferior (as a special kind of
1824 watchpoint? By setting a breakpoint at the end? Is there
1825 any other choice? Is there *any* way to do this stuff with
1826 ptrace() or some equivalent?). */
1827 resume (1, 0);
1828 target_wait (inferior_ptid, &w);
1829
1830 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1831 {
1832 stop_signal = w.value.sig;
1833 terminal_ours_for_output ();
1834 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1835 target_signal_to_name (stop_signal),
1836 target_signal_to_string (stop_signal));
1837 gdb_flush (gdb_stdout);
1838 return 0;
1839 }
1840 }
1841 target_terminal_ours ();
1842 target_fetch_registers (-1);
1843 return 1;
1844 }
1845
1846
1847 #ifdef PA20W_CALLING_CONVENTIONS
1848
1849 /* This function pushes a stack frame with arguments as part of the
1850 inferior function calling mechanism.
1851
1852 This is the version for the PA64, in which later arguments appear
1853 at higher addresses. (The stack always grows towards higher
1854 addresses.)
1855
1856 We simply allocate the appropriate amount of stack space and put
1857 arguments into their proper slots. The call dummy code will copy
1858 arguments into registers as needed by the ABI.
1859
1860 This ABI also requires that the caller provide an argument pointer
1861 to the callee, so we do that too. */
1862
1863 CORE_ADDR
1864 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1865 int struct_return, CORE_ADDR struct_addr)
1866 {
1867 /* array of arguments' offsets */
1868 int *offset = (int *) alloca (nargs * sizeof (int));
1869
1870 /* array of arguments' lengths: real lengths in bytes, not aligned to
1871 word size */
1872 int *lengths = (int *) alloca (nargs * sizeof (int));
1873
1874 /* The value of SP as it was passed into this function after
1875 aligning. */
1876 CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp);
1877
1878 /* The number of stack bytes occupied by the current argument. */
1879 int bytes_reserved;
1880
1881 /* The total number of bytes reserved for the arguments. */
1882 int cum_bytes_reserved = 0;
1883
1884 /* Similarly, but aligned. */
1885 int cum_bytes_aligned = 0;
1886 int i;
1887
1888 /* Iterate over each argument provided by the user. */
1889 for (i = 0; i < nargs; i++)
1890 {
1891 struct type *arg_type = VALUE_TYPE (args[i]);
1892
1893 /* Integral scalar values smaller than a register are padded on
1894 the left. We do this by promoting them to full-width,
1895 although the ABI says to pad them with garbage. */
1896 if (is_integral_type (arg_type)
1897 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1898 {
1899 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1900 ? builtin_type_unsigned_long
1901 : builtin_type_long),
1902 args[i]);
1903 arg_type = VALUE_TYPE (args[i]);
1904 }
1905
1906 lengths[i] = TYPE_LENGTH (arg_type);
1907
1908 /* Align the size of the argument to the word size for this
1909 target. */
1910 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1911
1912 offset[i] = cum_bytes_reserved;
1913
1914 /* Aggregates larger than eight bytes (the only types larger
1915 than eight bytes we have) are aligned on a 16-byte boundary,
1916 possibly padded on the right with garbage. This may leave an
1917 empty word on the stack, and thus an unused register, as per
1918 the ABI. */
1919 if (bytes_reserved > 8)
1920 {
1921 /* Round up the offset to a multiple of two slots. */
1922 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1923 & -(2*DEPRECATED_REGISTER_SIZE));
1924
1925 /* Note the space we've wasted, if any. */
1926 bytes_reserved += new_offset - offset[i];
1927 offset[i] = new_offset;
1928 }
1929
1930 cum_bytes_reserved += bytes_reserved;
1931 }
1932
1933 /* CUM_BYTES_RESERVED already accounts for all the arguments
1934 passed by the user. However, the ABIs mandate minimum stack space
1935 allocations for outgoing arguments.
1936
1937 The ABIs also mandate minimum stack alignments which we must
1938 preserve. */
1939 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
1940 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1941
1942 /* Now write each of the args at the proper offset down the stack. */
1943 for (i = 0; i < nargs; i++)
1944 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1945
1946 /* If a structure has to be returned, set up register 28 to hold its
1947 address */
1948 if (struct_return)
1949 write_register (28, struct_addr);
1950
1951 /* For the PA64 we must pass a pointer to the outgoing argument list.
1952 The ABI mandates that the pointer should point to the first byte of
1953 storage beyond the register flushback area.
1954
1955 However, the call dummy expects the outgoing argument pointer to
1956 be passed in register %r4. */
1957 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1958
1959 /* ?!? This needs further work. We need to set up the global data
1960 pointer for this procedure. This assumes the same global pointer
1961 for every procedure. The call dummy expects the dp value to
1962 be passed in register %r6. */
1963 write_register (6, read_register (27));
1964
1965 /* The stack will have 64 bytes of additional space for a frame marker. */
1966 return sp + 64;
1967 }
1968
1969 #else
1970
1971 /* This function pushes a stack frame with arguments as part of the
1972 inferior function calling mechanism.
1973
1974 This is the version of the function for the 32-bit PA machines, in
1975 which later arguments appear at lower addresses. (The stack always
1976 grows towards higher addresses.)
1977
1978 We simply allocate the appropriate amount of stack space and put
1979 arguments into their proper slots. The call dummy code will copy
1980 arguments into registers as needed by the ABI. */
1981
1982 CORE_ADDR
1983 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1984 int struct_return, CORE_ADDR struct_addr)
1985 {
1986 /* array of arguments' offsets */
1987 int *offset = (int *) alloca (nargs * sizeof (int));
1988
1989 /* array of arguments' lengths: real lengths in bytes, not aligned to
1990 word size */
1991 int *lengths = (int *) alloca (nargs * sizeof (int));
1992
1993 /* The number of stack bytes occupied by the current argument. */
1994 int bytes_reserved;
1995
1996 /* The total number of bytes reserved for the arguments. */
1997 int cum_bytes_reserved = 0;
1998
1999 /* Similarly, but aligned. */
2000 int cum_bytes_aligned = 0;
2001 int i;
2002
2003 /* Iterate over each argument provided by the user. */
2004 for (i = 0; i < nargs; i++)
2005 {
2006 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2007
2008 /* Align the size of the argument to the word size for this
2009 target. */
2010 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2011
2012 offset[i] = (cum_bytes_reserved
2013 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
2014
2015 /* If the argument is a double word argument, then it needs to be
2016 double word aligned. */
2017 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
2018 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
2019 {
2020 int new_offset = 0;
2021 /* BYTES_RESERVED is already aligned to the word, so we put
2022 the argument at one word more down the stack.
2023
2024 This will leave one empty word on the stack, and one unused
2025 register as mandated by the ABI. */
2026 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
2027 & -(2 * DEPRECATED_REGISTER_SIZE));
2028
2029 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
2030 {
2031 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2032 offset[i] += DEPRECATED_REGISTER_SIZE;
2033 }
2034 }
2035
2036 cum_bytes_reserved += bytes_reserved;
2037
2038 }
2039
2040 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2041 by the user. However, the ABI mandates minimum stack space
2042 allocations for outgoing arguments.
2043
2044 The ABI also mandates minimum stack alignments which we must
2045 preserve. */
2046 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
2047 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2048
2049 /* Now write each of the args at the proper offset down the stack.
2050 ?!? We need to promote values to a full register instead of skipping
2051 words in the stack. */
2052 for (i = 0; i < nargs; i++)
2053 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2054
2055 /* If a structure has to be returned, set up register 28 to hold its
2056 address */
2057 if (struct_return)
2058 write_register (28, struct_addr);
2059
2060 /* The stack will have 32 bytes of additional space for a frame marker. */
2061 return sp + 32;
2062 }
2063
2064 #endif
2065
2066 /* elz: Used to lookup a symbol in the shared libraries.
2067 This function calls shl_findsym, indirectly through a
2068 call to __d_shl_get. __d_shl_get is in end.c, which is always
2069 linked in by the hp compilers/linkers.
2070 The call to shl_findsym cannot be made directly because it needs
2071 to be active in target address space.
2072 inputs: - minimal symbol pointer for the function we want to look up
2073 - address in target space of the descriptor for the library
2074 where we want to look the symbol up.
2075 This address is retrieved using the
2076 som_solib_get_solib_by_pc function (somsolib.c).
2077 output: - real address in the library of the function.
2078 note: the handle can be null, in which case shl_findsym will look for
2079 the symbol in all the loaded shared libraries.
2080 files to look at if you need reference on this stuff:
2081 dld.c, dld_shl_findsym.c
2082 end.c
2083 man entry for shl_findsym */
2084
2085 CORE_ADDR
2086 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
2087 {
2088 struct symbol *get_sym, *symbol2;
2089 struct minimal_symbol *buff_minsym, *msymbol;
2090 struct type *ftype;
2091 struct value **args;
2092 struct value *funcval;
2093 struct value *val;
2094
2095 int x, namelen, err_value, tmp = -1;
2096 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2097 CORE_ADDR stub_addr;
2098
2099
2100 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
2101 funcval = find_function_in_inferior ("__d_shl_get");
2102 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
2103 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2104 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
2105 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
2106 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
2107 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
2108 value_return_addr = endo_buff_addr + namelen;
2109 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2110
2111 /* do alignment */
2112 if ((x = value_return_addr % 64) != 0)
2113 value_return_addr = value_return_addr + 64 - x;
2114
2115 errno_return_addr = value_return_addr + 64;
2116
2117
2118 /* set up stuff needed by __d_shl_get in buffer in end.o */
2119
2120 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
2121
2122 target_write_memory (value_return_addr, (char *) &tmp, 4);
2123
2124 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2125
2126 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2127 (char *) &handle, 4);
2128
2129 /* now prepare the arguments for the call */
2130
2131 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2132 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2133 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2134 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2135 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2136 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2137
2138 /* now call the function */
2139
2140 val = call_function_by_hand (funcval, 6, args);
2141
2142 /* now get the results */
2143
2144 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2145
2146 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2147 if (stub_addr <= 0)
2148 error ("call to __d_shl_get failed, error code is %d", err_value);
2149
2150 return (stub_addr);
2151 }
2152
2153 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2154 static int
2155 cover_find_stub_with_shl_get (void *args_untyped)
2156 {
2157 args_for_find_stub *args = args_untyped;
2158 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2159 return 0;
2160 }
2161
2162 /* Insert the specified number of args and function address
2163 into a call sequence of the above form stored at DUMMYNAME.
2164
2165 On the hppa we need to call the stack dummy through $$dyncall.
2166 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2167 argument, real_pc, which is the location where gdb should start up
2168 the inferior to do the function call.
2169
2170 This has to work across several versions of hpux, bsd, osf1. It has to
2171 work regardless of what compiler was used to build the inferior program.
2172 It should work regardless of whether or not end.o is available. It has
2173 to work even if gdb can not call into the dynamic loader in the inferior
2174 to query it for symbol names and addresses.
2175
2176 Yes, all those cases should work. Luckily code exists to handle most
2177 of them. The complexity is in selecting exactly what scheme should
2178 be used to perform the inferior call.
2179
2180 At the current time this routine is known not to handle cases where
2181 the program was linked with HP's compiler without including end.o.
2182
2183 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2184
2185 CORE_ADDR
2186 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2187 struct value **args, struct type *type, int gcc_p)
2188 {
2189 CORE_ADDR dyncall_addr;
2190 struct minimal_symbol *msymbol;
2191 struct minimal_symbol *trampoline;
2192 int flags = read_register (FLAGS_REGNUM);
2193 struct unwind_table_entry *u = NULL;
2194 CORE_ADDR new_stub = 0;
2195 CORE_ADDR solib_handle = 0;
2196
2197 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2198 passed an import stub, not a PLABEL. It is also necessary to set %r19
2199 (the PIC register) before performing the call.
2200
2201 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2202 are calling the target directly. When using __d_plt_call we want to
2203 use a PLABEL instead of an import stub. */
2204 int using_gcc_plt_call = 1;
2205
2206 #ifdef GDB_TARGET_IS_HPPA_20W
2207 /* We currently use completely different code for the PA2.0W inferior
2208 function call sequences. This needs to be cleaned up. */
2209 {
2210 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2211 struct target_waitstatus w;
2212 int inst1, inst2;
2213 char buf[4];
2214 int status;
2215 struct objfile *objfile;
2216
2217 /* We can not modify the PC space queues directly, so we start
2218 up the inferior and execute a couple instructions to set the
2219 space queues so that they point to the call dummy in the stack. */
2220 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2221 sr5 = read_register (SR5_REGNUM);
2222 if (1)
2223 {
2224 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2225 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2226 if (target_read_memory (pcoqh, buf, 4) != 0)
2227 error ("Couldn't modify space queue\n");
2228 inst1 = extract_unsigned_integer (buf, 4);
2229
2230 if (target_read_memory (pcoqt, buf, 4) != 0)
2231 error ("Couldn't modify space queue\n");
2232 inst2 = extract_unsigned_integer (buf, 4);
2233
2234 /* BVE (r1) */
2235 *((int *) buf) = 0xe820d000;
2236 if (target_write_memory (pcoqh, buf, 4) != 0)
2237 error ("Couldn't modify space queue\n");
2238
2239 /* NOP */
2240 *((int *) buf) = 0x08000240;
2241 if (target_write_memory (pcoqt, buf, 4) != 0)
2242 {
2243 *((int *) buf) = inst1;
2244 target_write_memory (pcoqh, buf, 4);
2245 error ("Couldn't modify space queue\n");
2246 }
2247
2248 write_register (1, pc);
2249
2250 /* Single step twice, the BVE instruction will set the space queue
2251 such that it points to the PC value written immediately above
2252 (ie the call dummy). */
2253 resume (1, 0);
2254 target_wait (inferior_ptid, &w);
2255 resume (1, 0);
2256 target_wait (inferior_ptid, &w);
2257
2258 /* Restore the two instructions at the old PC locations. */
2259 *((int *) buf) = inst1;
2260 target_write_memory (pcoqh, buf, 4);
2261 *((int *) buf) = inst2;
2262 target_write_memory (pcoqt, buf, 4);
2263 }
2264
2265 /* The call dummy wants the ultimate destination address initially
2266 in register %r5. */
2267 write_register (5, fun);
2268
2269 /* We need to see if this objfile has a different DP value than our
2270 own (it could be a shared library for example). */
2271 ALL_OBJFILES (objfile)
2272 {
2273 struct obj_section *s;
2274 obj_private_data_t *obj_private;
2275
2276 /* See if FUN is in any section within this shared library. */
2277 for (s = objfile->sections; s < objfile->sections_end; s++)
2278 if (s->addr <= fun && fun < s->endaddr)
2279 break;
2280
2281 if (s >= objfile->sections_end)
2282 continue;
2283
2284 obj_private = (obj_private_data_t *) objfile->obj_private;
2285
2286 /* The DP value may be different for each objfile. But within an
2287 objfile each function uses the same dp value. Thus we do not need
2288 to grope around the opd section looking for dp values.
