import gdb-1999-12-06 snapshot
[deliverable/binutils-gdb.git] / gdb / hppah-nat.c
1 /* Native support code for HPUX PA-RISC.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1998, 1999
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25
26 #include "defs.h"
27 #include "inferior.h"
28 #include "target.h"
29 #include <sys/ptrace.h>
30 #include "gdbcore.h"
31 #include <wait.h>
32 #include <signal.h>
33
34 extern CORE_ADDR text_end;
35
36 static void fetch_register PARAMS ((int));
37
38 void
39 fetch_inferior_registers (regno)
40 int regno;
41 {
42 if (regno == -1)
43 for (regno = 0; regno < NUM_REGS; regno++)
44 fetch_register (regno);
45 else
46 fetch_register (regno);
47 }
48
49 /* Our own version of the offsetof macro, since we can't assume ANSI C. */
50 #define HPPAH_OFFSETOF(type, member) ((int) (&((type *) 0)->member))
51
52 /* Store our register values back into the inferior.
53 If REGNO is -1, do this for all registers.
54 Otherwise, REGNO specifies which register (so we can save time). */
55
56 void
57 store_inferior_registers (regno)
58 int regno;
59 {
60 register unsigned int regaddr;
61 char buf[80];
62 register int i;
63 unsigned int offset = U_REGS_OFFSET;
64 int scratch;
65
66 if (regno >= 0)
67 {
68 unsigned int addr, len, offset;
69
70 if (CANNOT_STORE_REGISTER (regno))
71 return;
72
73 offset = 0;
74 len = REGISTER_RAW_SIZE (regno);
75
76 /* Requests for register zero actually want the save_state's
77 ss_flags member. As RM says: "Oh, what a hack!" */
78 if (regno == 0)
79 {
80 save_state_t ss;
81 addr = HPPAH_OFFSETOF (save_state_t, ss_flags);
82 len = sizeof (ss.ss_flags);
83
84 /* Note that ss_flags is always an int, no matter what
85 REGISTER_RAW_SIZE(0) says. Assuming all HP-UX PA machines
86 are big-endian, put it at the least significant end of the
87 value, and zap the rest of the buffer. */
88 offset = REGISTER_RAW_SIZE (0) - len;
89 }
90
91 /* Floating-point registers come from the ss_fpblock area. */
92 else if (regno >= FP0_REGNUM)
93 addr = (HPPAH_OFFSETOF (save_state_t, ss_fpblock)
94 + (REGISTER_BYTE (regno) - REGISTER_BYTE (FP0_REGNUM)));
95
96 /* Wide registers come from the ss_wide area.
97 I think it's more PC to test (ss_flags & SS_WIDEREGS) to select
98 between ss_wide and ss_narrow than to use the raw register size.
99 But checking ss_flags would require an extra ptrace call for
100 every register reference. Bleah. */
101 else if (len == 8)
102 addr = (HPPAH_OFFSETOF (save_state_t, ss_wide)
103 + REGISTER_BYTE (regno));
104
105 /* Narrow registers come from the ss_narrow area. Note that
106 ss_narrow starts with gr1, not gr0. */
107 else if (len == 4)
108 addr = (HPPAH_OFFSETOF (save_state_t, ss_narrow)
109 + (REGISTER_BYTE (regno) - REGISTER_BYTE (1)));
110 else
111 internal_error ("hppah-nat.c (write_register): unexpected register size");
112
113 #ifdef GDB_TARGET_IS_HPPA_20W
114 /* Unbelieveable. The PC head and tail must be written in 64bit hunks
115 or we will get an error. Worse yet, the oddball ptrace/ttrace
116 layering will not allow us to perform a 64bit register store.
