PR ld/13343
[deliverable/binutils-gdb.git] / gdb / i386-linux-nat.c
1 /* Native-dependent code for GNU/Linux i386.
2
3 Copyright (C) 1999-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "i386-nat.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "target.h"
27 #include "linux-nat.h"
28
29 #include "gdb_assert.h"
30 #include "gdb_string.h"
31 #include "elf/common.h"
32 #include <sys/uio.h>
33 #include <sys/ptrace.h>
34 #include <sys/user.h>
35 #include <sys/procfs.h>
36
37 #ifdef HAVE_SYS_REG_H
38 #include <sys/reg.h>
39 #endif
40
41 #ifndef ORIG_EAX
42 #define ORIG_EAX -1
43 #endif
44
45 #ifdef HAVE_SYS_DEBUGREG_H
46 #include <sys/debugreg.h>
47 #endif
48
49 /* Prototypes for supply_gregset etc. */
50 #include "gregset.h"
51
52 #include "i387-tdep.h"
53 #include "i386-tdep.h"
54 #include "i386-linux-tdep.h"
55
56 /* Defines ps_err_e, struct ps_prochandle. */
57 #include "gdb_proc_service.h"
58
59 #include "i386-xstate.h"
60
61 #ifndef PTRACE_GETREGSET
62 #define PTRACE_GETREGSET 0x4204
63 #endif
64
65 #ifndef PTRACE_SETREGSET
66 #define PTRACE_SETREGSET 0x4205
67 #endif
68
69 /* Per-thread arch-specific data we want to keep. */
70
71 struct arch_lwp_info
72 {
73 /* Non-zero if our copy differs from what's recorded in the thread. */
74 int debug_registers_changed;
75 };
76
77 /* Does the current host support PTRACE_GETREGSET? */
78 static int have_ptrace_getregset = -1;
79 \f
80
81 /* The register sets used in GNU/Linux ELF core-dumps are identical to
82 the register sets in `struct user' that is used for a.out
83 core-dumps, and is also used by `ptrace'. The corresponding types
84 are `elf_gregset_t' for the general-purpose registers (with
85 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
86 for the floating-point registers.
87
88 Those types used to be available under the names `gregset_t' and
89 `fpregset_t' too, and this file used those names in the past. But
90 those names are now used for the register sets used in the
91 `mcontext_t' type, and have a different size and layout. */
92
93 /* Which ptrace request retrieves which registers?
94 These apply to the corresponding SET requests as well. */
95
96 #define GETREGS_SUPPLIES(regno) \
97 ((0 <= (regno) && (regno) <= 15) || (regno) == I386_LINUX_ORIG_EAX_REGNUM)
98
99 #define GETFPXREGS_SUPPLIES(regno) \
100 (I386_ST0_REGNUM <= (regno) && (regno) < I386_SSE_NUM_REGS)
101
102 #define GETXSTATEREGS_SUPPLIES(regno) \
103 (I386_ST0_REGNUM <= (regno) && (regno) < I386_AVX_NUM_REGS)
104
105 /* Does the current host support the GETREGS request? */
106 int have_ptrace_getregs =
107 #ifdef HAVE_PTRACE_GETREGS
108 1
109 #else
110 0
111 #endif
112 ;
113
114 /* Does the current host support the GETFPXREGS request? The header
115 file may or may not define it, and even if it is defined, the
116 kernel will return EIO if it's running on a pre-SSE processor.
