5f3cdf724dc7a6d1d45d0af7971aa11a1d153d6d
[deliverable/binutils-gdb.git] / gdb / hppab-nat.c
1 /* Machine-dependent hooks for the unix child process stratum. This
2 code is for the HP PA-RISC cpu.
3
4 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
24
25 #include "defs.h"
26 #include "inferior.h"
27 #include "target.h"
28 #include <sys/ptrace.h>
29
30 #ifndef PT_ATTACH
31 #define PT_ATTACH PTRACE_ATTACH
32 #endif
33
34 #ifndef PT_DETACH
35 #define PT_DETACH PTRACE_DETACH
36 #endif
37
38 /* This function simply calls ptrace with the given arguments.
39 It exists so that all calls to ptrace are isolated in this
40 machine-dependent file. */
41
42 int
43 call_ptrace (request, pid, addr, data)
44 int request, pid;
45 PTRACE_ARG3_TYPE addr;
46 int data;
47 {
48 return ptrace (request, pid, addr, data, 0);
49 }
50
51 /* Use an extra level of indirection for ptrace calls.
52 This lets us breakpoint usefully on call_ptrace. It also
53 allows us to pass an extra argument to ptrace without
54 using an ANSI-C specific macro. */
55
56 #define ptrace call_ptrace
57
58 void
59 kill_inferior ()
60 {
61 if (inferior_pid == 0)
62 return;
63 ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0);
64 wait ((int *)0);
65 target_mourn_inferior ();
66 }
67
68 #ifdef ATTACH_DETACH
69
70 /* Start debugging the process whose number is PID. */
71 int
72 attach (pid)
73 int pid;
74 {
75 errno = 0;
76 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
77 if (errno)
78 perror_with_name ("ptrace");
79 attach_flag = 1;
80 return pid;
81 }
82
83 /* Stop debugging the process whose number is PID
84 and continue it with signal number SIGNAL.
85 SIGNAL = 0 means just continue it. */
86
87 void
88 detach (signal)
89 int signal;
90 {
91 errno = 0;
92 ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
93 if (errno)
94 perror_with_name ("ptrace");
95 attach_flag = 0;
96 }
97 #endif /* ATTACH_DETACH */
98 \f
99
100
101 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
102 to get the offset in the core file of the register values. */
103 #if defined (KERNEL_U_ADDR_BSD)
104 /* Get kernel_u_addr using BSD-style nlist(). */
105 CORE_ADDR kernel_u_addr;
106
107 #include <a.out.gnu.h> /* For struct nlist */
108
109 void
110 _initialize_kernel_u_addr ()
111 {
112 struct nlist names[2];
113
114 names[0].n_un.n_name = "_u";
115 names[1].n_un.n_name = NULL;
116 if (nlist ("/vmunix", names) == 0)
117 kernel_u_addr = names[0].n_value;
118 else
119 fatal ("Unable to get kernel u area address.");
120 }
121 #endif /* KERNEL_U_ADDR_BSD. */
122
123 #if defined (KERNEL_U_ADDR_HPUX)
124 /* Get kernel_u_addr using HPUX-style nlist(). */
125 CORE_ADDR kernel_u_addr;
126
127 struct hpnlist {
128 char * n_name;
129 long n_value;
130 unsigned char n_type;
131 unsigned char n_length;
132 short n_almod;
133 short n_unused;
134 };
135 static struct hpnlist nl[] = {{ "_u", -1, }, { (char *) 0, }};
136
137 /* read the value of the u area from the hp-ux kernel */
138 void _initialize_kernel_u_addr ()
139 {
140 struct user u;
141 nlist ("/hp-ux", &nl);
142 kernel_u_addr = nl[0].n_value;
143 }
144 #endif /* KERNEL_U_ADDR_HPUX. */
145
146 #if !defined (offsetof)
147 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
148 #endif
149
150 /* U_REGS_OFFSET is the offset of the registers within the u area. */
151 #if !defined (U_REGS_OFFSET)
152 #define U_REGS_OFFSET \
153 ptrace (PT_READ_U, inferior_pid, \
154 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
155 - KERNEL_U_ADDR
156 #endif
157
158 /* Fetch one register. */
159
160 static void
161 fetch_register (regno)
162 int regno;
163 {
164 register unsigned int regaddr;
165 char buf[MAX_REGISTER_RAW_SIZE];
166 register int i;
167
168 /* Offset of registers within the u area. */
169 unsigned int offset;
170
171 offset = U_REGS_OFFSET;
172
173 regaddr = register_addr (regno, offset);
174 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
175 {
176 errno = 0;
177 *(int *) &buf[i] = ptrace (PT_RUREGS, inferior_pid,
178 (PTRACE_ARG3_TYPE) regaddr, 0);
179 regaddr += sizeof (int);
180 if (errno != 0)
181 {
182 /* Warning, not error, in case we are attached; sometimes the
183 kernel doesn't let us at the registers. */
184 char *err = safe_strerror (errno);
185 char *msg = alloca (strlen (err) + 128);
186 sprintf (msg, "reading register %s: %s", reg_names[regno], err);
187 warning (msg);
188 goto error_exit;
189 }
190 }
191 supply_register (regno, buf);
192 error_exit:;
193 }
194
195 /* Fetch all registers, or just one, from the child process. */
196
197 void
198 fetch_inferior_registers (regno)
199 int regno;
200 {
201 if (regno == -1)
202 for (regno = 0; regno < NUM_REGS; regno++)
203 fetch_register (regno);
204 else
205 fetch_register (regno);
206 }
207
208 /* Store our register values back into the inferior.