2289
2290 ?!? This is not strictly correct since we may be in a shared library
2291 and want to call back into the main program. To make that case
2292 work correctly we need to set obj_private->dp for the main program's
2293 objfile, then remove this conditional. */
2294 if (obj_private->dp)
2295 write_register (27, obj_private->dp);
2296 break;
2297 }
2298 return pc;
2299 }
2300 #endif
2301
2302 #ifndef GDB_TARGET_IS_HPPA_20W
2303 /* Prefer __gcc_plt_call over the HP supplied routine because
2304 __gcc_plt_call works for any number of arguments. */
2305 trampoline = NULL;
2306 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2307 using_gcc_plt_call = 0;
2308
2309 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2310 if (msymbol == NULL)
2311 error ("Can't find an address for $$dyncall trampoline");
2312
2313 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2314
2315 /* FUN could be a procedure label, in which case we have to get
2316 its real address and the value of its GOT/DP if we plan to
2317 call the routine via gcc_plt_call. */
2318 if ((fun & 0x2) && using_gcc_plt_call)
2319 {
2320 /* Get the GOT/DP value for the target function. It's
2321 at *(fun+4). Note the call dummy is *NOT* allowed to
2322 trash %r19 before calling the target function. */
2323 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2324 DEPRECATED_REGISTER_SIZE));
2325
2326 /* Now get the real address for the function we are calling, it's
2327 at *fun. */
2328 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2329 TARGET_PTR_BIT / 8);
2330 }
2331 else
2332 {
2333
2334 #ifndef GDB_TARGET_IS_PA_ELF
2335 /* FUN could be an export stub, the real address of a function, or
2336 a PLABEL. When using gcc's PLT call routine we must call an import
2337 stub rather than the export stub or real function for lazy binding
2338 to work correctly
2339
2340 If we are using the gcc PLT call routine, then we need to
2341 get the import stub for the target function. */
2342 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2343 {
2344 struct objfile *objfile;
2345 struct minimal_symbol *funsymbol, *stub_symbol;
2346 CORE_ADDR newfun = 0;
2347
2348 funsymbol = lookup_minimal_symbol_by_pc (fun);
2349 if (!funsymbol)
2350 error ("Unable to find minimal symbol for target function.\n");
2351
2352 /* Search all the object files for an import symbol with the
2353 right name. */
2354 ALL_OBJFILES (objfile)
2355 {
2356 stub_symbol
2357 = lookup_minimal_symbol_solib_trampoline
2358 (DEPRECATED_SYMBOL_NAME (funsymbol), objfile);
2359
2360 if (!stub_symbol)
2361 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2362 NULL, objfile);
2363
2364 /* Found a symbol with the right name. */
2365 if (stub_symbol)
2366 {
2367 struct unwind_table_entry *u;
2368 /* It must be a shared library trampoline. */
2369 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2370 continue;
2371
2372 /* It must also be an import stub. */
2373 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2374 if (u == NULL
2375 || (u->stub_unwind.stub_type != IMPORT
2376 #ifdef GDB_NATIVE_HPUX_11
2377 /* Sigh. The hpux 10.20 dynamic linker will blow
2378 chunks if we perform a call to an unbound function
2379 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2380 linker will blow chunks if we do not call the
2381 unbound function via the IMPORT_SHLIB stub.
2382
2383 We currently have no way to select bevahior on just
2384 the target. However, we only support HPUX/SOM in
2385 native mode. So we conditinalize on a native
2386 #ifdef. Ugly. Ugly. Ugly */
2387 && u->stub_unwind.stub_type != IMPORT_SHLIB
2388 #endif
2389 ))
2390 continue;
2391
2392 /* OK. Looks like the correct import stub. */
2393 newfun = SYMBOL_VALUE (stub_symbol);
2394 fun = newfun;
2395
2396 /* If we found an IMPORT stub, then we want to stop
2397 searching now. If we found an IMPORT_SHLIB, we want
2398 to continue the search in the hopes that we will find
2399 an IMPORT stub. */
2400 if (u->stub_unwind.stub_type == IMPORT)
2401 break;
2402 }
2403 }
2404
2405 /* Ouch. We did not find an import stub. Make an attempt to
2406 do the right thing instead of just croaking. Most of the
2407 time this will actually work. */
2408 if (newfun == 0)
2409 write_register (19, som_solib_get_got_by_pc (fun));
2410
2411 u = find_unwind_entry (fun);
2412 if (u
2413 && (u->stub_unwind.stub_type == IMPORT
2414 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2415 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2416
2417 /* If we found the import stub in the shared library, then we have
2418 to set %r19 before we call the stub. */
2419 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2420 write_register (19, som_solib_get_got_by_pc (fun));
2421 }
2422 #endif
2423 }
2424
2425 /* If we are calling into another load module then have sr4export call the
2426 magic __d_plt_call routine which is linked in from end.o.
2427
2428 You can't use _sr4export to make the call as the value in sp-24 will get
2429 fried and you end up returning to the wrong location. You can't call the
2430 target as the code to bind the PLT entry to a function can't return to a
2431 stack address.
2432
2433 Also, query the dynamic linker in the inferior to provide a suitable
2434 PLABEL for the target function. */
2435 if (!using_gcc_plt_call)
2436 {
2437 CORE_ADDR new_fun;
2438
2439 /* Get a handle for the shared library containing FUN. Given the
2440 handle we can query the shared library for a PLABEL. */
2441 solib_handle = som_solib_get_solib_by_pc (fun);
2442
2443 if (solib_handle)
2444 {
2445 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2446
2447 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2448
2449 if (trampoline == NULL)
2450 {
2451 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2452 }
2453
2454 /* This is where sr4export will jump to. */
2455 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2456
2457 /* If the function is in a shared library, then call __d_shl_get to
2458 get a PLABEL for the target function. */
2459 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2460
2461 if (new_stub == 0)
2462 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2463
2464 /* We have to store the address of the stub in __shlib_funcptr. */
2465 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2466 (struct objfile *) NULL);
2467
2468 if (msymbol == NULL)
2469 error ("Can't find an address for __shlib_funcptr");
2470 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2471 (char *) &new_stub, 4);
2472
2473 /* We want sr4export to call __d_plt_call, so we claim it is
2474 the final target. Clear trampoline. */
2475 fun = new_fun;
2476 trampoline = NULL;
2477 }
2478 }
2479
2480 /* Store upper 21 bits of function address into ldil. fun will either be
2481 the final target (most cases) or __d_plt_call when calling into a shared
2482 library and __gcc_plt_call is not available. */
2483 store_unsigned_integer
2484 (&dummy[FUNC_LDIL_OFFSET],
2485 INSTRUCTION_SIZE,
2486 deposit_21 (fun >> 11,
2487 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2488 INSTRUCTION_SIZE)));
2489
2490 /* Store lower 11 bits of function address into ldo */
2491 store_unsigned_integer
2492 (&dummy[FUNC_LDO_OFFSET],
2493 INSTRUCTION_SIZE,
2494 deposit_14 (fun & MASK_11,
2495 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2496 INSTRUCTION_SIZE)));
2497 #ifdef SR4EXPORT_LDIL_OFFSET
2498
2499 {
2500 CORE_ADDR trampoline_addr;
2501
2502 /* We may still need sr4export's address too. */
2503
2504 if (trampoline == NULL)
2505 {
2506 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2507 if (msymbol == NULL)
2508 error ("Can't find an address for _sr4export trampoline");
2509
2510 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2511 }
2512 else
2513 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2514
2515
2516 /* Store upper 21 bits of trampoline's address into ldil */
2517 store_unsigned_integer
2518 (&dummy[SR4EXPORT_LDIL_OFFSET],
2519 INSTRUCTION_SIZE,
2520 deposit_21 (trampoline_addr >> 11,
2521 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2522 INSTRUCTION_SIZE)));
2523
2524 /* Store lower 11 bits of trampoline's address into ldo */
2525 store_unsigned_integer
2526 (&dummy[SR4EXPORT_LDO_OFFSET],
2527 INSTRUCTION_SIZE,
2528 deposit_14 (trampoline_addr & MASK_11,
2529 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2530 INSTRUCTION_SIZE)));
2531 }
2532 #endif
2533
2534 write_register (22, pc);
2535
2536 /* If we are in a syscall, then we should call the stack dummy
2537 directly. $$dyncall is not needed as the kernel sets up the
2538 space id registers properly based on the value in %r31. In
2539 fact calling $$dyncall will not work because the value in %r22
2540 will be clobbered on the syscall exit path.
2541
2542 Similarly if the current PC is in a shared library. Note however,
2543 this scheme won't work if the shared library isn't mapped into
2544 the same space as the stack. */
2545 if (flags & 2)
2546 return pc;
2547 #ifndef GDB_TARGET_IS_PA_ELF
2548 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2549 return pc;
2550 #endif
2551 else
2552 return dyncall_addr;
2553 #endif
2554 }
2555
2556 /* If the pid is in a syscall, then the FP register is not readable.
2557 We'll return zero in that case, rather than attempting to read it
2558 and cause a warning. */
2559
2560 CORE_ADDR
2561 hppa_read_fp (int pid)
2562 {
2563 int flags = read_register (FLAGS_REGNUM);
2564
2565 if (flags & 2)
2566 {
2567 return (CORE_ADDR) 0;
2568 }
2569
2570 /* This is the only site that may directly read_register () the FP
2571 register. All others must use deprecated_read_fp (). */
2572 return read_register (DEPRECATED_FP_REGNUM);
2573 }
2574
2575 CORE_ADDR
2576 hppa_target_read_fp (void)
2577 {
2578 return hppa_read_fp (PIDGET (inferior_ptid));
2579 }
2580
2581 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2582 bits. */
2583
2584 CORE_ADDR
2585 hppa_target_read_pc (ptid_t ptid)
2586 {
2587 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2588
2589 /* The following test does not belong here. It is OS-specific, and belongs
2590 in native code. */
2591 /* Test SS_INSYSCALL */
2592 if (flags & 2)
2593 return read_register_pid (31, ptid) & ~0x3;
2594
2595 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2596 }
2597
2598 /* Write out the PC. If currently in a syscall, then also write the new
2599 PC value into %r31. */
2600
2601 void
2602 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2603 {
2604 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2605
2606 /* The following test does not belong here. It is OS-specific, and belongs
2607 in native code. */
2608 /* If in a syscall, then set %r31. Also make sure to get the
2609 privilege bits set correctly. */
2610 /* Test SS_INSYSCALL */
2611 if (flags & 2)
2612 write_register_pid (31, v | 0x3, ptid);
2613
2614 write_register_pid (PC_REGNUM, v, ptid);
2615 write_register_pid (PCOQ_TAIL_REGNUM, v + 4, ptid);
2616 }
2617
2618 /* return the alignment of a type in bytes. Structures have the maximum
2619 alignment required by their fields. */
2620
2621 static int
2622 hppa_alignof (struct type *type)
2623 {
2624 int max_align, align, i;
2625 CHECK_TYPEDEF (type);
2626 switch (TYPE_CODE (type))
2627 {
2628 case TYPE_CODE_PTR:
2629 case TYPE_CODE_INT:
2630 case TYPE_CODE_FLT:
2631 return TYPE_LENGTH (type);
2632 case TYPE_CODE_ARRAY:
2633 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2634 case TYPE_CODE_STRUCT:
2635 case TYPE_CODE_UNION:
2636 max_align = 1;
2637 for (i = 0; i < TYPE_NFIELDS (type); i++)
2638 {
2639 /* Bit fields have no real alignment. */
2640 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2641 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2642 {
2643 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2644 max_align = max (max_align, align);
2645 }
2646 }
2647 return max_align;
2648 default:
2649 return 4;
2650 }
2651 }
2652
2653 /* Print the register regnum, or all registers if regnum is -1 */
2654
2655 void
2656 pa_do_registers_info (int regnum, int fpregs)
2657 {
2658 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2659 int i;
2660
2661 /* Make a copy of gdb's save area (may cause actual
2662 reads from the target). */
2663 for (i = 0; i < NUM_REGS; i++)
2664 frame_register_read (deprecated_selected_frame, i,
2665 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2666
2667 if (regnum == -1)
2668 pa_print_registers (raw_regs, regnum, fpregs);
2669 else if (regnum < FP4_REGNUM)
2670 {
2671 long reg_val[2];
2672
2673 /* Why is the value not passed through "extract_signed_integer"
2674 as in "pa_print_registers" below? */
2675 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2676
2677 if (!is_pa_2)
2678 {
2679 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2680 }
2681 else
2682 {
2683 /* Fancy % formats to prevent leading zeros. */
2684 if (reg_val[0] == 0)
2685 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2686 else
2687 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2688 reg_val[0], reg_val[1]);
2689 }
2690 }
2691 else
2692 /* Note that real floating point values only start at
2693 FP4_REGNUM. FP0 and up are just status and error
2694 registers, which have integral (bit) values. */
2695 pa_print_fp_reg (regnum);
2696 }
2697
2698 /********** new function ********************/
2699 void
2700 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2701 enum precision_type precision)
2702 {
2703 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2704 int i;
2705
2706 /* Make a copy of gdb's save area (may cause actual
2707 reads from the target). */
2708 for (i = 0; i < NUM_REGS; i++)
2709 frame_register_read (deprecated_selected_frame, i,
2710 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2711
2712 if (regnum == -1)
2713 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2714
2715 else if (regnum < FP4_REGNUM)
2716 {
2717 long reg_val[2];
2718
2719 /* Why is the value not passed through "extract_signed_integer"
2720 as in "pa_print_registers" below? */
2721 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2722
2723 if (!is_pa_2)
2724 {
2725 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2726 }
2727 else
2728 {
2729 /* Fancy % formats to prevent leading zeros. */
2730 if (reg_val[0] == 0)
2731 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2732 reg_val[1]);
2733 else
2734 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2735 reg_val[0], reg_val[1]);
2736 }
2737 }
2738 else
2739 /* Note that real floating point values only start at
2740 FP4_REGNUM. FP0 and up are just status and error
2741 registers, which have integral (bit) values. */
2742 pa_strcat_fp_reg (regnum, stream, precision);
2743 }
2744
2745 /* If this is a PA2.0 machine, fetch the real 64-bit register
2746 value. Otherwise use the info from gdb's saved register area.
