* symtab.c (lookup_symbol_aux): Call lookup_symbol_aux to lookup
[deliverable/binutils-gdb.git] / gdb / i386-linux-nat.c
1 /* Native-dependent code for Linux/x86.
2 Copyright 1999, 2000 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24
25 #include <sys/ptrace.h>
26 #include <sys/user.h>
27 #include <sys/procfs.h>
28
29 #ifdef HAVE_SYS_REG_H
30 #include <sys/reg.h>
31 #endif
32
33 /* Prototypes for supply_gregset etc. */
34 #include "gregset.h"
35
36 /* Prototypes for i387_supply_fsave etc. */
37 #include "i387-nat.h"
38
39 /* Prototypes for local functions. */
40 static void dummy_sse_values (void);
41
42 /* On Linux, threads are implemented as pseudo-processes, in which
43 case we may be tracing more than one process at a time. In that
44 case, inferior_pid will contain the main process ID and the
45 individual thread (process) ID mashed together. These macros are
46 used to separate them out. These definitions should be overridden
47 if thread support is included. */
48
49 #if !defined (PIDGET) /* Default definition for PIDGET/TIDGET. */
50 #define PIDGET(PID) PID
51 #define TIDGET(PID) 0
52 #endif
53 \f
54
55 /* The register sets used in Linux ELF core-dumps are identical to the
56 register sets in `struct user' that is used for a.out core-dumps,
57 and is also used by `ptrace'. The corresponding types are
58 `elf_gregset_t' for the general-purpose registers (with
59 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
60 for the floating-point registers.
61
62 Those types used to be available under the names `gregset_t' and
63 `fpregset_t' too, and this file used those names in the past. But
64 those names are now used for the register sets used in the
65 `mcontext_t' type, and have a different size and layout. */
66
67 /* Mapping between the general-purpose registers in `struct user'
68 format and GDB's register array layout. */
69 static int regmap[] =
70 {
71 EAX, ECX, EDX, EBX,
72 UESP, EBP, ESI, EDI,
73 EIP, EFL, CS, SS,
74 DS, ES, FS, GS
75 };
76
77 /* Which ptrace request retrieves which registers?
78 These apply to the corresponding SET requests as well. */
79 #define GETREGS_SUPPLIES(regno) \
80 (0 <= (regno) && (regno) <= 15)
81 #define GETFPREGS_SUPPLIES(regno) \
82 (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
83 #define GETFPXREGS_SUPPLIES(regno) \
84 (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
85
86 /* Does the current host support the GETREGS request? */
87 int have_ptrace_getregs =
88 #ifdef HAVE_PTRACE_GETREGS
89 1
90 #else
91 0
92 #endif
93 ;
94
95 /* Does the current host support the GETFPXREGS request? The header
96 file may or may not define it, and even if it is defined, the
97 kernel will return EIO if it's running on a pre-SSE processor.
98
99 My instinct is to attach this to some architecture- or
100 target-specific data structure, but really, a particular GDB
101 process can only run on top of one kernel at a time. So it's okay
102 for this to be a simple variable. */
103 int have_ptrace_getfpxregs =
104 #ifdef HAVE_PTRACE_GETFPXREGS
105 1
106 #else
107 0
108 #endif
109 ;
110 \f
111
112 /* Fetching registers directly from the U area, one at a time. */
113
114 /* FIXME: kettenis/2000-03-05: This duplicates code from `inptrace.c'.
