Tue Sep 28 09:45:38 1993 Peter Schauer (pes@regent.e-technik.tu-muenchen.de)
[deliverable/binutils-gdb.git] / gdb / hppab-nat.c
1 /* Machine-dependent hooks for the unix child process stratum. This
2 code is for the HP PA-RISC cpu.
3
4 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
24
25 #include "defs.h"
26 #include "inferior.h"
27 #include "target.h"
28 #include <sys/ptrace.h>
29
30 #ifndef PT_ATTACH
31 #define PT_ATTACH PTRACE_ATTACH
32 #endif
33
34 #ifndef PT_DETACH
35 #define PT_DETACH PTRACE_DETACH
36 #endif
37
38 /* This function simply calls ptrace with the given arguments.
39 It exists so that all calls to ptrace are isolated in this
40 machine-dependent file. */
41
42 int
43 call_ptrace (request, pid, addr, data)
44 int request, pid;
45 PTRACE_ARG3_TYPE addr;
46 int data;
47 {
48 return ptrace (request, pid, addr, data, 0);
49 }
50
51 /* Use an extra level of indirection for ptrace calls.
52 This lets us breakpoint usefully on call_ptrace. It also
53 allows us to pass an extra argument to ptrace without
54 using an ANSI-C specific macro. */
55
56 #define ptrace call_ptrace
57
58 void
59 kill_inferior ()
60 {
61 if (inferior_pid == 0)
62 return;
63 ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0);
64 wait ((int *)0);
65 target_mourn_inferior ();
66 }
67
68 #ifdef ATTACH_DETACH
69
70 /* Start debugging the process whose number is PID. */
71 int
72 attach (pid)
73 int pid;
74 {
75 errno = 0;
76 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
77 if (errno)
78 perror_with_name ("ptrace");
79 attach_flag = 1;
80 return pid;
81 }
82
83 /* Stop debugging the process whose number is PID
84 and continue it with signal number SIGNAL.
85 SIGNAL = 0 means just continue it. */
86
87 void
88 detach (signal)
89 int signal;
90 {
91 errno = 0;
92 ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
93 if (errno)
94 perror_with_name ("ptrace");
95 attach_flag = 0;
96 }
97 #endif /* ATTACH_DETACH */
98 \f
99
100
101 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
102 to get the offset in the core file of the register values. */
103 #if defined (KERNEL_U_ADDR_BSD)
104 /* Get kernel_u_addr using BSD-style nlist(). */
105 CORE_ADDR kernel_u_addr;
106
107 #include <a.out.gnu.h> /* For struct nlist */
108
109 void
110 _initialize_kernel_u_addr ()
111 {
112 struct nlist names[2];
113
114 names[0].n_un.n_name = "_u";
115 names[1].n_un.n_name = NULL;
116 if (nlist ("/vmunix", names) == 0)
117 kernel_u_addr = names[0].n_value;
118 else
119 fatal ("Unable to get kernel u area address.");
120 }
121 #endif /* KERNEL_U_ADDR_BSD. */
122
123 #if defined (KERNEL_U_ADDR_HPUX)
124 /* Get kernel_u_addr using HPUX-style nlist(). */
125 CORE_ADDR kernel_u_addr;
126
127 struct hpnlist {
128 char * n_name;
129 long n_value;
130 unsigned char n_type;
131 unsigned char n_length;
132 short n_almod;
133 short n_unused;
134 };
135 static struct hpnlist nl[] = {{ "_u", -1, }, { (char *) 0, }};
136
137 /* read the value of the u area from the hp-ux kernel */
138 void _initialize_kernel_u_addr ()
139 {
140 struct user u;
141 nlist ("/hp-ux", &nl);
142 kernel_u_addr = nl[0].n_value;
143 }
144 #endif /* KERNEL_U_ADDR_HPUX. */
145
146 #if !defined (offsetof)
147 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
148 #endif
149
150 /* U_REGS_OFFSET is the offset of the registers within the u area. */
151 #if !defined (U_REGS_OFFSET)
152 #define U_REGS_OFFSET \
153 ptrace (PT_READ_U, inferior_pid, \
154 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
155 - KERNEL_U_ADDR
156 #endif
157
158 /* Fetch one register. */
159
160 static void
161 fetch_register (regno)
162 int regno;
163 {
164 register unsigned int regaddr;
165 char buf[MAX_REGISTER_RAW_SIZE];
166 register int i;
167
168 /* Offset of registers within the u area. */
169 unsigned int offset;
170
171 offset = U_REGS_OFFSET;
172
173 regaddr = register_addr (regno, offset);
174 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
175 {
176 errno = 0;
177 *(int *) &buf[i] = ptrace (PT_RUREGS, inferior_pid,
178 (PTRACE_ARG3_TYPE) regaddr, 0);
179 regaddr += sizeof (int);
180 if (errno != 0)
181 {
182 /* Warning, not error, in case we are attached; sometimes the
183 kernel doesn't let us at the registers. */
184 char *err = safe_strerror (errno);
185 char *msg = alloca (strlen (err) + 128);
186 sprintf (msg, "reading register %s: %s", reg_names[regno], err);
187 warning (msg);
188 goto error_exit;
189 }
190 }
191 supply_register (regno, buf);
192 error_exit:;
193 }
194
195 /* Fetch all registers, or just one, from the child process. */
196
197 void
198 fetch_inferior_registers (regno)
199 int regno;
200 {
201 if (regno == -1)
202 for (regno = 0; regno < NUM_REGS; regno++)
203 fetch_register (regno);
204 else
205 fetch_register (regno);
206 }
207
208 /* Store our register values back into the inferior.
