2004-02-12 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-linux-nat.c
1 /* Native-dependent code for GNU/Linux x86.
2
3 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include <sys/ptrace.h>
31 #include <sys/user.h>
32 #include <sys/procfs.h>
33
34 #ifdef HAVE_SYS_REG_H
35 #include <sys/reg.h>
36 #endif
37
38 #ifndef ORIG_EAX
39 #define ORIG_EAX -1
40 #endif
41
42 #ifdef HAVE_SYS_DEBUGREG_H
43 #include <sys/debugreg.h>
44 #endif
45
46 #ifndef DR_FIRSTADDR
47 #define DR_FIRSTADDR 0
48 #endif
49
50 #ifndef DR_LASTADDR
51 #define DR_LASTADDR 3
52 #endif
53
54 #ifndef DR_STATUS
55 #define DR_STATUS 6
56 #endif
57
58 #ifndef DR_CONTROL
59 #define DR_CONTROL 7
60 #endif
61
62 /* Prototypes for supply_gregset etc. */
63 #include "gregset.h"
64
65 /* Prototypes for i387_supply_fsave etc. */
66 #include "i387-tdep.h"
67
68 /* Defines for XMM0_REGNUM etc. */
69 #include "i386-tdep.h"
70
71 /* Defines I386_LINUX_ORIG_EAX_REGNUM. */
72 #include "i386-linux-tdep.h"
73
74 /* Defines ps_err_e, struct ps_prochandle. */
75 #include "gdb_proc_service.h"
76
77 /* Prototypes for local functions. */
78 static void dummy_sse_values (void);
79 \f
80
81 /* The register sets used in GNU/Linux ELF core-dumps are identical to
82 the register sets in `struct user' that is used for a.out
83 core-dumps, and is also used by `ptrace'. The corresponding types
84 are `elf_gregset_t' for the general-purpose registers (with
85 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
86 for the floating-point registers.
87
88 Those types used to be available under the names `gregset_t' and
89 `fpregset_t' too, and this file used those names in the past. But
90 those names are now used for the register sets used in the
91 `mcontext_t' type, and have a different size and layout. */
92
93 /* Mapping between the general-purpose registers in `struct user'
94 format and GDB's register array layout. */
95 static int regmap[] =
96 {
97 EAX, ECX, EDX, EBX,
98 UESP, EBP, ESI, EDI,
99 EIP, EFL, CS, SS,
100 DS, ES, FS, GS,
101 -1, -1, -1, -1, /* st0, st1, st2, st3 */
102 -1, -1, -1, -1, /* st4, st5, st6, st7 */
103 -1, -1, -1, -1, /* fctrl, fstat, ftag, fiseg */
104 -1, -1, -1, -1, /* fioff, foseg, fooff, fop */
105 -1, -1, -1, -1, /* xmm0, xmm1, xmm2, xmm3 */
106 -1, -1, -1, -1, /* xmm4, xmm5, xmm6, xmm6 */
107 -1, /* mxcsr */
108 ORIG_EAX
109 };
110
111 /* Which ptrace request retrieves which registers?
112 These apply to the corresponding SET requests as well. */
113
114 #define GETREGS_SUPPLIES(regno) \
115 ((0 <= (regno) && (regno) <= 15) || (regno) == I386_LINUX_ORIG_EAX_REGNUM)
116
117 #define GETFPREGS_SUPPLIES(regno) \
118 (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
119
120 #define GETFPXREGS_SUPPLIES(regno) \
121 (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
122
123 /* Does the current host support the GETREGS request? */
124 int have_ptrace_getregs =
125 #ifdef HAVE_PTRACE_GETREGS
126 1
127 #else
128 0
129 #endif
130 ;
131
132 /* Does the current host support the GETFPXREGS request? The header
133 file may or may not define it, and even if it is defined, the
134 kernel will return EIO if it's running on a pre-SSE processor.