2747
2748 Note that reg_val is really expected to be an array of longs,
2749 with two elements. */
2750 static void
2751 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2752 {
2753 static int know_which = 0; /* False */
2754
2755 int regaddr;
2756 unsigned int offset;
2757 int i;
2758 int start;
2759
2760
2761 char buf[MAX_REGISTER_SIZE];
2762 long long reg_val;
2763
2764 if (!know_which)
2765 {
2766 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2767 {
2768 is_pa_2 = (1 == 1);
2769 }
2770
2771 know_which = 1; /* True */
2772 }
2773
2774 raw_val[0] = 0;
2775 raw_val[1] = 0;
2776
2777 if (!is_pa_2)
2778 {
2779 raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum));
2780 return;
2781 }
2782
2783 /* Code below copied from hppah-nat.c, with fixes for wide
2784 registers, using different area of save_state, etc. */
2785 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2786 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2787 {
2788 /* Use narrow regs area of save_state and default macro. */
2789 offset = U_REGS_OFFSET;
2790 regaddr = register_addr (regnum, offset);
2791 start = 1;
2792 }
2793 else
2794 {
2795 /* Use wide regs area, and calculate registers as 8 bytes wide.
2796
2797 We'd like to do this, but current version of "C" doesn't
2798 permit "offsetof":
2799
2800 offset = offsetof(save_state_t, ss_wide);
2801
2802 Note that to avoid "C" doing typed pointer arithmetic, we
2803 have to cast away the type in our offset calculation:
2804 otherwise we get an offset of 1! */
2805
2806 /* NB: save_state_t is not available before HPUX 9.
2807 The ss_wide field is not available previous to HPUX 10.20,
2808 so to avoid compile-time warnings, we only compile this for
2809 PA 2.0 processors. This control path should only be followed
2810 if we're debugging a PA 2.0 processor, so this should not cause
2811 problems. */
2812
2813 /* #if the following code out so that this file can still be
2814 compiled on older HPUX boxes (< 10.20) which don't have
2815 this structure/structure member. */
2816 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2817 save_state_t temp;
2818
2819 offset = ((int) &temp.ss_wide) - ((int) &temp);
2820 regaddr = offset + regnum * 8;
2821 start = 0;
2822 #endif
2823 }
2824
2825 for (i = start; i < 2; i++)
2826 {
2827 errno = 0;
2828 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2829 (PTRACE_ARG3_TYPE) regaddr, 0);
2830 if (errno != 0)
2831 {
2832 /* Warning, not error, in case we are attached; sometimes the
2833 kernel doesn't let us at the registers. */
2834 char *err = safe_strerror (errno);
2835 char *msg = alloca (strlen (err) + 128);
2836 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2837 warning (msg);
2838 goto error_exit;
2839 }
2840
2841 regaddr += sizeof (long);
2842 }
2843
2844 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2845 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2846
2847 error_exit:
2848 ;
2849 }
2850
2851 /* "Info all-reg" command */
2852
2853 static void
2854 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2855 {
2856 int i, j;
2857 /* Alas, we are compiled so that "long long" is 32 bits */
2858 long raw_val[2];
2859 long long_val;
2860 int rows = 48, columns = 2;
2861
2862 for (i = 0; i < rows; i++)
2863 {
2864 for (j = 0; j < columns; j++)
2865 {
2866 /* We display registers in column-major order. */
2867 int regnum = i + j * rows;
2868
2869 /* Q: Why is the value passed through "extract_signed_integer",
2870 while above, in "pa_do_registers_info" it isn't?
2871 A: ? */
2872 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2873
2874 /* Even fancier % formats to prevent leading zeros
2875 and still maintain the output in columns. */
2876 if (!is_pa_2)
2877 {
2878 /* Being big-endian, on this machine the low bits
2879 (the ones we want to look at) are in the second longword. */
2880 long_val = extract_signed_integer (&raw_val[1], 4);
2881 printf_filtered ("%10.10s: %8lx ",
2882 REGISTER_NAME (regnum), long_val);
2883 }
2884 else
2885 {
2886 /* raw_val = extract_signed_integer(&raw_val, 8); */
2887 if (raw_val[0] == 0)
2888 printf_filtered ("%10.10s: %8lx ",
2889 REGISTER_NAME (regnum), raw_val[1]);
2890 else
2891 printf_filtered ("%10.10s: %8lx%8.8lx ",
2892 REGISTER_NAME (regnum),
2893 raw_val[0], raw_val[1]);
2894 }
2895 }
2896 printf_unfiltered ("\n");
2897 }
2898
2899 if (fpregs)
2900 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2901 pa_print_fp_reg (i);
2902 }
2903
2904 /************* new function ******************/
2905 static void
2906 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2907 struct ui_file *stream)
2908 {
2909 int i, j;
2910 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2911 long long_val;
2912 enum precision_type precision;
2913
2914 precision = unspecified_precision;
2915
2916 for (i = 0; i < 18; i++)
2917 {
2918 for (j = 0; j < 4; j++)
2919 {
2920 /* Q: Why is the value passed through "extract_signed_integer",
2921 while above, in "pa_do_registers_info" it isn't?
2922 A: ? */
2923 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2924
2925 /* Even fancier % formats to prevent leading zeros
2926 and still maintain the output in columns. */
2927 if (!is_pa_2)
2928 {
2929 /* Being big-endian, on this machine the low bits
2930 (the ones we want to look at) are in the second longword. */
2931 long_val = extract_signed_integer (&raw_val[1], 4);
2932 fprintf_filtered (stream, "%8.8s: %8lx ",
2933 REGISTER_NAME (i + (j * 18)), long_val);
2934 }
2935 else
2936 {
2937 /* raw_val = extract_signed_integer(&raw_val, 8); */
2938 if (raw_val[0] == 0)
2939 fprintf_filtered (stream, "%8.8s: %8lx ",
2940 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2941 else
2942 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2943 REGISTER_NAME (i + (j * 18)), raw_val[0],
2944 raw_val[1]);
2945 }
2946 }
2947 fprintf_unfiltered (stream, "\n");
2948 }
2949
2950 if (fpregs)
2951 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2952 pa_strcat_fp_reg (i, stream, precision);
2953 }
2954
2955 static void
2956 pa_print_fp_reg (int i)
2957 {
2958 char raw_buffer[MAX_REGISTER_SIZE];
2959 char virtual_buffer[MAX_REGISTER_SIZE];
2960
2961 /* Get 32bits of data. */
2962 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2963
2964 /* Put it in the buffer. No conversions are ever necessary. */
2965 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
2966
2967 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2968 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2969 fputs_filtered ("(single precision) ", gdb_stdout);
2970
2971 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2972 1, 0, Val_pretty_default);
2973 printf_filtered ("\n");
2974
2975 /* If "i" is even, then this register can also be a double-precision
2976 FP register. Dump it out as such. */
2977 if ((i % 2) == 0)
2978 {
2979 /* Get the data in raw format for the 2nd half. */
2980 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
2981
2982 /* Copy it into the appropriate part of the virtual buffer. */
2983 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buffer,
2984 DEPRECATED_REGISTER_RAW_SIZE (i));
2985
2986 /* Dump it as a double. */
2987 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2988 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2989 fputs_filtered ("(double precision) ", gdb_stdout);
2990
2991 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2992 1, 0, Val_pretty_default);
2993 printf_filtered ("\n");
2994 }
2995 }
2996
2997 /*************** new function ***********************/
2998 static void
2999 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
3000 {
3001 char raw_buffer[MAX_REGISTER_SIZE];
3002 char virtual_buffer[MAX_REGISTER_SIZE];
3003
3004 fputs_filtered (REGISTER_NAME (i), stream);
3005 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
3006
3007 /* Get 32bits of data. */
3008 frame_register_read (deprecated_selected_frame, i, raw_buffer);
3009
3010 /* Put it in the buffer. No conversions are ever necessary. */
3011 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
3012
3013 if (precision == double_precision && (i % 2) == 0)
3014 {
3015
3016 char raw_buf[MAX_REGISTER_SIZE];
3017
3018 /* Get the data in raw format for the 2nd half. */
3019 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
3020
3021 /* Copy it into the appropriate part of the virtual buffer. */
3022 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buf,
3023 DEPRECATED_REGISTER_RAW_SIZE (i));
3024
3025 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3026 1, 0, Val_pretty_default);
3027
3028 }
3029 else
3030 {
3031 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
3032 1, 0, Val_pretty_default);
3033 }
3034
3035 }
3036
3037 /* Return one if PC is in the call path of a trampoline, else return zero.
3038
3039 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3040 just shared library trampolines (import, export). */
3041
3042 int
3043 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
3044 {
3045 struct minimal_symbol *minsym;
3046 struct unwind_table_entry *u;
3047 static CORE_ADDR dyncall = 0;
3048 static CORE_ADDR sr4export = 0;
3049
3050 #ifdef GDB_TARGET_IS_HPPA_20W
3051 /* PA64 has a completely different stub/trampoline scheme. Is it
3052 better? Maybe. It's certainly harder to determine with any
3053 certainty that we are in a stub because we can not refer to the
3054 unwinders to help.
3055
3056 The heuristic is simple. Try to lookup the current PC value in th
3057 minimal symbol table. If that fails, then assume we are not in a
3058 stub and return.
3059
3060 Then see if the PC value falls within the section bounds for the
3061 section containing the minimal symbol we found in the first
3062 step. If it does, then assume we are not in a stub and return.
3063
3064 Finally peek at the instructions to see if they look like a stub. */
3065 {
3066 struct minimal_symbol *minsym;
3067 asection *sec;
3068 CORE_ADDR addr;
3069 int insn, i;
3070
3071 minsym = lookup_minimal_symbol_by_pc (pc);
3072 if (! minsym)
3073 return 0;
3074
3075 sec = SYMBOL_BFD_SECTION (minsym);
3076
3077 if (bfd_get_section_vma (sec->owner, sec) <= pc
3078 && pc < (bfd_get_section_vma (sec->owner, sec)
3079 + bfd_section_size (sec->owner, sec)))
3080 return 0;
3081
3082 /* We might be in a stub. Peek at the instructions. Stubs are 3
3083 instructions long. */
3084 insn = read_memory_integer (pc, 4);
3085
3086 /* Find out where we think we are within the stub. */
3087 if ((insn & 0xffffc00e) == 0x53610000)
3088 addr = pc;
3089 else if ((insn & 0xffffffff) == 0xe820d000)
3090 addr = pc - 4;
3091 else if ((insn & 0xffffc00e) == 0x537b0000)
3092 addr = pc - 8;
3093 else
3094 return 0;
3095
3096 /* Now verify each insn in the range looks like a stub instruction. */
3097 insn = read_memory_integer (addr, 4);
3098 if ((insn & 0xffffc00e) != 0x53610000)
3099 return 0;
3100
3101 /* Now verify each insn in the range looks like a stub instruction. */
3102 insn = read_memory_integer (addr + 4, 4);
3103 if ((insn & 0xffffffff) != 0xe820d000)
3104 return 0;
3105
3106 /* Now verify each insn in the range looks like a stub instruction. */
3107 insn = read_memory_integer (addr + 8, 4);
3108 if ((insn & 0xffffc00e) != 0x537b0000)
3109 return 0;
3110
3111 /* Looks like a stub. */
3112 return 1;
3113 }
3114 #endif
3115
3116 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3117 new exec file */
3118
3119 /* First see if PC is in one of the two C-library trampolines. */
3120 if (!dyncall)
3121 {
3122 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3123 if (minsym)
3124 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3125 else
3126 dyncall = -1;
3127 }
3128
3129 if (!sr4export)
3130 {
3131 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3132 if (minsym)
3133 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3134 else
3135 sr4export = -1;
3136 }
3137
3138 if (pc == dyncall || pc == sr4export)
3139 return 1;
3140
3141 minsym = lookup_minimal_symbol_by_pc (pc);
3142 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3143 return 1;
3144
3145 /* Get the unwind descriptor corresponding to PC, return zero
3146 if no unwind was found. */
3147 u = find_unwind_entry (pc);
3148 if (!u)
3149 return 0;
3150
3151 /* If this isn't a linker stub, then return now. */
3152 if (u->stub_unwind.stub_type == 0)
3153 return 0;
3154
3155 /* By definition a long-branch stub is a call stub. */
3156 if (u->stub_unwind.stub_type == LONG_BRANCH)
3157 return 1;
3158
3159 /* The call and return path execute the same instructions within
3160 an IMPORT stub! So an IMPORT stub is both a call and return
3161 trampoline. */
3162 if (u->stub_unwind.stub_type == IMPORT)
3163 return 1;
3164
3165 /* Parameter relocation stubs always have a call path and may have a
3166 return path. */
3167 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3168 || u->stub_unwind.stub_type == EXPORT)
3169 {
3170 CORE_ADDR addr;
3171
3172 /* Search forward from the current PC until we hit a branch
3173 or the end of the stub. */
3174 for (addr = pc; addr <= u->region_end; addr += 4)
3175 {
3176 unsigned long insn;
3177
3178 insn = read_memory_integer (addr, 4);
3179
3180 /* Does it look like a bl? If so then it's the call path, if
3181 we find a bv or be first, then we're on the return path. */
3182 if ((insn & 0xfc00e000) == 0xe8000000)
3183 return 1;
3184 else if ((insn & 0xfc00e001) == 0xe800c000
3185 || (insn & 0xfc000000) == 0xe0000000)
3186 return 0;
3187 }
3188
3189 /* Should never happen. */
3190 warning ("Unable to find branch in parameter relocation stub.\n");
3191 return 0;
3192 }
3193
3194 /* Unknown stub type. For now, just return zero. */
3195 return 0;
3196 }
3197
3198 /* Return one if PC is in the return path of a trampoline, else return zero.