117
118 What a crock. */
119 if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM && len == 8)
120 {
121 CORE_ADDR temp;
122
123 temp = *(CORE_ADDR *)&registers[REGISTER_BYTE (regno)];
124
125 /* Set the priv level (stored in the low two bits of the PC. */
126 temp |= 0x3;
127
128 ttrace_write_reg_64 (inferior_pid, (CORE_ADDR)addr, (CORE_ADDR)&temp);
129
130 /* If we fail to write the PC, give a true error instead of
131 just a warning. */
132 if (errno != 0)
133 {
134 char *err = safe_strerror (errno);
135 char *msg = alloca (strlen (err) + 128);
136 sprintf (msg, "writing `%s' register: %s",
137 REGISTER_NAME (regno), err);
138 perror_with_name (msg);
139 }
140 return;
141 }
142
143 /* Another crock. HPUX complains if you write a nonzero value to
144 the high part of IPSW. What will it take for HP to catch a
145 clue about building sensible interfaces? */
146 if (regno == IPSW_REGNUM && len == 8)
147 *(int *)&registers[REGISTER_BYTE (regno)] = 0;
148 #endif
149
150 for (i = 0; i < len; i += sizeof (int))
151 {
152 errno = 0;
153 call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) addr + i,
154 *(int *) &registers[REGISTER_BYTE (regno) + i]);
155 if (errno != 0)
156 {
157 /* Warning, not error, in case we are attached; sometimes
158 the kernel doesn't let us at the registers. */
159 char *err = safe_strerror (errno);
160 char *msg = alloca (strlen (err) + 128);
161 sprintf (msg, "writing `%s' register: %s",
162 REGISTER_NAME (regno), err);
163 /* If we fail to write the PC, give a true error instead of
164 just a warning. */
165 if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
166 perror_with_name (msg);
167 else
168 warning (msg);
169 return;
170 }
171 }
172 }
173 else
174 for (regno = 0; regno < NUM_REGS; regno++)
175 store_inferior_registers (regno);
176 }
177
178
179 /* Fetch a register's value from the process's U area. */
180 static void
181 fetch_register (regno)
182 int regno;
183 {
184 char buf[MAX_REGISTER_RAW_SIZE];
185 unsigned int addr, len, offset;
186 int i;
187
188 offset = 0;
189 len = REGISTER_RAW_SIZE (regno);
190
191 /* Requests for register zero actually want the save_state's
192 ss_flags member. As RM says: "Oh, what a hack!" */
193 if (regno == 0)
194 {
195 save_state_t ss;
196 addr = HPPAH_OFFSETOF (save_state_t, ss_flags);
197 len = sizeof (ss.ss_flags);
198
199 /* Note that ss_flags is always an int, no matter what
200 REGISTER_RAW_SIZE(0) says. Assuming all HP-UX PA machines
201 are big-endian, put it at the least significant end of the
202 value, and zap the rest of the buffer. */
203 offset = REGISTER_RAW_SIZE (0) - len;
204 memset (buf, 0, sizeof (buf));
205 }
206
207 /* Floating-point registers come from the ss_fpblock area. */
208 else if (regno >= FP0_REGNUM)
209 addr = (HPPAH_OFFSETOF (save_state_t, ss_fpblock)
210 + (REGISTER_BYTE (regno) - REGISTER_BYTE (FP0_REGNUM)));
211
212 /* Wide registers come from the ss_wide area.
213 I think it's more PC to test (ss_flags & SS_WIDEREGS) to select
214 between ss_wide and ss_narrow than to use the raw register size.
215 But checking ss_flags would require an extra ptrace call for
216 every register reference. Bleah. */
217 else if (len == 8)
218 addr = (HPPAH_OFFSETOF (save_state_t, ss_wide)
219 + REGISTER_BYTE (regno));
220
221 /* Narrow registers come from the ss_narrow area. Note that
222 ss_narrow starts with gr1, not gr0. */
223 else if (len == 4)
224 addr = (HPPAH_OFFSETOF (save_state_t, ss_narrow)
225 + (REGISTER_BYTE (regno) - REGISTER_BYTE (1)));
226
227 else
228 internal_error ("hppa-nat.c (fetch_register): unexpected register size");
229
230 for (i = 0; i < len; i += sizeof (int))
231 {
232 errno = 0;
233 /* Copy an int from the U area to buf. Fill the least
234 significant end if len != raw_size. */
235 * (int *) &buf[offset + i] =
236 call_ptrace (PT_RUREGS, inferior_pid,
237 (PTRACE_ARG3_TYPE) addr + i, 0);
238 if (errno != 0)
239 {
240 /* Warning, not error, in case we are attached; sometimes
241 the kernel doesn't let us at the registers. */
242 char *err = safe_strerror (errno);
243 char *msg = alloca (strlen (err) + 128);
244 sprintf (msg, "reading `%s' register: %s",
245 REGISTER_NAME (regno), err);
246 warning (msg);
247 return;
248 }
249 }
250
251 /* If we're reading an address from the instruction address queue,
252 mask out the bottom two bits --- they contain the privilege
253 level. */
254 if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
255 buf[len - 1] &= ~0x3;
256
257 supply_register (regno, buf);
258 }
259
260
261 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
262 to debugger memory starting at MYADDR. Copy to inferior if
263 WRITE is nonzero.
264
265 Returns the length copied, which is either the LEN argument or zero.
266 This xfer function does not do partial moves, since child_ops
267 doesn't allow memory operations to cross below us in the target stack
268 anyway. */
269
270 int
271 child_xfer_memory (memaddr, myaddr, len, write, target)
272 CORE_ADDR memaddr;
273 char *myaddr;
274 int len;
275 int write;
276 struct target_ops *target; /* ignored */
277 {
278 register int i;
279 /* Round starting address down to longword boundary. */
280 register CORE_ADDR addr = memaddr & - (CORE_ADDR)(sizeof (int));
281 /* Round ending address up; get number of longwords that makes. */
282 register int count
283 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
284
285 /* Allocate buffer of that many longwords.
