2002-08-21 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-linux-nat.c
1 /* Native-dependent code for GNU/Linux x86.
2
3 Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26
27 #include "gdb_assert.h"
28 #include <sys/ptrace.h>
29 #include <sys/user.h>
30 #include <sys/procfs.h>
31
32 #ifdef HAVE_SYS_REG_H
33 #include <sys/reg.h>
34 #endif
35
36 #ifdef HAVE_SYS_DEBUGREG_H
37 #include <sys/debugreg.h>
38 #endif
39
40 #ifndef DR_FIRSTADDR
41 #define DR_FIRSTADDR 0
42 #endif
43
44 #ifndef DR_LASTADDR
45 #define DR_LASTADDR 3
46 #endif
47
48 #ifndef DR_STATUS
49 #define DR_STATUS 6
50 #endif
51
52 #ifndef DR_CONTROL
53 #define DR_CONTROL 7
54 #endif
55
56 /* Prototypes for supply_gregset etc. */
57 #include "gregset.h"
58
59 /* Prototypes for i387_supply_fsave etc. */
60 #include "i387-tdep.h"
61
62 /* Defines for XMM0_REGNUM etc. */
63 #include "i386-tdep.h"
64
65 /* Defines I386_LINUX_ORIG_EAX_REGNUM. */
66 #include "i386-linux-tdep.h"
67
68 /* Prototypes for local functions. */
69 static void dummy_sse_values (void);
70
71 \f
72
73 /* The register sets used in GNU/Linux ELF core-dumps are identical to
74 the register sets in `struct user' that is used for a.out
75 core-dumps, and is also used by `ptrace'. The corresponding types
76 are `elf_gregset_t' for the general-purpose registers (with
77 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
78 for the floating-point registers.
79
80 Those types used to be available under the names `gregset_t' and
81 `fpregset_t' too, and this file used those names in the past. But
82 those names are now used for the register sets used in the
83 `mcontext_t' type, and have a different size and layout. */
84
85 /* Mapping between the general-purpose registers in `struct user'
86 format and GDB's register array layout. */
87 static int regmap[] =
88 {
89 EAX, ECX, EDX, EBX,
90 UESP, EBP, ESI, EDI,
91 EIP, EFL, CS, SS,
92 DS, ES, FS, GS
93 };
94
95 /* Which ptrace request retrieves which registers?
96 These apply to the corresponding SET requests as well. */
97 #define GETREGS_SUPPLIES(regno) \
98 ((0 <= (regno) && (regno) <= 15) || (regno) == I386_LINUX_ORIG_EAX_REGNUM)
99 #define GETFPREGS_SUPPLIES(regno) \
100 (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
101 #define GETFPXREGS_SUPPLIES(regno) \
102 (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
103
104 /* Does the current host support the GETREGS request? */
105 int have_ptrace_getregs =
106 #ifdef HAVE_PTRACE_GETREGS
107 1
108 #else
109 0
110 #endif
111 ;
112
113 /* Does the current host support the GETFPXREGS request? The header
114 file may or may not define it, and even if it is defined, the
115 kernel will return EIO if it's running on a pre-SSE processor.
116
117 My instinct is to attach this to some architecture- or
118 target-specific data structure, but really, a particular GDB
119 process can only run on top of one kernel at a time. So it's okay
120 for this to be a simple variable. */
121 int have_ptrace_getfpxregs =
122 #ifdef HAVE_PTRACE_GETFPXREGS
123 1
124 #else
125 0
126 #endif
127 ;
128 \f
129
130 /* Support for the user struct. */
131
132 /* Return the address of register REGNUM. BLOCKEND is the value of
133 u.u_ar0, which should point to the registers. */
134
135 CORE_ADDR
136 register_u_addr (CORE_ADDR blockend, int regnum)
137 {
138 return (blockend + 4 * regmap[regnum]);
139 }
140
141 /* Return the size of the user struct. */
142
143 int
144 kernel_u_size (void)
145 {
146 return (sizeof (struct user));
147 }
148 \f
149
150 /* Fetching registers directly from the U area, one at a time. */
151
152 /* FIXME: kettenis/2000-03-05: This duplicates code from `inptrace.c'.
