* gdb.base/corefile.exp: Recognize the message saying that GDB
[deliverable/binutils-gdb.git] / gdb / i386-linux-nat.c
1 /* Native-dependent code for Linux/x86.
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "regcache.h"
25
26 #include "gdb_assert.h"
27 #include <sys/ptrace.h>
28 #include <sys/user.h>
29 #include <sys/procfs.h>
30
31 #ifdef HAVE_SYS_REG_H
32 #include <sys/reg.h>
33 #endif
34
35 #ifdef HAVE_SYS_DEBUGREG_H
36 #include <sys/debugreg.h>
37 #endif
38
39 #ifndef DR_FIRSTADDR
40 #define DR_FIRSTADDR 0
41 #endif
42
43 #ifndef DR_LASTADDR
44 #define DR_LASTADDR 3
45 #endif
46
47 #ifndef DR_STATUS
48 #define DR_STATUS 6
49 #endif
50
51 #ifndef DR_CONTROL
52 #define DR_CONTROL 7
53 #endif
54
55 /* Prototypes for supply_gregset etc. */
56 #include "gregset.h"
57
58 /* Prototypes for i387_supply_fsave etc. */
59 #include "i387-nat.h"
60
61 /* Prototypes for local functions. */
62 static void dummy_sse_values (void);
63
64 \f
65
66 /* The register sets used in Linux ELF core-dumps are identical to the
67 register sets in `struct user' that is used for a.out core-dumps,
68 and is also used by `ptrace'. The corresponding types are
69 `elf_gregset_t' for the general-purpose registers (with
70 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
71 for the floating-point registers.
72
73 Those types used to be available under the names `gregset_t' and
74 `fpregset_t' too, and this file used those names in the past. But
75 those names are now used for the register sets used in the
76 `mcontext_t' type, and have a different size and layout. */
77
78 /* Mapping between the general-purpose registers in `struct user'
79 format and GDB's register array layout. */
80 static int regmap[] =
81 {
82 EAX, ECX, EDX, EBX,
83 UESP, EBP, ESI, EDI,
84 EIP, EFL, CS, SS,
85 DS, ES, FS, GS
86 };
87
88 /* Which ptrace request retrieves which registers?
89 These apply to the corresponding SET requests as well. */
90 #define GETREGS_SUPPLIES(regno) \
91 ((0 <= (regno) && (regno) <= 15) || (regno) == I386_LINUX_ORIG_EAX_REGNUM)
92 #define GETFPREGS_SUPPLIES(regno) \
93 (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
94 #define GETFPXREGS_SUPPLIES(regno) \
95 (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
96
97 /* Does the current host support the GETREGS request? */
98 int have_ptrace_getregs =
99 #ifdef HAVE_PTRACE_GETREGS
100 1
101 #else
102 0
103 #endif
104 ;
105
106 /* Does the current host support the GETFPXREGS request? The header
107 file may or may not define it, and even if it is defined, the
108 kernel will return EIO if it's running on a pre-SSE processor.
109
110 My instinct is to attach this to some architecture- or
111 target-specific data structure, but really, a particular GDB
112 process can only run on top of one kernel at a time. So it's okay
113 for this to be a simple variable. */
114 int have_ptrace_getfpxregs =
115 #ifdef HAVE_PTRACE_GETFPXREGS
116 1
117 #else
118 0
119 #endif
120 ;
121 \f
122
123 /* Support for the user struct. */
124
125 /* Return the address of register REGNUM. BLOCKEND is the value of
126 u.u_ar0, which should point to the registers. */
127
128 CORE_ADDR
129 register_u_addr (CORE_ADDR blockend, int regnum)
130 {
131 return (blockend + 4 * regmap[regnum]);
132 }
133
134 /* Return the size of the user struct. */
135
136 int
137 kernel_u_size (void)
138 {
139 return (sizeof (struct user));
140 }
141 \f
142
143 /* Fetching registers directly from the U area, one at a time. */
144
145 /* FIXME: kettenis/2000-03-05: This duplicates code from `inptrace.c'.