3199
3200 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3201 just shared library trampolines (import, export). */
3202
3203 int
3204 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3205 {
3206 struct unwind_table_entry *u;
3207
3208 /* Get the unwind descriptor corresponding to PC, return zero
3209 if no unwind was found. */
3210 u = find_unwind_entry (pc);
3211 if (!u)
3212 return 0;
3213
3214 /* If this isn't a linker stub or it's just a long branch stub, then
3215 return zero. */
3216 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3217 return 0;
3218
3219 /* The call and return path execute the same instructions within
3220 an IMPORT stub! So an IMPORT stub is both a call and return
3221 trampoline. */
3222 if (u->stub_unwind.stub_type == IMPORT)
3223 return 1;
3224
3225 /* Parameter relocation stubs always have a call path and may have a
3226 return path. */
3227 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3228 || u->stub_unwind.stub_type == EXPORT)
3229 {
3230 CORE_ADDR addr;
3231
3232 /* Search forward from the current PC until we hit a branch
3233 or the end of the stub. */
3234 for (addr = pc; addr <= u->region_end; addr += 4)
3235 {
3236 unsigned long insn;
3237
3238 insn = read_memory_integer (addr, 4);
3239
3240 /* Does it look like a bl? If so then it's the call path, if
3241 we find a bv or be first, then we're on the return path. */
3242 if ((insn & 0xfc00e000) == 0xe8000000)
3243 return 0;
3244 else if ((insn & 0xfc00e001) == 0xe800c000
3245 || (insn & 0xfc000000) == 0xe0000000)
3246 return 1;
3247 }
3248
3249 /* Should never happen. */
3250 warning ("Unable to find branch in parameter relocation stub.\n");
3251 return 0;
3252 }
3253
3254 /* Unknown stub type. For now, just return zero. */
3255 return 0;
3256
3257 }
3258
3259 /* Figure out if PC is in a trampoline, and if so find out where
3260 the trampoline will jump to. If not in a trampoline, return zero.
3261
3262 Simple code examination probably is not a good idea since the code
3263 sequences in trampolines can also appear in user code.
3264
3265 We use unwinds and information from the minimal symbol table to
3266 determine when we're in a trampoline. This won't work for ELF
3267 (yet) since it doesn't create stub unwind entries. Whether or
3268 not ELF will create stub unwinds or normal unwinds for linker
3269 stubs is still being debated.
3270
3271 This should handle simple calls through dyncall or sr4export,
3272 long calls, argument relocation stubs, and dyncall/sr4export
3273 calling an argument relocation stub. It even handles some stubs
3274 used in dynamic executables. */
3275
3276 CORE_ADDR
3277 hppa_skip_trampoline_code (CORE_ADDR pc)
3278 {
3279 long orig_pc = pc;
3280 long prev_inst, curr_inst, loc;
3281 static CORE_ADDR dyncall = 0;
3282 static CORE_ADDR dyncall_external = 0;
3283 static CORE_ADDR sr4export = 0;
3284 struct minimal_symbol *msym;
3285 struct unwind_table_entry *u;
3286
3287 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3288 new exec file */
3289
3290 if (!dyncall)
3291 {
3292 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3293 if (msym)
3294 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3295 else
3296 dyncall = -1;
3297 }
3298
3299 if (!dyncall_external)
3300 {
3301 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3302 if (msym)
3303 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3304 else
3305 dyncall_external = -1;
3306 }
3307
3308 if (!sr4export)
3309 {
3310 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3311 if (msym)
3312 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3313 else
3314 sr4export = -1;
3315 }
3316
3317 /* Addresses passed to dyncall may *NOT* be the actual address
3318 of the function. So we may have to do something special. */
3319 if (pc == dyncall)
3320 {
3321 pc = (CORE_ADDR) read_register (22);
3322
3323 /* If bit 30 (counting from the left) is on, then pc is the address of
3324 the PLT entry for this function, not the address of the function
3325 itself. Bit 31 has meaning too, but only for MPE. */
3326 if (pc & 0x2)
3327 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3328 }
3329 if (pc == dyncall_external)
3330 {
3331 pc = (CORE_ADDR) read_register (22);
3332 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3333 }
3334 else if (pc == sr4export)
3335 pc = (CORE_ADDR) (read_register (22));
3336
3337 /* Get the unwind descriptor corresponding to PC, return zero
3338 if no unwind was found. */
3339 u = find_unwind_entry (pc);
3340 if (!u)
3341 return 0;
3342
3343 /* If this isn't a linker stub, then return now. */
3344 /* elz: attention here! (FIXME) because of a compiler/linker
3345 error, some stubs which should have a non zero stub_unwind.stub_type
3346 have unfortunately a value of zero. So this function would return here
3347 as if we were not in a trampoline. To fix this, we go look at the partial
3348 symbol information, which reports this guy as a stub.
3349 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3350 partial symbol information is also wrong sometimes. This is because
3351 when it is entered (somread.c::som_symtab_read()) it can happen that
3352 if the type of the symbol (from the som) is Entry, and the symbol is
3353 in a shared library, then it can also be a trampoline. This would
3354 be OK, except that I believe the way they decide if we are ina shared library
3355 does not work. SOOOO..., even if we have a regular function w/o trampolines
3356 its minimal symbol can be assigned type mst_solib_trampoline.
3357 Also, if we find that the symbol is a real stub, then we fix the unwind
3358 descriptor, and define the stub type to be EXPORT.
3359 Hopefully this is correct most of the times. */
3360 if (u->stub_unwind.stub_type == 0)
3361 {
3362
3363 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3364 we can delete all the code which appears between the lines */
3365 /*--------------------------------------------------------------------------*/
3366 msym = lookup_minimal_symbol_by_pc (pc);
3367
3368 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3369 return orig_pc == pc ? 0 : pc & ~0x3;
3370
3371 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3372 {
3373 struct objfile *objfile;
3374 struct minimal_symbol *msymbol;
3375 int function_found = 0;
3376
3377 /* go look if there is another minimal symbol with the same name as
3378 this one, but with type mst_text. This would happen if the msym
3379 is an actual trampoline, in which case there would be another
3380 symbol with the same name corresponding to the real function */
3381
3382 ALL_MSYMBOLS (objfile, msymbol)
3383 {
3384 if (MSYMBOL_TYPE (msymbol) == mst_text
3385 && DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3386 {
3387 function_found = 1;
3388 break;
3389 }
3390 }
3391
3392 if (function_found)
3393 /* the type of msym is correct (mst_solib_trampoline), but
3394 the unwind info is wrong, so set it to the correct value */
3395 u->stub_unwind.stub_type = EXPORT;
3396 else
3397 /* the stub type info in the unwind is correct (this is not a
3398 trampoline), but the msym type information is wrong, it
3399 should be mst_text. So we need to fix the msym, and also
3400 get out of this function */
3401 {
3402 MSYMBOL_TYPE (msym) = mst_text;
3403 return orig_pc == pc ? 0 : pc & ~0x3;
3404 }
3405 }
3406
3407 /*--------------------------------------------------------------------------*/
3408 }
3409
3410 /* It's a stub. Search for a branch and figure out where it goes.
3411 Note we have to handle multi insn branch sequences like ldil;ble.
3412 Most (all?) other branches can be determined by examining the contents
3413 of certain registers and the stack. */
3414
3415 loc = pc;
3416 curr_inst = 0;
3417 prev_inst = 0;
3418 while (1)
3419 {
3420 /* Make sure we haven't walked outside the range of this stub. */
3421 if (u != find_unwind_entry (loc))
3422 {
3423 warning ("Unable to find branch in linker stub");
3424 return orig_pc == pc ? 0 : pc & ~0x3;
3425 }
3426
3427 prev_inst = curr_inst;
3428 curr_inst = read_memory_integer (loc, 4);
3429
3430 /* Does it look like a branch external using %r1? Then it's the
3431 branch from the stub to the actual function. */
3432 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3433 {
3434 /* Yup. See if the previous instruction loaded
3435 a value into %r1. If so compute and return the jump address. */
3436 if ((prev_inst & 0xffe00000) == 0x20200000)
3437 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3438 else
3439 {
3440 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3441 return orig_pc == pc ? 0 : pc & ~0x3;
3442 }
3443 }
3444
3445 /* Does it look like a be 0(sr0,%r21)? OR
3446 Does it look like a be, n 0(sr0,%r21)? OR
3447 Does it look like a bve (r21)? (this is on PA2.0)
3448 Does it look like a bve, n(r21)? (this is also on PA2.0)
3449 That's the branch from an
3450 import stub to an export stub.
3451
3452 It is impossible to determine the target of the branch via
3453 simple examination of instructions and/or data (consider
3454 that the address in the plabel may be the address of the
3455 bind-on-reference routine in the dynamic loader).
3456
3457 So we have try an alternative approach.
3458
3459 Get the name of the symbol at our current location; it should
3460 be a stub symbol with the same name as the symbol in the
3461 shared library.
3462
3463 Then lookup a minimal symbol with the same name; we should
3464 get the minimal symbol for the target routine in the shared
3465 library as those take precedence of import/export stubs. */
3466 if ((curr_inst == 0xe2a00000) ||
3467 (curr_inst == 0xe2a00002) ||
3468 (curr_inst == 0xeaa0d000) ||
3469 (curr_inst == 0xeaa0d002))
3470 {
3471 struct minimal_symbol *stubsym, *libsym;
3472
3473 stubsym = lookup_minimal_symbol_by_pc (loc);
3474 if (stubsym == NULL)
3475 {
3476 warning ("Unable to find symbol for 0x%lx", loc);
3477 return orig_pc == pc ? 0 : pc & ~0x3;
3478 }
3479
3480 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3481 if (libsym == NULL)
3482 {
3483 warning ("Unable to find library symbol for %s\n",
3484 DEPRECATED_SYMBOL_NAME (stubsym));
3485 return orig_pc == pc ? 0 : pc & ~0x3;
3486 }
3487
3488 return SYMBOL_VALUE (libsym);
3489 }
3490
3491 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3492 branch from the stub to the actual function. */
3493 /*elz */
3494 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3495 || (curr_inst & 0xffe0e000) == 0xe8000000
3496 || (curr_inst & 0xffe0e000) == 0xe800A000)
3497 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3498
3499 /* Does it look like bv (rp)? Note this depends on the
3500 current stack pointer being the same as the stack
3501 pointer in the stub itself! This is a branch on from the
3502 stub back to the original caller. */
3503 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3504 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3505 {
3506 /* Yup. See if the previous instruction loaded
3507 rp from sp - 8. */
3508 if (prev_inst == 0x4bc23ff1)
3509 return (read_memory_integer
3510 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3511 else
3512 {
3513 warning ("Unable to find restore of %%rp before bv (%%rp).");
3514 return orig_pc == pc ? 0 : pc & ~0x3;
3515 }
3516 }
3517
3518 /* elz: added this case to capture the new instruction
3519 at the end of the return part of an export stub used by
3520 the PA2.0: BVE, n (rp) */
3521 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3522 {
3523 return (read_memory_integer
3524 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3525 }
3526
3527 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3528 the original caller from the stub. Used in dynamic executables. */
3529 else if (curr_inst == 0xe0400002)
3530 {
3531 /* The value we jump to is sitting in sp - 24. But that's
3532 loaded several instructions before the be instruction.
3533 I guess we could check for the previous instruction being
3534 mtsp %r1,%sr0 if we want to do sanity checking. */
3535 return (read_memory_integer
3536 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3537 }
3538
3539 /* Haven't found the branch yet, but we're still in the stub.
3540 Keep looking. */
3541 loc += 4;
3542 }
3543 }
3544
3545
3546 /* For the given instruction (INST), return any adjustment it makes
3547 to the stack pointer or zero for no adjustment.