286 Note -- do not use alloca to allocate this buffer since there is no
287 guarantee of when the buffer will actually be deallocated.
288
289 This routine can be called over and over with the same call chain;
290 this (in effect) would pile up all those alloca requests until a call
291 to alloca was made from a point higher than this routine in the
292 call chain. */
293 register int *buffer = (int *) xmalloc (count * sizeof (int));
294
295 if (write)
296 {
297 /* Fill start and end extra bytes of buffer with existing memory data. */
298 if (addr != memaddr || len < (int) sizeof (int))
299 {
300 /* Need part of initial word -- fetch it. */
301 buffer[0] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
302 inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
303 }
304
305 if (count > 1) /* FIXME, avoid if even boundary */
306 {
307 buffer[count - 1]
308 = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
309 inferior_pid,
310 (PTRACE_ARG3_TYPE) (addr
311 + (count - 1) * sizeof (int)),
312 0);
313 }
314
315 /* Copy data to be written over corresponding part of buffer */
316 memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
317
318 /* Write the entire buffer. */
319 for (i = 0; i < count; i++, addr += sizeof (int))
320 {
321 int pt_status;
322 int pt_request;
323 /* The HP-UX kernel crashes if you use PT_WDUSER to write into the
324 text segment. FIXME -- does it work to write into the data
325 segment using WIUSER, or do these idiots really expect us to
326 figure out which segment the address is in, so we can use a
327 separate system call for it??! */
328 errno = 0;
329 pt_request = (addr < text_end) ? PT_WIUSER : PT_WDUSER;
330 pt_status = call_ptrace (pt_request,
331 inferior_pid,
332 (PTRACE_ARG3_TYPE) addr,
333 buffer[i]);
334
335 /* Did we fail? Might we've guessed wrong about which
336 segment this address resides in? Try the other request,
337 and see if that works... */
338 if ((pt_status == -1) && errno)
339 {
340 errno = 0;
341 pt_request = (pt_request == PT_WIUSER) ? PT_WDUSER : PT_WIUSER;
342 pt_status = call_ptrace (pt_request,
343 inferior_pid,
344 (PTRACE_ARG3_TYPE) addr,
345 buffer[i]);
346
347 /* No, we still fail. Okay, time to punt. */
348 if ((pt_status == -1) && errno)
349 {
350 free (buffer);
351 return 0;
352 }
353 }
354 }
355 }
356 else
357 {
358 /* Read all the longwords */
359 for (i = 0; i < count; i++, addr += sizeof (int))
360 {
361 errno = 0;
362 buffer[i] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
363 inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
364 if (errno)
365 {
366 free (buffer);
367 return 0;
368 }
369 QUIT;
370 }
371
372 /* Copy appropriate bytes out of the buffer. */
373 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
374 }
375 free (buffer);
376 return len;
377 }
378
379
380 void
381 child_post_follow_inferior_by_clone ()
382 {
383 int status;
384
385 /* This function is used when following both the parent and child
386 of a fork. In this case, the debugger clones itself. The original
387 debugger follows the parent, the clone follows the child. The
388 original detaches from the child, delivering a SIGSTOP to it to
389 keep it from running away until the clone can attach itself.
390
391 At this point, the clone has attached to the child. Because of
392 the SIGSTOP, we must now deliver a SIGCONT to the child, or it
393 won't behave properly. */
394 status = kill (inferior_pid, SIGCONT);
395 }
396
397
398 void
399 child_post_follow_vfork (parent_pid, followed_parent, child_pid, followed_child)
400 int parent_pid;
401 int followed_parent;
402 int child_pid;
403 int followed_child;
404 {
405 /* Are we a debugger that followed the parent of a vfork? If so,
406 then recall that the child's vfork event was delivered to us
407 first. And, that the parent was suspended by the OS until the
408 child's exec or exit events were received.
409
410 Upon receiving that child vfork, then, we were forced to remove
411 all breakpoints in the child and continue it so that it could
412 reach the exec or exit point.
413
414 But also recall that the parent and child of a vfork share the
415 same address space. Thus, removing bp's in the child also
416 removed them from the parent.
417
418 Now that the child has safely exec'd or exited, we must restore
419 the parent's breakpoints before we continue it. Else, we may
420 cause it run past expected stopping points. */
421 if (followed_parent)
422 {
423 reattach_breakpoints (parent_pid);
424 }
425
426 /* Are we a debugger that followed the child of a vfork? If so,
427 then recall that we don't actually acquire control of the child
428 until after it has exec'd or exited. */
429 if (followed_child)
430 {
431 /* If the child has exited, then there's nothing for us to do.