117
118 My instinct is to attach this to some architecture- or
119 target-specific data structure, but really, a particular GDB
120 process can only run on top of one kernel at a time. So it's okay
121 for this to be a simple variable. */
122 int have_ptrace_getfpxregs =
123 #ifdef HAVE_PTRACE_GETFPXREGS
124 -1
125 #else
126 0
127 #endif
128 ;
129 \f
130
131 /* Accessing registers through the U area, one at a time. */
132
133 /* Fetch one register. */
134
135 static void
136 fetch_register (struct regcache *regcache, int regno)
137 {
138 int tid;
139 int val;
140
141 gdb_assert (!have_ptrace_getregs);
142 if (i386_linux_gregset_reg_offset[regno] == -1)
143 {
144 regcache_raw_supply (regcache, regno, NULL);
145 return;
146 }
147
148 /* GNU/Linux LWP ID's are process ID's. */
149 tid = TIDGET (inferior_ptid);
150 if (tid == 0)
151 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
152
153 errno = 0;
154 val = ptrace (PTRACE_PEEKUSER, tid,
155 i386_linux_gregset_reg_offset[regno], 0);
156 if (errno != 0)
157 error (_("Couldn't read register %s (#%d): %s."),
158 gdbarch_register_name (get_regcache_arch (regcache), regno),
159 regno, safe_strerror (errno));
160
161 regcache_raw_supply (regcache, regno, &val);
162 }
163
164 /* Store one register. */
165
166 static void
167 store_register (const struct regcache *regcache, int regno)
168 {
169 int tid;
170 int val;
171
172 gdb_assert (!have_ptrace_getregs);
173 if (i386_linux_gregset_reg_offset[regno] == -1)
174 return;
175
176 /* GNU/Linux LWP ID's are process ID's. */
177 tid = TIDGET (inferior_ptid);
178 if (tid == 0)
179 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
180
181 errno = 0;
182 regcache_raw_collect (regcache, regno, &val);
183 ptrace (PTRACE_POKEUSER, tid,
184 i386_linux_gregset_reg_offset[regno], val);
185 if (errno != 0)
186 error (_("Couldn't write register %s (#%d): %s."),
187 gdbarch_register_name (get_regcache_arch (regcache), regno),
188 regno, safe_strerror (errno));
189 }
190 \f
191
192 /* Transfering the general-purpose registers between GDB, inferiors
193 and core files. */
194
195 /* Fill GDB's register array with the general-purpose register values
196 in *GREGSETP. */
197
198 void
199 supply_gregset (struct regcache *regcache, const elf_gregset_t *gregsetp)
200 {
201 const gdb_byte *regp = (const gdb_byte *) gregsetp;
202 int i;
203
204 for (i = 0; i < I386_NUM_GREGS; i++)
205 regcache_raw_supply (regcache, i,
206 regp + i386_linux_gregset_reg_offset[i]);
207
208 if (I386_LINUX_ORIG_EAX_REGNUM
209 < gdbarch_num_regs (get_regcache_arch (regcache)))
210 regcache_raw_supply (regcache, I386_LINUX_ORIG_EAX_REGNUM, regp
211 + i386_linux_gregset_reg_offset[I386_LINUX_ORIG_EAX_REGNUM]);
212 }
213
214 /* Fill register REGNO (if it is a general-purpose register) in
215 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
216 do this for all registers. */
217
218 void
219 fill_gregset (const struct regcache *regcache,
220 elf_gregset_t *gregsetp, int regno)
221 {
222 gdb_byte *regp = (gdb_byte *) gregsetp;
223 int i;
224
225 for (i = 0; i < I386_NUM_GREGS; i++)
226 if (regno == -1 || regno == i)
227 regcache_raw_collect (regcache, i,
228 regp + i386_linux_gregset_reg_offset[i]);
229
230 if ((regno == -1 || regno == I386_LINUX_ORIG_EAX_REGNUM)
231 && I386_LINUX_ORIG_EAX_REGNUM
232 < gdbarch_num_regs (get_regcache_arch (regcache)))
233 regcache_raw_collect (regcache, I386_LINUX_ORIG_EAX_REGNUM, regp
234 + i386_linux_gregset_reg_offset[I386_LINUX_ORIG_EAX_REGNUM]);
235 }
236
237 #ifdef HAVE_PTRACE_GETREGS
238
239 /* Fetch all general-purpose registers from process/thread TID and
240 store their values in GDB's register array. */
241
242 static void
243 fetch_regs (struct regcache *regcache, int tid)
244 {
245 elf_gregset_t regs;
246 elf_gregset_t *regs_p = &regs;