115 The problem is that we define FETCH_INFERIOR_REGISTERS since we
116 want to use our own versions of {fetch,store}_inferior_registers
117 that use the GETREGS request. This means that the code in
118 `infptrace.c' is #ifdef'd out. But we need to fall back on that
119 code when GDB is running on top of a kernel that doesn't support
120 the GETREGS request. I want to avoid changing `infptrace.c' right
121 now. */
122
123 #ifndef PT_READ_U
124 #define PT_READ_U PTRACE_PEEKUSR
125 #endif
126 #ifndef PT_WRITE_U
127 #define PT_WRITE_U PTRACE_POKEUSR
128 #endif
129
130 /* Default the type of the ptrace transfer to int. */
131 #ifndef PTRACE_XFER_TYPE
132 #define PTRACE_XFER_TYPE int
133 #endif
134
135 /* Registers we shouldn't try to fetch. */
136 #define OLD_CANNOT_FETCH_REGISTER(regno) ((regno) >= NUM_GREGS)
137
138 /* Fetch one register. */
139
140 static void
141 fetch_register (int regno)
142 {
143 /* This isn't really an address. But ptrace thinks of it as one. */
144 CORE_ADDR regaddr;
145 char mess[128]; /* For messages */
146 register int i;
147 unsigned int offset; /* Offset of registers within the u area. */
148 char buf[MAX_REGISTER_RAW_SIZE];
149 int tid;
150
151 if (OLD_CANNOT_FETCH_REGISTER (regno))
152 {
153 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
154 supply_register (regno, buf);
155 return;
156 }
157
158 /* Overload thread id onto process id */
159 if ((tid = TIDGET (inferior_pid)) == 0)
160 tid = inferior_pid; /* no thread id, just use process id */
161
162 offset = U_REGS_OFFSET;
163
164 regaddr = register_addr (regno, offset);
165 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
166 {
167 errno = 0;
168 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
169 (PTRACE_ARG3_TYPE) regaddr, 0);
170 regaddr += sizeof (PTRACE_XFER_TYPE);
171 if (errno != 0)
172 {
173 sprintf (mess, "reading register %s (#%d)",
174 REGISTER_NAME (regno), regno);
175 perror_with_name (mess);
176 }
177 }
178 supply_register (regno, buf);
179 }
180
181 /* Fetch register values from the inferior.
182 If REGNO is negative, do this for all registers.
183 Otherwise, REGNO specifies which register (so we can save time). */
184
185 void
186 old_fetch_inferior_registers (int regno)
187 {
188 if (regno >= 0)
189 {
190 fetch_register (regno);
191 }
192 else
193 {
194 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
195 {
196 fetch_register (regno);
197 }
198 }
199 }
200
201 /* Registers we shouldn't try to store. */
202 #define OLD_CANNOT_STORE_REGISTER(regno) ((regno) >= NUM_GREGS)
203
204 /* Store one register. */
205
206 static void
207 store_register (int regno)
208 {
209 /* This isn't really an address. But ptrace thinks of it as one. */
210 CORE_ADDR regaddr;
211 char mess[128]; /* For messages */
212 register int i;
213 unsigned int offset; /* Offset of registers within the u area. */
214 int tid;
215
216 if (OLD_CANNOT_STORE_REGISTER (regno))
217 {
218 return;
219 }
220
221 /* Overload thread id onto process id */
222 if ((tid = TIDGET (inferior_pid)) == 0)
223 tid = inferior_pid; /* no thread id, just use process id */
224
225 offset = U_REGS_OFFSET;
226
227 regaddr = register_addr (regno, offset);
228 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
229 {
230 errno = 0;
231 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
232 *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
233 regaddr += sizeof (PTRACE_XFER_TYPE);
234 if (errno != 0)
235 {
236 sprintf (mess, "writing register %s (#%d)",
237 REGISTER_NAME (regno), regno);
238 perror_with_name (mess);
239 }
240 }
241 }
242
243 /* Store our register values back into the inferior.