3548
3549 This only handles instructions commonly found in prologues. */
3550
3551 static int
3552 prologue_inst_adjust_sp (unsigned long inst)
3553 {
3554 /* This must persist across calls. */
3555 static int save_high21;
3556
3557 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3558 if ((inst & 0xffffc000) == 0x37de0000)
3559 return extract_14 (inst);
3560
3561 /* stwm X,D(sp) */
3562 if ((inst & 0xffe00000) == 0x6fc00000)
3563 return extract_14 (inst);
3564
3565 /* std,ma X,D(sp) */
3566 if ((inst & 0xffe00008) == 0x73c00008)
3567 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3568
3569 /* addil high21,%r1; ldo low11,(%r1),%r30)
3570 save high bits in save_high21 for later use. */
3571 if ((inst & 0xffe00000) == 0x28200000)
3572 {
3573 save_high21 = extract_21 (inst);
3574 return 0;
3575 }
3576
3577 if ((inst & 0xffff0000) == 0x343e0000)
3578 return save_high21 + extract_14 (inst);
3579
3580 /* fstws as used by the HP compilers. */
3581 if ((inst & 0xffffffe0) == 0x2fd01220)
3582 return extract_5_load (inst);
3583
3584 /* No adjustment. */
3585 return 0;
3586 }
3587
3588 /* Return nonzero if INST is a branch of some kind, else return zero. */
3589
3590 static int
3591 is_branch (unsigned long inst)
3592 {
3593 switch (inst >> 26)
3594 {
3595 case 0x20:
3596 case 0x21:
3597 case 0x22:
3598 case 0x23:
3599 case 0x27:
3600 case 0x28:
3601 case 0x29:
3602 case 0x2a:
3603 case 0x2b:
3604 case 0x2f:
3605 case 0x30:
3606 case 0x31:
3607 case 0x32:
3608 case 0x33:
3609 case 0x38:
3610 case 0x39:
3611 case 0x3a:
3612 case 0x3b:
3613 return 1;
3614
3615 default:
3616 return 0;
3617 }
3618 }
3619
3620 /* Return the register number for a GR which is saved by INST or
3621 zero it INST does not save a GR. */
3622
3623 static int
3624 inst_saves_gr (unsigned long inst)
3625 {
3626 /* Does it look like a stw? */
3627 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3628 || (inst >> 26) == 0x1f
3629 || ((inst >> 26) == 0x1f
3630 && ((inst >> 6) == 0xa)))
3631 return extract_5R_store (inst);
3632
3633 /* Does it look like a std? */
3634 if ((inst >> 26) == 0x1c
3635 || ((inst >> 26) == 0x03
3636 && ((inst >> 6) & 0xf) == 0xb))
3637 return extract_5R_store (inst);
3638
3639 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3640 if ((inst >> 26) == 0x1b)
3641 return extract_5R_store (inst);
3642
3643 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3644 too. */
3645 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3646 || ((inst >> 26) == 0x3
3647 && (((inst >> 6) & 0xf) == 0x8
3648 || (inst >> 6) & 0xf) == 0x9))
3649 return extract_5R_store (inst);
3650
3651 return 0;
3652 }
3653
3654 /* Return the register number for a FR which is saved by INST or
3655 zero it INST does not save a FR.
3656
3657 Note we only care about full 64bit register stores (that's the only
3658 kind of stores the prologue will use).
3659
3660 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3661
3662 static int
3663 inst_saves_fr (unsigned long inst)
3664 {
3665 /* is this an FSTD ? */
3666 if ((inst & 0xfc00dfc0) == 0x2c001200)
3667 return extract_5r_store (inst);
3668 if ((inst & 0xfc000002) == 0x70000002)
3669 return extract_5R_store (inst);
3670 /* is this an FSTW ? */
3671 if ((inst & 0xfc00df80) == 0x24001200)
3672 return extract_5r_store (inst);
3673 if ((inst & 0xfc000002) == 0x7c000000)
3674 return extract_5R_store (inst);
3675 return 0;
3676 }
3677
3678 /* Advance PC across any function entry prologue instructions
3679 to reach some "real" code.
3680
3681 Use information in the unwind table to determine what exactly should
3682 be in the prologue. */
3683
3684
3685 CORE_ADDR
3686 skip_prologue_hard_way (CORE_ADDR pc)
3687 {
3688 char buf[4];
3689 CORE_ADDR orig_pc = pc;
3690 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3691 unsigned long args_stored, status, i, restart_gr, restart_fr;
3692 struct unwind_table_entry *u;
3693
3694 restart_gr = 0;
3695 restart_fr = 0;
3696
3697 restart:
3698 u = find_unwind_entry (pc);
3699 if (!u)
3700 return pc;
3701
3702 /* If we are not at the beginning of a function, then return now. */
3703 if ((pc & ~0x3) != u->region_start)
3704 return pc;
3705
3706 /* This is how much of a frame adjustment we need to account for. */
3707 stack_remaining = u->Total_frame_size << 3;
3708
3709 /* Magic register saves we want to know about. */
3710 save_rp = u->Save_RP;
3711 save_sp = u->Save_SP;
3712
3713 /* An indication that args may be stored into the stack. Unfortunately
3714 the HPUX compilers tend to set this in cases where no args were
3715 stored too!. */
3716 args_stored = 1;
3717
3718 /* Turn the Entry_GR field into a bitmask. */
3719 save_gr = 0;
3720 for (i = 3; i < u->Entry_GR + 3; i++)
3721 {
3722 /* Frame pointer gets saved into a special location. */
3723 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3724 continue;
3725
3726 save_gr |= (1 << i);
3727 }
3728 save_gr &= ~restart_gr;
3729
3730 /* Turn the Entry_FR field into a bitmask too. */
3731 save_fr = 0;
3732 for (i = 12; i < u->Entry_FR + 12; i++)
3733 save_fr |= (1 << i);
3734 save_fr &= ~restart_fr;
3735
3736 /* Loop until we find everything of interest or hit a branch.
3737
3738 For unoptimized GCC code and for any HP CC code this will never ever
3739 examine any user instructions.
3740
3741 For optimzied GCC code we're faced with problems. GCC will schedule
3742 its prologue and make prologue instructions available for delay slot
3743 filling. The end result is user code gets mixed in with the prologue
3744 and a prologue instruction may be in the delay slot of the first branch
3745 or call.
3746
3747 Some unexpected things are expected with debugging optimized code, so
3748 we allow this routine to walk past user instructions in optimized
3749 GCC code. */
3750 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3751 || args_stored)
3752 {
3753 unsigned int reg_num;
3754 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3755 unsigned long old_save_rp, old_save_sp, next_inst;
3756
3757 /* Save copies of all the triggers so we can compare them later
3758 (only for HPC). */
3759 old_save_gr = save_gr;
3760 old_save_fr = save_fr;
3761 old_save_rp = save_rp;
3762 old_save_sp = save_sp;
3763 old_stack_remaining = stack_remaining;
3764
3765 status = target_read_memory (pc, buf, 4);
3766 inst = extract_unsigned_integer (buf, 4);
3767
3768 /* Yow! */
3769 if (status != 0)
3770 return pc;
3771
3772 /* Note the interesting effects of this instruction. */
3773 stack_remaining -= prologue_inst_adjust_sp (inst);
3774
3775 /* There are limited ways to store the return pointer into the
3776 stack. */
3777 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3778 save_rp = 0;
3779
3780 /* These are the only ways we save SP into the stack. At this time
3781 the HP compilers never bother to save SP into the stack. */
3782 if ((inst & 0xffffc000) == 0x6fc10000
3783 || (inst & 0xffffc00c) == 0x73c10008)
3784 save_sp = 0;
3785
3786 /* Are we loading some register with an offset from the argument
3787 pointer? */
3788 if ((inst & 0xffe00000) == 0x37a00000
3789 || (inst & 0xffffffe0) == 0x081d0240)
3790 {
3791 pc += 4;
3792 continue;
3793 }
3794
3795 /* Account for general and floating-point register saves. */
3796 reg_num = inst_saves_gr (inst);
3797 save_gr &= ~(1 << reg_num);
3798
3799 /* Ugh. Also account for argument stores into the stack.
3800 Unfortunately args_stored only tells us that some arguments
3801 where stored into the stack. Not how many or what kind!
3802
3803 This is a kludge as on the HP compiler sets this bit and it
3804 never does prologue scheduling. So once we see one, skip past
3805 all of them. We have similar code for the fp arg stores below.
3806
3807 FIXME. Can still die if we have a mix of GR and FR argument
3808 stores! */
3809 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3810 {
3811 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3812 {
3813 pc += 4;
3814 status = target_read_memory (pc, buf, 4);
3815 inst = extract_unsigned_integer (buf, 4);
3816 if (status != 0)
3817 return pc;
3818 reg_num = inst_saves_gr (inst);
3819 }
3820 args_stored = 0;
3821 continue;
3822 }
3823
3824 reg_num = inst_saves_fr (inst);
3825 save_fr &= ~(1 << reg_num);
3826
3827 status = target_read_memory (pc + 4, buf, 4);
3828 next_inst = extract_unsigned_integer (buf, 4);
3829
3830 /* Yow! */
3831 if (status != 0)
3832 return pc;
3833
3834 /* We've got to be read to handle the ldo before the fp register
3835 save. */
3836 if ((inst & 0xfc000000) == 0x34000000
3837 && inst_saves_fr (next_inst) >= 4
3838 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3839 {
3840 /* So we drop into the code below in a reasonable state. */
3841 reg_num = inst_saves_fr (next_inst);
3842 pc -= 4;
3843 }
3844
3845 /* Ugh. Also account for argument stores into the stack.
3846 This is a kludge as on the HP compiler sets this bit and it
3847 never does prologue scheduling. So once we see one, skip past
3848 all of them. */
3849 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3850 {
3851 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3852 {
3853 pc += 8;
3854 status = target_read_memory (pc, buf, 4);
3855 inst = extract_unsigned_integer (buf, 4);
3856 if (status != 0)
3857 return pc;
3858 if ((inst & 0xfc000000) != 0x34000000)
3859 break;
3860 status = target_read_memory (pc + 4, buf, 4);
3861 next_inst = extract_unsigned_integer (buf, 4);
3862 if (status != 0)
3863 return pc;
3864 reg_num = inst_saves_fr (next_inst);
3865 }
3866 args_stored = 0;
3867 continue;
3868 }
3869
3870 /* Quit if we hit any kind of branch. This can happen if a prologue
3871 instruction is in the delay slot of the first call/branch. */
3872 if (is_branch (inst))
3873 break;
3874
3875 /* What a crock. The HP compilers set args_stored even if no
3876 arguments were stored into the stack (boo hiss). This could
3877 cause this code to then skip a bunch of user insns (up to the
3878 first branch).
3879
3880 To combat this we try to identify when args_stored was bogusly
3881 set and clear it. We only do this when args_stored is nonzero,
3882 all other resources are accounted for, and nothing changed on
3883 this pass. */
3884 if (args_stored
3885 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3886 && old_save_gr == save_gr && old_save_fr == save_fr
3887 && old_save_rp == save_rp && old_save_sp == save_sp
3888 && old_stack_remaining == stack_remaining)
3889 break;
3890
3891 /* Bump the PC. */
3892 pc += 4;
3893 }
3894
3895 /* We've got a tenative location for the end of the prologue. However
3896 because of limitations in the unwind descriptor mechanism we may
3897 have went too far into user code looking for the save of a register
3898 that does not exist. So, if there registers we expected to be saved
3899 but never were, mask them out and restart.
3900
3901 This should only happen in optimized code, and should be very rare. */
3902 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3903 {
3904 pc = orig_pc;
3905 restart_gr = save_gr;
3906 restart_fr = save_fr;
3907 goto restart;
3908 }
3909
3910 return pc;
3911 }
3912
3913
3914 /* Return the address of the PC after the last prologue instruction if
3915 we can determine it from the debug symbols. Else return zero. */
3916
3917 static CORE_ADDR
3918 after_prologue (CORE_ADDR pc)
3919 {
3920 struct symtab_and_line sal;
3921 CORE_ADDR func_addr, func_end;
3922 struct symbol *f;
3923
3924 /* If we can not find the symbol in the partial symbol table, then
3925 there is no hope we can determine the function's start address
3926 with this code. */
3927 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3928 return 0;
3929
3930 /* Get the line associated with FUNC_ADDR. */
3931 sal = find_pc_line (func_addr, 0);
3932
3933 /* There are only two cases to consider. First, the end of the source line
3934 is within the function bounds. In that case we return the end of the
3935 source line. Second is the end of the source line extends beyond the
3936 bounds of the current function. We need to use the slow code to
3937 examine instructions in that case.
3938
3939 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3940 the wrong thing to do. In fact, it should be entirely possible for this
3941 function to always return zero since the slow instruction scanning code
3942 is supposed to *always* work. If it does not, then it is a bug. */
3943 if (sal.end < func_end)
3944 return sal.end;
3945 else
3946 return 0;
3947 }
3948
3949 /* To skip prologues, I use this predicate. Returns either PC itself
3950 if the code at PC does not look like a function prologue; otherwise
3951 returns an address that (if we're lucky) follows the prologue. If
3952 LENIENT, then we must skip everything which is involved in setting
3953 up the frame (it's OK to skip more, just so long as we don't skip
3954 anything which might clobber the registers which are being saved.
3955 Currently we must not skip more on the alpha, but we might the lenient
3956 stuff some day. */
3957
3958 CORE_ADDR
3959 hppa_skip_prologue (CORE_ADDR pc)
3960 {
3961 unsigned long inst;
3962 int offset;
3963 CORE_ADDR post_prologue_pc;
3964 char buf[4];
3965
3966 /* See if we can determine the end of the prologue via the symbol table.
3967 If so, then return either PC, or the PC after the prologue, whichever
3968 is greater. */
3969
3970 post_prologue_pc = after_prologue (pc);
3971
3972 /* If after_prologue returned a useful address, then use it. Else
3973 fall back on the instruction skipping code.
