(Register and Memory Data): Break sections
[deliverable/binutils-gdb.git] / gdb / i386-linux-nat.c
1 /* Native-dependent code for GNU/Linux i386.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "target.h"
28 #include "linux-nat.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include <sys/ptrace.h>
33 #include <sys/user.h>
34 #include <sys/procfs.h>
35
36 #ifdef HAVE_SYS_REG_H
37 #include <sys/reg.h>
38 #endif
39
40 #ifndef ORIG_EAX
41 #define ORIG_EAX -1
42 #endif
43
44 #ifdef HAVE_SYS_DEBUGREG_H
45 #include <sys/debugreg.h>
46 #endif
47
48 #ifndef DR_FIRSTADDR
49 #define DR_FIRSTADDR 0
50 #endif
51
52 #ifndef DR_LASTADDR
53 #define DR_LASTADDR 3
54 #endif
55
56 #ifndef DR_STATUS
57 #define DR_STATUS 6
58 #endif
59
60 #ifndef DR_CONTROL
61 #define DR_CONTROL 7
62 #endif
63
64 /* Prototypes for supply_gregset etc. */
65 #include "gregset.h"
66
67 #include "i387-tdep.h"
68 #include "i386-tdep.h"
69 #include "i386-linux-tdep.h"
70
71 /* Defines ps_err_e, struct ps_prochandle. */
72 #include "gdb_proc_service.h"
73 \f
74
75 /* The register sets used in GNU/Linux ELF core-dumps are identical to
76 the register sets in `struct user' that is used for a.out
77 core-dumps, and is also used by `ptrace'. The corresponding types
78 are `elf_gregset_t' for the general-purpose registers (with
79 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
80 for the floating-point registers.
81
82 Those types used to be available under the names `gregset_t' and
83 `fpregset_t' too, and this file used those names in the past. But
84 those names are now used for the register sets used in the
85 `mcontext_t' type, and have a different size and layout. */
86
87 /* Mapping between the general-purpose registers in `struct user'
88 format and GDB's register array layout. */
89 static int regmap[] =
90 {
91 EAX, ECX, EDX, EBX,
92 UESP, EBP, ESI, EDI,
93 EIP, EFL, CS, SS,
94 DS, ES, FS, GS,
95 -1, -1, -1, -1, /* st0, st1, st2, st3 */
96 -1, -1, -1, -1, /* st4, st5, st6, st7 */
97 -1, -1, -1, -1, /* fctrl, fstat, ftag, fiseg */
98 -1, -1, -1, -1, /* fioff, foseg, fooff, fop */
99 -1, -1, -1, -1, /* xmm0, xmm1, xmm2, xmm3 */
100 -1, -1, -1, -1, /* xmm4, xmm5, xmm6, xmm6 */
101 -1, /* mxcsr */
102 ORIG_EAX
103 };
104
105 /* Which ptrace request retrieves which registers?
106 These apply to the corresponding SET requests as well. */
107
108 #define GETREGS_SUPPLIES(regno) \
109 ((0 <= (regno) && (regno) <= 15) || (regno) == I386_LINUX_ORIG_EAX_REGNUM)
110
111 #define GETFPXREGS_SUPPLIES(regno) \
112 (I386_ST0_REGNUM <= (regno) && (regno) < I386_SSE_NUM_REGS)
113
114 /* Does the current host support the GETREGS request? */
115 int have_ptrace_getregs =
116 #ifdef HAVE_PTRACE_GETREGS
117 1
118 #else
119 0
120 #endif
121 ;
122
123 /* Does the current host support the GETFPXREGS request? The header
124 file may or may not define it, and even if it is defined, the
125 kernel will return EIO if it's running on a pre-SSE processor.