146 The problem is that we define FETCH_INFERIOR_REGISTERS since we
147 want to use our own versions of {fetch,store}_inferior_registers
148 that use the GETREGS request. This means that the code in
149 `infptrace.c' is #ifdef'd out. But we need to fall back on that
150 code when GDB is running on top of a kernel that doesn't support
151 the GETREGS request. I want to avoid changing `infptrace.c' right
152 now. */
153
154 #ifndef PT_READ_U
155 #define PT_READ_U PTRACE_PEEKUSR
156 #endif
157 #ifndef PT_WRITE_U
158 #define PT_WRITE_U PTRACE_POKEUSR
159 #endif
160
161 /* Default the type of the ptrace transfer to int. */
162 #ifndef PTRACE_XFER_TYPE
163 #define PTRACE_XFER_TYPE int
164 #endif
165
166 /* Registers we shouldn't try to fetch. */
167 #define OLD_CANNOT_FETCH_REGISTER(regno) ((regno) >= NUM_GREGS)
168
169 /* Fetch one register. */
170
171 static void
172 fetch_register (int regno)
173 {
174 /* This isn't really an address. But ptrace thinks of it as one. */
175 CORE_ADDR regaddr;
176 char mess[128]; /* For messages */
177 register int i;
178 unsigned int offset; /* Offset of registers within the u area. */
179 char buf[MAX_REGISTER_RAW_SIZE];
180 int tid;
181
182 if (OLD_CANNOT_FETCH_REGISTER (regno))
183 {
184 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
185 supply_register (regno, buf);
186 return;
187 }
188
189 /* Overload thread id onto process id */
190 if ((tid = TIDGET (inferior_ptid)) == 0)
191 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
192
193 offset = U_REGS_OFFSET;
194
195 regaddr = register_addr (regno, offset);
196 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
197 {
198 errno = 0;
199 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
200 (PTRACE_ARG3_TYPE) regaddr, 0);
201 regaddr += sizeof (PTRACE_XFER_TYPE);
202 if (errno != 0)
203 {
204 sprintf (mess, "reading register %s (#%d)",
205 REGISTER_NAME (regno), regno);
206 perror_with_name (mess);
207 }
208 }
209 supply_register (regno, buf);
210 }
211
212 /* Fetch register values from the inferior.
213 If REGNO is negative, do this for all registers.
214 Otherwise, REGNO specifies which register (so we can save time). */
215
216 void
217 old_fetch_inferior_registers (int regno)
218 {
219 if (regno >= 0)
220 {
221 fetch_register (regno);
222 }
223 else
224 {
225 for (regno = 0; regno < NUM_REGS; regno++)
226 {
227 fetch_register (regno);
228 }
229 }
230 }
231
232 /* Registers we shouldn't try to store. */
233 #define OLD_CANNOT_STORE_REGISTER(regno) ((regno) >= NUM_GREGS)
234
235 /* Store one register. */
236
237 static void
238 store_register (int regno)
239 {
240 /* This isn't really an address. But ptrace thinks of it as one. */
241 CORE_ADDR regaddr;
242 char mess[128]; /* For messages */
243 register int i;
244 unsigned int offset; /* Offset of registers within the u area. */
245 int tid;
246
247 if (OLD_CANNOT_STORE_REGISTER (regno))
248 {
249 return;
250 }
251
252 /* Overload thread id onto process id */
253 if ((tid = TIDGET (inferior_ptid)) == 0)
254 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
255
256 offset = U_REGS_OFFSET;
257
258 regaddr = register_addr (regno, offset);
259 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
260 {
261 errno = 0;
262 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
263 *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
264 regaddr += sizeof (PTRACE_XFER_TYPE);
265 if (errno != 0)
266 {
267 sprintf (mess, "writing register %s (#%d)",
268 REGISTER_NAME (regno), regno);
269 perror_with_name (mess);
270 }
271 }
272 }
273
274 /* Store our register values back into the inferior.