432 In the case of an exec event, we'll let that be handled by
433 the normal mechanism that notices and handles exec events, in
434 resume(). */
435 }
436 }
437
438 /* Format a process id, given PID. Be sure to terminate
439 this with a null--it's going to be printed via a "%s". */
440 char *
441 hppa_pid_to_str (pid)
442 pid_t pid;
443 {
444 /* Static because address returned */
445 static char buf[30];
446
447 /* Extra NULLs for paranoia's sake */
448 sprintf (buf, "process %d\0\0\0\0", pid);
449
450 return buf;
451 }
452
453 /* Format a thread id, given TID. Be sure to terminate
454 this with a null--it's going to be printed via a "%s".
455
456 Note: This is a core-gdb tid, not the actual system tid.
457 See infttrace.c for details. */
458 char *
459 hppa_tid_to_str (tid)
460 pid_t tid;
461 {
462 /* Static because address returned */
463 static char buf[30];
464
465 /* Extra NULLs for paranoia's sake */
466 sprintf (buf, "system thread %d\0\0\0\0", tid);
467
468 return buf;
469 }
470
471 #if !defined (GDB_NATIVE_HPUX_11)
472
473 /* The following code is a substitute for the infttrace.c versions used
474 with ttrace() in HPUX 11. */
475
476 /* This value is an arbitrary integer. */
477 #define PT_VERSION 123456
478
479 /* This semaphore is used to coordinate the child and parent processes
480 after a fork(), and before an exec() by the child. See
481 parent_attach_all for details. */
482
483 typedef struct
484 {
485 int parent_channel[2]; /* Parent "talks" to [1], child "listens" to [0] */
486 int child_channel[2]; /* Child "talks" to [1], parent "listens" to [0] */
487 }
488 startup_semaphore_t;
489
490 #define SEM_TALK (1)
491 #define SEM_LISTEN (0)
492
493 static startup_semaphore_t startup_semaphore;
494
495 extern int parent_attach_all PARAMS ((int, PTRACE_ARG3_TYPE, int));
496
497 #ifdef PT_SETTRC
498 /* This function causes the caller's process to be traced by its
499 parent. This is intended to be called after GDB forks itself,
500 and before the child execs the target.
501
502 Note that HP-UX ptrace is rather funky in how this is done.
503 If the parent wants to get the initial exec event of a child,
504 it must set the ptrace event mask of the child to include execs.
505 (The child cannot do this itself.) This must be done after the
506 child is forked, but before it execs.
507
508 To coordinate the parent and child, we implement a semaphore using
509 pipes. After SETTRC'ing itself, the child tells the parent that
510 it is now traceable by the parent, and waits for the parent's
511 acknowledgement. The parent can then set the child's event mask,
512 and notify the child that it can now exec.
513
514 (The acknowledgement by parent happens as a result of a call to
515 child_acknowledge_created_inferior.) */
516
517 int
518 parent_attach_all (pid, addr, data)
519 int pid;
520 PTRACE_ARG3_TYPE addr;
521 int data;
522 {
523 int pt_status = 0;
524
525 /* We need a memory home for a constant. */
526 int tc_magic_child = PT_VERSION;
527 int tc_magic_parent = 0;
528
529 /* The remainder of this function is only useful for HPUX 10.0 and
530 later, as it depends upon the ability to request notification
531 of specific kinds of events by the kernel. */
532 #if defined(PT_SET_EVENT_MASK)
533
534 /* Notify the parent that we're potentially ready to exec(). */
535 write (startup_semaphore.child_channel[SEM_TALK],
536 &tc_magic_child,
537 sizeof (tc_magic_child));
538
539 /* Wait for acknowledgement from the parent. */
540 read (startup_semaphore.parent_channel[SEM_LISTEN],
541 &tc_magic_parent,
542 sizeof (tc_magic_parent));
543 if (tc_magic_child != tc_magic_parent)
544 warning ("mismatched semaphore magic");
545
546 /* Discard our copy of the semaphore. */
547 (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
548 (void) close (startup_semaphore.parent_channel[SEM_TALK]);
549 (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
550 (void) close (startup_semaphore.child_channel[SEM_TALK]);
551 #endif
552
553 return 0;
554 }
555 #endif
556
557 int
558 hppa_require_attach (pid)
559 int pid;
560 {
561 int pt_status;
562 CORE_ADDR pc;
563 CORE_ADDR pc_addr;
564 unsigned int regs_offset;
565
566 /* Are we already attached? There appears to be no explicit way to
567 answer this via ptrace, so we try something which should be
568 innocuous if we are attached. If that fails, then we assume
569 we're not attached, and so attempt to make it so. */
570
571 errno = 0;
572 regs_offset = U_REGS_OFFSET;
573 pc_addr = register_addr (PC_REGNUM, regs_offset);
574 pc = call_ptrace (PT_READ_U, pid, (PTRACE_ARG3_TYPE) pc_addr, 0);
575
576 if (errno)
577 {
578 errno = 0;