247
248 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
249 {
250 if (errno == EIO)
251 {
252 /* The kernel we're running on doesn't support the GETREGS
253 request. Reset `have_ptrace_getregs'. */
254 have_ptrace_getregs = 0;
255 return;
256 }
257
258 perror_with_name (_("Couldn't get registers"));
259 }
260
261 supply_gregset (regcache, (const elf_gregset_t *) regs_p);
262 }
263
264 /* Store all valid general-purpose registers in GDB's register array
265 into the process/thread specified by TID. */
266
267 static void
268 store_regs (const struct regcache *regcache, int tid, int regno)
269 {
270 elf_gregset_t regs;
271
272 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
273 perror_with_name (_("Couldn't get registers"));
274
275 fill_gregset (regcache, &regs, regno);
276
277 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
278 perror_with_name (_("Couldn't write registers"));
279 }
280
281 #else
282
283 static void fetch_regs (struct regcache *regcache, int tid) {}
284 static void store_regs (const struct regcache *regcache, int tid, int regno) {}
285
286 #endif
287 \f
288
289 /* Transfering floating-point registers between GDB, inferiors and cores. */
290
291 /* Fill GDB's register array with the floating-point register values in
292 *FPREGSETP. */
293
294 void
295 supply_fpregset (struct regcache *regcache, const elf_fpregset_t *fpregsetp)
296 {
297 i387_supply_fsave (regcache, -1, fpregsetp);
298 }
299
300 /* Fill register REGNO (if it is a floating-point register) in
301 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
302 do this for all registers. */
303
304 void
305 fill_fpregset (const struct regcache *regcache,
306 elf_fpregset_t *fpregsetp, int regno)
307 {
308 i387_collect_fsave (regcache, regno, fpregsetp);
309 }
310
311 #ifdef HAVE_PTRACE_GETREGS
312
313 /* Fetch all floating-point registers from process/thread TID and store
314 thier values in GDB's register array. */
315
316 static void
317 fetch_fpregs (struct regcache *regcache, int tid)
318 {
319 elf_fpregset_t fpregs;
320
321 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
322 perror_with_name (_("Couldn't get floating point status"));
323
324 supply_fpregset (regcache, (const elf_fpregset_t *) &fpregs);
325 }
326
327 /* Store all valid floating-point registers in GDB's register array
328 into the process/thread specified by TID. */
329
330 static void
331 store_fpregs (const struct regcache *regcache, int tid, int regno)
332 {
333 elf_fpregset_t fpregs;
334
335 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
336 perror_with_name (_("Couldn't get floating point status"));
337
338 fill_fpregset (regcache, &fpregs, regno);
339
340 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
341 perror_with_name (_("Couldn't write floating point status"));
342 }
343
344 #else
345
346 static void
347 fetch_fpregs (struct regcache *regcache, int tid)
348 {
349 }
350
351 static void
352 store_fpregs (const struct regcache *regcache, int tid, int regno)
353 {
354 }
355
356 #endif
357 \f
358
359 /* Transfering floating-point and SSE registers to and from GDB. */
360
361 /* Fetch all registers covered by the PTRACE_GETREGSET request from
362 process/thread TID and store their values in GDB's register array.
363 Return non-zero if successful, zero otherwise. */
364
365 static int
366 fetch_xstateregs (struct regcache *regcache, int tid)
367 {
368 char xstateregs[I386_XSTATE_MAX_SIZE];
369 struct iovec iov;
370
371 if (!have_ptrace_getregset)
372 return 0;
373
374 iov.iov_base = xstateregs;
375 iov.iov_len = sizeof(xstateregs);
376 if (ptrace (PTRACE_GETREGSET, tid, (unsigned int) NT_X86_XSTATE,
377 &iov) < 0)
378 perror_with_name (_("Couldn't read extended state status"));
379
380 i387_supply_xsave (regcache, -1, xstateregs);
381 return 1;