153 The problem is that we define FETCH_INFERIOR_REGISTERS since we
154 want to use our own versions of {fetch,store}_inferior_registers
155 that use the GETREGS request. This means that the code in
156 `infptrace.c' is #ifdef'd out. But we need to fall back on that
157 code when GDB is running on top of a kernel that doesn't support
158 the GETREGS request. I want to avoid changing `infptrace.c' right
159 now. */
160
161 #ifndef PT_READ_U
162 #define PT_READ_U PTRACE_PEEKUSR
163 #endif
164 #ifndef PT_WRITE_U
165 #define PT_WRITE_U PTRACE_POKEUSR
166 #endif
167
168 /* Default the type of the ptrace transfer to int. */
169 #ifndef PTRACE_XFER_TYPE
170 #define PTRACE_XFER_TYPE int
171 #endif
172
173 /* Registers we shouldn't try to fetch. */
174 #define OLD_CANNOT_FETCH_REGISTER(regno) ((regno) >= I386_NUM_GREGS)
175
176 /* Fetch one register. */
177
178 static void
179 fetch_register (int regno)
180 {
181 /* This isn't really an address. But ptrace thinks of it as one. */
182 CORE_ADDR regaddr;
183 char mess[128]; /* For messages */
184 register int i;
185 unsigned int offset; /* Offset of registers within the u area. */
186 char buf[MAX_REGISTER_RAW_SIZE];
187 int tid;
188
189 if (OLD_CANNOT_FETCH_REGISTER (regno))
190 {
191 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
192 supply_register (regno, buf);
193 return;
194 }
195
196 /* Overload thread id onto process id */
197 if ((tid = TIDGET (inferior_ptid)) == 0)
198 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
199
200 offset = U_REGS_OFFSET;
201
202 regaddr = register_addr (regno, offset);
203 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
204 {
205 errno = 0;
206 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
207 (PTRACE_ARG3_TYPE) regaddr, 0);
208 regaddr += sizeof (PTRACE_XFER_TYPE);
209 if (errno != 0)
210 {
211 sprintf (mess, "reading register %s (#%d)",
212 REGISTER_NAME (regno), regno);
213 perror_with_name (mess);
214 }
215 }
216 supply_register (regno, buf);
217 }
218
219 /* Fetch register values from the inferior.
220 If REGNO is negative, do this for all registers.
221 Otherwise, REGNO specifies which register (so we can save time). */
222
223 void
224 old_fetch_inferior_registers (int regno)
225 {
226 if (regno >= 0)
227 {
228 fetch_register (regno);
229 }
230 else
231 {
232 for (regno = 0; regno < NUM_REGS; regno++)
233 {
234 fetch_register (regno);
235 }
236 }
237 }
238
239 /* Registers we shouldn't try to store. */
240 #define OLD_CANNOT_STORE_REGISTER(regno) ((regno) >= I386_NUM_GREGS)
241
242 /* Store one register. */
243
244 static void
245 store_register (int regno)
246 {
247 /* This isn't really an address. But ptrace thinks of it as one. */
248 CORE_ADDR regaddr;
249 char mess[128]; /* For messages */
250 register int i;
251 unsigned int offset; /* Offset of registers within the u area. */
252 int tid;
253
254 if (OLD_CANNOT_STORE_REGISTER (regno))
255 {
256 return;
257 }
258
259 /* Overload thread id onto process id */
260 if ((tid = TIDGET (inferior_ptid)) == 0)
261 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
262
263 offset = U_REGS_OFFSET;
264
265 regaddr = register_addr (regno, offset);
266 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
267 {
268 errno = 0;
269 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
270 *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
271 regaddr += sizeof (PTRACE_XFER_TYPE);
272 if (errno != 0)
273 {
274 sprintf (mess, "writing register %s (#%d)",
275 REGISTER_NAME (regno), regno);
276 perror_with_name (mess);
277 }
278 }
279 }
280
281 /* Store our register values back into the inferior.