579 pt_status = call_ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
580
581 if (errno)
582 return -1;
583
584 /* Now we really are attached. */
585 errno = 0;
586 }
587 attach_flag = 1;
588 return pid;
589 }
590
591 int
592 hppa_require_detach (pid, signal)
593 int pid;
594 int signal;
595 {
596 errno = 0;
597 call_ptrace (PT_DETACH, pid, (PTRACE_ARG3_TYPE) 1, signal);
598 errno = 0; /* Ignore any errors. */
599 return pid;
600 }
601
602 /* Since ptrace doesn't support memory page-protection events, which
603 are used to implement "hardware" watchpoints on HP-UX, these are
604 dummy versions, which perform no useful work. */
605
606 void
607 hppa_enable_page_protection_events (pid)
608 int pid;
609 {
610 }
611
612 void
613 hppa_disable_page_protection_events (pid)
614 int pid;
615 {
616 }
617
618 int
619 hppa_insert_hw_watchpoint (pid, start, len, type)
620 int pid;
621 CORE_ADDR start;
622 LONGEST len;
623 int type;
624 {
625 error ("Hardware watchpoints not implemented on this platform.");
626 }
627
628 int
629 hppa_remove_hw_watchpoint (pid, start, len, type)
630 int pid;
631 CORE_ADDR start;
632 LONGEST len;
633 enum bptype type;
634 {
635 error ("Hardware watchpoints not implemented on this platform.");
636 }
637
638 int
639 hppa_can_use_hw_watchpoint (type, cnt, ot)
640 enum bptype type;
641 int cnt;
642 enum bptype ot;
643 {
644 return 0;
645 }
646
647 int
648 hppa_range_profitable_for_hw_watchpoint (pid, start, len)
649 int pid;
650 CORE_ADDR start;
651 LONGEST len;
652 {
653 error ("Hardware watchpoints not implemented on this platform.");
654 }
655
656 char *
657 hppa_pid_or_tid_to_str (id)
658 pid_t id;
659 {
660 /* In the ptrace world, there are only processes. */
661 return hppa_pid_to_str (id);
662 }
663
664 /* This function has no meaning in a non-threaded world. Thus, we
665 return 0 (FALSE). See the use of "hppa_prepare_to_proceed" in
666 hppa-tdep.c. */
667
668 pid_t
669 hppa_switched_threads (pid)
670 pid_t pid;
671 {
672 return (pid_t) 0;
673 }
674
675 void
676 hppa_ensure_vforking_parent_remains_stopped (pid)
677 int pid;
678 {
679 /* This assumes that the vforked parent is presently stopped, and
680 that the vforked child has just delivered its first exec event.
681 Calling kill() this way will cause the SIGTRAP to be delivered as
682 soon as the parent is resumed, which happens as soon as the
683 vforked child is resumed. See wait_for_inferior for the use of
684 this function. */
685 kill (pid, SIGTRAP);
686 }
687
688 int
689 hppa_resume_execd_vforking_child_to_get_parent_vfork ()
690 {
691 return 1; /* Yes, the child must be resumed. */
692 }
693
694 void
695 require_notification_of_events (pid)
696 int pid;
697 {
698 #if defined(PT_SET_EVENT_MASK)
699 int pt_status;
700 ptrace_event_t ptrace_events;
701 int nsigs;
702 int signum;
703
704 /* Instruct the kernel as to the set of events we wish to be
705 informed of. (This support does not exist before HPUX 10.0.
706 We'll assume if PT_SET_EVENT_MASK has not been defined by
707 <sys/ptrace.h>, then we're being built on pre-10.0.) */
708 memset (&ptrace_events, 0, sizeof (ptrace_events));
709
710 /* Note: By default, all signals are visible to us. If we wish
711 the kernel to keep certain signals hidden from us, we do it
712 by calling sigdelset (ptrace_events.pe_signals, signal) for
713 each such signal here, before doing PT_SET_EVENT_MASK. */
714 /* RM: The above comment is no longer true. We start with ignoring
715 all signals, and then add the ones we are interested in. We could
716 do it the other way: start by looking at all signals and then
717 deleting the ones that we aren't interested in, except that
718 multiple gdb signals may be mapped to the same host signal
719 (eg. TARGET_SIGNAL_IO and TARGET_SIGNAL_POLL both get mapped to
720 signal 22 on HPUX 10.20) We want to be notified if we are
721 interested in either signal. */
722 sigfillset (&ptrace_events.pe_signals);
723
724 /* RM: Let's not bother with signals we don't care about */
725 nsigs = (int) TARGET_SIGNAL_LAST;
726 for (signum = nsigs; signum > 0; signum--)
727 {
728 if ((signal_stop_state (signum)) ||
729 (signal_print_state (signum)) ||
730 (!signal_pass_state (signum)))
731 {
732 if (target_signal_to_host_p (signum))
733 sigdelset (&ptrace_events.pe_signals,
734 target_signal_to_host (signum));
735 }
736 }
737
738 ptrace_events.pe_set_event = 0;
739
740 ptrace_events.pe_set_event |= PTRACE_SIGNAL;
741 ptrace_events.pe_set_event |= PTRACE_EXEC;
742 ptrace_events.pe_set_event |= PTRACE_FORK;
743 ptrace_events.pe_set_event |= PTRACE_VFORK;
744 /* ??rehrauer: Add this one when we're prepared to catch it...
