Protoization.
[deliverable/binutils-gdb.git] / gdb / hppah-nat.c
1 /* Native support code for HPUX PA-RISC.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1998, 1999
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25
26 #include "defs.h"
27 #include "inferior.h"
28 #include "target.h"
29 #include <sys/ptrace.h>
30 #include "gdbcore.h"
31 #include "gdb_wait.h"
32 #include <signal.h>
33
34 extern CORE_ADDR text_end;
35
36 static void fetch_register (int);
37
38 void
39 fetch_inferior_registers (int regno)
40 {
41 if (regno == -1)
42 for (regno = 0; regno < NUM_REGS; regno++)
43 fetch_register (regno);
44 else
45 fetch_register (regno);
46 }
47
48 /* Our own version of the offsetof macro, since we can't assume ANSI C. */
49 #define HPPAH_OFFSETOF(type, member) ((int) (&((type *) 0)->member))
50
51 /* Store our register values back into the inferior.
52 If REGNO is -1, do this for all registers.
53 Otherwise, REGNO specifies which register (so we can save time). */
54
55 void
56 store_inferior_registers (int regno)
57 {
58 register unsigned int regaddr;
59 char buf[80];
60 register int i;
61 unsigned int offset = U_REGS_OFFSET;
62 int scratch;
63
64 if (regno >= 0)
65 {
66 unsigned int addr, len, offset;
67
68 if (CANNOT_STORE_REGISTER (regno))
69 return;
70
71 offset = 0;
72 len = REGISTER_RAW_SIZE (regno);
73
74 /* Requests for register zero actually want the save_state's
75 ss_flags member. As RM says: "Oh, what a hack!" */
76 if (regno == 0)
77 {
78 save_state_t ss;
79 addr = HPPAH_OFFSETOF (save_state_t, ss_flags);
80 len = sizeof (ss.ss_flags);
81
82 /* Note that ss_flags is always an int, no matter what
83 REGISTER_RAW_SIZE(0) says. Assuming all HP-UX PA machines
84 are big-endian, put it at the least significant end of the
85 value, and zap the rest of the buffer. */
86 offset = REGISTER_RAW_SIZE (0) - len;
87 }
88
89 /* Floating-point registers come from the ss_fpblock area. */
90 else if (regno >= FP0_REGNUM)
91 addr = (HPPAH_OFFSETOF (save_state_t, ss_fpblock)
92 + (REGISTER_BYTE (regno) - REGISTER_BYTE (FP0_REGNUM)));
93
94 /* Wide registers come from the ss_wide area.
95 I think it's more PC to test (ss_flags & SS_WIDEREGS) to select
96 between ss_wide and ss_narrow than to use the raw register size.
97 But checking ss_flags would require an extra ptrace call for
98 every register reference. Bleah. */
99 else if (len == 8)
100 addr = (HPPAH_OFFSETOF (save_state_t, ss_wide)
101 + REGISTER_BYTE (regno));
102
103 /* Narrow registers come from the ss_narrow area. Note that
104 ss_narrow starts with gr1, not gr0. */
105 else if (len == 4)
106 addr = (HPPAH_OFFSETOF (save_state_t, ss_narrow)
107 + (REGISTER_BYTE (regno) - REGISTER_BYTE (1)));
108 else
109 internal_error ("hppah-nat.c (write_register): unexpected register size");
110
111 #ifdef GDB_TARGET_IS_HPPA_20W
112 /* Unbelieveable. The PC head and tail must be written in 64bit hunks
113 or we will get an error. Worse yet, the oddball ptrace/ttrace
114 layering will not allow us to perform a 64bit register store.