135
136 My instinct is to attach this to some architecture- or
137 target-specific data structure, but really, a particular GDB
138 process can only run on top of one kernel at a time. So it's okay
139 for this to be a simple variable. */
140 int have_ptrace_getfpxregs =
141 #ifdef HAVE_PTRACE_GETFPXREGS
142 1
143 #else
144 0
145 #endif
146 ;
147 \f
148
149 /* Support for the user struct. */
150
151 /* Return the address of register REGNUM. BLOCKEND is the value of
152 u.u_ar0, which should point to the registers. */
153
154 CORE_ADDR
155 register_u_addr (CORE_ADDR blockend, int regnum)
156 {
157 return (blockend + 4 * regmap[regnum]);
158 }
159
160 /* Return the size of the user struct. */
161
162 int
163 kernel_u_size (void)
164 {
165 return (sizeof (struct user));
166 }
167 \f
168
169 /* Accessing registers through the U area, one at a time. */
170
171 /* Fetch one register. */
172
173 static void
174 fetch_register (int regno)
175 {
176 int tid;
177 int val;
178
179 gdb_assert (!have_ptrace_getregs);
180 if (cannot_fetch_register (regno))
181 {
182 supply_register (regno, NULL);
183 return;
184 }
185
186 /* GNU/Linux LWP ID's are process ID's. */
187 tid = TIDGET (inferior_ptid);
188 if (tid == 0)
189 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
190
191 errno = 0;
192 val = ptrace (PTRACE_PEEKUSER, tid, register_addr (regno, 0), 0);
193 if (errno != 0)
194 error ("Couldn't read register %s (#%d): %s.", REGISTER_NAME (regno),
195 regno, safe_strerror (errno));
196
197 supply_register (regno, &val);
198 }
199
200 /* Store one register. */
201
202 static void
203 store_register (int regno)
204 {
205 int tid;
206 int val;
207
208 gdb_assert (!have_ptrace_getregs);
209 if (cannot_store_register (regno))
210 return;
211
212 /* GNU/Linux LWP ID's are process ID's. */
213 tid = TIDGET (inferior_ptid);
214 if (tid == 0)
215 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
216
217 errno = 0;
218 regcache_collect (regno, &val);
219 ptrace (PTRACE_POKEUSER, tid, register_addr (regno, 0), val);
220 if (errno != 0)
221 error ("Couldn't write register %s (#%d): %s.", REGISTER_NAME (regno),
222 regno, safe_strerror (errno));
223 }
224 \f
225
226 /* Transfering the general-purpose registers between GDB, inferiors
227 and core files. */
228
229 /* Fill GDB's register array with the general-purpose register values
230 in *GREGSETP. */
231
232 void
233 supply_gregset (elf_gregset_t *gregsetp)
234 {
235 elf_greg_t *regp = (elf_greg_t *) gregsetp;
236 int i;
237
238 for (i = 0; i < I386_NUM_GREGS; i++)
239 supply_register (i, regp + regmap[i]);
240
241 if (I386_LINUX_ORIG_EAX_REGNUM < NUM_REGS)
242 supply_register (I386_LINUX_ORIG_EAX_REGNUM, regp + ORIG_EAX);
243 }
244
245 /* Fill register REGNO (if it is a general-purpose register) in
246 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
247 do this for all registers. */
248
249 void
250 fill_gregset (elf_gregset_t *gregsetp, int regno)
251 {
252 elf_greg_t *regp = (elf_greg_t *) gregsetp;
253 int i;
254
255 for (i = 0; i < I386_NUM_GREGS; i++)
256 if (regno == -1 || regno == i)
257 regcache_collect (i, regp + regmap[i]);
258
259 if ((regno == -1 || regno == I386_LINUX_ORIG_EAX_REGNUM)
260 && I386_LINUX_ORIG_EAX_REGNUM < NUM_REGS)
261 regcache_collect (I386_LINUX_ORIG_EAX_REGNUM, regp + ORIG_EAX);
262 }
263
264 #ifdef HAVE_PTRACE_GETREGS
265
266 /* Fetch all general-purpose registers from process/thread TID and
267 store their values in GDB's register array. */
268
269 static void
270 fetch_regs (int tid)
271 {
272 elf_gregset_t regs;
273
274 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
275 {
276 if (errno == EIO)
277 {
278 /* The kernel we're running on doesn't support the GETREGS
279 request. Reset `have_ptrace_getregs'. */