745 ptrace_events.pe_set_event |= PTRACE_EXIT;
746 */
747
748 errno = 0;
749 pt_status = call_ptrace (PT_SET_EVENT_MASK,
750 pid,
751 (PTRACE_ARG3_TYPE) & ptrace_events,
752 sizeof (ptrace_events));
753 if (errno)
754 perror_with_name ("ptrace");
755 if (pt_status < 0)
756 return;
757 #endif
758 }
759
760 void
761 require_notification_of_exec_events (pid)
762 int pid;
763 {
764 #if defined(PT_SET_EVENT_MASK)
765 int pt_status;
766 ptrace_event_t ptrace_events;
767
768 /* Instruct the kernel as to the set of events we wish to be
769 informed of. (This support does not exist before HPUX 10.0.
770 We'll assume if PT_SET_EVENT_MASK has not been defined by
771 <sys/ptrace.h>, then we're being built on pre-10.0.) */
772 memset (&ptrace_events, 0, sizeof (ptrace_events));
773
774 /* Note: By default, all signals are visible to us. If we wish
775 the kernel to keep certain signals hidden from us, we do it
776 by calling sigdelset (ptrace_events.pe_signals, signal) for
777 each such signal here, before doing PT_SET_EVENT_MASK. */
778 sigemptyset (&ptrace_events.pe_signals);
779
780 ptrace_events.pe_set_event = 0;
781
782 ptrace_events.pe_set_event |= PTRACE_EXEC;
783 /* ??rehrauer: Add this one when we're prepared to catch it...
784 ptrace_events.pe_set_event |= PTRACE_EXIT;
785 */
786
787 errno = 0;
788 pt_status = call_ptrace (PT_SET_EVENT_MASK,
789 pid,
790 (PTRACE_ARG3_TYPE) & ptrace_events,
791 sizeof (ptrace_events));
792 if (errno)
793 perror_with_name ("ptrace");
794 if (pt_status < 0)
795 return;
796 #endif
797 }
798
799 /* This function is called by the parent process, with pid being the
800 ID of the child process, after the debugger has forked. */
801
802 void
803 child_acknowledge_created_inferior (pid)
804 int pid;
805 {
806 /* We need a memory home for a constant. */
807 int tc_magic_parent = PT_VERSION;
808 int tc_magic_child = 0;
809
810 /* The remainder of this function is only useful for HPUX 10.0 and
811 later, as it depends upon the ability to request notification
812 of specific kinds of events by the kernel. */
813 #if defined(PT_SET_EVENT_MASK)
814 /* Wait for the child to tell us that it has forked. */
815 read (startup_semaphore.child_channel[SEM_LISTEN],
816 &tc_magic_child,
817 sizeof (tc_magic_child));
818
819 /* Notify the child that it can exec.
820
821 In the infttrace.c variant of this function, we set the child's
822 event mask after the fork but before the exec. In the ptrace
823 world, it seems we can't set the event mask until after the exec. */
824 write (startup_semaphore.parent_channel[SEM_TALK],
825 &tc_magic_parent,
826 sizeof (tc_magic_parent));
827
828 /* We'd better pause a bit before trying to set the event mask,
829 though, to ensure that the exec has happened. We don't want to
830 wait() on the child, because that'll screw up the upper layers
831 of gdb's execution control that expect to see the exec event.