282 If REGNO is negative, do this for all registers.
283 Otherwise, REGNO specifies which register (so we can save time). */
284
285 void
286 old_store_inferior_registers (int regno)
287 {
288 if (regno >= 0)
289 {
290 store_register (regno);
291 }
292 else
293 {
294 for (regno = 0; regno < NUM_REGS; regno++)
295 {
296 store_register (regno);
297 }
298 }
299 }
300 \f
301
302 /* Transfering the general-purpose registers between GDB, inferiors
303 and core files. */
304
305 /* Fill GDB's register array with the general-purpose register values
306 in *GREGSETP. */
307
308 void
309 supply_gregset (elf_gregset_t *gregsetp)
310 {
311 elf_greg_t *regp = (elf_greg_t *) gregsetp;
312 int i;
313
314 for (i = 0; i < I386_NUM_GREGS; i++)
315 supply_register (i, (char *) (regp + regmap[i]));
316
317 if (I386_LINUX_ORIG_EAX_REGNUM < NUM_REGS)
318 supply_register (I386_LINUX_ORIG_EAX_REGNUM, (char *) (regp + ORIG_EAX));
319 }
320
321 /* Fill register REGNO (if it is a general-purpose register) in
322 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
323 do this for all registers. */
324
325 void
326 fill_gregset (elf_gregset_t *gregsetp, int regno)
327 {
328 elf_greg_t *regp = (elf_greg_t *) gregsetp;
329 int i;
330
331 for (i = 0; i < I386_NUM_GREGS; i++)
332 if (regno == -1 || regno == i)
333 regcache_collect (i, regp + regmap[i]);
334
335 if ((regno == -1 || regno == I386_LINUX_ORIG_EAX_REGNUM)
336 && I386_LINUX_ORIG_EAX_REGNUM < NUM_REGS)
337 regcache_collect (I386_LINUX_ORIG_EAX_REGNUM, regp + ORIG_EAX);
338 }
339
340 #ifdef HAVE_PTRACE_GETREGS
341
342 /* Fetch all general-purpose registers from process/thread TID and
343 store their values in GDB's register array. */
344
345 static void
346 fetch_regs (int tid)
347 {
348 elf_gregset_t regs;
349
350 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
351 {
352 if (errno == EIO)
353 {
354 /* The kernel we're running on doesn't support the GETREGS
355 request. Reset `have_ptrace_getregs'. */
356 have_ptrace_getregs = 0;
357 return;
358 }
359
360 perror_with_name ("Couldn't get registers");
361 }
362
363 supply_gregset (&regs);
364 }
365
366 /* Store all valid general-purpose registers in GDB's register array
367 into the process/thread specified by TID. */
368
369 static void
370 store_regs (int tid, int regno)
371 {
372 elf_gregset_t regs;
373
374 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
375 perror_with_name ("Couldn't get registers");
376
377 fill_gregset (&regs, regno);
378
379 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
380 perror_with_name ("Couldn't write registers");
381 }
382
383 #else
384
385 static void fetch_regs (int tid) {}
386 static void store_regs (int tid, int regno) {}
387
388 #endif
389 \f
390
391 /* Transfering floating-point registers between GDB, inferiors and cores. */
392
393 /* Fill GDB's register array with the floating-point register values in
394 *FPREGSETP. */
395
396 void
397 supply_fpregset (elf_fpregset_t *fpregsetp)
398 {
399 i387_supply_fsave ((char *) fpregsetp);
400 dummy_sse_values ();
401 }
402
403 /* Fill register REGNO (if it is a floating-point register) in
404 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
405 do this for all registers. */
406
407 void
408 fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
409 {
410 i387_fill_fsave ((char *) fpregsetp, regno);
411 }
412
413 #ifdef HAVE_PTRACE_GETREGS
414
415 /* Fetch all floating-point registers from process/thread TID and store
416 thier values in GDB's register array. */
417
418 static void
419 fetch_fpregs (int tid)
420 {
421 elf_fpregset_t fpregs;
422
423 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
424 perror_with_name ("Couldn't get floating point status");
425
426 supply_fpregset (&fpregs);