115
116 What a crock. */
117 if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM && len == 8)
118 {
119 CORE_ADDR temp;
120
121 temp = *(CORE_ADDR *)&registers[REGISTER_BYTE (regno)];
122
123 /* Set the priv level (stored in the low two bits of the PC. */
124 temp |= 0x3;
125
126 ttrace_write_reg_64 (inferior_pid, (CORE_ADDR)addr, (CORE_ADDR)&temp);
127
128 /* If we fail to write the PC, give a true error instead of
129 just a warning. */
130 if (errno != 0)
131 {
132 char *err = safe_strerror (errno);
133 char *msg = alloca (strlen (err) + 128);
134 sprintf (msg, "writing `%s' register: %s",
135 REGISTER_NAME (regno), err);
136 perror_with_name (msg);
137 }
138 return;
139 }
140
141 /* Another crock. HPUX complains if you write a nonzero value to
142 the high part of IPSW. What will it take for HP to catch a
143 clue about building sensible interfaces? */
144 if (regno == IPSW_REGNUM && len == 8)
145 *(int *)&registers[REGISTER_BYTE (regno)] = 0;
146 #endif
147
148 for (i = 0; i < len; i += sizeof (int))
149 {
150 errno = 0;
151 call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) addr + i,
152 *(int *) &registers[REGISTER_BYTE (regno) + i]);
153 if (errno != 0)
154 {
155 /* Warning, not error, in case we are attached; sometimes
156 the kernel doesn't let us at the registers. */
157 char *err = safe_strerror (errno);
158 char *msg = alloca (strlen (err) + 128);
159 sprintf (msg, "writing `%s' register: %s",
160 REGISTER_NAME (regno), err);
161 /* If we fail to write the PC, give a true error instead of
162 just a warning. */
163 if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
164 perror_with_name (msg);
165 else
166 warning (msg);
167 return;
168 }
169 }
170 }
171 else
172 for (regno = 0; regno < NUM_REGS; regno++)
173 store_inferior_registers (regno);
174 }
175
176
177 /* Fetch a register's value from the process's U area. */
178 static void
179 fetch_register (int regno)
180 {
181 char buf[MAX_REGISTER_RAW_SIZE];
182 unsigned int addr, len, offset;
183 int i;
184
185 offset = 0;
186 len = REGISTER_RAW_SIZE (regno);
187
188 /* Requests for register zero actually want the save_state's
189 ss_flags member. As RM says: "Oh, what a hack!" */
190 if (regno == 0)
191 {
192 save_state_t ss;
193 addr = HPPAH_OFFSETOF (save_state_t, ss_flags);
194 len = sizeof (ss.ss_flags);
195
196 /* Note that ss_flags is always an int, no matter what
197 REGISTER_RAW_SIZE(0) says. Assuming all HP-UX PA machines
198 are big-endian, put it at the least significant end of the
199 value, and zap the rest of the buffer. */
200 offset = REGISTER_RAW_SIZE (0) - len;
201 memset (buf, 0, sizeof (buf));
202 }
203
204 /* Floating-point registers come from the ss_fpblock area. */
205 else if (regno >= FP0_REGNUM)
206 addr = (HPPAH_OFFSETOF (save_state_t, ss_fpblock)
207 + (REGISTER_BYTE (regno) - REGISTER_BYTE (FP0_REGNUM)));
208
209 /* Wide registers come from the ss_wide area.
210 I think it's more PC to test (ss_flags & SS_WIDEREGS) to select
211 between ss_wide and ss_narrow than to use the raw register size.
212 But checking ss_flags would require an extra ptrace call for
213 every register reference. Bleah. */
214 else if (len == 8)
215 addr = (HPPAH_OFFSETOF (save_state_t, ss_wide)
216 + REGISTER_BYTE (regno));
217
218 /* Narrow registers come from the ss_narrow area. Note that
219 ss_narrow starts with gr1, not gr0. */
220 else if (len == 4)
221 addr = (HPPAH_OFFSETOF (save_state_t, ss_narrow)
222 + (REGISTER_BYTE (regno) - REGISTER_BYTE (1)));
223
224 else
225 internal_error ("hppa-nat.c (fetch_register): unexpected register size");
226
227 for (i = 0; i < len; i += sizeof (int))
228 {
229 errno = 0;
230 /* Copy an int from the U area to buf. Fill the least
231 significant end if len != raw_size. */
232 * (int *) &buf[offset + i] =
233 call_ptrace (PT_RUREGS, inferior_pid,
234 (PTRACE_ARG3_TYPE) addr + i, 0);
235 if (errno != 0)
236 {
237 /* Warning, not error, in case we are attached; sometimes
238 the kernel doesn't let us at the registers. */
239 char *err = safe_strerror (errno);
240 char *msg = alloca (strlen (err) + 128);
241 sprintf (msg, "reading `%s' register: %s",
242 REGISTER_NAME (regno), err);
243 warning (msg);
244 return;
245 }
246 }
247
248 /* If we're reading an address from the instruction address queue,
249 mask out the bottom two bits --- they contain the privilege
250 level. */
251 if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
252 buf[len - 1] &= ~0x3;
253
254 supply_register (regno, buf);
255 }
256
257
258 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
259 to debugger memory starting at MYADDR. Copy to inferior if
260 WRITE is nonzero.
261
262 Returns the length copied, which is either the LEN argument or zero.
263 This xfer function does not do partial moves, since child_ops
264 doesn't allow memory operations to cross below us in the target stack
265 anyway. */
266
267 int
268 child_xfer_memory (memaddr, myaddr, len, write, target)
269 CORE_ADDR memaddr;
270 char *myaddr;
271 int len;
272 int write;
273 struct target_ops *target; /* ignored */
274 {
275 register int i;
276 /* Round starting address down to longword boundary. */
277 register CORE_ADDR addr = memaddr & - (CORE_ADDR)(sizeof (int));
278 /* Round ending address up; get number of longwords that makes. */
279 register int count
280 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
281
282 /* Allocate buffer of that many longwords.