275 If REGNO is negative, do this for all registers.
276 Otherwise, REGNO specifies which register (so we can save time). */
277
278 void
279 old_store_inferior_registers (int regno)
280 {
281 if (regno >= 0)
282 {
283 store_register (regno);
284 }
285 else
286 {
287 for (regno = 0; regno < NUM_REGS; regno++)
288 {
289 store_register (regno);
290 }
291 }
292 }
293 \f
294
295 /* Transfering the general-purpose registers between GDB, inferiors
296 and core files. */
297
298 /* Fill GDB's register array with the general-purpose register values
299 in *GREGSETP. */
300
301 void
302 supply_gregset (elf_gregset_t *gregsetp)
303 {
304 elf_greg_t *regp = (elf_greg_t *) gregsetp;
305 int i;
306
307 for (i = 0; i < NUM_GREGS; i++)
308 supply_register (i, (char *) (regp + regmap[i]));
309
310 supply_register (I386_LINUX_ORIG_EAX_REGNUM, (char *) (regp + ORIG_EAX));
311 }
312
313 /* Fill register REGNO (if it is a general-purpose register) in
314 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
315 do this for all registers. */
316
317 void
318 fill_gregset (elf_gregset_t *gregsetp, int regno)
319 {
320 elf_greg_t *regp = (elf_greg_t *) gregsetp;
321 int i;
322
323 for (i = 0; i < NUM_GREGS; i++)
324 if ((regno == -1 || regno == i))
325 regcache_collect (i, regp + regmap[i]);
326
327 if (regno == -1 || regno == I386_LINUX_ORIG_EAX_REGNUM)
328 regcache_collect (I386_LINUX_ORIG_EAX_REGNUM, regp + ORIG_EAX);
329 }
330
331 #ifdef HAVE_PTRACE_GETREGS
332
333 /* Fetch all general-purpose registers from process/thread TID and
334 store their values in GDB's register array. */
335
336 static void
337 fetch_regs (int tid)
338 {
339 elf_gregset_t regs;
340
341 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
342 {
343 if (errno == EIO)
344 {
345 /* The kernel we're running on doesn't support the GETREGS
346 request. Reset `have_ptrace_getregs'. */
347 have_ptrace_getregs = 0;
348 return;
349 }
350
351 perror_with_name ("Couldn't get registers");
352 }
353
354 supply_gregset (&regs);
355 }
356
357 /* Store all valid general-purpose registers in GDB's register array
358 into the process/thread specified by TID. */
359
360 static void
361 store_regs (int tid, int regno)
362 {
363 elf_gregset_t regs;
364
365 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
366 perror_with_name ("Couldn't get registers");
367
368 fill_gregset (&regs, regno);
369
370 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
371 perror_with_name ("Couldn't write registers");
372 }
373
374 #else
375
376 static void fetch_regs (int tid) {}
377 static void store_regs (int tid, int regno) {}
378
379 #endif
380 \f
381
382 /* Transfering floating-point registers between GDB, inferiors and cores. */
383
384 /* Fill GDB's register array with the floating-point register values in
385 *FPREGSETP. */
386
387 void
388 supply_fpregset (elf_fpregset_t *fpregsetp)
389 {
390 i387_supply_fsave ((char *) fpregsetp);
391 dummy_sse_values ();
392 }
393
394 /* Fill register REGNO (if it is a floating-point register) in
395 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
396 do this for all registers. */
397
398 void
399 fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
400 {
401 i387_fill_fsave ((char *) fpregsetp, regno);
402 }
403
404 #ifdef HAVE_PTRACE_GETREGS
405
406 /* Fetch all floating-point registers from process/thread TID and store
407 thier values in GDB's register array. */
408
409 static void
410 fetch_fpregs (int tid)
411 {
412 elf_fpregset_t fpregs;
413
414 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
415 perror_with_name ("Couldn't get floating point status");
416
417 supply_fpregset (&fpregs);
418 }
419
420 /* Store all valid floating-point registers in GDB's register array