427 }
428
429 /* Store all valid floating-point registers in GDB's register array
430 into the process/thread specified by TID. */
431
432 static void
433 store_fpregs (int tid, int regno)
434 {
435 elf_fpregset_t fpregs;
436
437 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
438 perror_with_name ("Couldn't get floating point status");
439
440 fill_fpregset (&fpregs, regno);
441
442 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
443 perror_with_name ("Couldn't write floating point status");
444 }
445
446 #else
447
448 static void fetch_fpregs (int tid) {}
449 static void store_fpregs (int tid, int regno) {}
450
451 #endif
452 \f
453
454 /* Transfering floating-point and SSE registers to and from GDB. */
455
456 #ifdef HAVE_PTRACE_GETFPXREGS
457
458 /* Fill GDB's register array with the floating-point and SSE register
459 values in *FPXREGSETP. */
460
461 void
462 supply_fpxregset (elf_fpxregset_t *fpxregsetp)
463 {
464 i387_supply_fxsave ((char *) fpxregsetp);
465 }
466
467 /* Fill register REGNO (if it is a floating-point or SSE register) in
468 *FPXREGSETP with the value in GDB's register array. If REGNO is
469 -1, do this for all registers. */
470
471 void
472 fill_fpxregset (elf_fpxregset_t *fpxregsetp, int regno)
473 {
474 i387_fill_fxsave ((char *) fpxregsetp, regno);
475 }
476
477 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from
478 process/thread TID and store their values in GDB's register array.
479 Return non-zero if successful, zero otherwise. */
480
481 static int
482 fetch_fpxregs (int tid)
483 {
484 elf_fpxregset_t fpxregs;
485
486 if (! have_ptrace_getfpxregs)
487 return 0;
488
489 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
490 {
491 if (errno == EIO)
492 {
493 have_ptrace_getfpxregs = 0;
494 return 0;
495 }
496
497 perror_with_name ("Couldn't read floating-point and SSE registers");
498 }
499
500 supply_fpxregset (&fpxregs);
501 return 1;
502 }
503
504 /* Store all valid registers in GDB's register array covered by the
505 PTRACE_SETFPXREGS request into the process/thread specified by TID.
506 Return non-zero if successful, zero otherwise. */
507
508 static int
509 store_fpxregs (int tid, int regno)
510 {
511 elf_fpxregset_t fpxregs;
512
513 if (! have_ptrace_getfpxregs)
514 return 0;
515
516 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
517 {
518 if (errno == EIO)
519 {
520 have_ptrace_getfpxregs = 0;
521 return 0;
522 }
523
524 perror_with_name ("Couldn't read floating-point and SSE registers");
525 }
526
527 fill_fpxregset (&fpxregs, regno);
528
529 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
530 perror_with_name ("Couldn't write floating-point and SSE registers");
531
532 return 1;
533 }
534
535 /* Fill the XMM registers in the register array with dummy values. For
536 cases where we don't have access to the XMM registers. I think
537 this is cleaner than printing a warning. For a cleaner solution,
538 we should gdbarchify the i386 family. */
539
540 static void
541 dummy_sse_values (void)
542 {
543 /* C doesn't have a syntax for NaN's, so write it out as an array of
544 longs. */
545 static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
546 static long mxcsr = 0x1f80;
547 int reg;
548
549 for (reg = 0; reg < 8; reg++)
550 supply_register (XMM0_REGNUM + reg, (char *) dummy);
551 supply_register (MXCSR_REGNUM, (char *) &mxcsr);
552 }
553
554 #else
555
556 static int fetch_fpxregs (int tid) { return 0; }
557 static int store_fpxregs (int tid, int regno) { return 0; }
558 static void dummy_sse_values (void) {}
559
560 #endif /* HAVE_PTRACE_GETFPXREGS */
561 \f
562
563 /* Transferring arbitrary registers between GDB and inferior. */
564
565 /* Check if register REGNO in the child process is accessible.