126
127 My instinct is to attach this to some architecture- or
128 target-specific data structure, but really, a particular GDB
129 process can only run on top of one kernel at a time. So it's okay
130 for this to be a simple variable. */
131 int have_ptrace_getfpxregs =
132 #ifdef HAVE_PTRACE_GETFPXREGS
133 1
134 #else
135 0
136 #endif
137 ;
138 \f
139
140 /* Accessing registers through the U area, one at a time. */
141
142 /* Fetch one register. */
143
144 static void
145 fetch_register (struct regcache *regcache, int regno)
146 {
147 int tid;
148 int val;
149
150 gdb_assert (!have_ptrace_getregs);
151 if (regmap[regno] == -1)
152 {
153 regcache_raw_supply (regcache, regno, NULL);
154 return;
155 }
156
157 /* GNU/Linux LWP ID's are process ID's. */
158 tid = TIDGET (inferior_ptid);
159 if (tid == 0)
160 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
161
162 errno = 0;
163 val = ptrace (PTRACE_PEEKUSER, tid, 4 * regmap[regno], 0);
164 if (errno != 0)
165 error (_("Couldn't read register %s (#%d): %s."),
166 gdbarch_register_name (current_gdbarch, regno),
167 regno, safe_strerror (errno));
168
169 regcache_raw_supply (regcache, regno, &val);
170 }
171
172 /* Store one register. */
173
174 static void
175 store_register (const struct regcache *regcache, int regno)
176 {
177 int tid;
178 int val;
179
180 gdb_assert (!have_ptrace_getregs);
181 if (regmap[regno] == -1)
182 return;
183
184 /* GNU/Linux LWP ID's are process ID's. */
185 tid = TIDGET (inferior_ptid);
186 if (tid == 0)
187 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
188
189 errno = 0;
190 regcache_raw_collect (regcache, regno, &val);
191 ptrace (PTRACE_POKEUSER, tid, 4 * regmap[regno], val);
192 if (errno != 0)
193 error (_("Couldn't write register %s (#%d): %s."),
194 gdbarch_register_name (current_gdbarch, regno),
195 regno, safe_strerror (errno));
196 }
197 \f
198
199 /* Transfering the general-purpose registers between GDB, inferiors
200 and core files. */
201
202 /* Fill GDB's register array with the general-purpose register values
203 in *GREGSETP. */
204
205 void
206 supply_gregset (struct regcache *regcache, const elf_gregset_t *gregsetp)
207 {
208 const elf_greg_t *regp = (const elf_greg_t *) gregsetp;
209 int i;
210
211 for (i = 0; i < I386_NUM_GREGS; i++)
212 regcache_raw_supply (regcache, i, regp + regmap[i]);
213
214 if (I386_LINUX_ORIG_EAX_REGNUM < gdbarch_num_regs (current_gdbarch))
215 regcache_raw_supply (regcache, I386_LINUX_ORIG_EAX_REGNUM,
216 regp + ORIG_EAX);
217 }
218
219 /* Fill register REGNO (if it is a general-purpose register) in
220 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
221 do this for all registers. */
222
223 void
224 fill_gregset (const struct regcache *regcache,
225 elf_gregset_t *gregsetp, int regno)
226 {
227 elf_greg_t *regp = (elf_greg_t *) gregsetp;
228 int i;
229
230 for (i = 0; i < I386_NUM_GREGS; i++)
231 if (regno == -1 || regno == i)
232 regcache_raw_collect (regcache, i, regp + regmap[i]);
233
234 if ((regno == -1 || regno == I386_LINUX_ORIG_EAX_REGNUM)
235 && I386_LINUX_ORIG_EAX_REGNUM < gdbarch_num_regs (current_gdbarch))
236 regcache_raw_collect (regcache, I386_LINUX_ORIG_EAX_REGNUM,
237 regp + ORIG_EAX);
238 }
239
240 #ifdef HAVE_PTRACE_GETREGS
241
242 /* Fetch all general-purpose registers from process/thread TID and
243 store their values in GDB's register array. */
244
245 static void
246 fetch_regs (struct regcache *regcache, int tid)
247 {
248 elf_gregset_t regs;
249
250 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
251 {
252 if (errno == EIO)
253 {
254 /* The kernel we're running on doesn't support the GETREGS
255 request. Reset `have_ptrace_getregs'. */
256 have_ptrace_getregs = 0;
257 return;
258 }
259
260 perror_with_name (_("Couldn't get registers"));
261 }
262
263 supply_gregset (regcache, (const elf_gregset_t *) &regs);
264 }
265
266 /* Store all valid general-purpose registers in GDB's register array
