* tm-hppa.h: New file, architectural definition of HP PA.
[deliverable/binutils-gdb.git] / gdb / hppahpux-xdep.c
1 /* Machine-dependent code which would otherwise be in infptrace.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "target.h"
28
29 #ifdef USG
30 #include <sys/types.h>
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/dir.h>
35 #include <signal.h>
36 #include <sys/ioctl.h>
37
38 #include <sys/ptrace.h>
39
40
41 #ifndef PT_ATTACH
42 #define PT_ATTACH PTRACE_ATTACH
43 #endif
44 #ifndef PT_DETACH
45 #define PT_DETACH PTRACE_DETACH
46 #endif
47
48 #include "gdbcore.h"
49 #include <sys/user.h> /* After a.out.h */
50 #include <sys/file.h>
51 #include <sys/stat.h>
52 \f
53 /* This function simply calls ptrace with the given arguments.
54 It exists so that all calls to ptrace are isolated in this
55 machine-dependent file. */
56 int
57 call_ptrace (request, pid, addr, data)
58 int request, pid;
59 PTRACE_ARG3_TYPE addr;
60 int data;
61 {
62 return ptrace (request, pid, addr, data, 0);
63 }
64
65 #ifdef DEBUG_PTRACE
66 /* For the rest of the file, use an extra level of indirection */
67 /* This lets us breakpoint usefully on call_ptrace. */
68 #define ptrace call_ptrace
69 #endif
70
71 /* This is used when GDB is exiting. It gives less chance of error.*/
72
73 void
74 kill_inferior_fast ()
75 {
76 if (inferior_pid == 0)
77 return;
78 ptrace (PT_EXIT, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0, 0); /* PT_EXIT = PT_KILL ? */
79 wait ((int *)0);
80 }
81
82 void
83 kill_inferior ()
84 {
85 kill_inferior_fast ();
86 target_mourn_inferior ();
87 }
88
89 /* Resume execution of the inferior process.
90 If STEP is nonzero, single-step it.
91 If SIGNAL is nonzero, give it that signal. */
92
93 void
94 child_resume (step, signal)
95 int step;
96 int signal;
97 {
98 errno = 0;
99
100 /* An address of (PTRACE_ARG3_TYPE) 1 tells ptrace to continue from where
101 it was. (If GDB wanted it to start some other way, we have already
102 written a new PC value to the child.) */
103
104 if (step)
105 ptrace (PT_SINGLE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal, 0);
106 else
107 ptrace (PT_CONTIN, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal, 0);
108
109 if (errno)
110 perror_with_name ("ptrace");
111 }
112 \f
113 #ifdef ATTACH_DETACH
114 /* Nonzero if we are debugging an attached process rather than
115 an inferior. */
116 extern int attach_flag;
117
118 /* Start debugging the process whose number is PID. */
119 int
120 attach (pid)
121 int pid;
122 {
123 errno = 0;
124 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0, 0);
125 if (errno)
126 perror_with_name ("ptrace");
127 attach_flag = 1;
128 return pid;
129 }
130
131 /* Stop debugging the process whose number is PID
132 and continue it with signal number SIGNAL.