566 If we are accessing registers directly via the U area, only the
567 general-purpose registers are available.
568 All registers should be accessible if we have GETREGS support. */
569
570 int
571 cannot_fetch_register (int regno)
572 {
573 if (! have_ptrace_getregs)
574 return OLD_CANNOT_FETCH_REGISTER (regno);
575 return 0;
576 }
577 int
578 cannot_store_register (int regno)
579 {
580 if (! have_ptrace_getregs)
581 return OLD_CANNOT_STORE_REGISTER (regno);
582 return 0;
583 }
584
585 /* Fetch register REGNO from the child process. If REGNO is -1, do
586 this for all registers (including the floating point and SSE
587 registers). */
588
589 void
590 fetch_inferior_registers (int regno)
591 {
592 int tid;
593
594 /* Use the old method of peeking around in `struct user' if the
595 GETREGS request isn't available. */
596 if (! have_ptrace_getregs)
597 {
598 old_fetch_inferior_registers (regno);
599 return;
600 }
601
602 /* GNU/Linux LWP ID's are process ID's. */
603 if ((tid = TIDGET (inferior_ptid)) == 0)
604 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
605
606 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
607 transfers more registers in one system call, and we'll cache the
608 results. But remember that fetch_fpxregs can fail, and return
609 zero. */
610 if (regno == -1)
611 {
612 fetch_regs (tid);
613
614 /* The call above might reset `have_ptrace_getregs'. */
615 if (! have_ptrace_getregs)
616 {
617 old_fetch_inferior_registers (-1);
618 return;
619 }
620
621 if (fetch_fpxregs (tid))
622 return;
623 fetch_fpregs (tid);
624 return;
625 }
626
627 if (GETREGS_SUPPLIES (regno))
628 {
629 fetch_regs (tid);
630 return;
631 }
632
633 if (GETFPXREGS_SUPPLIES (regno))
634 {
635 if (fetch_fpxregs (tid))
636 return;
637
638 /* Either our processor or our kernel doesn't support the SSE
639 registers, so read the FP registers in the traditional way,
640 and fill the SSE registers with dummy values. It would be
641 more graceful to handle differences in the register set using
642 gdbarch. Until then, this will at least make things work
643 plausibly. */
644 fetch_fpregs (tid);
645 return;
646 }
647
648 internal_error (__FILE__, __LINE__,
649 "Got request for bad register number %d.", regno);
650 }
651
652 /* Store register REGNO back into the child process. If REGNO is -1,
653 do this for all registers (including the floating point and SSE
654 registers). */
655 void
656 store_inferior_registers (int regno)
657 {
658 int tid;
659
660 /* Use the old method of poking around in `struct user' if the
661 SETREGS request isn't available. */
662 if (! have_ptrace_getregs)
663 {
664 old_store_inferior_registers (regno);
665 return;
666 }
667
668 /* GNU/Linux LWP ID's are process ID's. */
669 if ((tid = TIDGET (inferior_ptid)) == 0)
670 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
671
672 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
673 transfers more registers in one system call. But remember that
674 store_fpxregs can fail, and return zero. */
675 if (regno == -1)
676 {
677 store_regs (tid, regno);