244 If REGNO is negative, do this for all registers.
245 Otherwise, REGNO specifies which register (so we can save time). */
246
247 void
248 old_store_inferior_registers (int regno)
249 {
250 if (regno >= 0)
251 {
252 store_register (regno);
253 }
254 else
255 {
256 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
257 {
258 store_register (regno);
259 }
260 }
261 }
262 \f
263
264 /* Transfering the general-purpose registers between GDB, inferiors
265 and core files. */
266
267 /* Fill GDB's register array with the general-purpose register values
268 in *GREGSETP. */
269
270 void
271 supply_gregset (elf_gregset_t *gregsetp)
272 {
273 elf_greg_t *regp = (elf_greg_t *) gregsetp;
274 int i;
275
276 for (i = 0; i < NUM_GREGS; i++)
277 supply_register (i, (char *) (regp + regmap[i]));
278 }
279
280 /* Fill register REGNO (if it is a general-purpose register) in
281 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
282 do this for all registers. */
283
284 void
285 fill_gregset (elf_gregset_t *gregsetp, int regno)
286 {
287 elf_greg_t *regp = (elf_greg_t *) gregsetp;
288 int i;
289
290 for (i = 0; i < NUM_GREGS; i++)
291 if ((regno == -1 || regno == i))
292 *(regp + regmap[i]) = *(elf_greg_t *) &registers[REGISTER_BYTE (i)];
293 }
294
295 #ifdef HAVE_PTRACE_GETREGS
296
297 /* Fetch all general-purpose registers from process/thread TID and
298 store their values in GDB's register array. */
299
300 static void
301 fetch_regs (int tid)
302 {
303 elf_gregset_t regs;
304
305 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
306 {
307 if (errno == EIO)
308 {
309 /* The kernel we're running on doesn't support the GETREGS
310 request. Reset `have_ptrace_getregs'. */
311 have_ptrace_getregs = 0;
312 return;
313 }
314
315 perror_with_name ("Couldn't get registers");
316 }
317
318 supply_gregset (&regs);
319 }
320
321 /* Store all valid general-purpose registers in GDB's register array
322 into the process/thread specified by TID. */
323
324 static void
325 store_regs (int tid, int regno)
326 {
327 elf_gregset_t regs;
328
329 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
330 perror_with_name ("Couldn't get registers");
331
332 fill_gregset (&regs, regno);
333
334 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
335 perror_with_name ("Couldn't write registers");
336 }
337
338 #else
339
340 static void fetch_regs (int tid) {}
341 static void store_regs (int tid, int regno) {}
342
343 #endif
344 \f
345
346 /* Transfering floating-point registers between GDB, inferiors and cores. */
347
348 /* Fill GDB's register array with the floating-point register values in
349 *FPREGSETP. */
350
351 void
352 supply_fpregset (elf_fpregset_t *fpregsetp)
353 {
354 i387_supply_fsave ((char *) fpregsetp);
355 dummy_sse_values ();
356 }
357
358 /* Fill register REGNO (if it is a floating-point register) in
359 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
360 do this for all registers. */
361
362 void
363 fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
364 {
365 i387_fill_fsave ((char *) fpregsetp, regno);
366 }
367
368 #ifdef HAVE_PTRACE_GETREGS
369
370 /* Fetch all floating-point registers from process/thread TID and store
371 thier values in GDB's register array. */
372
373 static void
374 fetch_fpregs (int tid)
375 {
376 elf_fpregset_t fpregs;
377
378 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
379 perror_with_name ("Couldn't get floating point status");
380
381 supply_fpregset (&fpregs);
382 }
383
384 /* Store all valid floating-point registers in GDB's register array
385 into the process/thread specified by TID. */
386
387 static void
388 store_fpregs (int tid, int regno)
389 {
390 elf_fpregset_t fpregs;
391
392 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
393 perror_with_name ("Couldn't get floating point status");
394
395 fill_fpregset (&fpregs, regno);
396
397 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
398 perror_with_name ("Couldn't write floating point status");
399 }
400
401 #else
402
403 static void fetch_fpregs (int tid) {}
404 static void store_fpregs (int tid, int regno) {}
405
406 #endif
407 \f
408
409 /* Transfering floating-point and SSE registers to and from GDB. */
410
411 #ifdef HAVE_PTRACE_GETFPXREGS
412
413 /* Fill GDB's register array with the floating-point and SSE register
414 values in *FPXREGSETP. */
415
416 static void
417 supply_fpxregset (elf_fpxregset_t *fpxregsetp)
418 {
419 i387_supply_fxsave ((char *) fpxregsetp);
420 }
421
422 /* Fill register REGNO (if it is a floating-point or SSE register) in
423 *FPXREGSETP with the value in GDB's register array. If REGNO is
424 -1, do this for all registers. */
425
426 static void
427 fill_fpxregset (elf_fpxregset_t *fpxregsetp, int regno)
428 {
429 i387_fill_fxsave ((char *) fpxregsetp, regno);
430 }
431
432 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from
433 process/thread TID and store their values in GDB's register array.