421 into the process/thread specified by TID. */
422
423 static void
424 store_fpregs (int tid, int regno)
425 {
426 elf_fpregset_t fpregs;
427
428 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
429 perror_with_name ("Couldn't get floating point status");
430
431 fill_fpregset (&fpregs, regno);
432
433 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
434 perror_with_name ("Couldn't write floating point status");
435 }
436
437 #else
438
439 static void fetch_fpregs (int tid) {}
440 static void store_fpregs (int tid, int regno) {}
441
442 #endif
443 \f
444
445 /* Transfering floating-point and SSE registers to and from GDB. */
446
447 #ifdef HAVE_PTRACE_GETFPXREGS
448
449 /* Fill GDB's register array with the floating-point and SSE register
450 values in *FPXREGSETP. */
451
452 static void
453 supply_fpxregset (elf_fpxregset_t *fpxregsetp)
454 {
455 i387_supply_fxsave ((char *) fpxregsetp);
456 }
457
458 /* Fill register REGNO (if it is a floating-point or SSE register) in
459 *FPXREGSETP with the value in GDB's register array. If REGNO is
460 -1, do this for all registers. */
461
462 static void
463 fill_fpxregset (elf_fpxregset_t *fpxregsetp, int regno)
464 {
465 i387_fill_fxsave ((char *) fpxregsetp, regno);
466 }
467
468 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from
469 process/thread TID and store their values in GDB's register array.
470 Return non-zero if successful, zero otherwise. */
471
472 static int
473 fetch_fpxregs (int tid)
474 {
475 elf_fpxregset_t fpxregs;
476
477 if (! have_ptrace_getfpxregs)
478 return 0;
479
480 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
481 {
482 if (errno == EIO)
483 {
484 have_ptrace_getfpxregs = 0;
485 return 0;
486 }
487
488 perror_with_name ("Couldn't read floating-point and SSE registers");
489 }
490
491 supply_fpxregset (&fpxregs);
492 return 1;
493 }
494
495 /* Store all valid registers in GDB's register array covered by the
496 PTRACE_SETFPXREGS request into the process/thread specified by TID.
497 Return non-zero if successful, zero otherwise. */
498
499 static int
500 store_fpxregs (int tid, int regno)
501 {
502 elf_fpxregset_t fpxregs;
503
504 if (! have_ptrace_getfpxregs)
505 return 0;
506
507 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
508 {
509 if (errno == EIO)
510 {
511 have_ptrace_getfpxregs = 0;
512 return 0;
513 }
514
515 perror_with_name ("Couldn't read floating-point and SSE registers");
516 }
517
518 fill_fpxregset (&fpxregs, regno);
519
520 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
521 perror_with_name ("Couldn't write floating-point and SSE registers");
522
523 return 1;
524 }
525
526 /* Fill the XMM registers in the register array with dummy values. For
527 cases where we don't have access to the XMM registers. I think
528 this is cleaner than printing a warning. For a cleaner solution,
529 we should gdbarchify the i386 family. */
530
531 static void
532 dummy_sse_values (void)
533 {
534 /* C doesn't have a syntax for NaN's, so write it out as an array of
535 longs. */
536 static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
537 static long mxcsr = 0x1f80;
538 int reg;
539
540 for (reg = 0; reg < 8; reg++)
541 supply_register (XMM0_REGNUM + reg, (char *) dummy);
542 supply_register (MXCSR_REGNUM, (char *) &mxcsr);
543 }
544
545 #else
546
547 static int fetch_fpxregs (int tid) { return 0; }
548 static int store_fpxregs (int tid, int regno) { return 0; }
549 static void dummy_sse_values (void) {}
550
551 #endif /* HAVE_PTRACE_GETFPXREGS */
552 \f
553
554 /* Transferring arbitrary registers between GDB and inferior. */
555
556 /* Check if register REGNO in the child process is accessible.