280 have_ptrace_getregs = 0;
281 return;
282 }
283
284 perror_with_name ("Couldn't get registers");
285 }
286
287 supply_gregset (&regs);
288 }
289
290 /* Store all valid general-purpose registers in GDB's register array
291 into the process/thread specified by TID. */
292
293 static void
294 store_regs (int tid, int regno)
295 {
296 elf_gregset_t regs;
297
298 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
299 perror_with_name ("Couldn't get registers");
300
301 fill_gregset (&regs, regno);
302
303 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
304 perror_with_name ("Couldn't write registers");
305 }
306
307 #else
308
309 static void fetch_regs (int tid) {}
310 static void store_regs (int tid, int regno) {}
311
312 #endif
313 \f
314
315 /* Transfering floating-point registers between GDB, inferiors and cores. */
316
317 /* Fill GDB's register array with the floating-point register values in
318 *FPREGSETP. */
319
320 void
321 supply_fpregset (elf_fpregset_t *fpregsetp)
322 {
323 i387_supply_fsave (current_regcache, -1, fpregsetp);
324 dummy_sse_values ();
325 }
326
327 /* Fill register REGNO (if it is a floating-point register) in
328 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
329 do this for all registers. */
330
331 void
332 fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
333 {
334 i387_fill_fsave ((char *) fpregsetp, regno);
335 }
336
337 #ifdef HAVE_PTRACE_GETREGS
338
339 /* Fetch all floating-point registers from process/thread TID and store
340 thier values in GDB's register array. */
341
342 static void
343 fetch_fpregs (int tid)
344 {
345 elf_fpregset_t fpregs;
346
347 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
348 perror_with_name ("Couldn't get floating point status");
349
350 supply_fpregset (&fpregs);
351 }
352
353 /* Store all valid floating-point registers in GDB's register array
354 into the process/thread specified by TID. */
355
356 static void
357 store_fpregs (int tid, int regno)
358 {
359 elf_fpregset_t fpregs;
360
361 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
362 perror_with_name ("Couldn't get floating point status");
363
364 fill_fpregset (&fpregs, regno);
365
366 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
367 perror_with_name ("Couldn't write floating point status");
368 }
369
370 #else
371
372 static void fetch_fpregs (int tid) {}
373 static void store_fpregs (int tid, int regno) {}
374
375 #endif
376 \f
377
378 /* Transfering floating-point and SSE registers to and from GDB. */
379
380 #ifdef HAVE_PTRACE_GETFPXREGS
381
382 /* Fill GDB's register array with the floating-point and SSE register
383 values in *FPXREGSETP. */
384
385 void
386 supply_fpxregset (elf_fpxregset_t *fpxregsetp)
387 {
388 i387_supply_fxsave (current_regcache, -1, fpxregsetp);
389 }
390
391 /* Fill register REGNO (if it is a floating-point or SSE register) in
392 *FPXREGSETP with the value in GDB's register array. If REGNO is
393 -1, do this for all registers. */
394
395 void
396 fill_fpxregset (elf_fpxregset_t *fpxregsetp, int regno)
397 {
398 i387_fill_fxsave ((char *) fpxregsetp, regno);
399 }
400
401 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from
402 process/thread TID and store their values in GDB's register array.
403 Return non-zero if successful, zero otherwise. */
404
405 static int
406 fetch_fpxregs (int tid)
407 {
408 elf_fpxregset_t fpxregs;
409
410 if (! have_ptrace_getfpxregs)
411 return 0;
412
413 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
414 {
415 if (errno == EIO)
416 {
417 have_ptrace_getfpxregs = 0;
418 return 0;
419 }
420
421 perror_with_name ("Couldn't read floating-point and SSE registers");
422 }
423
424 supply_fpxregset (&fpxregs);
425 return 1;