434 Return non-zero if successful, zero otherwise. */
435
436 static int
437 fetch_fpxregs (int tid)
438 {
439 elf_fpxregset_t fpxregs;
440
441 if (! have_ptrace_getfpxregs)
442 return 0;
443
444 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
445 {
446 if (errno == EIO)
447 {
448 have_ptrace_getfpxregs = 0;
449 return 0;
450 }
451
452 perror_with_name ("Couldn't read floating-point and SSE registers");
453 }
454
455 supply_fpxregset (&fpxregs);
456 return 1;
457 }
458
459 /* Store all valid registers in GDB's register array covered by the
460 PTRACE_SETFPXREGS request into the process/thread specified by TID.
461 Return non-zero if successful, zero otherwise. */
462
463 static int
464 store_fpxregs (int tid, int regno)
465 {
466 elf_fpxregset_t fpxregs;
467
468 if (! have_ptrace_getfpxregs)
469 return 0;
470
471 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
472 {
473 if (errno == EIO)
474 {
475 have_ptrace_getfpxregs = 0;
476 return 0;
477 }
478
479 perror_with_name ("Couldn't read floating-point and SSE registers");
480 }
481
482 fill_fpxregset (&fpxregs, regno);
483
484 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
485 perror_with_name ("Couldn't write floating-point and SSE registers");
486
487 return 1;
488 }
489
490 /* Fill the XMM registers in the register array with dummy values. For
491 cases where we don't have access to the XMM registers. I think
492 this is cleaner than printing a warning. For a cleaner solution,
493 we should gdbarchify the i386 family. */
494
495 static void
496 dummy_sse_values (void)
497 {
498 /* C doesn't have a syntax for NaN's, so write it out as an array of
499 longs. */
500 static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
501 static long mxcsr = 0x1f80;
502 int reg;
503
504 for (reg = 0; reg < 8; reg++)
505 supply_register (XMM0_REGNUM + reg, (char *) dummy);
506 supply_register (MXCSR_REGNUM, (char *) &mxcsr);
507 }
508
509 #else
510
511 static int fetch_fpxregs (int tid) { return 0; }
512 static int store_fpxregs (int tid, int regno) { return 0; }
513 static void dummy_sse_values (void) {}
514
515 #endif /* HAVE_PTRACE_GETFPXREGS */
516 \f
517
518 /* Transferring arbitrary registers between GDB and inferior. */
519
520 /* Check if register REGNO in the child process is accessible.
521 If we are accessing registers directly via the U area, only the
522 general-purpose registers are available.