283 Note -- do not use alloca to allocate this buffer since there is no
284 guarantee of when the buffer will actually be deallocated.
285
286 This routine can be called over and over with the same call chain;
287 this (in effect) would pile up all those alloca requests until a call
288 to alloca was made from a point higher than this routine in the
289 call chain. */
290 register int *buffer = (int *) xmalloc (count * sizeof (int));
291
292 if (write)
293 {
294 /* Fill start and end extra bytes of buffer with existing memory data. */
295 if (addr != memaddr || len < (int) sizeof (int))
296 {
297 /* Need part of initial word -- fetch it. */
298 buffer[0] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
299 inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
300 }
301
302 if (count > 1) /* FIXME, avoid if even boundary */
303 {
304 buffer[count - 1]
305 = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
306 inferior_pid,
307 (PTRACE_ARG3_TYPE) (addr
308 + (count - 1) * sizeof (int)),
309 0);
310 }
311
312 /* Copy data to be written over corresponding part of buffer */
313 memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
314
315 /* Write the entire buffer. */
316 for (i = 0; i < count; i++, addr += sizeof (int))
317 {
318 int pt_status;
319 int pt_request;
320 /* The HP-UX kernel crashes if you use PT_WDUSER to write into the
321 text segment. FIXME -- does it work to write into the data
322 segment using WIUSER, or do these idiots really expect us to
323 figure out which segment the address is in, so we can use a
324 separate system call for it??! */
325 errno = 0;
326 pt_request = (addr < text_end) ? PT_WIUSER : PT_WDUSER;
327 pt_status = call_ptrace (pt_request,
328 inferior_pid,
329 (PTRACE_ARG3_TYPE) addr,
330 buffer[i]);
331
332 /* Did we fail? Might we've guessed wrong about which
333 segment this address resides in? Try the other request,
334 and see if that works... */
335 if ((pt_status == -1) && errno)
336 {
337 errno = 0;
338 pt_request = (pt_request == PT_WIUSER) ? PT_WDUSER : PT_WIUSER;
339 pt_status = call_ptrace (pt_request,
340 inferior_pid,
341 (PTRACE_ARG3_TYPE) addr,
342 buffer[i]);
343
344 /* No, we still fail. Okay, time to punt. */
345 if ((pt_status == -1) && errno)
346 {
347 free (buffer);
348 return 0;
349 }
350 }
351 }
352 }
353 else
354 {
355 /* Read all the longwords */
356 for (i = 0; i < count; i++, addr += sizeof (int))
357 {
358 errno = 0;
359 buffer[i] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
360 inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
361 if (errno)
362 {
363 free (buffer);
364 return 0;
365 }
366 QUIT;
367 }
368
369 /* Copy appropriate bytes out of the buffer. */
370 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
371 }
372 free (buffer);
373 return len;
374 }
375
376
377 void
378 child_post_follow_inferior_by_clone (void)
379 {
380 int status;
381
382 /* This function is used when following both the parent and child
383 of a fork. In this case, the debugger clones itself. The original
384 debugger follows the parent, the clone follows the child. The
385 original detaches from the child, delivering a SIGSTOP to it to
386 keep it from running away until the clone can attach itself.
387
388 At this point, the clone has attached to the child. Because of
389 the SIGSTOP, we must now deliver a SIGCONT to the child, or it
390 won't behave properly. */
391 status = kill (inferior_pid, SIGCONT);
392 }
393
394
395 void
396 child_post_follow_vfork (int parent_pid, int followed_parent, int child_pid,
397 int followed_child)
398 {
399 /* Are we a debugger that followed the parent of a vfork? If so,
400 then recall that the child's vfork event was delivered to us
401 first. And, that the parent was suspended by the OS until the
402 child's exec or exit events were received.
403
404 Upon receiving that child vfork, then, we were forced to remove
405 all breakpoints in the child and continue it so that it could
406 reach the exec or exit point.
407
408 But also recall that the parent and child of a vfork share the
409 same address space. Thus, removing bp's in the child also
410 removed them from the parent.
411
412 Now that the child has safely exec'd or exited, we must restore
413 the parent's breakpoints before we continue it. Else, we may
414 cause it run past expected stopping points. */
415 if (followed_parent)
416 {
417 reattach_breakpoints (parent_pid);
418 }
419
420 /* Are we a debugger that followed the child of a vfork? If so,
421 then recall that we don't actually acquire control of the child
422 until after it has exec'd or exited. */
423 if (followed_child)
424 {
425 /* If the child has exited, then there's nothing for us to do.