133 SIGNAL = 0 means just continue it. */
134
135 void
136 detach (signal)
137 int signal;
138 {
139 errno = 0;
140 ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal, 0);
141 if (errno)
142 perror_with_name ("ptrace");
143 attach_flag = 0;
144 }
145 #endif /* ATTACH_DETACH */
146 \f
147 #if !defined (FETCH_INFERIOR_REGISTERS)
148
149 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
150 to get the offset in the core file of the register values. */
151 #if defined (KERNEL_U_ADDR_BSD)
152 /* Get kernel_u_addr using BSD-style nlist(). */
153 CORE_ADDR kernel_u_addr;
154
155 #include <a.out.gnu.h> /* For struct nlist */
156
157 void
158 _initialize_kernel_u_addr ()
159 {
160 struct nlist names[2];
161
162 names[0].n_un.n_name = "_u";
163 names[1].n_un.n_name = NULL;
164 if (nlist ("/vmunix", names) == 0)
165 kernel_u_addr = names[0].n_value;
166 else
167 fatal ("Unable to get kernel u area address.");
168 }
169 #endif /* KERNEL_U_ADDR_BSD. */
170
171 #if defined (KERNEL_U_ADDR_HPUX)
172 /* Get kernel_u_addr using HPUX-style nlist(). */
173 CORE_ADDR kernel_u_addr;
174
175 struct hpnlist {
176 char * n_name;
177 long n_value;
178 unsigned char n_type;
179 unsigned char n_length;
180 short n_almod;
181 short n_unused;
182 };
183 static struct hpnlist nl[] = {{ "_u", -1, }, { (char *) 0, }};
184
185 /* read the value of the u area from the hp-ux kernel */
186 void _initialize_kernel_u_addr ()
187 {
188 struct user u;
189 nlist ("/hp-ux", &nl);
190 kernel_u_addr = nl[0].n_value;
191 }
192 #endif /* KERNEL_U_ADDR_HPUX. */
193
194 #if !defined (offsetof)
195 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
196 #endif
197
198 /* U_REGS_OFFSET is the offset of the registers within the u area. */
199 #if !defined (U_REGS_OFFSET)
200 #define U_REGS_OFFSET \
201 ptrace (PT_READ_U, inferior_pid, \
202 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0, 0) \
203 - KERNEL_U_ADDR
204 #endif
205
206 /* Registers we shouldn't try to fetch. */
207 #if !defined (CANNOT_FETCH_REGISTER)
208 #define CANNOT_FETCH_REGISTER(regno) 0
209 #endif
210
211 /* Fetch one register. */
212
213 static void
214 fetch_register (regno)
215 int regno;
216 {
217 register unsigned int regaddr;
218 char buf[MAX_REGISTER_RAW_SIZE];
219 char mess[128]; /* For messages */
220 register int i;
221
222 /* Offset of registers within the u area. */
223 unsigned int offset;
224
225 if (CANNOT_FETCH_REGISTER (regno))
226 {
227 bzero (buf, REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
228 supply_register (regno, buf);
229 return;
230 }
231
232 offset = U_REGS_OFFSET;
233
234 regaddr = register_addr (regno, offset);
235 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
236 {
237 errno = 0;
238 *(int *) &buf[i] = ptrace (PT_RUREGS, inferior_pid,
239 (PTRACE_ARG3_TYPE) regaddr, 0, 0);
240 regaddr += sizeof (int);
241 if (errno != 0)
242 {
243 sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno);
244 perror_with_name (mess);
245 }
246 }
247 if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
248 buf[3] &= ~0x3;
249 supply_register (regno, buf);
250 }
251
252
253 /* Fetch all registers, or just one, from the child process. */
254
255 void
256 fetch_inferior_registers (regno)
257 int regno;
258 {
259 if (regno == -1)
260 for (regno = 0; regno < NUM_REGS; regno++)
261 fetch_register (regno);
262 else
263 fetch_register (regno);
264 }
265
266 /* Registers we shouldn't try to store. */
267 #if !defined (CANNOT_STORE_REGISTER)
268 #define CANNOT_STORE_REGISTER(regno) 0
269 #endif
270
271 /* Store our register values back into the inferior.