426 }
427
428 /* Store all valid registers in GDB's register array covered by the
429 PTRACE_SETFPXREGS request into the process/thread specified by TID.
430 Return non-zero if successful, zero otherwise. */
431
432 static int
433 store_fpxregs (int tid, int regno)
434 {
435 elf_fpxregset_t fpxregs;
436
437 if (! have_ptrace_getfpxregs)
438 return 0;
439
440 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
441 {
442 if (errno == EIO)
443 {
444 have_ptrace_getfpxregs = 0;
445 return 0;
446 }
447
448 perror_with_name ("Couldn't read floating-point and SSE registers");
449 }
450
451 fill_fpxregset (&fpxregs, regno);
452
453 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
454 perror_with_name ("Couldn't write floating-point and SSE registers");
455
456 return 1;
457 }
458
459 /* Fill the XMM registers in the register array with dummy values. For
460 cases where we don't have access to the XMM registers. I think
461 this is cleaner than printing a warning. For a cleaner solution,
462 we should gdbarchify the i386 family. */
463
464 static void
465 dummy_sse_values (void)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
468 /* C doesn't have a syntax for NaN's, so write it out as an array of
469 longs. */
470 static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
471 static long mxcsr = 0x1f80;
472 int reg;
473
474 for (reg = 0; reg < tdep->num_xmm_regs; reg++)
475 supply_register (XMM0_REGNUM + reg, (char *) dummy);
476 if (tdep->num_xmm_regs > 0)
477 supply_register (MXCSR_REGNUM, (char *) &mxcsr);
478 }
479
480 #else
481
482 static int fetch_fpxregs (int tid) { return 0; }
483 static int store_fpxregs (int tid, int regno) { return 0; }
484 static void dummy_sse_values (void) {}
485
486 #endif /* HAVE_PTRACE_GETFPXREGS */
487 \f
488
489 /* Transferring arbitrary registers between GDB and inferior. */
490
491 /* Check if register REGNO in the child process is accessible.
492 If we are accessing registers directly via the U area, only the
493 general-purpose registers are available.
494 All registers should be accessible if we have GETREGS support. */
495
496 int
497 cannot_fetch_register (int regno)
498 {
499 gdb_assert (regno >= 0 && regno < NUM_REGS);
500 return (!have_ptrace_getregs && regmap[regno] == -1);
501 }
502
503 int
504 cannot_store_register (int regno)
505 {
506 gdb_assert (regno >= 0 && regno < NUM_REGS);
507 return (!have_ptrace_getregs && regmap[regno] == -1);
508 }
509
510 /* Fetch register REGNO from the child process. If REGNO is -1, do
511 this for all registers (including the floating point and SSE
512 registers). */
513
514 void
515 fetch_inferior_registers (int regno)
516 {
517 int tid;
518
519 /* Use the old method of peeking around in `struct user' if the
520 GETREGS request isn't available. */
521 if (!have_ptrace_getregs)
522 {
523 int i;
524
525 for (i = 0; i < NUM_REGS; i++)
526 if (regno == -1 || regno == i)
527 fetch_register (i);
528
529 return;
530 }
531
532 /* GNU/Linux LWP ID's are process ID's. */
533 tid = TIDGET (inferior_ptid);
534 if (tid == 0)
535 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
536
537 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
538 transfers more registers in one system call, and we'll cache the
539 results. But remember that fetch_fpxregs can fail, and return
540 zero. */
541 if (regno == -1)
542 {
543 fetch_regs (tid);
544
545 /* The call above might reset `have_ptrace_getregs'. */
546 if (!have_ptrace_getregs)
547 {
548 fetch_inferior_registers (regno);
549 return;
550 }
551
552 if (fetch_fpxregs (tid))
553 return;
554 fetch_fpregs (tid);
555 return;
556 }
557
558 if (GETREGS_SUPPLIES (regno))
559 {
560 fetch_regs (tid);
561 return;
562 }
563
564 if (GETFPXREGS_SUPPLIES (regno))
565 {
566 if (fetch_fpxregs (tid))
567 return;
568
569 /* Either our processor or our kernel doesn't support the SSE
570 registers, so read the FP registers in the traditional way,
571 and fill the SSE registers with dummy values. It would be
572 more graceful to handle differences in the register set using
573 gdbarch. Until then, this will at least make things work