3974
3975 Some folks have claimed this causes problems because the breakpoint
3976 may be the first instruction of the prologue. If that happens, then
3977 the instruction skipping code has a bug that needs to be fixed. */
3978 if (post_prologue_pc != 0)
3979 return max (pc, post_prologue_pc);
3980 else
3981 return (skip_prologue_hard_way (pc));
3982 }
3983
3984 /* Put here the code to store, into the SAVED_REGS, the addresses of
3985 the saved registers of frame described by FRAME_INFO. This
3986 includes special registers such as pc and fp saved in special ways
3987 in the stack frame. sp is even more special: the address we return
3988 for it IS the sp for the next frame. */
3989
3990 void
3991 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3992 CORE_ADDR frame_saved_regs[])
3993 {
3994 CORE_ADDR pc;
3995 struct unwind_table_entry *u;
3996 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3997 int status, i, reg;
3998 char buf[4];
3999 int fp_loc = -1;
4000 int final_iteration;
4001
4002 /* Zero out everything. */
4003 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
4004
4005 /* Call dummy frames always look the same, so there's no need to
4006 examine the dummy code to determine locations of saved registers;
4007 instead, let find_dummy_frame_regs fill in the correct offsets
4008 for the saved registers. */
4009 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
4010 && (get_frame_pc (frame_info)
4011 <= (get_frame_base (frame_info)
4012 /* A call dummy is sized in words, but it is actually a
4013 series of instructions. Account for that scaling
4014 factor. */
4015 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4016 * DEPRECATED_CALL_DUMMY_LENGTH)
4017 /* Similarly we have to account for 64bit wide register
4018 saves. */
4019 + (32 * DEPRECATED_REGISTER_SIZE)
4020 /* We always consider FP regs 8 bytes long. */
4021 + (NUM_REGS - FP0_REGNUM) * 8
4022 /* Similarly we have to account for 64bit wide register
4023 saves. */
4024 + (6 * DEPRECATED_REGISTER_SIZE)))))
4025 find_dummy_frame_regs (frame_info, frame_saved_regs);
4026
4027 /* Interrupt handlers are special too. They lay out the register
4028 state in the exact same order as the register numbers in GDB. */
4029 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
4030 {
4031 for (i = 0; i < NUM_REGS; i++)
4032 {
4033 /* SP is a little special. */
4034 if (i == SP_REGNUM)
4035 frame_saved_regs[SP_REGNUM]
4036 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
4037 TARGET_PTR_BIT / 8);
4038 else
4039 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
4040 }
4041 return;
4042 }
4043
4044 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4045 /* Handle signal handler callers. */
4046 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
4047 {
4048 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4049 return;
4050 }
4051 #endif
4052
4053 /* Get the starting address of the function referred to by the PC
4054 saved in frame. */
4055 pc = get_frame_func (frame_info);
4056
4057 /* Yow! */
4058 u = find_unwind_entry (pc);
4059 if (!u)
4060 return;
4061
4062 /* This is how much of a frame adjustment we need to account for. */
4063 stack_remaining = u->Total_frame_size << 3;
4064
4065 /* Magic register saves we want to know about. */
4066 save_rp = u->Save_RP;
4067 save_sp = u->Save_SP;
4068
4069 /* Turn the Entry_GR field into a bitmask. */
4070 save_gr = 0;
4071 for (i = 3; i < u->Entry_GR + 3; i++)
4072 {
4073 /* Frame pointer gets saved into a special location. */
4074 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4075 continue;
4076
4077 save_gr |= (1 << i);
4078 }
4079
4080 /* Turn the Entry_FR field into a bitmask too. */
4081 save_fr = 0;
4082 for (i = 12; i < u->Entry_FR + 12; i++)
4083 save_fr |= (1 << i);
4084
4085 /* The frame always represents the value of %sp at entry to the
4086 current function (and is thus equivalent to the "saved" stack
4087 pointer. */
4088 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
4089
4090 /* Loop until we find everything of interest or hit a branch.
4091
4092 For unoptimized GCC code and for any HP CC code this will never ever
4093 examine any user instructions.
4094
4095 For optimized GCC code we're faced with problems. GCC will schedule
4096 its prologue and make prologue instructions available for delay slot
4097 filling. The end result is user code gets mixed in with the prologue
4098 and a prologue instruction may be in the delay slot of the first branch
4099 or call.
4100
4101 Some unexpected things are expected with debugging optimized code, so
4102 we allow this routine to walk past user instructions in optimized
4103 GCC code. */
4104 final_iteration = 0;
4105 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4106 && pc <= get_frame_pc (frame_info))
4107 {
4108 status = target_read_memory (pc, buf, 4);
4109 inst = extract_unsigned_integer (buf, 4);
4110
4111 /* Yow! */
4112 if (status != 0)
4113 return;
4114
4115 /* Note the interesting effects of this instruction. */
4116 stack_remaining -= prologue_inst_adjust_sp (inst);
4117
4118 /* There are limited ways to store the return pointer into the
4119 stack. */
4120 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4121 {
4122 save_rp = 0;
4123 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
4124 }
4125 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4126 {
4127 save_rp = 0;
4128 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4129 }
4130
4131 /* Note if we saved SP into the stack. This also happens to indicate
4132 the location of the saved frame pointer. */
4133 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4134 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4135 {
4136 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4137 save_sp = 0;
4138 }
4139
4140 /* Account for general and floating-point register saves. */
4141 reg = inst_saves_gr (inst);
4142 if (reg >= 3 && reg <= 18
4143 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4144 {
4145 save_gr &= ~(1 << reg);
4146
4147 /* stwm with a positive displacement is a *post modify*. */
4148 if ((inst >> 26) == 0x1b
4149 && extract_14 (inst) >= 0)
4150 frame_saved_regs[reg] = get_frame_base (frame_info);
4151 /* A std has explicit post_modify forms. */
4152 else if ((inst & 0xfc00000c) == 0x70000008)
4153 frame_saved_regs[reg] = get_frame_base (frame_info);
4154 else
4155 {
4156 CORE_ADDR offset;
4157
4158 if ((inst >> 26) == 0x1c)
4159 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4160 else if ((inst >> 26) == 0x03)
4161 offset = low_sign_extend (inst & 0x1f, 5);
4162 else
4163 offset = extract_14 (inst);
4164
4165 /* Handle code with and without frame pointers. */
4166 if (u->Save_SP)
4167 frame_saved_regs[reg]
4168 = get_frame_base (frame_info) + offset;
4169 else
4170 frame_saved_regs[reg]
4171 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4172 + offset);
4173 }
4174 }
4175
4176
4177 /* GCC handles callee saved FP regs a little differently.
4178
4179 It emits an instruction to put the value of the start of
4180 the FP store area into %r1. It then uses fstds,ma with
4181 a basereg of %r1 for the stores.
4182
4183 HP CC emits them at the current stack pointer modifying
4184 the stack pointer as it stores each register. */
4185
4186 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4187 if ((inst & 0xffffc000) == 0x34610000
4188 || (inst & 0xffffc000) == 0x37c10000)
4189 fp_loc = extract_14 (inst);
4190
4191 reg = inst_saves_fr (inst);
4192 if (reg >= 12 && reg <= 21)
4193 {
4194 /* Note +4 braindamage below is necessary because the FP status
4195 registers are internally 8 registers rather than the expected
4196 4 registers. */
4197 save_fr &= ~(1 << reg);
4198 if (fp_loc == -1)
4199 {
4200 /* 1st HP CC FP register store. After this instruction
4201 we've set enough state that the GCC and HPCC code are
4202 both handled in the same manner. */
4203 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4204 fp_loc = 8;
4205 }
4206 else
4207 {
4208 frame_saved_regs[reg + FP0_REGNUM + 4]
4209 = get_frame_base (frame_info) + fp_loc;
4210 fp_loc += 8;
4211 }
4212 }
4213
4214 /* Quit if we hit any kind of branch the previous iteration. */
4215 if (final_iteration)
4216 break;
4217
4218 /* We want to look precisely one instruction beyond the branch
4219 if we have not found everything yet. */
4220 if (is_branch (inst))
4221 final_iteration = 1;
4222
4223 /* Bump the PC. */
4224 pc += 4;
4225 }
4226 }
4227
4228 /* XXX - deprecated. This is a compatibility function for targets
4229 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4230 /* Find the addresses in which registers are saved in FRAME. */
4231
4232 static void
4233 hppa_frame_init_saved_regs (struct frame_info *frame)
4234 {
4235 if (deprecated_get_frame_saved_regs (frame) == NULL)
4236 frame_saved_regs_zalloc (frame);
4237 hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame));
4238 }
4239
4240 /* Exception handling support for the HP-UX ANSI C++ compiler.
4241 The compiler (aCC) provides a callback for exception events;
4242 GDB can set a breakpoint on this callback and find out what
4243 exception event has occurred. */
4244
4245 /* The name of the hook to be set to point to the callback function */
4246 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4247 /* The name of the function to be used to set the hook value */
4248 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4249 /* The name of the callback function in end.o */
4250 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4251 /* Name of function in end.o on which a break is set (called by above) */
4252 static char HP_ACC_EH_break[] = "__d_eh_break";
4253 /* Name of flag (in end.o) that enables catching throws */
4254 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4255 /* Name of flag (in end.o) that enables catching catching */
4256 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4257 /* The enum used by aCC */
4258 typedef enum
4259 {
4260 __EH_NOTIFY_THROW,
4261 __EH_NOTIFY_CATCH
4262 }
4263 __eh_notification;
4264
4265 /* Is exception-handling support available with this executable? */
4266 static int hp_cxx_exception_support = 0;
4267 /* Has the initialize function been run? */
4268 int hp_cxx_exception_support_initialized = 0;
4269 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4270 extern int exception_support_initialized;
4271 /* Address of __eh_notify_hook */
4272 static CORE_ADDR eh_notify_hook_addr = 0;
4273 /* Address of __d_eh_notify_callback */
4274 static CORE_ADDR eh_notify_callback_addr = 0;
4275 /* Address of __d_eh_break */
4276 static CORE_ADDR eh_break_addr = 0;
4277 /* Address of __d_eh_catch_catch */
4278 static CORE_ADDR eh_catch_catch_addr = 0;
4279 /* Address of __d_eh_catch_throw */
4280 static CORE_ADDR eh_catch_throw_addr = 0;
4281 /* Sal for __d_eh_break */
4282 static struct symtab_and_line *break_callback_sal = 0;
4283
4284 /* Code in end.c expects __d_pid to be set in the inferior,
4285 otherwise __d_eh_notify_callback doesn't bother to call
4286 __d_eh_break! So we poke the pid into this symbol
4287 ourselves.
4288 0 => success
4289 1 => failure */
4290 int
4291 setup_d_pid_in_inferior (void)
4292 {
4293 CORE_ADDR anaddr;
4294 struct minimal_symbol *msymbol;
4295 char buf[4]; /* FIXME 32x64? */
4296
4297 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4298 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4299 if (msymbol == NULL)
4300 {
4301 warning ("Unable to find __d_pid symbol in object file.");
4302 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4303 return 1;
4304 }
4305
4306 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4307 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4308 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4309 {
4310 warning ("Unable to write __d_pid");
4311 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4312 return 1;
4313 }
4314 return 0;
4315 }
4316
4317 /* Initialize exception catchpoint support by looking for the
4318 necessary hooks/callbacks in end.o, etc., and set the hook value to
4319 point to the required debug function
4320
4321 Return 0 => failure
4322 1 => success */
4323
4324 static int
4325 initialize_hp_cxx_exception_support (void)
4326 {
4327 struct symtabs_and_lines sals;
4328 struct cleanup *old_chain;
4329 struct cleanup *canonical_strings_chain = NULL;
4330 int i;
4331 char *addr_start;
4332 char *addr_end = NULL;
4333 char **canonical = (char **) NULL;
4334 int thread = -1;
4335 struct symbol *sym = NULL;
4336 struct minimal_symbol *msym = NULL;
4337 struct objfile *objfile;
4338 asection *shlib_info;
4339
4340 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4341 recursion is a possibility because finding the hook for exception
4342 callbacks involves making a call in the inferior, which means
4343 re-inserting breakpoints which can re-invoke this code */
4344
4345 static int recurse = 0;
4346 if (recurse > 0)
4347 {
4348 hp_cxx_exception_support_initialized = 0;
4349 exception_support_initialized = 0;
4350 return 0;
4351 }
4352
4353 hp_cxx_exception_support = 0;
4354
4355 /* First check if we have seen any HP compiled objects; if not,
4356 it is very unlikely that HP's idiosyncratic callback mechanism
4357 for exception handling debug support will be available!
4358 This will percolate back up to breakpoint.c, where our callers
4359 will decide to try the g++ exception-handling support instead. */
4360 if (!hp_som_som_object_present)
4361 return 0;
4362
4363 /* We have a SOM executable with SOM debug info; find the hooks */
4364
4365 /* First look for the notify hook provided by aCC runtime libs */
4366 /* If we find this symbol, we conclude that the executable must
4367 have HP aCC exception support built in. If this symbol is not
4368 found, even though we're a HP SOM-SOM file, we may have been
4369 built with some other compiler (not aCC). This results percolates
4370 back up to our callers in breakpoint.c which can decide to
4371 try the g++ style of exception support instead.
4372 If this symbol is found but the other symbols we require are
4373 not found, there is something weird going on, and g++ support
4374 should *not* be tried as an alternative.