267 into the process/thread specified by TID. */
268
269 static void
270 store_regs (const struct regcache *regcache, int tid, int regno)
271 {
272 elf_gregset_t regs;
273
274 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
275 perror_with_name (_("Couldn't get registers"));
276
277 fill_gregset (regcache, &regs, regno);
278
279 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
280 perror_with_name (_("Couldn't write registers"));
281 }
282
283 #else
284
285 static void fetch_regs (struct regcache *regcache, int tid) {}
286 static void store_regs (const struct regcache *regcache, int tid, int regno) {}
287
288 #endif
289 \f
290
291 /* Transfering floating-point registers between GDB, inferiors and cores. */
292
293 /* Fill GDB's register array with the floating-point register values in
294 *FPREGSETP. */
295
296 void
297 supply_fpregset (struct regcache *regcache, const elf_fpregset_t *fpregsetp)
298 {
299 i387_supply_fsave (regcache, -1, fpregsetp);
300 }
301
302 /* Fill register REGNO (if it is a floating-point register) in
303 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
304 do this for all registers. */
305
306 void
307 fill_fpregset (const struct regcache *regcache,
308 elf_fpregset_t *fpregsetp, int regno)
309 {
310 i387_collect_fsave (regcache, regno, fpregsetp);
311 }
312
313 #ifdef HAVE_PTRACE_GETREGS
314
315 /* Fetch all floating-point registers from process/thread TID and store
316 thier values in GDB's register array. */
317
318 static void
319 fetch_fpregs (struct regcache *regcache, int tid)
320 {
321 elf_fpregset_t fpregs;
322
323 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
324 perror_with_name (_("Couldn't get floating point status"));
325
326 supply_fpregset (regcache, (const elf_fpregset_t *) &fpregs);
327 }
328
329 /* Store all valid floating-point registers in GDB's register array
330 into the process/thread specified by TID. */
331
332 static void
333 store_fpregs (const struct regcache *regcache, int tid, int regno)
334 {
335 elf_fpregset_t fpregs;
336
337 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
338 perror_with_name (_("Couldn't get floating point status"));
339
340 fill_fpregset (regcache, &fpregs, regno);
341
342 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
343 perror_with_name (_("Couldn't write floating point status"));
344 }
345
346 #else
347
348 static void fetch_fpregs (struct regcache *regcache, int tid) {}
349 static void store_fpregs (const struct regcache *regcache, int tid, int regno) {}
350
351 #endif
352 \f
353
354 /* Transfering floating-point and SSE registers to and from GDB. */
355
356 #ifdef HAVE_PTRACE_GETFPXREGS
357
358 /* Fill GDB's register array with the floating-point and SSE register
359 values in *FPXREGSETP. */
360
361 void
362 supply_fpxregset (struct regcache *regcache,
363 const elf_fpxregset_t *fpxregsetp)
364 {
365 i387_supply_fxsave (regcache, -1, fpxregsetp);
366 }
367
368 /* Fill register REGNO (if it is a floating-point or SSE register) in
369 *FPXREGSETP with the value in GDB's register array. If REGNO is
370 -1, do this for all registers. */
371
372 void
373 fill_fpxregset (const struct regcache *regcache,
374 elf_fpxregset_t *fpxregsetp, int regno)
375 {
376 i387_collect_fxsave (regcache, regno, fpxregsetp);
377 }
378
379 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from
380 process/thread TID and store their values in GDB's register array.
381 Return non-zero if successful, zero otherwise. */
382
383 static int
384 fetch_fpxregs (struct regcache *regcache, int tid)
385 {
386 elf_fpxregset_t fpxregs;
387
388 if (! have_ptrace_getfpxregs)
389 return 0;
390
391 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
392 {
393 if (errno == EIO)
394 {
395 have_ptrace_getfpxregs = 0;
396 return 0;
397 }
398
399 perror_with_name (_("Couldn't read floating-point and SSE registers"));
400 }
401
402 supply_fpxregset (regcache, (const elf_fpxregset_t *) &fpxregs);
403 return 1;