382 }
383
384 /* Store all valid registers in GDB's register array covered by the
385 PTRACE_SETREGSET request into the process/thread specified by TID.
386 Return non-zero if successful, zero otherwise. */
387
388 static int
389 store_xstateregs (const struct regcache *regcache, int tid, int regno)
390 {
391 char xstateregs[I386_XSTATE_MAX_SIZE];
392 struct iovec iov;
393
394 if (!have_ptrace_getregset)
395 return 0;
396
397 iov.iov_base = xstateregs;
398 iov.iov_len = sizeof(xstateregs);
399 if (ptrace (PTRACE_GETREGSET, tid, (unsigned int) NT_X86_XSTATE,
400 &iov) < 0)
401 perror_with_name (_("Couldn't read extended state status"));
402
403 i387_collect_xsave (regcache, regno, xstateregs, 0);
404
405 if (ptrace (PTRACE_SETREGSET, tid, (unsigned int) NT_X86_XSTATE,
406 (int) &iov) < 0)
407 perror_with_name (_("Couldn't write extended state status"));
408
409 return 1;
410 }
411
412 #ifdef HAVE_PTRACE_GETFPXREGS
413
414 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from
415 process/thread TID and store their values in GDB's register array.
416 Return non-zero if successful, zero otherwise. */
417
418 static int
419 fetch_fpxregs (struct regcache *regcache, int tid)
420 {
421 elf_fpxregset_t fpxregs;
422
423 if (! have_ptrace_getfpxregs)
424 return 0;
425
426 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
427 {
428 if (errno == EIO)
429 {
430 have_ptrace_getfpxregs = 0;
431 return 0;
432 }
433
434 perror_with_name (_("Couldn't read floating-point and SSE registers"));
435 }
436
437 i387_supply_fxsave (regcache, -1, (const elf_fpxregset_t *) &fpxregs);
438 return 1;
439 }
440
441 /* Store all valid registers in GDB's register array covered by the
442 PTRACE_SETFPXREGS request into the process/thread specified by TID.
443 Return non-zero if successful, zero otherwise. */
444
445 static int
446 store_fpxregs (const struct regcache *regcache, int tid, int regno)
447 {
448 elf_fpxregset_t fpxregs;
449
450 if (! have_ptrace_getfpxregs)
451 return 0;
452
453 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
454 {
455 if (errno == EIO)
456 {
457 have_ptrace_getfpxregs = 0;
458 return 0;
459 }
460
461 perror_with_name (_("Couldn't read floating-point and SSE registers"));
462 }
463
464 i387_collect_fxsave (regcache, regno, &fpxregs);
465
466 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
467 perror_with_name (_("Couldn't write floating-point and SSE registers"));
468
469 return 1;
470 }
471
472 #else
473
474 static int
475 fetch_fpxregs (struct regcache *regcache, int tid)
476 {
477 return 0;
478 }
479
480 static int
481 store_fpxregs (const struct regcache *regcache, int tid, int regno)
482 {
483 return 0;
484 }
485
486 #endif /* HAVE_PTRACE_GETFPXREGS */
487 \f
488
489 /* Transferring arbitrary registers between GDB and inferior. */
490
491 /* Fetch register REGNO from the child process. If REGNO is -1, do
492 this for all registers (including the floating point and SSE
493 registers). */
494
495 static void
496 i386_linux_fetch_inferior_registers (struct target_ops *ops,
497 struct regcache *regcache, int regno)
498 {
499 int tid;
500
501 /* Use the old method of peeking around in `struct user' if the
502 GETREGS request isn't available. */
503 if (!have_ptrace_getregs)
504 {
505 int i;
506
507 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
508 if (regno == -1 || regno == i)
509 fetch_register (regcache, i);
510
511 return;
512 }
513
514 /* GNU/Linux LWP ID's are process ID's. */
515 tid = TIDGET (inferior_ptid);
516 if (tid == 0)
517 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
518
519 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
520 transfers more registers in one system call, and we'll cache the
521 results. But remember that fetch_fpxregs can fail, and return
522 zero. */
523 if (regno == -1)
524 {
525 fetch_regs (regcache, tid);
526
527 /* The call above might reset `have_ptrace_getregs'. */
528 if (!have_ptrace_getregs)
529 {