209 If REGNO is -1, do this for all registers.
210 Otherwise, REGNO specifies which register (so we can save time). */
211
212 void
213 store_inferior_registers (regno)
214 int regno;
215 {
216 register unsigned int regaddr;
217 extern char registers[];
218 register int i;
219
220 unsigned int offset = U_REGS_OFFSET;
221
222 if (regno >= 0)
223 {
224 regaddr = register_addr (regno, offset);
225 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
226 {
227 errno = 0;
228 ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
229 *(int *) &registers[REGISTER_BYTE (regno) + i]);
230 if (errno != 0)
231 {
232 char *err = safe_strerror (errno);
233 char *msg = alloca (strlen (err) + 128);
234 sprintf (msg, "writing register %s: %s", reg_names[regno], err);
235 warning (msg);
236 }
237 regaddr += sizeof(int);
238 }
239 }
240 else
241 {
242 for (regno = 0; regno < NUM_REGS; regno++)
243 {
244 if (CANNOT_STORE_REGISTER (regno))
245 continue;
246 store_inferior_registers (regno);
247 }
248 }
249 return;
250 }
251
252 /* Resume execution of process PID.
253 If STEP is nonzero, single-step it.
254 If SIGNAL is nonzero, give it that signal. */
255
256 void
257 child_resume (pid, step, signal)
258 int pid;
259 int step;
260 int signal;
261 {
262 errno = 0;
263
264 /* An address of (PTRACE_ARG3_TYPE) 1 tells ptrace to continue from where
265 it was. (If GDB wanted it to start some other way, we have already
266 written a new PC value to the child.) */
267
268 if (step)
269 ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1, signal);
270 else
271 ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1, signal);
272
273 if (errno)
274 perror_with_name ("ptrace");
275 }
276
277 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
278 in the NEW_SUN_PTRACE case.
279 It ought to be straightforward. But it appears that writing did
280 not write the data that I specified. I cannot understand where
281 it got the data that it actually did write. */
282
283 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
284 to debugger memory starting at MYADDR. Copy to inferior if
285 WRITE is nonzero.
286
287 Returns the length copied, which is either the LEN argument or zero.
288 This xfer function does not do partial moves, since child_ops
289 doesn't allow memory operations to cross below us in the target stack
290 anyway. */
291
292 int
293 child_xfer_memory (memaddr, myaddr, len, write, target)
294 CORE_ADDR memaddr;
295 char *myaddr;
296 int len;
297 int write;
298 struct target_ops *target; /* ignored */
299 {
300 register int i;
301 /* Round starting address down to longword boundary. */
302 register CORE_ADDR addr = memaddr & - sizeof (int);
303 /* Round ending address up; get number of longwords that makes. */
304 register int count
305 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
306 /* Allocate buffer of that many longwords. */
307 register int *buffer = (int *) alloca (count * sizeof (int));
308
309 if (write)
310 {
311 /* Fill start and end extra bytes of buffer with existing memory data. */
312
313 if (addr != memaddr || len < (int)sizeof (int)) {
314 /* Need part of initial word -- fetch it. */
315 buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
316 0);
317 }
318
319 if (count > 1) /* FIXME, avoid if even boundary */
320 {
321 buffer[count - 1]
322 = ptrace (PT_READ_I, inferior_pid,
323 (PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)),
324 0);
325 }
326
327 /* Copy data to be written over corresponding part of buffer */
328
329 memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
330
331 /* Write the entire buffer. */
332
333 for (i = 0; i < count; i++, addr += sizeof (int))
334 {
335 errno = 0;
336 ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr,
337 buffer[i]);
338 if (errno)
339 {
340 /* Using the appropriate one (I or D) is necessary for
341 Gould NP1, at least. */
342 errno = 0;
343 ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
344 buffer[i]);
345 }
346 if (errno)
347 return 0;
348 }
349 }
350 else
351 {
352 /* Read all the longwords */
353 for (i = 0; i < count; i++, addr += sizeof (int))
354 {
355 errno = 0;
356 buffer[i] = ptrace (PT_READ_I, inferior_pid,
357 (PTRACE_ARG3_TYPE) addr, 0);
358 if (errno)
359 return 0;
360 QUIT;
361 }
362
363 /* Copy appropriate bytes out of the buffer. */
364 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
365 }
366 return len;
367 }
368
This page took 0.037488 seconds and 4 git commands to generate.