404 }
405
406 /* Store all valid registers in GDB's register array covered by the
407 PTRACE_SETFPXREGS request into the process/thread specified by TID.
408 Return non-zero if successful, zero otherwise. */
409
410 static int
411 store_fpxregs (const struct regcache *regcache, int tid, int regno)
412 {
413 elf_fpxregset_t fpxregs;
414
415 if (! have_ptrace_getfpxregs)
416 return 0;
417
418 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
419 {
420 if (errno == EIO)
421 {
422 have_ptrace_getfpxregs = 0;
423 return 0;
424 }
425
426 perror_with_name (_("Couldn't read floating-point and SSE registers"));
427 }
428
429 fill_fpxregset (regcache, &fpxregs, regno);
430
431 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
432 perror_with_name (_("Couldn't write floating-point and SSE registers"));
433
434 return 1;
435 }
436
437 #else
438
439 static int fetch_fpxregs (struct regcache *regcache, int tid) { return 0; }
440 static int store_fpxregs (const struct regcache *regcache, int tid, int regno) { return 0; }
441
442 #endif /* HAVE_PTRACE_GETFPXREGS */
443 \f
444
445 /* Transferring arbitrary registers between GDB and inferior. */
446
447 /* Fetch register REGNO from the child process. If REGNO is -1, do
448 this for all registers (including the floating point and SSE
449 registers). */
450
451 static void
452 i386_linux_fetch_inferior_registers (struct regcache *regcache, int regno)
453 {
454 int tid;
455
456 /* Use the old method of peeking around in `struct user' if the
457 GETREGS request isn't available. */
458 if (!have_ptrace_getregs)
459 {
460 int i;
461
462 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
463 if (regno == -1 || regno == i)
464 fetch_register (regcache, i);
465
466 return;
467 }
468
469 /* GNU/Linux LWP ID's are process ID's. */
470 tid = TIDGET (inferior_ptid);
471 if (tid == 0)
472 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
473
474 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
475 transfers more registers in one system call, and we'll cache the
476 results. But remember that fetch_fpxregs can fail, and return
477 zero. */
478 if (regno == -1)
479 {
480 fetch_regs (regcache, tid);
481
482 /* The call above might reset `have_ptrace_getregs'. */
483 if (!have_ptrace_getregs)
484 {
485 i386_linux_fetch_inferior_registers (regcache, regno);
486 return;
487 }
488
489 if (fetch_fpxregs (regcache, tid))
490 return;
491 fetch_fpregs (regcache, tid);
492 return;
493 }
494
495 if (GETREGS_SUPPLIES (regno))
496 {
497 fetch_regs (regcache, tid);
498 return;
499 }
500
501 if (GETFPXREGS_SUPPLIES (regno))
502 {
503 if (fetch_fpxregs (regcache, tid))
504 return;
505
506 /* Either our processor or our kernel doesn't support the SSE
507 registers, so read the FP registers in the traditional way,
508 and fill the SSE registers with dummy values. It would be
509 more graceful to handle differences in the register set using
510 gdbarch. Until then, this will at least make things work
511 plausibly. */
512 fetch_fpregs (regcache, tid);
513 return;
514 }
515
516 internal_error (__FILE__, __LINE__,
517 _("Got request for bad register number %d."), regno);
518 }
519
520 /* Store register REGNO back into the child process. If REGNO is -1,
521 do this for all registers (including the floating point and SSE
522 registers). */
523 static void
524 i386_linux_store_inferior_registers (struct regcache *regcache, int regno)
525 {
526 int tid;
527
528 /* Use the old method of poking around in `struct user' if the
529 SETREGS request isn't available. */
530 if (!have_ptrace_getregs)
531 {
532 int i;
533
534 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
535 if (regno == -1 || regno == i)
536 store_register (regcache, i);
537
538 return;
539 }
540
541 /* GNU/Linux LWP ID's are process ID's. */
542 tid = TIDGET (inferior_ptid);
543 if (tid == 0)
544 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
545
546 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
547 transfers more registers in one system call. But remember that
548 store_fpxregs can fail, and return zero. */
549 if (regno == -1)
550 {
551 store_regs (regcache, tid, regno);
552 if (store_fpxregs (regcache, tid, regno))
553 return;
554 store_fpregs (regcache, tid, regno);
555 return;
556 }
557
558 if (GETREGS_SUPPLIES (regno))
559 {
560 store_regs (regcache, tid, regno);
561 return;
562 }
563
564 if (GETFPXREGS_SUPPLIES (regno))
565 {
566 if (store_fpxregs (regcache, tid, regno))
567 return;
568