530 i386_linux_fetch_inferior_registers (ops, regcache, regno);
531 return;
532 }
533
534 if (fetch_xstateregs (regcache, tid))
535 return;
536 if (fetch_fpxregs (regcache, tid))
537 return;
538 fetch_fpregs (regcache, tid);
539 return;
540 }
541
542 if (GETREGS_SUPPLIES (regno))
543 {
544 fetch_regs (regcache, tid);
545 return;
546 }
547
548 if (GETXSTATEREGS_SUPPLIES (regno))
549 {
550 if (fetch_xstateregs (regcache, tid))
551 return;
552 }
553
554 if (GETFPXREGS_SUPPLIES (regno))
555 {
556 if (fetch_fpxregs (regcache, tid))
557 return;
558
559 /* Either our processor or our kernel doesn't support the SSE
560 registers, so read the FP registers in the traditional way,
561 and fill the SSE registers with dummy values. It would be
562 more graceful to handle differences in the register set using
563 gdbarch. Until then, this will at least make things work
564 plausibly. */
565 fetch_fpregs (regcache, tid);
566 return;
567 }
568
569 internal_error (__FILE__, __LINE__,
570 _("Got request for bad register number %d."), regno);
571 }
572
573 /* Store register REGNO back into the child process. If REGNO is -1,
574 do this for all registers (including the floating point and SSE
575 registers). */
576 static void
577 i386_linux_store_inferior_registers (struct target_ops *ops,
578 struct regcache *regcache, int regno)
579 {
580 int tid;
581
582 /* Use the old method of poking around in `struct user' if the
583 SETREGS request isn't available. */
584 if (!have_ptrace_getregs)
585 {
586 int i;
587
588 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
589 if (regno == -1 || regno == i)
590 store_register (regcache, i);
591
592 return;
593 }
594
595 /* GNU/Linux LWP ID's are process ID's. */
596 tid = TIDGET (inferior_ptid);
597 if (tid == 0)
598 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
599
600 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
601 transfers more registers in one system call. But remember that
602 store_fpxregs can fail, and return zero. */
603 if (regno == -1)
604 {
605 store_regs (regcache, tid, regno);
606 if (store_xstateregs (regcache, tid, regno))
607 return;
608 if (store_fpxregs (regcache, tid, regno))
609 return;
610 store_fpregs (regcache, tid, regno);
611 return;
612 }
613
614 if (GETREGS_SUPPLIES (regno))
615 {
616 store_regs (regcache, tid, regno);
617 return;
618 }
619
620 if (GETXSTATEREGS_SUPPLIES (regno))
621 {
622 if (store_xstateregs (regcache, tid, regno))
623 return;
624 }
625
626 if (GETFPXREGS_SUPPLIES (regno))
627 {
628 if (store_fpxregs (regcache, tid, regno))
629 return;
630
631 /* Either our processor or our kernel doesn't support the SSE
632 registers, so just write the FP registers in the traditional
633 way. */
634 store_fpregs (regcache, tid, regno);
635 return;
636 }
637
638 internal_error (__FILE__, __LINE__,
639 _("Got request to store bad register number %d."), regno);
640 }
641 \f
642
643 /* Support for debug registers. */
644
645 /* Get debug register REGNUM value from only the one LWP of PTID. */
646
647 static unsigned long
648 i386_linux_dr_get (ptid_t ptid, int regnum)
649 {
650 int tid;
651 unsigned long value;
652
653 tid = TIDGET (ptid);
654 if (tid == 0)
655 tid = PIDGET (ptid);
656
657 errno = 0;
658 value = ptrace (PTRACE_PEEKUSER, tid,
659 offsetof (struct user, u_debugreg[regnum]), 0);
660 if (errno != 0)
661 perror_with_name (_("Couldn't read debug register"));
662
663 return value;
664 }
665
666 /* Set debug register REGNUM to VALUE in only the one LWP of PTID. */
667
668 static void
669 i386_linux_dr_set (ptid_t ptid, int regnum, unsigned long value)
670 {
671 int tid;
672
673 tid = TIDGET (ptid);
674 if (tid == 0)
675 tid = PIDGET (ptid);
676
677 errno = 0;
678 ptrace (PTRACE_POKEUSER, tid,
679 offsetof (struct user, u_debugreg[regnum]), value);
680 if (errno != 0)
681 perror_with_name (_("Couldn't write debug register"));
682 }
683
684 /* Return the inferior's debug register REGNUM. */
685
686 static CORE_ADDR