426 In the case of an exec event, we'll let that be handled by
427 the normal mechanism that notices and handles exec events, in
428 resume(). */
429 }
430 }
431
432 /* Format a process id, given PID. Be sure to terminate
433 this with a null--it's going to be printed via a "%s". */
434 char *
435 child_pid_to_str (pid_t pid)
436 {
437 /* Static because address returned */
438 static char buf[30];
439
440 /* Extra NULLs for paranoia's sake */
441 sprintf (buf, "process %d\0\0\0\0", pid);
442
443 return buf;
444 }
445
446 /* Format a thread id, given TID. Be sure to terminate
447 this with a null--it's going to be printed via a "%s".
448
449 Note: This is a core-gdb tid, not the actual system tid.
450 See infttrace.c for details. */
451 char *
452 hppa_tid_to_str (pid_t tid)
453 {
454 /* Static because address returned */
455 static char buf[30];
456
457 /* Extra NULLs for paranoia's sake */
458 sprintf (buf, "system thread %d\0\0\0\0", tid);
459
460 return buf;
461 }
462
463 #if !defined (GDB_NATIVE_HPUX_11)
464
465 /* The following code is a substitute for the infttrace.c versions used
466 with ttrace() in HPUX 11. */
467
468 /* This value is an arbitrary integer. */
469 #define PT_VERSION 123456
470
471 /* This semaphore is used to coordinate the child and parent processes
472 after a fork(), and before an exec() by the child. See
473 parent_attach_all for details. */
474
475 typedef struct
476 {
477 int parent_channel[2]; /* Parent "talks" to [1], child "listens" to [0] */
478 int child_channel[2]; /* Child "talks" to [1], parent "listens" to [0] */
479 }
480 startup_semaphore_t;
481
482 #define SEM_TALK (1)
483 #define SEM_LISTEN (0)
484
485 static startup_semaphore_t startup_semaphore;
486
487 extern int parent_attach_all (int, PTRACE_ARG3_TYPE, int);
488
489 #ifdef PT_SETTRC
490 /* This function causes the caller's process to be traced by its
491 parent. This is intended to be called after GDB forks itself,
492 and before the child execs the target.
493
494 Note that HP-UX ptrace is rather funky in how this is done.
495 If the parent wants to get the initial exec event of a child,
496 it must set the ptrace event mask of the child to include execs.
497 (The child cannot do this itself.) This must be done after the
498 child is forked, but before it execs.
499
500 To coordinate the parent and child, we implement a semaphore using
501 pipes. After SETTRC'ing itself, the child tells the parent that
502 it is now traceable by the parent, and waits for the parent's
503 acknowledgement. The parent can then set the child's event mask,
504 and notify the child that it can now exec.
505
506 (The acknowledgement by parent happens as a result of a call to
507 child_acknowledge_created_inferior.) */
508
509 int
510 parent_attach_all (int pid, PTRACE_ARG3_TYPE addr, int data)
511 {
512 int pt_status = 0;
513
514 /* We need a memory home for a constant. */
515 int tc_magic_child = PT_VERSION;
516 int tc_magic_parent = 0;
517
518 /* The remainder of this function is only useful for HPUX 10.0 and
519 later, as it depends upon the ability to request notification
520 of specific kinds of events by the kernel. */
521 #if defined(PT_SET_EVENT_MASK)
522
523 /* Notify the parent that we're potentially ready to exec(). */
524 write (startup_semaphore.child_channel[SEM_TALK],
525 &tc_magic_child,
526 sizeof (tc_magic_child));
527
528 /* Wait for acknowledgement from the parent. */
529 read (startup_semaphore.parent_channel[SEM_LISTEN],
530 &tc_magic_parent,
531 sizeof (tc_magic_parent));
532 if (tc_magic_child != tc_magic_parent)
533 warning ("mismatched semaphore magic");
534
535 /* Discard our copy of the semaphore. */
536 (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
537 (void) close (startup_semaphore.parent_channel[SEM_TALK]);
538 (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
539 (void) close (startup_semaphore.child_channel[SEM_TALK]);
540 #endif
541
542 return 0;
543 }
544 #endif
545
546 int
547 hppa_require_attach (int pid)
548 {
549 int pt_status;
550 CORE_ADDR pc;
551 CORE_ADDR pc_addr;
552 unsigned int regs_offset;
553
554 /* Are we already attached? There appears to be no explicit way to
555 answer this via ptrace, so we try something which should be
556 innocuous if we are attached. If that fails, then we assume
557 we're not attached, and so attempt to make it so. */
558
559 errno = 0;
560 regs_offset = U_REGS_OFFSET;
561 pc_addr = register_addr (PC_REGNUM, regs_offset);
562 pc = call_ptrace (PT_READ_U, pid, (PTRACE_ARG3_TYPE) pc_addr, 0);