574 plausibly. */
575 fetch_fpregs (tid);
576 return;
577 }
578
579 internal_error (__FILE__, __LINE__,
580 "Got request for bad register number %d.", regno);
581 }
582
583 /* Store register REGNO back into the child process. If REGNO is -1,
584 do this for all registers (including the floating point and SSE
585 registers). */
586 void
587 store_inferior_registers (int regno)
588 {
589 int tid;
590
591 /* Use the old method of poking around in `struct user' if the
592 SETREGS request isn't available. */
593 if (!have_ptrace_getregs)
594 {
595 int i;
596
597 for (i = 0; i < NUM_REGS; i++)
598 if (regno == -1 || regno == i)
599 store_register (i);
600
601 return;
602 }
603
604 /* GNU/Linux LWP ID's are process ID's. */
605 tid = TIDGET (inferior_ptid);
606 if (tid == 0)
607 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
608
609 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
610 transfers more registers in one system call. But remember that
611 store_fpxregs can fail, and return zero. */
612 if (regno == -1)
613 {
614 store_regs (tid, regno);
615 if (store_fpxregs (tid, regno))
616 return;
617 store_fpregs (tid, regno);
618 return;
619 }
620
621 if (GETREGS_SUPPLIES (regno))
622 {
623 store_regs (tid, regno);
624 return;
625 }
626
627 if (GETFPXREGS_SUPPLIES (regno))
628 {
629 if (store_fpxregs (tid, regno))
630 return;
631
632 /* Either our processor or our kernel doesn't support the SSE
633 registers, so just write the FP registers in the traditional
634 way. */
635 store_fpregs (tid, regno);
636 return;
637 }
638
639 internal_error (__FILE__, __LINE__,
640 "Got request to store bad register number %d.", regno);
641 }
642 \f
643
644 /* Support for debug registers. */
645
646 static unsigned long
647 i386_linux_dr_get (int regnum)
648 {
649 int tid;
650 unsigned long value;
651
652 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
653 multi-threaded processes here. For now, pretend there is just
654 one thread. */
655 tid = PIDGET (inferior_ptid);
656
657 /* FIXME: kettenis/2001-03-27: Calling perror_with_name if the
658 ptrace call fails breaks debugging remote targets. The correct
659 way to fix this is to add the hardware breakpoint and watchpoint
660 stuff to the target vectore. For now, just return zero if the
661 ptrace call fails. */
662 errno = 0;
663 value = ptrace (PTRACE_PEEKUSER, tid,
664 offsetof (struct user, u_debugreg[regnum]), 0);
665 if (errno != 0)
666 #if 0
667 perror_with_name ("Couldn't read debug register");
668 #else
669 return 0;
670 #endif
671
672 return value;
673 }
674
675 static void
676 i386_linux_dr_set (int regnum, unsigned long value)
677 {
678 int tid;
679
680 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
681 multi-threaded processes here. For now, pretend there is just
682 one thread. */
683 tid = PIDGET (inferior_ptid);
684
685 errno = 0;
686 ptrace (PTRACE_POKEUSER, tid,
687 offsetof (struct user, u_debugreg[regnum]), value);
688 if (errno != 0)
689 perror_with_name ("Couldn't write debug register");
690 }
691
692 void
693 i386_linux_dr_set_control (unsigned long control)
694 {
695 i386_linux_dr_set (DR_CONTROL, control);
696 }
697
698 void
699 i386_linux_dr_set_addr (int regnum, CORE_ADDR addr)
700 {
701 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
702
703 i386_linux_dr_set (DR_FIRSTADDR + regnum, addr);
704 }
705
706 void
707 i386_linux_dr_reset_addr (int regnum)
708 {
709 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
710
711 i386_linux_dr_set (DR_FIRSTADDR + regnum, 0L);
712 }
713
714 unsigned long
715 i386_linux_dr_get_status (void)
716 {
717 return i386_linux_dr_get (DR_STATUS);
718 }
719 \f
720
721 /* Called by libthread_db. Returns a pointer to the thread local
722 storage (or its descriptor). */
723
724 ps_err_e
725 ps_get_thread_area (const struct ps_prochandle *ph,
726 lwpid_t lwpid, int idx, void **base)
727 {
728 /* NOTE: cagney/2003-08-26: The definition of this buffer is found
729 in the kernel header <asm-i386/ldt.h>. It, after padding, is 4 x
730 4 byte integers in size: `entry_number', `base_addr', `limit',
731 and a bunch of status bits.