678 if (store_fpxregs (tid, regno))
679 return;
680 store_fpregs (tid, regno);
681 return;
682 }
683
684 if (GETREGS_SUPPLIES (regno))
685 {
686 store_regs (tid, regno);
687 return;
688 }
689
690 if (GETFPXREGS_SUPPLIES (regno))
691 {
692 if (store_fpxregs (tid, regno))
693 return;
694
695 /* Either our processor or our kernel doesn't support the SSE
696 registers, so just write the FP registers in the traditional
697 way. */
698 store_fpregs (tid, regno);
699 return;
700 }
701
702 internal_error (__FILE__, __LINE__,
703 "Got request to store bad register number %d.", regno);
704 }
705 \f
706
707 static unsigned long
708 i386_linux_dr_get (int regnum)
709 {
710 int tid;
711 unsigned long value;
712
713 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
714 multi-threaded processes here. For now, pretend there is just
715 one thread. */
716 tid = PIDGET (inferior_ptid);
717
718 /* FIXME: kettenis/2001-03-27: Calling perror_with_name if the
719 ptrace call fails breaks debugging remote targets. The correct
720 way to fix this is to add the hardware breakpoint and watchpoint
721 stuff to the target vectore. For now, just return zero if the
722 ptrace call fails. */
723 errno = 0;
724 value = ptrace (PT_READ_U, tid,
725 offsetof (struct user, u_debugreg[regnum]), 0);
726 if (errno != 0)
727 #if 0
728 perror_with_name ("Couldn't read debug register");
729 #else
730 return 0;
731 #endif
732
733 return value;
734 }
735
736 static void
737 i386_linux_dr_set (int regnum, unsigned long value)
738 {
739 int tid;
740
741 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
742 multi-threaded processes here. For now, pretend there is just
743 one thread. */
744 tid = PIDGET (inferior_ptid);
745
746 errno = 0;
747 ptrace (PT_WRITE_U, tid,
748 offsetof (struct user, u_debugreg[regnum]), value);
749 if (errno != 0)
750 perror_with_name ("Couldn't write debug register");
751 }
752
753 void
754 i386_linux_dr_set_control (unsigned long control)
755 {
756 i386_linux_dr_set (DR_CONTROL, control);
757 }
758
759 void
760 i386_linux_dr_set_addr (int regnum, CORE_ADDR addr)
761 {
762 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
763
764 i386_linux_dr_set (DR_FIRSTADDR + regnum, addr);
765 }
766
767 void
768 i386_linux_dr_reset_addr (int regnum)
769 {
770 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
771
772 i386_linux_dr_set (DR_FIRSTADDR + regnum, 0L);
773 }
774
775 unsigned long
776 i386_linux_dr_get_status (void)
777 {
778 return i386_linux_dr_get (DR_STATUS);
779 }
780 \f
781
782 /* Interpreting register set info found in core files. */
783
784 /* Provide registers to GDB from a core file.
785
786 (We can't use the generic version of this function in
787 core-regset.c, because GNU/Linux has *three* different kinds of
788 register set notes. core-regset.c would have to call
789 supply_fpxregset, which most platforms don't have.)
790
791 CORE_REG_SECT points to an array of bytes, which are the contents
792 of a `note' from a core file which BFD thinks might contain
793 register contents. CORE_REG_SIZE is its size.