687 i386_linux_dr_get_addr (int regnum)
688 {
689 /* DR6 and DR7 are retrieved with some other way. */
690 gdb_assert (DR_FIRSTADDR <= regnum && regnum <= DR_LASTADDR);
691
692 return i386_linux_dr_get (inferior_ptid, regnum);
693 }
694
695 /* Return the inferior's DR7 debug control register. */
696
697 static unsigned long
698 i386_linux_dr_get_control (void)
699 {
700 return i386_linux_dr_get (inferior_ptid, DR_CONTROL);
701 }
702
703 /* Get DR_STATUS from only the one LWP of INFERIOR_PTID. */
704
705 static unsigned long
706 i386_linux_dr_get_status (void)
707 {
708 return i386_linux_dr_get (inferior_ptid, DR_STATUS);
709 }
710
711 /* Callback for linux_nat_iterate_watchpoint_lwps. Update the debug registers
712 of LWP. */
713
714 static int
715 update_debug_registers_callback (struct lwp_info *lwp, void *arg)
716 {
717 if (lwp->arch_private == NULL)
718 lwp->arch_private = XCNEW (struct arch_lwp_info);
719
720 /* The actual update is done later just before resuming the lwp, we
721 just mark that the registers need updating. */
722 lwp->arch_private->debug_registers_changed = 1;
723
724 /* If the lwp isn't stopped, force it to momentarily pause, so we
725 can update its debug registers. */
726 if (!lwp->stopped)
727 linux_stop_lwp (lwp);
728
729 /* Continue the iteration. */
730 return 0;
731 }
732
733 /* Set DR_CONTROL to ADDR in all LWPs of the current inferior. */
734
735 static void
736 i386_linux_dr_set_control (unsigned long control)
737 {
738 linux_nat_iterate_watchpoint_lwps (update_debug_registers_callback, NULL);
739 }
740
741 /* Set address REGNUM (zero based) to ADDR in all LWPs of the current
742 inferior. */
743
744 static void
745 i386_linux_dr_set_addr (int regnum, CORE_ADDR addr)
746 {
747 ptid_t pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
748
749 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
750
751 linux_nat_iterate_watchpoint_lwps (update_debug_registers_callback, NULL);
752 }
753
754 /* Called when resuming a thread.
755 If the debug regs have changed, update the thread's copies. */
756
757 static void
758 i386_linux_prepare_to_resume (struct lwp_info *lwp)
759 {
760 int clear_status = 0;
761
762 /* NULL means this is the main thread still going through the shell,
763 or, no watchpoint has been set yet. In that case, there's
764 nothing to do. */
765 if (lwp->arch_private == NULL)
766 return;
767
768 if (lwp->arch_private->debug_registers_changed)
769 {
770 struct i386_debug_reg_state *state = i386_debug_reg_state ();
771 int i;
772
773 /* See amd64_linux_prepare_to_resume for Linux kernel note on
774 i386_linux_dr_set calls ordering. */
775
776 for (i = DR_FIRSTADDR; i <= DR_LASTADDR; i++)
777 if (state->dr_ref_count[i] > 0)
778 {
779 i386_linux_dr_set (lwp->ptid, i, state->dr_mirror[i]);
780
781 /* If we're setting a watchpoint, any change the inferior
782 had done itself to the debug registers needs to be
783 discarded, otherwise, i386_stopped_data_address can get
784 confused. */
785 clear_status = 1;
786 }
787
788 i386_linux_dr_set (lwp->ptid, DR_CONTROL, state->dr_control_mirror);
789
790 lwp->arch_private->debug_registers_changed = 0;
791 }
792
793 if (clear_status || lwp->stopped_by_watchpoint)
794 i386_linux_dr_set (lwp->ptid, DR_STATUS, 0);
795 }
796
797 static void
798 i386_linux_new_thread (struct lwp_info *lp)
799 {
800 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
801
802 info->debug_registers_changed = 1;
803
804 lp->arch_private = info;
805 }
806 \f
807
808 /* Called by libthread_db. Returns a pointer to the thread local
809 storage (or its descriptor). */
810
811 ps_err_e
812 ps_get_thread_area (const struct ps_prochandle *ph,
813 lwpid_t lwpid, int idx, void **base)
814 {
815 /* NOTE: cagney/2003-08-26: The definition of this buffer is found
816 in the kernel header <asm-i386/ldt.h>. It, after padding, is 4 x
817 4 byte integers in size: `entry_number', `base_addr', `limit',
818 and a bunch of status bits.