563
564 if (errno)
565 {
566 errno = 0;
567 pt_status = call_ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
568
569 if (errno)
570 return -1;
571
572 /* Now we really are attached. */
573 errno = 0;
574 }
575 attach_flag = 1;
576 return pid;
577 }
578
579 int
580 hppa_require_detach (int pid, int signal)
581 {
582 errno = 0;
583 call_ptrace (PT_DETACH, pid, (PTRACE_ARG3_TYPE) 1, signal);
584 errno = 0; /* Ignore any errors. */
585 return pid;
586 }
587
588 /* Since ptrace doesn't support memory page-protection events, which
589 are used to implement "hardware" watchpoints on HP-UX, these are
590 dummy versions, which perform no useful work. */
591
592 void
593 hppa_enable_page_protection_events (int pid)
594 {
595 }
596
597 void
598 hppa_disable_page_protection_events (int pid)
599 {
600 }
601
602 int
603 hppa_insert_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len, int type)
604 {
605 error ("Hardware watchpoints not implemented on this platform.");
606 }
607
608 int
609 hppa_remove_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len,
610 enum bptype type)
611 {
612 error ("Hardware watchpoints not implemented on this platform.");
613 }
614
615 int
616 hppa_can_use_hw_watchpoint (enum bptype type, int cnt, enum bptype ot)
617 {
618 return 0;
619 }
620
621 int
622 hppa_range_profitable_for_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len)
623 {
624 error ("Hardware watchpoints not implemented on this platform.");
625 }
626
627 char *
628 hppa_pid_or_tid_to_str (pid_t id)
629 {
630 /* In the ptrace world, there are only processes. */
631 return child_pid_to_str (id);
632 }
633
634 /* This function has no meaning in a non-threaded world. Thus, we
635 return 0 (FALSE). See the use of "hppa_prepare_to_proceed" in
636 hppa-tdep.c. */
637
638 pid_t
639 hppa_switched_threads (pid_t pid)
640 {
641 return (pid_t) 0;
642 }
643
644 void
645 hppa_ensure_vforking_parent_remains_stopped (int pid)
646 {
647 /* This assumes that the vforked parent is presently stopped, and
648 that the vforked child has just delivered its first exec event.
649 Calling kill() this way will cause the SIGTRAP to be delivered as
650 soon as the parent is resumed, which happens as soon as the
651 vforked child is resumed. See wait_for_inferior for the use of
652 this function. */
653 kill (pid, SIGTRAP);
654 }
655
656 int
657 hppa_resume_execd_vforking_child_to_get_parent_vfork (void)
658 {
659 return 1; /* Yes, the child must be resumed. */
660 }
661
662 void
663 require_notification_of_events (int pid)
664 {
665 #if defined(PT_SET_EVENT_MASK)
666 int pt_status;
667 ptrace_event_t ptrace_events;
668 int nsigs;
669 int signum;
670
671 /* Instruct the kernel as to the set of events we wish to be
672 informed of. (This support does not exist before HPUX 10.0.
673 We'll assume if PT_SET_EVENT_MASK has not been defined by
674 <sys/ptrace.h>, then we're being built on pre-10.0.) */
675 memset (&ptrace_events, 0, sizeof (ptrace_events));
676
677 /* Note: By default, all signals are visible to us. If we wish
678 the kernel to keep certain signals hidden from us, we do it
679 by calling sigdelset (ptrace_events.pe_signals, signal) for
680 each such signal here, before doing PT_SET_EVENT_MASK. */
681 /* RM: The above comment is no longer true. We start with ignoring
682 all signals, and then add the ones we are interested in. We could
683 do it the other way: start by looking at all signals and then
684 deleting the ones that we aren't interested in, except that
685 multiple gdb signals may be mapped to the same host signal
686 (eg. TARGET_SIGNAL_IO and TARGET_SIGNAL_POLL both get mapped to
687 signal 22 on HPUX 10.20) We want to be notified if we are
688 interested in either signal. */
689 sigfillset (&ptrace_events.pe_signals);
690
691 /* RM: Let's not bother with signals we don't care about */
692 nsigs = (int) TARGET_SIGNAL_LAST;
693 for (signum = nsigs; signum > 0; signum--)
694 {
695 if ((signal_stop_state (signum)) ||
696 (signal_print_state (signum)) ||
697 (!signal_pass_state (signum)))
698 {
699 if (target_signal_to_host_p (signum))
700 sigdelset (&ptrace_events.pe_signals,
701 target_signal_to_host (signum));
702 }
703 }
704
705 ptrace_events.pe_set_event = 0;
706
707 ptrace_events.pe_set_event |= PTRACE_SIGNAL;
708 ptrace_events.pe_set_event |= PTRACE_EXEC;
709 ptrace_events.pe_set_event |= PTRACE_FORK;
710 ptrace_events.pe_set_event |= PTRACE_VFORK;
711 /* ??rehrauer: Add this one when we're prepared to catch it...