794
795 WHICH says which register set corelow suspects this is:
796 0 --- the general-purpose register set, in elf_gregset_t format
797 2 --- the floating-point register set, in elf_fpregset_t format
798 3 --- the extended floating-point register set, in elf_fpxregset_t format
799
800 REG_ADDR isn't used on GNU/Linux. */
801
802 static void
803 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
804 int which, CORE_ADDR reg_addr)
805 {
806 elf_gregset_t gregset;
807 elf_fpregset_t fpregset;
808
809 switch (which)
810 {
811 case 0:
812 if (core_reg_size != sizeof (gregset))
813 warning ("Wrong size gregset in core file.");
814 else
815 {
816 memcpy (&gregset, core_reg_sect, sizeof (gregset));
817 supply_gregset (&gregset);
818 }
819 break;
820
821 case 2:
822 if (core_reg_size != sizeof (fpregset))
823 warning ("Wrong size fpregset in core file.");
824 else
825 {
826 memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
827 supply_fpregset (&fpregset);
828 }
829 break;
830
831 #ifdef HAVE_PTRACE_GETFPXREGS
832 {
833 elf_fpxregset_t fpxregset;
834
835 case 3:
836 if (core_reg_size != sizeof (fpxregset))
837 warning ("Wrong size fpxregset in core file.");
838 else
839 {
840 memcpy (&fpxregset, core_reg_sect, sizeof (fpxregset));
841 supply_fpxregset (&fpxregset);
842 }
843 break;
844 }
845 #endif
846
847 default:
848 /* We've covered all the kinds of registers we know about here,
849 so this must be something we wouldn't know what to do with
850 anyway. Just ignore it. */
851 break;
852 }
853 }
854 \f
855
856 /* The instruction for a GNU/Linux system call is:
857 int $0x80
858 or 0xcd 0x80. */
859
860 static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
861
862 #define LINUX_SYSCALL_LEN (sizeof linux_syscall)
863
864 /* The system call number is stored in the %eax register. */
865 #define LINUX_SYSCALL_REGNUM 0 /* %eax */
866
867 /* We are specifically interested in the sigreturn and rt_sigreturn
868 system calls. */
869
870 #ifndef SYS_sigreturn
871 #define SYS_sigreturn 0x77
872 #endif
873 #ifndef SYS_rt_sigreturn
874 #define SYS_rt_sigreturn 0xad
875 #endif
876
877 /* Offset to saved processor flags, from <asm/sigcontext.h>. */
878 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
879
880 /* Resume execution of the inferior process.
881 If STEP is nonzero, single-step it.
882 If SIGNAL is nonzero, give it that signal. */
883
884 void
885 child_resume (ptid_t ptid, int step, enum target_signal signal)
886 {
887 int pid = PIDGET (ptid);
888
889 int request = PTRACE_CONT;
890
891 if (pid == -1)
892 /* Resume all threads. */
893 /* I think this only gets used in the non-threaded case, where "resume
894 all threads" and "resume inferior_ptid" are the same. */
895 pid = PIDGET (inferior_ptid);
896
897 if (step)
898 {
899 CORE_ADDR pc = read_pc_pid (pid_to_ptid (pid));
900 unsigned char buf[LINUX_SYSCALL_LEN];
901
902 request = PTRACE_SINGLESTEP;
903
904 /* Returning from a signal trampoline is done by calling a
905 special system call (sigreturn or rt_sigreturn, see
906 i386-linux-tdep.c for more information). This system call
907 restores the registers that were saved when the signal was
908 raised, including %eflags. That means that single-stepping
909 won't work. Instead, we'll have to modify the signal context
910 that's about to be restored, and set the trace flag there. */
911
912 /* First check if PC is at a system call. */
913 if (read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0
914 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
915 {
916 int syscall = read_register_pid (LINUX_SYSCALL_REGNUM,
917 pid_to_ptid (pid));
918
919 /* Then check the system call number. */
920 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
921 {
922 CORE_ADDR sp = read_register (SP_REGNUM);
923 CORE_ADDR addr = sp;
924 unsigned long int eflags;
925
926 if (syscall == SYS_rt_sigreturn)
927 addr = read_memory_integer (sp + 8, 4) + 20;
928
929 /* Set the trace flag in the context that's about to be
930 restored. */
931 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
932 read_memory (addr, (char *) &eflags, 4);
933 eflags |= 0x0100;
934 write_memory (addr, (char *) &eflags, 4);
935 }
936 }
937 }
938
939 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
940 perror_with_name ("ptrace");
941 }
942 \f
943
944 /* Register that we are able to handle GNU/Linux ELF core file
945 formats. */
946
947 static struct core_fns linux_elf_core_fns =
948 {
949 bfd_target_elf_flavour, /* core_flavour */
950 default_check_format, /* check_format */
951 default_core_sniffer, /* core_sniffer */
952 fetch_core_registers, /* core_read_registers */
953 NULL /* next */
954 };
955
956 void
957 _initialize_i386_linux_nat (void)
958 {
959 add_core_fns (&linux_elf_core_fns);
960 }
This page took 0.050488 seconds and 4 git commands to generate.