819
820 The values returned by this ptrace call should be part of the
821 regcache buffer, and ps_get_thread_area should channel its
822 request through the regcache. That way remote targets could
823 provide the value using the remote protocol and not this direct
824 call.
825
826 Is this function needed? I'm guessing that the `base' is the
827 address of a descriptor that libthread_db uses to find the
828 thread local address base that GDB needs. Perhaps that
829 descriptor is defined by the ABI. Anyway, given that
830 libthread_db calls this function without prompting (gdb
831 requesting tls base) I guess it needs info in there anyway. */
832 unsigned int desc[4];
833 gdb_assert (sizeof (int) == 4);
834
835 #ifndef PTRACE_GET_THREAD_AREA
836 #define PTRACE_GET_THREAD_AREA 25
837 #endif
838
839 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
840 (void *) idx, (unsigned long) &desc) < 0)
841 return PS_ERR;
842
843 *(int *)base = desc[1];
844 return PS_OK;
845 }
846 \f
847
848 /* The instruction for a GNU/Linux system call is:
849 int $0x80
850 or 0xcd 0x80. */
851
852 static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
853
854 #define LINUX_SYSCALL_LEN (sizeof linux_syscall)
855
856 /* The system call number is stored in the %eax register. */
857 #define LINUX_SYSCALL_REGNUM I386_EAX_REGNUM
858
859 /* We are specifically interested in the sigreturn and rt_sigreturn
860 system calls. */
861
862 #ifndef SYS_sigreturn
863 #define SYS_sigreturn 0x77
864 #endif
865 #ifndef SYS_rt_sigreturn
866 #define SYS_rt_sigreturn 0xad
867 #endif
868
869 /* Offset to saved processor flags, from <asm/sigcontext.h>. */
870 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
871
872 /* Resume execution of the inferior process.
873 If STEP is nonzero, single-step it.
874 If SIGNAL is nonzero, give it that signal. */
875
876 static void
877 i386_linux_resume (struct target_ops *ops,
878 ptid_t ptid, int step, enum target_signal signal)
879 {
880 int pid = PIDGET (ptid);
881
882 int request;
883
884 if (catch_syscall_enabled () > 0)
885 request = PTRACE_SYSCALL;
886 else
887 request = PTRACE_CONT;
888
889 if (step)
890 {
891 struct regcache *regcache = get_thread_regcache (pid_to_ptid (pid));
892 struct gdbarch *gdbarch = get_regcache_arch (regcache);
893 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
894 ULONGEST pc;
895 gdb_byte buf[LINUX_SYSCALL_LEN];
896
897 request = PTRACE_SINGLESTEP;
898
899 regcache_cooked_read_unsigned (regcache,
900 gdbarch_pc_regnum (gdbarch), &pc);
901
902 /* Returning from a signal trampoline is done by calling a
903 special system call (sigreturn or rt_sigreturn, see
904 i386-linux-tdep.c for more information). This system call
905 restores the registers that were saved when the signal was
906 raised, including %eflags. That means that single-stepping
907 won't work. Instead, we'll have to modify the signal context
908 that's about to be restored, and set the trace flag there. */
909
910 /* First check if PC is at a system call. */
911 if (target_read_memory (pc, buf, LINUX_SYSCALL_LEN) == 0
912 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
913 {
914 ULONGEST syscall;
915 regcache_cooked_read_unsigned (regcache,
916 LINUX_SYSCALL_REGNUM, &syscall);
917
918 /* Then check the system call number. */
919 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
920 {
921 ULONGEST sp, addr;
922 unsigned long int eflags;
923
924 regcache_cooked_read_unsigned (regcache, I386_ESP_REGNUM, &sp);
925 if (syscall == SYS_rt_sigreturn)