523 All registers should be accessible if we have GETREGS support. */
524
525 int
526 cannot_fetch_register (int regno)
527 {
528 if (! have_ptrace_getregs)
529 return OLD_CANNOT_FETCH_REGISTER (regno);
530 return 0;
531 }
532 int
533 cannot_store_register (int regno)
534 {
535 if (! have_ptrace_getregs)
536 return OLD_CANNOT_STORE_REGISTER (regno);
537 return 0;
538 }
539
540 /* Fetch register REGNO from the child process. If REGNO is -1, do
541 this for all registers (including the floating point and SSE
542 registers). */
543
544 void
545 fetch_inferior_registers (int regno)
546 {
547 int tid;
548
549 /* Use the old method of peeking around in `struct user' if the
550 GETREGS request isn't available. */
551 if (! have_ptrace_getregs)
552 {
553 old_fetch_inferior_registers (regno);
554 return;
555 }
556
557 /* Linux LWP ID's are process ID's. */
558 if ((tid = TIDGET (inferior_pid)) == 0)
559 tid = inferior_pid; /* Not a threaded program. */
560
561 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
562 transfers more registers in one system call, and we'll cache the
563 results. But remember that fetch_fpxregs can fail, and return
564 zero. */
565 if (regno == -1)
566 {
567 fetch_regs (tid);
568
569 /* The call above might reset `have_ptrace_getregs'. */
570 if (! have_ptrace_getregs)
571 {
572 old_fetch_inferior_registers (-1);
573 return;
574 }
575
576 if (fetch_fpxregs (tid))
577 return;
578 fetch_fpregs (tid);
579 return;
580 }
581
582 if (GETREGS_SUPPLIES (regno))
583 {
584 fetch_regs (tid);
585 return;
586 }
587
588 if (GETFPXREGS_SUPPLIES (regno))
589 {
590 if (fetch_fpxregs (tid))
591 return;
592
593 /* Either our processor or our kernel doesn't support the SSE
594 registers, so read the FP registers in the traditional way,
595 and fill the SSE registers with dummy values. It would be
596 more graceful to handle differences in the register set using
597 gdbarch. Until then, this will at least make things work
598 plausibly. */
599 fetch_fpregs (tid);
600 return;
601 }
602
603 internal_error ("Got request for bad register number %d.", regno);
604 }
605
606 /* Store register REGNO back into the child process. If REGNO is -1,
607 do this for all registers (including the floating point and SSE
608 registers). */
609 void
610 store_inferior_registers (int regno)
611 {
612 int tid;
613
614 /* Use the old method of poking around in `struct user' if the
615 SETREGS request isn't available. */
616 if (! have_ptrace_getregs)
617 {
618 old_store_inferior_registers (regno);
619 return;
620 }
621
622 /* Linux LWP ID's are process ID's. */
623 if ((tid = TIDGET (inferior_pid)) == 0)
624 tid = inferior_pid; /* Not a threaded program. */
625
626 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
627 transfers more registers in one system call. But remember that
628 store_fpxregs can fail, and return zero. */
629 if (regno == -1)
630 {
631 store_regs (tid, regno);
632 if (store_fpxregs (tid, regno))
633 return;
634 store_fpregs (tid, regno);
635 return;
636 }
637
638 if (GETREGS_SUPPLIES (regno))
639 {
640 store_regs (tid, regno);
641 return;
642 }
643
644 if (GETFPXREGS_SUPPLIES (regno))
645 {
646 if (store_fpxregs (tid, regno))
647 return;
648
649 /* Either our processor or our kernel doesn't support the SSE
650 registers, so just write the FP registers in the traditional
651 way. */
652 store_fpregs (tid, regno);
653 return;
654 }
655
656 internal_error ("Got request to store bad register number %d.", regno);
657 }
658 \f
659
660 /* Interpreting register set info found in core files. */
661
662 /* Provide registers to GDB from a core file.
663
664 (We can't use the generic version of this function in
665 core-regset.c, because Linux has *three* different kinds of
666 register set notes. core-regset.c would have to call
667 supply_fpxregset, which most platforms don't have.)
668
669 CORE_REG_SECT points to an array of bytes, which are the contents
670 of a `note' from a core file which BFD thinks might contain
671 register contents. CORE_REG_SIZE is its size.