557 If we are accessing registers directly via the U area, only the
558 general-purpose registers are available.
559 All registers should be accessible if we have GETREGS support. */
560
561 int
562 cannot_fetch_register (int regno)
563 {
564 if (! have_ptrace_getregs)
565 return OLD_CANNOT_FETCH_REGISTER (regno);
566 return 0;
567 }
568 int
569 cannot_store_register (int regno)
570 {
571 if (! have_ptrace_getregs)
572 return OLD_CANNOT_STORE_REGISTER (regno);
573 return 0;
574 }
575
576 /* Fetch register REGNO from the child process. If REGNO is -1, do
577 this for all registers (including the floating point and SSE
578 registers). */
579
580 void
581 fetch_inferior_registers (int regno)
582 {
583 int tid;
584
585 /* Use the old method of peeking around in `struct user' if the
586 GETREGS request isn't available. */
587 if (! have_ptrace_getregs)
588 {
589 old_fetch_inferior_registers (regno);
590 return;
591 }
592
593 /* Linux LWP ID's are process ID's. */
594 if ((tid = TIDGET (inferior_ptid)) == 0)
595 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
596
597 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
598 transfers more registers in one system call, and we'll cache the
599 results. But remember that fetch_fpxregs can fail, and return
600 zero. */
601 if (regno == -1)
602 {
603 fetch_regs (tid);
604
605 /* The call above might reset `have_ptrace_getregs'. */
606 if (! have_ptrace_getregs)
607 {
608 old_fetch_inferior_registers (-1);
609 return;
610 }
611
612 if (fetch_fpxregs (tid))
613 return;
614 fetch_fpregs (tid);
615 return;
616 }
617
618 if (GETREGS_SUPPLIES (regno))
619 {
620 fetch_regs (tid);
621 return;
622 }
623
624 if (GETFPXREGS_SUPPLIES (regno))
625 {
626 if (fetch_fpxregs (tid))
627 return;
628
629 /* Either our processor or our kernel doesn't support the SSE
630 registers, so read the FP registers in the traditional way,
631 and fill the SSE registers with dummy values. It would be
632 more graceful to handle differences in the register set using
633 gdbarch. Until then, this will at least make things work
634 plausibly. */
635 fetch_fpregs (tid);
636 return;
637 }
638
639 internal_error (__FILE__, __LINE__,
640 "Got request for bad register number %d.", regno);
641 }
642
643 /* Store register REGNO back into the child process. If REGNO is -1,
644 do this for all registers (including the floating point and SSE
645 registers). */
646 void
647 store_inferior_registers (int regno)
648 {
649 int tid;
650
651 /* Use the old method of poking around in `struct user' if the
652 SETREGS request isn't available. */
653 if (! have_ptrace_getregs)
654 {
655 old_store_inferior_registers (regno);
656 return;
657 }
658
659 /* Linux LWP ID's are process ID's. */
660 if ((tid = TIDGET (inferior_ptid)) == 0)
661 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
662
663 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
664 transfers more registers in one system call. But remember that
665 store_fpxregs can fail, and return zero. */
666 if (regno == -1)
667 {
668 store_regs (tid, regno);
669 if (store_fpxregs (tid, regno))
670 return;
671 store_fpregs (tid, regno);
672 return;
673 }
674
675 if (GETREGS_SUPPLIES (regno))
676 {
677 store_regs (tid, regno);
678 return;
679 }
680
681 if (GETFPXREGS_SUPPLIES (regno))
682 {
683 if (store_fpxregs (tid, regno))
684 return;
685
686 /* Either our processor or our kernel doesn't support the SSE
687 registers, so just write the FP registers in the traditional
688 way. */
689 store_fpregs (tid, regno);
690 return;
691 }
692
693 internal_error (__FILE__, __LINE__,
694 "Got request to store bad register number %d.", regno);