569 /* Either our processor or our kernel doesn't support the SSE
570 registers, so just write the FP registers in the traditional
571 way. */
572 store_fpregs (regcache, tid, regno);
573 return;
574 }
575
576 internal_error (__FILE__, __LINE__,
577 _("Got request to store bad register number %d."), regno);
578 }
579 \f
580
581 /* Support for debug registers. */
582
583 static unsigned long
584 i386_linux_dr_get (int regnum)
585 {
586 int tid;
587 unsigned long value;
588
589 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
590 multi-threaded processes here. For now, pretend there is just
591 one thread. */
592 tid = PIDGET (inferior_ptid);
593
594 /* FIXME: kettenis/2001-03-27: Calling perror_with_name if the
595 ptrace call fails breaks debugging remote targets. The correct
596 way to fix this is to add the hardware breakpoint and watchpoint
597 stuff to the target vector. For now, just return zero if the
598 ptrace call fails. */
599 errno = 0;
600 value = ptrace (PTRACE_PEEKUSER, tid,
601 offsetof (struct user, u_debugreg[regnum]), 0);
602 if (errno != 0)
603 #if 0
604 perror_with_name (_("Couldn't read debug register"));
605 #else
606 return 0;
607 #endif
608
609 return value;
610 }
611
612 static void
613 i386_linux_dr_set (int regnum, unsigned long value)
614 {
615 int tid;
616
617 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
618 multi-threaded processes here. For now, pretend there is just
619 one thread. */
620 tid = PIDGET (inferior_ptid);
621
622 errno = 0;
623 ptrace (PTRACE_POKEUSER, tid,
624 offsetof (struct user, u_debugreg[regnum]), value);
625 if (errno != 0)
626 perror_with_name (_("Couldn't write debug register"));
627 }
628
629 void
630 i386_linux_dr_set_control (unsigned long control)
631 {
632 i386_linux_dr_set (DR_CONTROL, control);
633 }
634
635 void
636 i386_linux_dr_set_addr (int regnum, CORE_ADDR addr)
637 {
638 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
639
640 i386_linux_dr_set (DR_FIRSTADDR + regnum, addr);
641 }
642
643 void
644 i386_linux_dr_reset_addr (int regnum)
645 {
646 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
647
648 i386_linux_dr_set (DR_FIRSTADDR + regnum, 0L);
649 }
650
651 unsigned long
652 i386_linux_dr_get_status (void)
653 {
654 return i386_linux_dr_get (DR_STATUS);
655 }
656 \f
657
658 /* Called by libthread_db. Returns a pointer to the thread local
659 storage (or its descriptor). */
660
661 ps_err_e
662 ps_get_thread_area (const struct ps_prochandle *ph,
663 lwpid_t lwpid, int idx, void **base)
664 {
665 /* NOTE: cagney/2003-08-26: The definition of this buffer is found
666 in the kernel header <asm-i386/ldt.h>. It, after padding, is 4 x
667 4 byte integers in size: `entry_number', `base_addr', `limit',
668 and a bunch of status bits.
669
670 The values returned by this ptrace call should be part of the
671 regcache buffer, and ps_get_thread_area should channel its
672 request through the regcache. That way remote targets could
673 provide the value using the remote protocol and not this direct
674 call.
675
676 Is this function needed? I'm guessing that the `base' is the
677 address of a a descriptor that libthread_db uses to find the
678 thread local address base that GDB needs. Perhaps that
679 descriptor is defined by the ABI. Anyway, given that
680 libthread_db calls this function without prompting (gdb
681 requesting tls base) I guess it needs info in there anyway. */
682 unsigned int desc[4];
683 gdb_assert (sizeof (int) == 4);
684
685 #ifndef PTRACE_GET_THREAD_AREA
686 #define PTRACE_GET_THREAD_AREA 25
687 #endif
688
689 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
690 (void *) idx, (unsigned long) &desc) < 0)
691 return PS_ERR;
692
693 *(int *)base = desc[1];
694 return PS_OK;
695 }
696 \f
697
698 /* The instruction for a GNU/Linux system call is:
699 int $0x80
700 or 0xcd 0x80. */
701
702 static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
703
704 #define LINUX_SYSCALL_LEN (sizeof linux_syscall)
705
706 /* The system call number is stored in the %eax register. */
707 #define LINUX_SYSCALL_REGNUM I386_EAX_REGNUM
708
709 /* We are specifically interested in the sigreturn and rt_sigreturn
710 system calls. */
711
712 #ifndef SYS_sigreturn
713 #define SYS_sigreturn 0x77
714 #endif
715 #ifndef SYS_rt_sigreturn
716 #define SYS_rt_sigreturn 0xad
717 #endif
718
719 /* Offset to saved processor flags, from <asm/sigcontext.h>. */
720 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
721
722 /* Resume execution of the inferior process.