4375
4376 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4377 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4378
4379 /* libCsup has this hook; it'll usually be non-debuggable */
4380 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4381 if (msym)
4382 {
4383 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4384 hp_cxx_exception_support = 1;
4385 }
4386 else
4387 {
4388 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4389 warning ("Executable may not have been compiled debuggable with HP aCC.");
4390 warning ("GDB will be unable to intercept exception events.");
4391 eh_notify_hook_addr = 0;
4392 hp_cxx_exception_support = 0;
4393 return 0;
4394 }
4395
4396 /* Next look for the notify callback routine in end.o */
4397 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4398 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4399 if (msym)
4400 {
4401 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4402 hp_cxx_exception_support = 1;
4403 }
4404 else
4405 {
4406 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4407 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4408 warning ("GDB will be unable to intercept exception events.");
4409 eh_notify_callback_addr = 0;
4410 return 0;
4411 }
4412
4413 #ifndef GDB_TARGET_IS_HPPA_20W
4414 /* Check whether the executable is dynamically linked or archive bound */
4415 /* With an archive-bound executable we can use the raw addresses we find
4416 for the callback function, etc. without modification. For an executable
4417 with shared libraries, we have to do more work to find the plabel, which
4418 can be the target of a call through $$dyncall from the aCC runtime support
4419 library (libCsup) which is linked shared by default by aCC. */
4420 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4421 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4422 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4423 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4424 {
4425 /* The minsym we have has the local code address, but that's not the
4426 plabel that can be used by an inter-load-module call. */
4427 /* Find solib handle for main image (which has end.o), and use that
4428 and the min sym as arguments to __d_shl_get() (which does the equivalent
4429 of shl_findsym()) to find the plabel. */
4430
4431 args_for_find_stub args;
4432 static char message[] = "Error while finding exception callback hook:\n";
4433
4434 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4435 args.msym = msym;
4436 args.return_val = 0;
4437
4438 recurse++;
4439 catch_errors (cover_find_stub_with_shl_get, &args, message,
4440 RETURN_MASK_ALL);
4441 eh_notify_callback_addr = args.return_val;
4442 recurse--;
4443
4444 exception_catchpoints_are_fragile = 1;
4445
4446 if (!eh_notify_callback_addr)
4447 {
4448 /* We can get here either if there is no plabel in the export list
4449 for the main image, or if something strange happened (?) */
4450 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4451 warning ("GDB will not be able to intercept exception events.");
4452 return 0;
4453 }
4454 }
4455 else
4456 exception_catchpoints_are_fragile = 0;
4457 #endif
4458
4459 /* Now, look for the breakpointable routine in end.o */
4460 /* This should also be available in the SOM symbol dict. if end.o linked in */
4461 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4462 if (msym)
4463 {
4464 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4465 hp_cxx_exception_support = 1;
4466 }
4467 else
4468 {
4469 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4470 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4471 warning ("GDB will be unable to intercept exception events.");
4472 eh_break_addr = 0;
4473 return 0;
4474 }
4475
4476 /* Next look for the catch enable flag provided in end.o */
4477 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4478 VAR_DOMAIN, 0, (struct symtab **) NULL);
4479 if (sym) /* sometimes present in debug info */
4480 {
4481 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4482 hp_cxx_exception_support = 1;
4483 }
4484 else
4485 /* otherwise look in SOM symbol dict. */
4486 {
4487 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4488 if (msym)
4489 {
4490 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4491 hp_cxx_exception_support = 1;
4492 }
4493 else
4494 {
4495 warning ("Unable to enable interception of exception catches.");
4496 warning ("Executable may not have been compiled debuggable with HP aCC.");
4497 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4498 return 0;
4499 }
4500 }
4501
4502 /* Next look for the catch enable flag provided end.o */
4503 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4504 VAR_DOMAIN, 0, (struct symtab **) NULL);
4505 if (sym) /* sometimes present in debug info */
4506 {
4507 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4508 hp_cxx_exception_support = 1;
4509 }
4510 else
4511 /* otherwise look in SOM symbol dict. */
4512 {
4513 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4514 if (msym)
4515 {
4516 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4517 hp_cxx_exception_support = 1;
4518 }
4519 else
4520 {
4521 warning ("Unable to enable interception of exception throws.");
4522 warning ("Executable may not have been compiled debuggable with HP aCC.");
4523 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4524 return 0;
4525 }
4526 }
4527
4528 /* Set the flags */
4529 hp_cxx_exception_support = 2; /* everything worked so far */
4530 hp_cxx_exception_support_initialized = 1;
4531 exception_support_initialized = 1;
4532
4533 return 1;
4534 }
4535
4536 /* Target operation for enabling or disabling interception of
4537 exception events.
4538 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4539 ENABLE is either 0 (disable) or 1 (enable).
4540 Return value is NULL if no support found;
4541 -1 if something went wrong,
4542 or a pointer to a symtab/line struct if the breakpointable
4543 address was found. */
4544
4545 struct symtab_and_line *
4546 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4547 {
4548 char buf[4];
4549
4550 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4551 if (!initialize_hp_cxx_exception_support ())
4552 return NULL;
4553
4554 switch (hp_cxx_exception_support)
4555 {
4556 case 0:
4557 /* Assuming no HP support at all */
4558 return NULL;
4559 case 1:
4560 /* HP support should be present, but something went wrong */
4561 return (struct symtab_and_line *) -1; /* yuck! */
4562 /* there may be other cases in the future */
4563 }
4564
4565 /* Set the EH hook to point to the callback routine */
4566 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4567 /* pai: (temp) FIXME should there be a pack operation first? */
4568 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4569 {
4570 warning ("Could not write to target memory for exception event callback.");
4571 warning ("Interception of exception events may not work.");
4572 return (struct symtab_and_line *) -1;
4573 }
4574 if (enable)
4575 {
4576 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4577 if (PIDGET (inferior_ptid) > 0)
4578 {
4579 if (setup_d_pid_in_inferior ())
4580 return (struct symtab_and_line *) -1;
4581 }
4582 else
4583 {
4584 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4585 return (struct symtab_and_line *) -1;
4586 }
4587 }
4588
4589 switch (kind)
4590 {
4591 case EX_EVENT_THROW:
4592 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4593 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4594 {
4595 warning ("Couldn't enable exception throw interception.");
4596 return (struct symtab_and_line *) -1;
4597 }
4598 break;
4599 case EX_EVENT_CATCH:
4600 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4601 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4602 {
4603 warning ("Couldn't enable exception catch interception.");
4604 return (struct symtab_and_line *) -1;
4605 }
4606 break;
4607 default:
4608 error ("Request to enable unknown or unsupported exception event.");
4609 }
4610
4611 /* Copy break address into new sal struct, malloc'ing if needed. */
4612 if (!break_callback_sal)
4613 {
4614 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4615 }
4616 init_sal (break_callback_sal);
4617 break_callback_sal->symtab = NULL;
4618 break_callback_sal->pc = eh_break_addr;
4619 break_callback_sal->line = 0;
4620 break_callback_sal->end = eh_break_addr;
4621
4622 return break_callback_sal;
4623 }
4624
4625 /* Record some information about the current exception event */
4626 static struct exception_event_record current_ex_event;
4627 /* Convenience struct */
4628 static struct symtab_and_line null_symtab_and_line =
4629 {NULL, 0, 0, 0};
4630
4631 /* Report current exception event. Returns a pointer to a record
4632 that describes the kind of the event, where it was thrown from,
4633 and where it will be caught. More information may be reported
4634 in the future */
4635 struct exception_event_record *
4636 child_get_current_exception_event (void)
4637 {
4638 CORE_ADDR event_kind;
4639 CORE_ADDR throw_addr;
4640 CORE_ADDR catch_addr;
4641 struct frame_info *fi, *curr_frame;
4642 int level = 1;
4643
4644 curr_frame = get_current_frame ();
4645 if (!curr_frame)
4646 return (struct exception_event_record *) NULL;
4647
4648 /* Go up one frame to __d_eh_notify_callback, because at the
4649 point when this code is executed, there's garbage in the
4650 arguments of __d_eh_break. */
4651 fi = find_relative_frame (curr_frame, &level);
4652 if (level != 0)
4653 return (struct exception_event_record *) NULL;
4654
4655 select_frame (fi);
4656
4657 /* Read in the arguments */
4658 /* __d_eh_notify_callback() is called with 3 arguments:
4659 1. event kind catch or throw
4660 2. the target address if known
4661 3. a flag -- not sure what this is. pai/1997-07-17 */
4662 event_kind = read_register (ARG0_REGNUM);
4663 catch_addr = read_register (ARG1_REGNUM);
4664
4665 /* Now go down to a user frame */
4666 /* For a throw, __d_eh_break is called by
4667 __d_eh_notify_callback which is called by
4668 __notify_throw which is called
4669 from user code.
4670 For a catch, __d_eh_break is called by
4671 __d_eh_notify_callback which is called by
4672 <stackwalking stuff> which is called by
4673 __throw__<stuff> or __rethrow_<stuff> which is called
4674 from user code. */
4675 /* FIXME: Don't use such magic numbers; search for the frames */
4676 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4677 fi = find_relative_frame (curr_frame, &level);
4678 if (level != 0)
4679 return (struct exception_event_record *) NULL;
4680
4681 select_frame (fi);
4682 throw_addr = get_frame_pc (fi);
4683
4684 /* Go back to original (top) frame */
4685 select_frame (curr_frame);
4686
4687 current_ex_event.kind = (enum exception_event_kind) event_kind;
4688 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4689 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4690
4691 return &current_ex_event;
4692 }
4693
4694 /* Instead of this nasty cast, add a method pvoid() that prints out a
4695 host VOID data type (remember %p isn't portable). */
4696
4697 static CORE_ADDR
4698 hppa_pointer_to_address_hack (void *ptr)
4699 {
4700 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4701 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4702 }
4703
4704 static void
4705 unwind_command (char *exp, int from_tty)
4706 {
4707 CORE_ADDR address;
4708 struct unwind_table_entry *u;
4709
4710 /* If we have an expression, evaluate it and use it as the address. */
4711
4712 if (exp != 0 && *exp != 0)
4713 address = parse_and_eval_address (exp);
4714 else
4715 return;
4716
4717 u = find_unwind_entry (address);
4718
4719 if (!u)
4720 {
4721 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4722 return;
4723 }
4724
4725 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4726 paddr_nz (hppa_pointer_to_address_hack (u)));
4727
4728 printf_unfiltered ("\tregion_start = ");
4729 print_address (u->region_start, gdb_stdout);
4730
4731 printf_unfiltered ("\n\tregion_end = ");
4732 print_address (u->region_end, gdb_stdout);
4733
4734 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4735
4736 printf_unfiltered ("\n\tflags =");
4737 pif (Cannot_unwind);
4738 pif (Millicode);
4739 pif (Millicode_save_sr0);
4740 pif (Entry_SR);
4741 pif (Args_stored);
4742 pif (Variable_Frame);
4743 pif (Separate_Package_Body);
4744 pif (Frame_Extension_Millicode);
4745 pif (Stack_Overflow_Check);
4746 pif (Two_Instruction_SP_Increment);
4747 pif (Ada_Region);
4748 pif (Save_SP);
4749 pif (Save_RP);
4750 pif (Save_MRP_in_frame);
4751 pif (extn_ptr_defined);
4752 pif (Cleanup_defined);
4753 pif (MPE_XL_interrupt_marker);
4754 pif (HP_UX_interrupt_marker);
4755 pif (Large_frame);
4756
4757 putchar_unfiltered ('\n');
4758
4759 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4760
4761 pin (Region_description);
4762 pin (Entry_FR);
4763 pin (Entry_GR);
4764 pin (Total_frame_size);
4765 }
4766
4767 void
4768 hppa_skip_permanent_breakpoint (void)
4769 {
4770 /* To step over a breakpoint instruction on the PA takes some
4771 fiddling with the instruction address queue.
4772
4773 When we stop at a breakpoint, the IA queue front (the instruction
4774 we're executing now) points at the breakpoint instruction, and
4775 the IA queue back (the next instruction to execute) points to
4776 whatever instruction we would execute after the breakpoint, if it
4777 were an ordinary instruction. This is the case even if the
4778 breakpoint is in the delay slot of a branch instruction.
4779
4780 Clearly, to step past the breakpoint, we need to set the queue
4781 front to the back. But what do we put in the back? What
4782 instruction comes after that one? Because of the branch delay
4783 slot, the next insn is always at the back + 4. */
4784 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4785 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4786
4787 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4788 /* We can leave the tail's space the same, since there's no jump. */
4789 }
4790
4791 /* Copy the function value from VALBUF into the proper location
4792 for a function return.
4793
4794 Called only in the context of the "return" command. */
4795
4796 void
4797 hppa32_store_return_value (struct type *type, char *valbuf)
4798 {
4799 /* For software floating point, the return value goes into the
4800 integer registers. But we do not have any flag to key this on,
4801 so we always store the value into the integer registers.
4802
4803 If its a float value, then we also store it into the floating
4804 point registers. */
4805 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28)
4806 + (TYPE_LENGTH (type) > 4
4807 ? (8 - TYPE_LENGTH (type))
4808 : (4 - TYPE_LENGTH (type))),
4809 valbuf, TYPE_LENGTH (type));
4810 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4811 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP4_REGNUM),
4812 valbuf, TYPE_LENGTH (type));
4813 }
4814
4815 /* Same as hppa32_store_return_value(), but for the PA64 ABI. */
4816
4817 void
4818 hppa64_store_return_value (struct type *type, char *valbuf)
4819 {
4820 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4821 deprecated_write_register_bytes
4822 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
4823 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4824 valbuf, TYPE_LENGTH (type));
4825 else if (is_integral_type(type))
4826 deprecated_write_register_bytes
4827 (DEPRECATED_REGISTER_BYTE (28)
4828 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4829 valbuf, TYPE_LENGTH (type));
4830 else if (TYPE_LENGTH (type) <= 8)
4831 deprecated_write_register_bytes
4832 (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type));
4833 else if (TYPE_LENGTH (type) <= 16)
4834 {
4835 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8);
4836 deprecated_write_register_bytes
4837 (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8);
4838 }
4839 }
4840
4841 /* Copy the function's return value into VALBUF.
4842
4843 This function is called only in the context of "target function calls",
4844 ie. when the debugger forces a function to be called in the child, and
4845 when the debugger forces a fucntion to return prematurely via the
4846 "return" command. */
4847
4848 void
4849 hppa32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4850 {
4851 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4852 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM), TYPE_LENGTH (type));
4853 else
4854 memcpy (valbuf,
4855 (regbuf
4856 + DEPRECATED_REGISTER_BYTE (28)
4857 + (TYPE_LENGTH (type) > 4
4858 ? (8 - TYPE_LENGTH (type))
4859 : (4 - TYPE_LENGTH (type)))),
4860 TYPE_LENGTH (type));
4861 }
4862
4863 /* Same as hppa32_extract_return_value but for the PA64 ABI case. */
4864
4865 void
4866 hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4867 {
4868 /* RM: Floats are returned in FR4R, doubles in FR4.