695 }
696 \f
697
698 static unsigned long
699 i386_linux_dr_get (int regnum)
700 {
701 int tid;
702 unsigned long value;
703
704 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
705 multi-threaded processes here. For now, pretend there is just
706 one thread. */
707 tid = PIDGET (inferior_ptid);
708
709 /* FIXME: kettenis/2001-03-27: Calling perror_with_name if the
710 ptrace call fails breaks debugging remote targets. The correct
711 way to fix this is to add the hardware breakpoint and watchpoint
712 stuff to the target vectore. For now, just return zero if the
713 ptrace call fails. */
714 errno = 0;
715 value = ptrace (PT_READ_U, tid,
716 offsetof (struct user, u_debugreg[regnum]), 0);
717 if (errno != 0)
718 #if 0
719 perror_with_name ("Couldn't read debug register");
720 #else
721 return 0;
722 #endif
723
724 return value;
725 }
726
727 static void
728 i386_linux_dr_set (int regnum, unsigned long value)
729 {
730 int tid;
731
732 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
733 multi-threaded processes here. For now, pretend there is just
734 one thread. */
735 tid = PIDGET (inferior_ptid);
736
737 errno = 0;
738 ptrace (PT_WRITE_U, tid,
739 offsetof (struct user, u_debugreg[regnum]), value);
740 if (errno != 0)
741 perror_with_name ("Couldn't write debug register");
742 }
743
744 void
745 i386_linux_dr_set_control (unsigned long control)
746 {
747 i386_linux_dr_set (DR_CONTROL, control);
748 }
749
750 void
751 i386_linux_dr_set_addr (int regnum, CORE_ADDR addr)
752 {
753 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
754
755 i386_linux_dr_set (DR_FIRSTADDR + regnum, addr);
756 }
757
758 void
759 i386_linux_dr_reset_addr (int regnum)
760 {
761 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
762
763 i386_linux_dr_set (DR_FIRSTADDR + regnum, 0L);
764 }
765
766 unsigned long
767 i386_linux_dr_get_status (void)
768 {
769 return i386_linux_dr_get (DR_STATUS);
770 }
771 \f
772
773 /* Interpreting register set info found in core files. */
774
775 /* Provide registers to GDB from a core file.
776
777 (We can't use the generic version of this function in
778 core-regset.c, because Linux has *three* different kinds of
779 register set notes. core-regset.c would have to call
780 supply_fpxregset, which most platforms don't have.)
781
782 CORE_REG_SECT points to an array of bytes, which are the contents
783 of a `note' from a core file which BFD thinks might contain
784 register contents. CORE_REG_SIZE is its size.
785
786 WHICH says which register set corelow suspects this is:
787 0 --- the general-purpose register set, in elf_gregset_t format
788 2 --- the floating-point register set, in elf_fpregset_t format
789 3 --- the extended floating-point register set, in elf_fpxregset_t format
790
791 REG_ADDR isn't used on Linux. */
792
793 static void
794 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
795 int which, CORE_ADDR reg_addr)
796 {
797 elf_gregset_t gregset;
798 elf_fpregset_t fpregset;
799
800 switch (which)
801 {
802 case 0:
803 if (core_reg_size != sizeof (gregset))
804 warning ("Wrong size gregset in core file.");
805 else
806 {
807 memcpy (&gregset, core_reg_sect, sizeof (gregset));
808 supply_gregset (&gregset);
809 }
810 break;
811
812 case 2:
813 if (core_reg_size != sizeof (fpregset))
814 warning ("Wrong size fpregset in core file.");
815 else
816 {
817 memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
818 supply_fpregset (&fpregset);
819 }
820 break;
821
822 #ifdef HAVE_PTRACE_GETFPXREGS
823 {
824 elf_fpxregset_t fpxregset;
825
826 case 3:
827 if (core_reg_size != sizeof (fpxregset))
828 warning ("Wrong size fpxregset in core file.");