723 If STEP is nonzero, single-step it.
724 If SIGNAL is nonzero, give it that signal. */
725
726 static void
727 i386_linux_resume (ptid_t ptid, int step, enum target_signal signal)
728 {
729 int pid = PIDGET (ptid);
730
731 int request = PTRACE_CONT;
732
733 if (pid == -1)
734 /* Resume all threads. */
735 /* I think this only gets used in the non-threaded case, where "resume
736 all threads" and "resume inferior_ptid" are the same. */
737 pid = PIDGET (inferior_ptid);
738
739 if (step)
740 {
741 struct regcache *regcache = get_thread_regcache (pid_to_ptid (pid));
742 ULONGEST pc;
743 gdb_byte buf[LINUX_SYSCALL_LEN];
744
745 request = PTRACE_SINGLESTEP;
746
747 regcache_cooked_read_unsigned (regcache,
748 gdbarch_pc_regnum (current_gdbarch), &pc);
749
750 /* Returning from a signal trampoline is done by calling a
751 special system call (sigreturn or rt_sigreturn, see
752 i386-linux-tdep.c for more information). This system call
753 restores the registers that were saved when the signal was
754 raised, including %eflags. That means that single-stepping
755 won't work. Instead, we'll have to modify the signal context
756 that's about to be restored, and set the trace flag there. */
757
758 /* First check if PC is at a system call. */
759 if (read_memory_nobpt (pc, buf, LINUX_SYSCALL_LEN) == 0
760 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
761 {
762 ULONGEST syscall;
763 regcache_cooked_read_unsigned (regcache,
764 LINUX_SYSCALL_REGNUM, &syscall);
765
766 /* Then check the system call number. */
767 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
768 {
769 ULONGEST sp, addr;
770 unsigned long int eflags;
771
772 regcache_cooked_read_unsigned (regcache, I386_ESP_REGNUM, &sp);
773 if (syscall == SYS_rt_sigreturn)
774 addr = read_memory_integer (sp + 8, 4) + 20;
775 else
776 addr = sp;
777
778 /* Set the trace flag in the context that's about to be
779 restored. */
780 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
781 read_memory (addr, (gdb_byte *) &eflags, 4);
782 eflags |= 0x0100;
783 write_memory (addr, (gdb_byte *) &eflags, 4);
784 }
785 }
786 }
787
788 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
789 perror_with_name (("ptrace"));
790 }
791
792 static void (*super_post_startup_inferior) (ptid_t ptid);
793
794 static void
795 i386_linux_child_post_startup_inferior (ptid_t ptid)
796 {
797 i386_cleanup_dregs ();
798 super_post_startup_inferior (ptid);
799 }
800
801 void
802 _initialize_i386_linux_nat (void)
803 {
804 struct target_ops *t;
805
806 /* Fill in the generic GNU/Linux methods. */
807 t = linux_target ();
808
809 /* Override the default ptrace resume method. */
810 t->to_resume = i386_linux_resume;
811
812 /* Override the GNU/Linux inferior startup hook. */
813 super_post_startup_inferior = t->to_post_startup_inferior;
814 t->to_post_startup_inferior = i386_linux_child_post_startup_inferior;
815
816 /* Add our register access methods. */
817 t->to_fetch_registers = i386_linux_fetch_inferior_registers;
818 t->to_store_registers = i386_linux_store_inferior_registers;
819
820 /* Register the target. */
821 linux_nat_add_target (t);
822 }
This page took 0.046804 seconds and 4 git commands to generate.