4869 Integral values are in r28, padded on the left.
4870 Aggregates less that 65 bits are in r28, right padded.
4871 Aggregates upto 128 bits are in r28 and r29, right padded. */
4872 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4873 memcpy (valbuf,
4874 regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
4875 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4876 TYPE_LENGTH (type));
4877 else if (is_integral_type(type))
4878 memcpy (valbuf,
4879 regbuf + DEPRECATED_REGISTER_BYTE (28)
4880 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4881 TYPE_LENGTH (type));
4882 else if (TYPE_LENGTH (type) <= 8)
4883 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28),
4884 TYPE_LENGTH (type));
4885 else if (TYPE_LENGTH (type) <= 16)
4886 {
4887 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8);
4888 memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29),
4889 TYPE_LENGTH (type) - 8);
4890 }
4891 }
4892
4893 int
4894 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4895 {
4896 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4897 via a pointer regardless of its type or the compiler used. */
4898 return (TYPE_LENGTH (type) > 8);
4899 }
4900
4901 int
4902 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4903 {
4904 /* Stack grows upward */
4905 return (lhs > rhs);
4906 }
4907
4908 CORE_ADDR
4909 hppa32_stack_align (CORE_ADDR sp)
4910 {
4911 /* elz: adjust the quantity to the next highest value which is
4912 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4913 On hppa the sp must always be kept 64-bit aligned */
4914 return ((sp % 8) ? (sp + 7) & -8 : sp);
4915 }
4916
4917 CORE_ADDR
4918 hppa64_stack_align (CORE_ADDR sp)
4919 {
4920 /* The PA64 ABI mandates a 16 byte stack alignment. */
4921 return ((sp % 16) ? (sp + 15) & -16 : sp);
4922 }
4923
4924 int
4925 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4926 {
4927 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4928
4929 An example of this occurs when an a.out is linked against a foo.sl.
4930 The foo.sl defines a global bar(), and the a.out declares a signature
4931 for bar(). However, the a.out doesn't directly call bar(), but passes
4932 its address in another call.
4933
4934 If you have this scenario and attempt to "break bar" before running,
4935 gdb will find a minimal symbol for bar() in the a.out. But that
4936 symbol's address will be negative. What this appears to denote is
4937 an index backwards from the base of the procedure linkage table (PLT)
4938 into the data linkage table (DLT), the end of which is contiguous
4939 with the start of the PLT. This is clearly not a valid address for
4940 us to set a breakpoint on.
4941
4942 Note that one must be careful in how one checks for a negative address.
4943 0xc0000000 is a legitimate address of something in a shared text
4944 segment, for example. Since I don't know what the possible range
4945 is of these "really, truly negative" addresses that come from the
4946 minimal symbols, I'm resorting to the gross hack of checking the
4947 top byte of the address for all 1's. Sigh. */
4948
4949 return (!target_has_stack && (pc & 0xFF000000));
4950 }
4951
4952 int
4953 hppa_instruction_nullified (void)
4954 {
4955 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4956 avoid the type cast. I'm leaving it as is for now as I'm doing
4957 semi-mechanical multiarching-related changes. */
4958 const int ipsw = (int) read_register (IPSW_REGNUM);
4959 const int flags = (int) read_register (FLAGS_REGNUM);
4960
4961 return ((ipsw & 0x00200000) && !(flags & 0x2));
4962 }
4963
4964 int
4965 hppa_register_raw_size (int reg_nr)
4966 {
4967 /* All registers have the same size. */
4968 return DEPRECATED_REGISTER_SIZE;
4969 }
4970
4971 /* Index within the register vector of the first byte of the space i
4972 used for register REG_NR. */
4973
4974 int
4975 hppa_register_byte (int reg_nr)
4976 {
4977 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4978
4979 return reg_nr * tdep->bytes_per_address;
4980 }
4981
4982 /* Return the GDB type object for the "standard" data type of data
4983 in register N. */
4984
4985 struct type *
4986 hppa32_register_virtual_type (int reg_nr)
4987 {
4988 if (reg_nr < FP4_REGNUM)
4989 return builtin_type_int;
4990 else
4991 return builtin_type_float;
4992 }
4993
4994 /* Return the GDB type object for the "standard" data type of data
4995 in register N. hppa64 version. */
4996
4997 struct type *
4998 hppa64_register_virtual_type (int reg_nr)
4999 {
5000 if (reg_nr < FP4_REGNUM)
5001 return builtin_type_unsigned_long_long;
5002 else
5003 return builtin_type_double;
5004 }
5005
5006 /* Store the address of the place in which to copy the structure the
5007 subroutine will return. This is called from call_function. */
5008
5009 void
5010 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5011 {
5012 write_register (28, addr);
5013 }
5014 /* Return True if REGNUM is not a register available to the user
5015 through ptrace(). */
5016
5017 int
5018 hppa_cannot_store_register (int regnum)
5019 {
5020 return (regnum == 0
5021 || regnum == PCSQ_HEAD_REGNUM
5022 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
5023 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
5024
5025 }
5026
5027 CORE_ADDR
5028 hppa_smash_text_address (CORE_ADDR addr)
5029 {
5030 /* The low two bits of the PC on the PA contain the privilege level.
5031 Some genius implementing a (non-GCC) compiler apparently decided
5032 this means that "addresses" in a text section therefore include a
5033 privilege level, and thus symbol tables should contain these bits.
5034 This seems like a bonehead thing to do--anyway, it seems to work
5035 for our purposes to just ignore those bits. */
5036
5037 return (addr &= ~0x3);
5038 }
5039
5040 /* Get the ith function argument for the current function. */
5041 CORE_ADDR
5042 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
5043 struct type *type)
5044 {
5045 CORE_ADDR addr;
5046 get_frame_register (frame, R0_REGNUM + 26 - argi, &addr);
5047 return addr;
5048 }
5049
5050 /* Here is a table of C type sizes on hppa with various compiles
5051 and options. I measured this on PA 9000/800 with HP-UX 11.11
5052 and these compilers:
5053
5054 /usr/ccs/bin/cc HP92453-01 A.11.01.21
5055 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
5056 /opt/aCC/bin/aCC B3910B A.03.45
5057 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
5058
5059 cc : 1 2 4 4 8 : 4 8 -- : 4 4
5060 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5061 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5062 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5063 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5064 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5065 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5066 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
5067
5068 Each line is:
5069
5070 compiler and options
5071 char, short, int, long, long long
5072 float, double, long double
5073 char *, void (*)()
5074
5075 So all these compilers use either ILP32 or LP64 model.
5076 TODO: gcc has more options so it needs more investigation.
5077
5078 For floating point types, see:
5079
5080 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
5081 HP-UX floating-point guide, hpux 11.00
5082
5083 -- chastain 2003-12-18 */
5084
5085 static struct gdbarch *
5086 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5087 {
5088 struct gdbarch_tdep *tdep;
5089 struct gdbarch *gdbarch;
5090
5091 /* Try to determine the ABI of the object we are loading. */
5092 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
5093 {
5094 /* If it's a SOM file, assume it's HP/UX SOM. */
5095 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5096 info.osabi = GDB_OSABI_HPUX_SOM;
5097 }
5098
5099 /* find a candidate among the list of pre-declared architectures. */
5100 arches = gdbarch_list_lookup_by_info (arches, &info);
5101 if (arches != NULL)
5102 return (arches->gdbarch);
5103
5104 /* If none found, then allocate and initialize one. */
5105 tdep = XMALLOC (struct gdbarch_tdep);
5106 gdbarch = gdbarch_alloc (&info, tdep);
5107
5108 /* Determine from the bfd_arch_info structure if we are dealing with
5109 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5110 then default to a 32bit machine. */
5111 if (info.bfd_arch_info != NULL)
5112 tdep->bytes_per_address =
5113 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
5114 else
5115 tdep->bytes_per_address = 4;
5116
5117 /* Some parts of the gdbarch vector depend on whether we are running
5118 on a 32 bits or 64 bits target. */
5119 switch (tdep->bytes_per_address)
5120 {
5121 case 4:
5122 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
5123 set_gdbarch_register_name (gdbarch, hppa32_register_name);
5124 set_gdbarch_deprecated_register_virtual_type
5125 (gdbarch, hppa32_register_virtual_type);
5126 break;
5127 case 8:
5128 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
5129 set_gdbarch_register_name (gdbarch, hppa64_register_name);
5130 set_gdbarch_deprecated_register_virtual_type
5131 (gdbarch, hppa64_register_virtual_type);
5132 break;
5133 default:
5134 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
5135 tdep->bytes_per_address);
5136 }
5137
5138 /* The following gdbarch vector elements depend on other parts of this
5139 vector which have been set above, depending on the ABI. */
5140 set_gdbarch_deprecated_register_bytes
5141 (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address);
5142 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5143 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5144
5145 /* The following gdbarch vector elements are the same in both ILP32
5146 and LP64, but might show differences some day. */
5147 set_gdbarch_long_long_bit (gdbarch, 64);
5148 set_gdbarch_long_double_bit (gdbarch, 128);
5149 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
5150
5151 /* The following gdbarch vector elements do not depend on the address
5152 size, or in any other gdbarch element previously set. */
5153 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5154 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5155 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5156 set_gdbarch_in_solib_return_trampoline (gdbarch,
5157 hppa_in_solib_return_trampoline);
5158 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
5159 set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address);
5160 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
5161 set_gdbarch_sp_regnum (gdbarch, 30);
5162 set_gdbarch_fp0_regnum (gdbarch, 64);
5163 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
5164 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
5165 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5166 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
5167 set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address);
5168 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5169 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5170 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
5171 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5172 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5173 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5174 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5175 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5176
5177 /* Helper for function argument information. */
5178 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5179
5180 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
5181
5182 /* When a hardware watchpoint triggers, we'll move the inferior past
5183 it by removing all eventpoints; stepping past the instruction
5184 that caused the trigger; reinserting eventpoints; and checking
5185 whether any watched location changed. */
5186 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5187
5188 /* Inferior function call methods. */
5189 if (0)
5190 {
5191 }
5192 else
5193 {
5194 switch (tdep->bytes_per_address)
5195 {
5196 case 4:
5197 set_gdbarch_deprecated_call_dummy_length (gdbarch, hppa32_call_dummy_length);
5198 set_gdbarch_deprecated_stack_align (gdbarch, hppa32_stack_align);
5199 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
5200 set_gdbarch_deprecated_extract_return_value (gdbarch, hppa32_extract_return_value);
5201 set_gdbarch_use_struct_convention (gdbarch, hppa32_use_struct_convention);
5202 set_gdbarch_deprecated_store_return_value (gdbarch, hppa32_store_return_value);
5203 break;
5204 case 8:
5205 set_gdbarch_deprecated_call_dummy_breakpoint_offset (gdbarch, hppa64_call_dummy_breakpoint_offset);
5206 set_gdbarch_deprecated_call_dummy_length (gdbarch, hppa64_call_dummy_length);
5207 set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align);
5208 set_gdbarch_deprecated_extract_return_value (gdbarch, hppa64_extract_return_value);
5209 set_gdbarch_use_struct_convention (gdbarch, hppa64_use_struct_convention);
5210 set_gdbarch_deprecated_store_return_value (gdbarch, hppa64_store_return_value);
5211 break;
5212 }
5213 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5214 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5215 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5216 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5217 }
5218
5219 /* Frame unwind methods. */
5220 if (0)
5221 {
5222 }
5223 else
5224 {
5225 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
5226 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
5227 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, hppa_frame_init_saved_regs);
5228 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5229 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5230 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5231 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, hppa_frameless_function_invocation);
5232 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5233 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5234 }
5235
5236 /* Hook in ABI-specific overrides, if they have been registered. */
5237 gdbarch_init_osabi (info, gdbarch);
5238
5239 return gdbarch;
5240 }
5241
5242 static void
5243 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5244 {
5245 /* Nothing to print for the moment. */
5246 }
5247
5248 void
5249 _initialize_hppa_tdep (void)
5250 {
5251 struct cmd_list_element *c;
5252 void break_at_finish_command (char *arg, int from_tty);
5253 void tbreak_at_finish_command (char *arg, int from_tty);
5254 void break_at_finish_at_depth_command (char *arg, int from_tty);
5255
5256 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5257
5258 add_cmd ("unwind", class_maintenance, unwind_command,
5259 "Print unwind table entry at given address.",
5260 &maintenanceprintlist);
5261
5262 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5263 break_at_finish_command,
5264 concat ("Set breakpoint at procedure exit. \n\
5265 Argument may be function name, or \"*\" and an address.\n\
5266 If function is specified, break at end of code for that function.\n\
5267 If an address is specified, break at the end of the function that contains \n\
5268 that exact address.\n",
5269 "With no arg, uses current execution address of selected stack frame.\n\
5270 This is useful for breaking on return to a stack frame.\n\
5271 \n\
5272 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5273 \n\
5274 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5275 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5276 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5277 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5278 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5279
5280 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5281 tbreak_at_finish_command,
5282 "Set temporary breakpoint at procedure exit. Either there should\n\
5283 be no argument or the argument must be a depth.\n"), NULL);
5284 set_cmd_completer (c, location_completer);
5285
5286 if (xdb_commands)
5287 deprecate_cmd (add_com ("bx", class_breakpoint,
5288 break_at_finish_at_depth_command,
5289 "Set breakpoint at procedure exit. Either there should\n\
5290 be no argument or the argument must be a depth.\n"), NULL);
5291 }
5292
This page took 0.183416 seconds and 5 git commands to generate.