926 addr = read_memory_unsigned_integer (sp + 8, 4, byte_order)
927 + 20;
928 else
929 addr = sp;
930
931 /* Set the trace flag in the context that's about to be
932 restored. */
933 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
934 read_memory (addr, (gdb_byte *) &eflags, 4);
935 eflags |= 0x0100;
936 write_memory (addr, (gdb_byte *) &eflags, 4);
937 }
938 }
939 }
940
941 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
942 perror_with_name (("ptrace"));
943 }
944
945 static void (*super_post_startup_inferior) (ptid_t ptid);
946
947 static void
948 i386_linux_child_post_startup_inferior (ptid_t ptid)
949 {
950 i386_cleanup_dregs ();
951 super_post_startup_inferior (ptid);
952 }
953
954 /* Get Linux/x86 target description from running target. */
955
956 static const struct target_desc *
957 i386_linux_read_description (struct target_ops *ops)
958 {
959 int tid;
960 static uint64_t xcr0;
961
962 /* GNU/Linux LWP ID's are process ID's. */
963 tid = TIDGET (inferior_ptid);
964 if (tid == 0)
965 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
966
967 #ifdef HAVE_PTRACE_GETFPXREGS
968 if (have_ptrace_getfpxregs == -1)
969 {
970 elf_fpxregset_t fpxregs;
971
972 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
973 {
974 have_ptrace_getfpxregs = 0;
975 have_ptrace_getregset = 0;
976 return tdesc_i386_mmx_linux;
977 }
978 }
979 #endif
980
981 if (have_ptrace_getregset == -1)
982 {
983 uint64_t xstateregs[(I386_XSTATE_SSE_SIZE / sizeof (uint64_t))];
984 struct iovec iov;
985
986 iov.iov_base = xstateregs;
987 iov.iov_len = sizeof (xstateregs);
988
989 /* Check if PTRACE_GETREGSET works. */
990 if (ptrace (PTRACE_GETREGSET, tid, (unsigned int) NT_X86_XSTATE,
991 &iov) < 0)
992 have_ptrace_getregset = 0;
993 else
994 {
995 have_ptrace_getregset = 1;
996
997 /* Get XCR0 from XSAVE extended state. */
998 xcr0 = xstateregs[(I386_LINUX_XSAVE_XCR0_OFFSET
999 / sizeof (long long))];
1000 }
1001 }
1002
1003 /* Check the native XCR0 only if PTRACE_GETREGSET is available. */
1004 if (have_ptrace_getregset
1005 && (xcr0 & I386_XSTATE_AVX_MASK) == I386_XSTATE_AVX_MASK)
1006 return tdesc_i386_avx_linux;
1007 else
1008 return tdesc_i386_linux;
1009 }
1010
1011 void
1012 _initialize_i386_linux_nat (void)
1013 {
1014 struct target_ops *t;
1015
1016 /* Fill in the generic GNU/Linux methods. */
1017 t = linux_target ();
1018
1019 i386_use_watchpoints (t);
1020
1021 i386_dr_low.set_control = i386_linux_dr_set_control;
1022 i386_dr_low.set_addr = i386_linux_dr_set_addr;
1023 i386_dr_low.get_addr = i386_linux_dr_get_addr;
1024 i386_dr_low.get_status = i386_linux_dr_get_status;
1025 i386_dr_low.get_control = i386_linux_dr_get_control;
1026 i386_set_debug_register_length (4);
1027
1028 /* Override the default ptrace resume method. */
1029 t->to_resume = i386_linux_resume;
1030
1031 /* Override the GNU/Linux inferior startup hook. */
1032 super_post_startup_inferior = t->to_post_startup_inferior;
1033 t->to_post_startup_inferior = i386_linux_child_post_startup_inferior;
1034
1035 /* Add our register access methods. */
1036 t->to_fetch_registers = i386_linux_fetch_inferior_registers;
1037 t->to_store_registers = i386_linux_store_inferior_registers;
1038
1039 t->to_read_description = i386_linux_read_description;
1040
1041 /* Register the target. */
1042 linux_nat_add_target (t);
1043 linux_nat_set_new_thread (t, i386_linux_new_thread);
1044 linux_nat_set_prepare_to_resume (t, i386_linux_prepare_to_resume);
1045 }
This page took 0.080427 seconds and 4 git commands to generate.