732
733 The values returned by this ptrace call should be part of the
734 regcache buffer, and ps_get_thread_area should channel its
735 request through the regcache. That way remote targets could
736 provide the value using the remote protocol and not this direct
737 call.
738
739 Is this function needed? I'm guessing that the `base' is the
740 address of a a descriptor that libthread_db uses to find the
741 thread local address base that GDB needs. Perhaphs that
742 descriptor is defined by the ABI. Anyway, given that
743 libthread_db calls this function without prompting (gdb
744 requesting tls base) I guess it needs info in there anyway. */
745 unsigned int desc[4];
746 gdb_assert (sizeof (int) == 4);
747
748 #ifndef PTRACE_GET_THREAD_AREA
749 #define PTRACE_GET_THREAD_AREA 25
750 #endif
751
752 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
753 (void *) idx, (unsigned long) &desc) < 0)
754 return PS_ERR;
755
756 *(int *)base = desc[1];
757 return PS_OK;
758 }
759 \f
760
761 /* The instruction for a GNU/Linux system call is:
762 int $0x80
763 or 0xcd 0x80. */
764
765 static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
766
767 #define LINUX_SYSCALL_LEN (sizeof linux_syscall)
768
769 /* The system call number is stored in the %eax register. */
770 #define LINUX_SYSCALL_REGNUM 0 /* %eax */
771
772 /* We are specifically interested in the sigreturn and rt_sigreturn
773 system calls. */
774
775 #ifndef SYS_sigreturn
776 #define SYS_sigreturn 0x77
777 #endif
778 #ifndef SYS_rt_sigreturn
779 #define SYS_rt_sigreturn 0xad
780 #endif
781
782 /* Offset to saved processor flags, from <asm/sigcontext.h>. */
783 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
784
785 /* Resume execution of the inferior process.
786 If STEP is nonzero, single-step it.
787 If SIGNAL is nonzero, give it that signal. */
788
789 void
790 child_resume (ptid_t ptid, int step, enum target_signal signal)
791 {
792 int pid = PIDGET (ptid);
793
794 int request = PTRACE_CONT;
795
796 if (pid == -1)
797 /* Resume all threads. */
798 /* I think this only gets used in the non-threaded case, where "resume
799 all threads" and "resume inferior_ptid" are the same. */
800 pid = PIDGET (inferior_ptid);
801
802 if (step)
803 {
804 CORE_ADDR pc = read_pc_pid (pid_to_ptid (pid));
805 unsigned char buf[LINUX_SYSCALL_LEN];
806
807 request = PTRACE_SINGLESTEP;
808
809 /* Returning from a signal trampoline is done by calling a
810 special system call (sigreturn or rt_sigreturn, see
811 i386-linux-tdep.c for more information). This system call
812 restores the registers that were saved when the signal was
813 raised, including %eflags. That means that single-stepping
814 won't work. Instead, we'll have to modify the signal context
815 that's about to be restored, and set the trace flag there. */
816
817 /* First check if PC is at a system call. */
818 if (read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0
819 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
820 {
821 int syscall = read_register_pid (LINUX_SYSCALL_REGNUM,
822 pid_to_ptid (pid));
823
824 /* Then check the system call number. */
825 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
826 {
827 CORE_ADDR sp = read_register (I386_ESP_REGNUM);
828 CORE_ADDR addr = sp;
829 unsigned long int eflags;
830
831 if (syscall == SYS_rt_sigreturn)
832 addr = read_memory_integer (sp + 8, 4) + 20;
833
834 /* Set the trace flag in the context that's about to be
835 restored. */
836 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
837 read_memory (addr, (char *) &eflags, 4);
838 eflags |= 0x0100;
839 write_memory (addr, (char *) &eflags, 4);
840 }
841 }
842 }
843
844 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
845 perror_with_name ("ptrace");
846 }
847
848 void
849 child_post_startup_inferior (ptid_t ptid)
850 {
851 i386_cleanup_dregs ();
852 linux_child_post_startup_inferior (ptid);
853 }
This page took 0.048637 seconds and 4 git commands to generate.