712 ptrace_events.pe_set_event |= PTRACE_EXIT;
713 */
714
715 errno = 0;
716 pt_status = call_ptrace (PT_SET_EVENT_MASK,
717 pid,
718 (PTRACE_ARG3_TYPE) & ptrace_events,
719 sizeof (ptrace_events));
720 if (errno)
721 perror_with_name ("ptrace");
722 if (pt_status < 0)
723 return;
724 #endif
725 }
726
727 void
728 require_notification_of_exec_events (int pid)
729 {
730 #if defined(PT_SET_EVENT_MASK)
731 int pt_status;
732 ptrace_event_t ptrace_events;
733
734 /* Instruct the kernel as to the set of events we wish to be
735 informed of. (This support does not exist before HPUX 10.0.
736 We'll assume if PT_SET_EVENT_MASK has not been defined by
737 <sys/ptrace.h>, then we're being built on pre-10.0.) */
738 memset (&ptrace_events, 0, sizeof (ptrace_events));
739
740 /* Note: By default, all signals are visible to us. If we wish
741 the kernel to keep certain signals hidden from us, we do it
742 by calling sigdelset (ptrace_events.pe_signals, signal) for
743 each such signal here, before doing PT_SET_EVENT_MASK. */
744 sigemptyset (&ptrace_events.pe_signals);
745
746 ptrace_events.pe_set_event = 0;
747
748 ptrace_events.pe_set_event |= PTRACE_EXEC;
749 /* ??rehrauer: Add this one when we're prepared to catch it...
750 ptrace_events.pe_set_event |= PTRACE_EXIT;
751 */
752
753 errno = 0;
754 pt_status = call_ptrace (PT_SET_EVENT_MASK,
755 pid,
756 (PTRACE_ARG3_TYPE) & ptrace_events,
757 sizeof (ptrace_events));
758 if (errno)
759 perror_with_name ("ptrace");
760 if (pt_status < 0)
761 return;
762 #endif
763 }
764
765 /* This function is called by the parent process, with pid being the
766 ID of the child process, after the debugger has forked. */
767
768 void
769 child_acknowledge_created_inferior (int pid)
770 {
771 /* We need a memory home for a constant. */
772 int tc_magic_parent = PT_VERSION;
773 int tc_magic_child = 0;
774
775 /* The remainder of this function is only useful for HPUX 10.0 and
776 later, as it depends upon the ability to request notification
777 of specific kinds of events by the kernel. */
778 #if defined(PT_SET_EVENT_MASK)
779 /* Wait for the child to tell us that it has forked. */
780 read (startup_semaphore.child_channel[SEM_LISTEN],
781 &tc_magic_child,
782 sizeof (tc_magic_child));
783
784 /* Notify the child that it can exec.
785
786 In the infttrace.c variant of this function, we set the child's
787 event mask after the fork but before the exec. In the ptrace
788 world, it seems we can't set the event mask until after the exec. */
789 write (startup_semaphore.parent_channel[SEM_TALK],
790 &tc_magic_parent,
791 sizeof (tc_magic_parent));
792
793 /* We'd better pause a bit before trying to set the event mask,
794 though, to ensure that the exec has happened. We don't want to
795 wait() on the child, because that'll screw up the upper layers
796 of gdb's execution control that expect to see the exec event.