672
673 WHICH says which register set corelow suspects this is:
674 0 --- the general-purpose register set, in elf_gregset_t format
675 2 --- the floating-point register set, in elf_fpregset_t format
676 3 --- the extended floating-point register set, in elf_fpxregset_t format
677
678 REG_ADDR isn't used on Linux. */
679
680 static void
681 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
682 int which, CORE_ADDR reg_addr)
683 {
684 elf_gregset_t gregset;
685 elf_fpregset_t fpregset;
686
687 switch (which)
688 {
689 case 0:
690 if (core_reg_size != sizeof (gregset))
691 warning ("Wrong size gregset in core file.");
692 else
693 {
694 memcpy (&gregset, core_reg_sect, sizeof (gregset));
695 supply_gregset (&gregset);
696 }
697 break;
698
699 case 2:
700 if (core_reg_size != sizeof (fpregset))
701 warning ("Wrong size fpregset in core file.");
702 else
703 {
704 memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
705 supply_fpregset (&fpregset);
706 }
707 break;
708
709 #ifdef HAVE_PTRACE_GETFPXREGS
710 {
711 elf_fpxregset_t fpxregset;
712
713 case 3:
714 if (core_reg_size != sizeof (fpxregset))
715 warning ("Wrong size fpxregset in core file.");
716 else
717 {
718 memcpy (&fpxregset, core_reg_sect, sizeof (fpxregset));
719 supply_fpxregset (&fpxregset);
720 }
721 break;
722 }
723 #endif
724
725 default:
726 /* We've covered all the kinds of registers we know about here,
727 so this must be something we wouldn't know what to do with
728 anyway. Just ignore it. */
729 break;
730 }
731 }
732 \f
733
734 /* The instruction for a Linux system call is:
735 int $0x80
736 or 0xcd 0x80. */
737
738 static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
739
740 #define LINUX_SYSCALL_LEN (sizeof linux_syscall)
741
742 /* The system call number is stored in the %eax register. */
743 #define LINUX_SYSCALL_REGNUM 0 /* %eax */
744
745 /* We are specifically interested in the sigreturn and rt_sigreturn
746 system calls. */
747
748 #ifndef SYS_sigreturn
749 #define SYS_sigreturn 0x77
750 #endif
751 #ifndef SYS_rt_sigreturn
752 #define SYS_rt_sigreturn 0xad
753 #endif
754
755 /* Offset to saved processor flags, from <asm/sigcontext.h>. */
756 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
757
758 /* Resume execution of the inferior process.
759 If STEP is nonzero, single-step it.
760 If SIGNAL is nonzero, give it that signal. */
761
762 void
763 child_resume (int pid, int step, enum target_signal signal)
764 {
765 int request = PTRACE_CONT;
766
767 if (pid == -1)
768 /* Resume all threads. */
769 /* I think this only gets used in the non-threaded case, where "resume
770 all threads" and "resume inferior_pid" are the same. */
771 pid = inferior_pid;
772
773 if (step)
774 {
775 CORE_ADDR pc = read_pc_pid (pid);
776 unsigned char buf[LINUX_SYSCALL_LEN];
777
778 request = PTRACE_SINGLESTEP;
779
780 /* Returning from a signal trampoline is done by calling a
781 special system call (sigreturn or rt_sigreturn, see
782 i386-linux-tdep.c for more information). This system call
783 restores the registers that were saved when the signal was
784 raised, including %eflags. That means that single-stepping
785 won't work. Instead, we'll have to modify the signal context
786 that's about to be restored, and set the trace flag there. */
787
788 /* First check if PC is at a system call. */
789 if (read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0
790 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
791 {
792 int syscall = read_register_pid (LINUX_SYSCALL_REGNUM, pid);
793
794 /* Then check the system call number. */
795 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
796 {
797 CORE_ADDR sp = read_register (SP_REGNUM);
798 CORE_ADDR addr = sp;
799 unsigned long int eflags;
800
801 if (syscall == SYS_rt_sigreturn)
802 addr = read_memory_integer (sp + 8, 4) + 20;
803
804 /* Set the trace flag in the context that's about to be
805 restored. */
806 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
807 read_memory (addr, (char *) &eflags, 4);
808 eflags |= 0x0100;
809 write_memory (addr, (char *) &eflags, 4);
810 }
811 }
812 }
813
814 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
815 perror_with_name ("ptrace");
816 }
817 \f
818
819 /* Register that we are able to handle Linux ELF core file formats. */
820
821 static struct core_fns linux_elf_core_fns =
822 {
823 bfd_target_elf_flavour, /* core_flavour */
824 default_check_format, /* check_format */
825 default_core_sniffer, /* core_sniffer */
826 fetch_core_registers, /* core_read_registers */
827 NULL /* next */
828 };
829
830 void
831 _initialize_i386_linux_nat (void)
832 {
833 add_core_fns (&linux_elf_core_fns);
834 }
This page took 0.046316 seconds and 4 git commands to generate.