832
833 After an exec, the child is no longer executing gdb code. Hence,
834 we can't have yet another synchronization via the pipes. We'll
835 just sleep for a second, and hope that's enough delay... */
836 sleep (1);
837
838 /* Instruct the kernel as to the set of events we wish to be
839 informed of. */
840 require_notification_of_exec_events (pid);
841
842 /* Discard our copy of the semaphore. */
843 (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
844 (void) close (startup_semaphore.parent_channel[SEM_TALK]);
845 (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
846 (void) close (startup_semaphore.child_channel[SEM_TALK]);
847 #endif
848 }
849
850 void
851 child_post_startup_inferior (pid)
852 int pid;
853 {
854 require_notification_of_events (pid);
855 }
856
857 void
858 child_post_attach (pid)
859 int pid;
860 {
861 require_notification_of_events (pid);
862 }
863
864 int
865 child_insert_fork_catchpoint (pid)
866 int pid;
867 {
868 /* This request is only available on HPUX 10.0 and later. */
869 #if !defined(PT_SET_EVENT_MASK)
870 error ("Unable to catch forks prior to HPUX 10.0");
871 #else
872 /* Enable reporting of fork events from the kernel. */
873 /* ??rehrauer: For the moment, we're always enabling these events,
874 and just ignoring them if there's no catchpoint to catch them. */
875 return 0;
876 #endif
877 }
878
879 int
880 child_remove_fork_catchpoint (pid)
881 int pid;
882 {
883 /* This request is only available on HPUX 10.0 and later. */
884 #if !defined(PT_SET_EVENT_MASK)
885 error ("Unable to catch forks prior to HPUX 10.0");
886 #else
887 /* Disable reporting of fork events from the kernel. */
888 /* ??rehrauer: For the moment, we're always enabling these events,
889 and just ignoring them if there's no catchpoint to catch them. */
890 return 0;
891 #endif
892 }
893
894 int
895 child_insert_vfork_catchpoint (pid)
896 int pid;
897 {
898 /* This request is only available on HPUX 10.0 and later. */
899 #if !defined(PT_SET_EVENT_MASK)
900 error ("Unable to catch vforks prior to HPUX 10.0");
901 #else
902 /* Enable reporting of vfork events from the kernel. */
903 /* ??rehrauer: For the moment, we're always enabling these events,
904 and just ignoring them if there's no catchpoint to catch them. */
905 return 0;
906 #endif
907 }
908
909 int
910 child_remove_vfork_catchpoint (pid)
911 int pid;
912 {
913 /* This request is only available on HPUX 10.0 and later. */
914 #if !defined(PT_SET_EVENT_MASK)
915 error ("Unable to catch vforks prior to HPUX 10.0");
916 #else
917 /* Disable reporting of vfork events from the kernel. */
918 /* ??rehrauer: For the moment, we're always enabling these events,
919 and just ignoring them if there's no catchpoint to catch them. */
920 return 0;
921 #endif
922 }
923
924 int
925 child_has_forked (pid, childpid)
926 int pid;
927 int *childpid;
928 {
929 /* This request is only available on HPUX 10.0 and later. */
930 #if !defined(PT_GET_PROCESS_STATE)
931 *childpid = 0;
932 return 0;
933 #else
934 int pt_status;
935 ptrace_state_t ptrace_state;
936
937 errno = 0;
938 pt_status = call_ptrace (PT_GET_PROCESS_STATE,
939 pid,
940 (PTRACE_ARG3_TYPE) & ptrace_state,
941 sizeof (ptrace_state));
942 if (errno)
943 perror_with_name ("ptrace");
944 if (pt_status < 0)
945 return 0;
946
947 if (ptrace_state.pe_report_event & PTRACE_FORK)
948 {
949 *childpid = ptrace_state.pe_other_pid;
950 return 1;
951 }
952
953 return 0;
954 #endif
955 }
956
957 int
958 child_has_vforked (pid, childpid)
959 int pid;
960 int *childpid;
961 {
962 /* This request is only available on HPUX 10.0 and later. */
963 #if !defined(PT_GET_PROCESS_STATE)
964 *childpid = 0;
965 return 0;
966
967 #else
968 int pt_status;
969 ptrace_state_t ptrace_state;
970
971 errno = 0;
972 pt_status = call_ptrace (PT_GET_PROCESS_STATE,
973 pid,
974 (PTRACE_ARG3_TYPE) & ptrace_state,
975 sizeof (ptrace_state));
976 if (errno)
977 perror_with_name ("ptrace");
978 if (pt_status < 0)
979 return 0;
980
981 if (ptrace_state.pe_report_event & PTRACE_VFORK)
982 {
983 *childpid = ptrace_state.pe_other_pid;
984 return 1;
985 }
986
987 return 0;
988 #endif
989 }
990
991 int
992 child_can_follow_vfork_prior_to_exec ()
993 {
994 /* ptrace doesn't allow this. */
995 return 0;
996 }
997
998 int
999 child_insert_exec_catchpoint (pid)
1000 int pid;
1001 {
1002 /* This request is only available on HPUX 10.0 and later. */
1003 #if !defined(PT_SET_EVENT_MASK)
1004 error ("Unable to catch execs prior to HPUX 10.0");
1005
1006 #else