829 else
830 {
831 memcpy (&fpxregset, core_reg_sect, sizeof (fpxregset));
832 supply_fpxregset (&fpxregset);
833 }
834 break;
835 }
836 #endif
837
838 default:
839 /* We've covered all the kinds of registers we know about here,
840 so this must be something we wouldn't know what to do with
841 anyway. Just ignore it. */
842 break;
843 }
844 }
845 \f
846
847 /* The instruction for a Linux system call is:
848 int $0x80
849 or 0xcd 0x80. */
850
851 static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
852
853 #define LINUX_SYSCALL_LEN (sizeof linux_syscall)
854
855 /* The system call number is stored in the %eax register. */
856 #define LINUX_SYSCALL_REGNUM 0 /* %eax */
857
858 /* We are specifically interested in the sigreturn and rt_sigreturn
859 system calls. */
860
861 #ifndef SYS_sigreturn
862 #define SYS_sigreturn 0x77
863 #endif
864 #ifndef SYS_rt_sigreturn
865 #define SYS_rt_sigreturn 0xad
866 #endif
867
868 /* Offset to saved processor flags, from <asm/sigcontext.h>. */
869 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
870
871 /* Resume execution of the inferior process.
872 If STEP is nonzero, single-step it.
873 If SIGNAL is nonzero, give it that signal. */
874
875 void
876 child_resume (ptid_t ptid, int step, enum target_signal signal)
877 {
878 int pid = PIDGET (ptid);
879
880 int request = PTRACE_CONT;
881
882 if (pid == -1)
883 /* Resume all threads. */
884 /* I think this only gets used in the non-threaded case, where "resume
885 all threads" and "resume inferior_ptid" are the same. */
886 pid = PIDGET (inferior_ptid);
887
888 if (step)
889 {
890 CORE_ADDR pc = read_pc_pid (pid_to_ptid (pid));
891 unsigned char buf[LINUX_SYSCALL_LEN];
892
893 request = PTRACE_SINGLESTEP;
894
895 /* Returning from a signal trampoline is done by calling a
896 special system call (sigreturn or rt_sigreturn, see
897 i386-linux-tdep.c for more information). This system call
898 restores the registers that were saved when the signal was
899 raised, including %eflags. That means that single-stepping
900 won't work. Instead, we'll have to modify the signal context
901 that's about to be restored, and set the trace flag there. */
902
903 /* First check if PC is at a system call. */
904 if (read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0
905 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
906 {
907 int syscall = read_register_pid (LINUX_SYSCALL_REGNUM,
908 pid_to_ptid (pid));
909
910 /* Then check the system call number. */
911 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
912 {
913 CORE_ADDR sp = read_register (SP_REGNUM);
914 CORE_ADDR addr = sp;
915 unsigned long int eflags;
916
917 if (syscall == SYS_rt_sigreturn)
918 addr = read_memory_integer (sp + 8, 4) + 20;
919
920 /* Set the trace flag in the context that's about to be
921 restored. */
922 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
923 read_memory (addr, (char *) &eflags, 4);
924 eflags |= 0x0100;
925 write_memory (addr, (char *) &eflags, 4);
926 }
927 }
928 }
929
930 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
931 perror_with_name ("ptrace");
932 }
933 \f
934
935 /* Register that we are able to handle Linux ELF core file formats. */
936
937 static struct core_fns linux_elf_core_fns =
938 {
939 bfd_target_elf_flavour, /* core_flavour */
940 default_check_format, /* check_format */
941 default_core_sniffer, /* core_sniffer */
942 fetch_core_registers, /* core_read_registers */
943 NULL /* next */
944 };
945
946 void
947 _initialize_i386_linux_nat (void)
948 {
949 add_core_fns (&linux_elf_core_fns);
950 }
This page took 0.049389 seconds and 4 git commands to generate.