272 If REGNO is -1, do this for all registers.
273 Otherwise, REGNO specifies which register (so we can save time). */
274
275 void
276 store_inferior_registers (regno)
277 int regno;
278 {
279 register unsigned int regaddr;
280 char buf[80];
281 extern char registers[];
282 register int i;
283
284 unsigned int offset = U_REGS_OFFSET;
285
286 if (regno >= 0)
287 {
288 regaddr = register_addr (regno, offset);
289 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
290 {
291 errno = 0;
292 ptrace (PT_WUAREA, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
293 *(int *) &registers[REGISTER_BYTE (regno) + i], 0);
294 if (errno != 0)
295 {
296 sprintf (buf, "writing register number %d(%d)", regno, i);
297 perror_with_name (buf);
298 }
299 regaddr += sizeof(int);
300 }
301 }
302 else
303 {
304 for (regno = 0; regno < NUM_REGS; regno++)
305 {
306 if (CANNOT_STORE_REGISTER (regno))
307 continue;
308 regaddr = register_addr (regno, offset);
309 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
310 {
311 errno = 0;
312 ptrace (PT_WUAREA, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
313 *(int *) &registers[REGISTER_BYTE (regno) + i], 0);
314 if (errno != 0)
315 {
316 sprintf (buf, "writing register number %d(%d)", regno, i);
317 perror_with_name (buf);
318 }
319 regaddr += sizeof(int);
320 }
321 }
322 }
323 return;
324 }
325 #endif /* !defined (FETCH_INFERIOR_REGISTERS). */
326 \f
327 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
328 in the NEW_SUN_PTRACE case.
329 It ought to be straightforward. But it appears that writing did
330 not write the data that I specified. I cannot understand where
331 it got the data that it actually did write. */
332
333 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
334 to debugger memory starting at MYADDR. Copy to inferior if
335 WRITE is nonzero.
336
337 Returns the length copied, which is either the LEN argument or zero.
338 This xfer function does not do partial moves, since child_ops
339 doesn't allow memory operations to cross below us in the target stack
340 anyway. */
341
342 int
343 child_xfer_memory (memaddr, myaddr, len, write, target)
344 CORE_ADDR memaddr;
345 char *myaddr;
346 int len;
347 int write;
348 struct target_ops *target; /* ignored */
349 {
350 register int i;
351 /* Round starting address down to longword boundary. */
352 register CORE_ADDR addr = memaddr & - sizeof (int);
353 /* Round ending address up; get number of longwords that makes. */
354 register int count
355 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
356 /* Allocate buffer of that many longwords. */
357 register int *buffer = (int *) alloca (count * sizeof (int));
358
359 if (write)
360 {
361 /* Fill start and end extra bytes of buffer with existing memory data. */
362
363 if (addr != memaddr || len < (int)sizeof (int)) {
364 /* Need part of initial word -- fetch it. */
365 buffer[0] = ptrace (PT_RIUSER, inferior_pid,
366 (PTRACE_ARG3_TYPE) addr, 0, 0);
367 }
368
369 if (count > 1) /* FIXME, avoid if even boundary */
370 {
371 buffer[count - 1]
372 = ptrace (PT_RIUSER, inferior_pid,
373 (PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)),
374 0, 0);
375 }
376
377 /* Copy data to be written over corresponding part of buffer */
378
379 bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
380
381 /* Write the entire buffer. */
382
383 for (i = 0; i < count; i++, addr += sizeof (int))
384 {
385 errno = 0;
386 ptrace (PT_WDUSER, inferior_pid, (PTRACE_ARG3_TYPE) addr,
387 buffer[i], 0);
388 if (errno)
389 {
390 /* Using the appropriate one (I or D) is necessary for
391 Gould NP1, at least. */
392 errno = 0;
393 ptrace (PT_WIUSER, inferior_pid, (PTRACE_ARG3_TYPE) addr,
394 buffer[i], 0);
395 }
396 if (errno)
397 return 0;
398 }
399 }
400 else
401 {
402 /* Read all the longwords */
403 for (i = 0; i < count; i++, addr += sizeof (int))
404 {
405 errno = 0;
406 buffer[i] = ptrace (PT_RIUSER, inferior_pid,
407 (PTRACE_ARG3_TYPE) addr, 0, 0);
408 if (errno)
409 return 0;
410 QUIT;
411 }
412
413 /* Copy appropriate bytes out of the buffer. */
414 bcopy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
415 }
416 return len;
417 }
418
419
420
421
422 int
423 getpagesize()
424 {
425 return(4096);
426 }
This page took 0.05103 seconds and 4 git commands to generate.