1007 /* Enable reporting of exec events from the kernel. */
1008 /* ??rehrauer: For the moment, we're always enabling these events,
1009 and just ignoring them if there's no catchpoint to catch them. */
1010 return 0;
1011 #endif
1012 }
1013
1014 int
1015 child_remove_exec_catchpoint (pid)
1016 int pid;
1017 {
1018 /* This request is only available on HPUX 10.0 and later. */
1019 #if !defined(PT_SET_EVENT_MASK)
1020 error ("Unable to catch execs prior to HPUX 10.0");
1021
1022 #else
1023 /* Disable reporting of exec events from the kernel. */
1024 /* ??rehrauer: For the moment, we're always enabling these events,
1025 and just ignoring them if there's no catchpoint to catch them. */
1026 return 0;
1027 #endif
1028 }
1029
1030 int
1031 child_has_execd (pid, execd_pathname)
1032 int pid;
1033 char **execd_pathname;
1034 {
1035 /* This request is only available on HPUX 10.0 and later. */
1036 #if !defined(PT_GET_PROCESS_STATE)
1037 *execd_pathname = NULL;
1038 return 0;
1039
1040 #else
1041 int pt_status;
1042 ptrace_state_t ptrace_state;
1043
1044 errno = 0;
1045 pt_status = call_ptrace (PT_GET_PROCESS_STATE,
1046 pid,
1047 (PTRACE_ARG3_TYPE) & ptrace_state,
1048 sizeof (ptrace_state));
1049 if (errno)
1050 perror_with_name ("ptrace");
1051 if (pt_status < 0)
1052 return 0;
1053
1054 if (ptrace_state.pe_report_event & PTRACE_EXEC)
1055 {
1056 char *exec_file = target_pid_to_exec_file (pid);
1057 *execd_pathname = savestring (exec_file, strlen (exec_file));
1058 return 1;
1059 }
1060
1061 return 0;
1062 #endif
1063 }
1064
1065 int
1066 child_reported_exec_events_per_exec_call ()
1067 {
1068 return 2; /* ptrace reports the event twice per call. */
1069 }
1070
1071 int
1072 child_has_syscall_event (pid, kind, syscall_id)
1073 int pid;
1074 enum target_waitkind *kind;
1075 int *syscall_id;
1076 {
1077 /* This request is only available on HPUX 10.30 and later, via
1078 the ttrace interface. */
1079
1080 *kind = TARGET_WAITKIND_SPURIOUS;
1081 *syscall_id = -1;
1082 return 0;
1083 }
1084
1085 char *
1086 child_pid_to_exec_file (pid)
1087 int pid;
1088 {
1089 static char exec_file_buffer[1024];
1090 int pt_status;
1091 CORE_ADDR top_of_stack;
1092 char four_chars[4];
1093 int name_index;
1094 int i;
1095 int saved_inferior_pid;
1096 boolean done;
1097
1098 #ifdef PT_GET_PROCESS_PATHNAME
1099 /* As of 10.x HP-UX, there's an explicit request to get the pathname. */
1100 pt_status = call_ptrace (PT_GET_PROCESS_PATHNAME,
1101 pid,
1102 (PTRACE_ARG3_TYPE) exec_file_buffer,
1103 sizeof (exec_file_buffer) - 1);
1104 if (pt_status == 0)
1105 return exec_file_buffer;
1106 #endif
1107
1108 /* It appears that this request is broken prior to 10.30.
1109 If it fails, try a really, truly amazingly gross hack
1110 that DDE uses, of pawing through the process' data
1111 segment to find the pathname. */
1112
1113 top_of_stack = 0x7b03a000;
1114 name_index = 0;
1115 done = 0;
1116
1117 /* On the chance that pid != inferior_pid, set inferior_pid
1118 to pid, so that (grrrr!) implicit uses of inferior_pid get
1119 the right id. */
1120
1121 saved_inferior_pid = inferior_pid;
1122 inferior_pid = pid;
1123
1124 /* Try to grab a null-terminated string. */
1125 while (!done)
1126 {
1127 if (target_read_memory (top_of_stack, four_chars, 4) != 0)
1128 {
1129 inferior_pid = saved_inferior_pid;
1130 return NULL;
1131 }
1132 for (i = 0; i < 4; i++)
1133 {
1134 exec_file_buffer[name_index++] = four_chars[i];
1135 done = (four_chars[i] == '\0');
1136 if (done)
1137 break;
1138 }
1139 top_of_stack += 4;
1140 }
1141
1142 if (exec_file_buffer[0] == '\0')
1143 {
1144 inferior_pid = saved_inferior_pid;
1145 return NULL;
1146 }
1147
1148 inferior_pid = saved_inferior_pid;
1149 return exec_file_buffer;
1150 }
1151
1152 void
1153 pre_fork_inferior ()
1154 {
1155 int status;
1156
1157 status = pipe (startup_semaphore.parent_channel);
1158 if (status < 0)
1159 {
1160 warning ("error getting parent pipe for startup semaphore");
1161 return;
1162 }
1163
1164 status = pipe (startup_semaphore.child_channel);
1165 if (status < 0)
1166 {
1167 warning ("error getting child pipe for startup semaphore");
1168 return;
1169 }
1170 }
1171 \f
1172
1173 /* Check to see if the given thread is alive.
1174
1175 This is a no-op, as ptrace doesn't support threads, so we just
1176 return "TRUE". */
1177
1178 int
1179 child_thread_alive (pid)
1180 int pid;
1181 {
1182 return 1;
1183 }
1184
1185 #endif /* ! GDB_NATIVE_HPUX_11 */
This page took 0.100805 seconds and 4 git commands to generate.