797
798 After an exec, the child is no longer executing gdb code. Hence,
799 we can't have yet another synchronization via the pipes. We'll
800 just sleep for a second, and hope that's enough delay... */
801 sleep (1);
802
803 /* Instruct the kernel as to the set of events we wish to be
804 informed of. */
805 require_notification_of_exec_events (pid);
806
807 /* Discard our copy of the semaphore. */
808 (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
809 (void) close (startup_semaphore.parent_channel[SEM_TALK]);
810 (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
811 (void) close (startup_semaphore.child_channel[SEM_TALK]);
812 #endif
813 }
814
815 void
816 child_post_startup_inferior (int pid)
817 {
818 require_notification_of_events (pid);
819 }
820
821 void
822 child_post_attach (int pid)
823 {
824 require_notification_of_events (pid);
825 }
826
827 int
828 child_insert_fork_catchpoint (int pid)
829 {
830 /* This request is only available on HPUX 10.0 and later. */
831 #if !defined(PT_SET_EVENT_MASK)
832 error ("Unable to catch forks prior to HPUX 10.0");
833 #else
834 /* Enable reporting of fork events from the kernel. */
835 /* ??rehrauer: For the moment, we're always enabling these events,
836 and just ignoring them if there's no catchpoint to catch them. */
837 return 0;
838 #endif
839 }
840
841 int
842 child_remove_fork_catchpoint (int pid)
843 {
844 /* This request is only available on HPUX 10.0 and later. */
845 #if !defined(PT_SET_EVENT_MASK)
846 error ("Unable to catch forks prior to HPUX 10.0");
847 #else
848 /* Disable reporting of fork events from the kernel. */
849 /* ??rehrauer: For the moment, we're always enabling these events,
850 and just ignoring them if there's no catchpoint to catch them. */
851 return 0;
852 #endif
853 }
854
855 int
856 child_insert_vfork_catchpoint (int pid)
857 {
858 /* This request is only available on HPUX 10.0 and later. */
859 #if !defined(PT_SET_EVENT_MASK)
860 error ("Unable to catch vforks prior to HPUX 10.0");
861 #else
862 /* Enable reporting of vfork events from the kernel. */
863 /* ??rehrauer: For the moment, we're always enabling these events,
864 and just ignoring them if there's no catchpoint to catch them. */
865 return 0;
866 #endif
867 }
868
869 int
870 child_remove_vfork_catchpoint (int pid)
871 {
872 /* This request is only available on HPUX 10.0 and later. */
873 #if !defined(PT_SET_EVENT_MASK)
874 error ("Unable to catch vforks prior to HPUX 10.0");
875 #else
876 /* Disable reporting of vfork events from the kernel. */
877 /* ??rehrauer: For the moment, we're always enabling these events,
878 and just ignoring them if there's no catchpoint to catch them. */
879 return 0;
880 #endif
881 }
882
883 int
884 child_has_forked (int pid, int *childpid)
885 {
886 /* This request is only available on HPUX 10.0 and later. */
887 #if !defined(PT_GET_PROCESS_STATE)
888 *childpid = 0;
889 return 0;
890 #else
891 int pt_status;
892 ptrace_state_t ptrace_state;
893
894 errno = 0;
895 pt_status = call_ptrace (PT_GET_PROCESS_STATE,
896 pid,
897 (PTRACE_ARG3_TYPE) & ptrace_state,
898 sizeof (ptrace_state));
899 if (errno)
900 perror_with_name ("ptrace");
901 if (pt_status < 0)
902 return 0;
903
904 if (ptrace_state.pe_report_event & PTRACE_FORK)
905 {
906 *childpid = ptrace_state.pe_other_pid;
907 return 1;
908 }
909
910 return 0;
911 #endif
912 }
913
914 int
915 child_has_vforked (int pid, int *childpid)
916 {
917 /* This request is only available on HPUX 10.0 and later. */
918 #if !defined(PT_GET_PROCESS_STATE)
919 *childpid = 0;
920 return 0;
921
922 #else
923 int pt_status;
924 ptrace_state_t ptrace_state;
925
926 errno = 0;
927 pt_status = call_ptrace (PT_GET_PROCESS_STATE,
928 pid,
929 (PTRACE_ARG3_TYPE) & ptrace_state,
930 sizeof (ptrace_state));
931 if (errno)
932 perror_with_name ("ptrace");
933 if (pt_status < 0)
934 return 0;
935
936 if (ptrace_state.pe_report_event & PTRACE_VFORK)
937 {
938 *childpid = ptrace_state.pe_other_pid;
939 return 1;
940 }
941
942 return 0;
943 #endif
944 }
945
946 int
947 child_can_follow_vfork_prior_to_exec (void)
948 {
949 /* ptrace doesn't allow this. */
950 return 0;
951 }
952
953 int
954 child_insert_exec_catchpoint (int pid)
955 {
956 /* This request is only available on HPUX 10.0 and later. */
957 #if !defined(PT_SET_EVENT_MASK)
958 error ("Unable to catch execs prior to HPUX 10.0");
959