209 If REGNO is -1, do this for all registers.
210 Otherwise, REGNO specifies which register (so we can save time). */
211
212 void
213 store_inferior_registers (regno)
214 int regno;
215 {
216 register unsigned int regaddr;
217 extern char registers[];
218 register int i;
219
220 unsigned int offset = U_REGS_OFFSET;
221
222 if (regno >= 0)
223 {
224 regaddr = register_addr (regno, offset);
225 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
226 {
227 errno = 0;
228 ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
229 *(int *) &registers[REGISTER_BYTE (regno) + i]);
230 if (errno != 0)
231 {
232 char *err = safe_strerror (errno);
233 char *msg = alloca (strlen (err) + 128);
234 sprintf (msg, "writing register %s: %s", reg_names[regno], err);
235 warning (msg);
236 }
237 regaddr += sizeof(int);
238 }
239 }
240 else
241 {
242 for (regno = 0; regno < NUM_REGS; regno++)
243 {
244 if (CANNOT_STORE_REGISTER (regno))
245 continue;
246 store_inferior_registers (regno);
247 }
248 }
249 return;
250 }
251
252 /* Resume execution of process PID.
253 If STEP is nonzero, single-step it.
254 If SIGNAL is nonzero, give it that signal. */
255
256 void
257 child_resume (pid, step, signal)
258 int pid;
259 int step;
260 int signal;
261 {
262 errno = 0;
263
264 if (pid == -1)
265 pid = inferior_pid;
266
267 /* An address of (PTRACE_ARG3_TYPE) 1 tells ptrace to continue from where
268 it was. (If GDB wanted it to start some other way, we have already
269 written a new PC value to the child.) */
270
271 if (step)
272 ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1, signal);
273 else
274 ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1, signal);
275
276 if (errno)
277 perror_with_name ("ptrace");
278 }
279
280 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
281 in the NEW_SUN_PTRACE case.
282 It ought to be straightforward. But it appears that writing did
283 not write the data that I specified. I cannot understand where
284 it got the data that it actually did write. */
285
286 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
287 to debugger memory starting at MYADDR. Copy to inferior if
288 WRITE is nonzero.
289
290 Returns the length copied, which is either the LEN argument or zero.
291 This xfer function does not do partial moves, since child_ops
292 doesn't allow memory operations to cross below us in the target stack
293 anyway. */
294
295 int
296 child_xfer_memory (memaddr, myaddr, len, write, target)
297 CORE_ADDR memaddr;
298 char *myaddr;
299 int len;
300 int write;
301 struct target_ops *target; /* ignored */
302 {
303 register int i;
304 /* Round starting address down to longword boundary. */
305 register CORE_ADDR addr = memaddr & - sizeof (int);
306 /* Round ending address up; get number of longwords that makes. */
307 register int count
308 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
309 /* Allocate buffer of that many longwords. */
310 register int *buffer = (int *) alloca (count * sizeof (int));
311
312 if (write)
313 {
314 /* Fill start and end extra bytes of buffer with existing memory data. */
315
316 if (addr != memaddr || len < (int)sizeof (int)) {
317 /* Need part of initial word -- fetch it. */
318 buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
319 0);
320 }
321
322 if (count > 1) /* FIXME, avoid if even boundary */
323 {
324 buffer[count - 1]
325 = ptrace (PT_READ_I, inferior_pid,
326 (PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)),
327 0);
328 }
329
330 /* Copy data to be written over corresponding part of buffer */
331
332 memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
333
334 /* Write the entire buffer. */
335
336 for (i = 0; i < count; i++, addr += sizeof (int))
337 {
338 errno = 0;
339 ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr,
340 buffer[i]);
341 if (errno)
342 {
343 /* Using the appropriate one (I or D) is necessary for
344 Gould NP1, at least. */
345 errno = 0;
346 ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
347 buffer[i]);
348 }
349 if (errno)
350 return 0;
351 }
352 }
353 else
354 {
355 /* Read all the longwords */
356 for (i = 0; i < count; i++, addr += sizeof (int))
357 {
358 errno = 0;
359 buffer[i] = ptrace (PT_READ_I, inferior_pid,
360 (PTRACE_ARG3_TYPE) addr, 0);
361 if (errno)
362 return 0;
363 QUIT;
364 }
365
366 /* Copy appropriate bytes out of the buffer. */
367 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
368 }
369 return len;
370 }
371
This page took 0.039551 seconds and 3 git commands to generate.