960 #else
961 /* Enable reporting of exec events from the kernel. */
962 /* ??rehrauer: For the moment, we're always enabling these events,
963 and just ignoring them if there's no catchpoint to catch them. */
964 return 0;
965 #endif
966 }
967
968 int
969 child_remove_exec_catchpoint (int pid)
970 {
971 /* This request is only available on HPUX 10.0 and later. */
972 #if !defined(PT_SET_EVENT_MASK)
973 error ("Unable to catch execs prior to HPUX 10.0");
974
975 #else
976 /* Disable reporting of exec events from the kernel. */
977 /* ??rehrauer: For the moment, we're always enabling these events,
978 and just ignoring them if there's no catchpoint to catch them. */
979 return 0;
980 #endif
981 }
982
983 int
984 child_has_execd (int pid, char **execd_pathname)
985 {
986 /* This request is only available on HPUX 10.0 and later. */
987 #if !defined(PT_GET_PROCESS_STATE)
988 *execd_pathname = NULL;
989 return 0;
990
991 #else
992 int pt_status;
993 ptrace_state_t ptrace_state;
994
995 errno = 0;
996 pt_status = call_ptrace (PT_GET_PROCESS_STATE,
997 pid,
998 (PTRACE_ARG3_TYPE) & ptrace_state,
999 sizeof (ptrace_state));
1000 if (errno)
1001 perror_with_name ("ptrace");
1002 if (pt_status < 0)
1003 return 0;
1004
1005 if (ptrace_state.pe_report_event & PTRACE_EXEC)
1006 {
1007 char *exec_file = target_pid_to_exec_file (pid);
1008 *execd_pathname = savestring (exec_file, strlen (exec_file));
1009 return 1;
1010 }
1011
1012 return 0;
1013 #endif
1014 }
1015
1016 int
1017 child_reported_exec_events_per_exec_call (void)
1018 {
1019 return 2; /* ptrace reports the event twice per call. */
1020 }
1021
1022 int
1023 child_has_syscall_event (int pid, enum target_waitkind *kind, int *syscall_id)
1024 {
1025 /* This request is only available on HPUX 10.30 and later, via
1026 the ttrace interface. */
1027
1028 *kind = TARGET_WAITKIND_SPURIOUS;
1029 *syscall_id = -1;
1030 return 0;
1031 }
1032
1033 char *
1034 child_pid_to_exec_file (int pid)
1035 {
1036 static char exec_file_buffer[1024];
1037 int pt_status;
1038 CORE_ADDR top_of_stack;
1039 char four_chars[4];
1040 int name_index;
1041 int i;
1042 int saved_inferior_pid;
1043 boolean done;
1044
1045 #ifdef PT_GET_PROCESS_PATHNAME
1046 /* As of 10.x HP-UX, there's an explicit request to get the pathname. */
1047 pt_status = call_ptrace (PT_GET_PROCESS_PATHNAME,
1048 pid,
1049 (PTRACE_ARG3_TYPE) exec_file_buffer,
1050 sizeof (exec_file_buffer) - 1);
1051 if (pt_status == 0)
1052 return exec_file_buffer;
1053 #endif
1054
1055 /* It appears that this request is broken prior to 10.30.
1056 If it fails, try a really, truly amazingly gross hack
1057 that DDE uses, of pawing through the process' data
1058 segment to find the pathname. */
1059
1060 top_of_stack = 0x7b03a000;
1061 name_index = 0;
1062 done = 0;
1063
1064 /* On the chance that pid != inferior_pid, set inferior_pid
1065 to pid, so that (grrrr!) implicit uses of inferior_pid get
1066 the right id. */
1067
1068 saved_inferior_pid = inferior_pid;
1069 inferior_pid = pid;
1070
1071 /* Try to grab a null-terminated string. */
1072 while (!done)
1073 {
1074 if (target_read_memory (top_of_stack, four_chars, 4) != 0)
1075 {
1076 inferior_pid = saved_inferior_pid;
1077 return NULL;
1078 }
1079 for (i = 0; i < 4; i++)
1080 {
1081 exec_file_buffer[name_index++] = four_chars[i];
1082 done = (four_chars[i] == '\0');
1083 if (done)
1084 break;
1085 }
1086 top_of_stack += 4;
1087 }
1088
1089 if (exec_file_buffer[0] == '\0')
1090 {
1091 inferior_pid = saved_inferior_pid;
1092 return NULL;
1093 }
1094
1095 inferior_pid = saved_inferior_pid;
1096 return exec_file_buffer;
1097 }
1098
1099 void
1100 pre_fork_inferior (void)
1101 {
1102 int status;
1103
1104 status = pipe (startup_semaphore.parent_channel);
1105 if (status < 0)
1106 {
1107 warning ("error getting parent pipe for startup semaphore");
1108 return;
1109 }
1110
1111 status = pipe (startup_semaphore.child_channel);
1112 if (status < 0)
1113 {
1114 warning ("error getting child pipe for startup semaphore");
1115 return;
1116 }
1117 }
1118 \f
1119
1120 /* Check to see if the given thread is alive.
1121
1122 This is a no-op, as ptrace doesn't support threads, so we just
1123 return "TRUE". */
1124
1125 int
1126 child_thread_alive (int pid)
1127 {
1128 return 1;
1129 }
1130
1131 #endif /* ! GDB_NATIVE_HPUX_11 */
This page took 0.051912 seconds and 4 git commands to generate.