0d6ab40747a15c0827a5b8ea8f26b7dd3ae22010
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on i386's, for GDB.
2
3 Copyright 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "value.h"
26 #include "regcache.h"
27 #include "inferior.h"
28
29 /* For i386_linux_skip_solib_resolver. */
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33
34 #include "solib-svr4.h" /* For struct link_map_offsets. */
35
36 #include "i386-tdep.h"
37 #include "i386-linux-tdep.h"
38
39 /* Return the name of register REG. */
40
41 static const char *
42 i386_linux_register_name (int reg)
43 {
44 /* Deal with the extra "orig_eax" pseudo register. */
45 if (reg == I386_LINUX_ORIG_EAX_REGNUM)
46 return "orig_eax";
47
48 return i386_register_name (reg);
49 }
50 \f
51 /* Recognizing signal handler frames. */
52
53 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
54 "realtime" (RT) signals. The RT signals can provide additional
55 information to the signal handler if the SA_SIGINFO flag is set
56 when establishing a signal handler using `sigaction'. It is not
57 unlikely that future versions of GNU/Linux will support SA_SIGINFO
58 for normal signals too. */
59
60 /* When the i386 Linux kernel calls a signal handler and the
61 SA_RESTORER flag isn't set, the return address points to a bit of
62 code on the stack. This function returns whether the PC appears to
63 be within this bit of code.
64
65 The instruction sequence for normal signals is
66 pop %eax
67 mov $0x77,%eax
68 int $0x80
69 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
70
71 Checking for the code sequence should be somewhat reliable, because
72 the effect is to call the system call sigreturn. This is unlikely
73 to occur anywhere other than a signal trampoline.
74
75 It kind of sucks that we have to read memory from the process in
76 order to identify a signal trampoline, but there doesn't seem to be
77 any other way. The PC_IN_SIGTRAMP macro in tm-linux.h arranges to
78 only call us if no function name could be identified, which should
79 be the case since the code is on the stack.
80
81 Detection of signal trampolines for handlers that set the
82 SA_RESTORER flag is in general not possible. Unfortunately this is
83 what the GNU C Library has been doing for quite some time now.
84 However, as of version 2.1.2, the GNU C Library uses signal
85 trampolines (named __restore and __restore_rt) that are identical
86 to the ones used by the kernel. Therefore, these trampolines are
87 supported too. */
88
89 #define LINUX_SIGTRAMP_INSN0 (0x58) /* pop %eax */
90 #define LINUX_SIGTRAMP_OFFSET0 (0)
91 #define LINUX_SIGTRAMP_INSN1 (0xb8) /* mov $NNNN,%eax */
92 #define LINUX_SIGTRAMP_OFFSET1 (1)
93 #define LINUX_SIGTRAMP_INSN2 (0xcd) /* int */
94 #define LINUX_SIGTRAMP_OFFSET2 (6)
95
96 static const unsigned char linux_sigtramp_code[] =
97 {
98 LINUX_SIGTRAMP_INSN0, /* pop %eax */
99 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77,%eax */
100 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
101 };
102
103 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
104
105 /* If PC is in a sigtramp routine, return the address of the start of
106 the routine. Otherwise, return 0. */
107
108 static CORE_ADDR
109 i386_linux_sigtramp_start (CORE_ADDR pc)
110 {
111 unsigned char buf[LINUX_SIGTRAMP_LEN];
112
113 /* We only recognize a signal trampoline if PC is at the start of
114 one of the three instructions. We optimize for finding the PC at
115 the start, as will be the case when the trampoline is not the
116 first frame on the stack. We assume that in the case where the
117 PC is not at the start of the instruction sequence, there will be
118 a few trailing readable bytes on the stack. */
119
120 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
121 return 0;
122
123 if (buf[0] != LINUX_SIGTRAMP_INSN0)
124 {
125 int adjust;
126
127 switch (buf[0])
128 {
129 case LINUX_SIGTRAMP_INSN1:
130 adjust = LINUX_SIGTRAMP_OFFSET1;
131 break;
132 case LINUX_SIGTRAMP_INSN2:
133 adjust = LINUX_SIGTRAMP_OFFSET2;
134 break;
135 default:
136 return 0;
137 }
138
139 pc -= adjust;
140
141 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
142 return 0;
143 }
144
145 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
146 return 0;
147
148 return pc;
149 }
150
151 /* This function does the same for RT signals. Here the instruction
152 sequence is
153 mov $0xad,%eax
154 int $0x80
155 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
156
157 The effect is to call the system call rt_sigreturn. */
158
159 #define LINUX_RT_SIGTRAMP_INSN0 (0xb8) /* mov $NNNN,%eax */
160 #define LINUX_RT_SIGTRAMP_OFFSET0 (0)
161 #define LINUX_RT_SIGTRAMP_INSN1 (0xcd) /* int */
162 #define LINUX_RT_SIGTRAMP_OFFSET1 (5)
163
164 static const unsigned char linux_rt_sigtramp_code[] =
165 {
166 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad,%eax */
167 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
168 };
169
170 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
171
172 /* If PC is in a RT sigtramp routine, return the address of the start
173 of the routine. Otherwise, return 0. */
174
175 static CORE_ADDR
176 i386_linux_rt_sigtramp_start (CORE_ADDR pc)
177 {
178 unsigned char buf[LINUX_RT_SIGTRAMP_LEN];
179
180 /* We only recognize a signal trampoline if PC is at the start of
181 one of the two instructions. We optimize for finding the PC at
182 the start, as will be the case when the trampoline is not the
183 first frame on the stack. We assume that in the case where the
184 PC is not at the start of the instruction sequence, there will be
185 a few trailing readable bytes on the stack. */
186
187 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
188 return 0;
189
190 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
191 {
192 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
193 return 0;
194
195 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
196
197 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
198 return 0;
199 }
200
201 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
202 return 0;
203
204 return pc;
205 }
206
207 /* Return whether PC is in a GNU/Linux sigtramp routine. */
208
209 static int
210 i386_linux_pc_in_sigtramp (CORE_ADDR pc, char *name)
211 {
212 /* If we have NAME, we can optimize the search. The trampolines are
213 named __restore and __restore_rt. However, they aren't dynamically
214 exported from the shared C library, so the trampoline may appear to
215 be part of the preceding function. This should always be sigaction,
216 __sigaction, or __libc_sigaction (all aliases to the same function). */
217 if (name == NULL || strstr (name, "sigaction") != NULL)
218 return (i386_linux_sigtramp_start (pc) != 0
219 || i386_linux_rt_sigtramp_start (pc) != 0);
220
221 return (strcmp ("__restore", name) == 0
222 || strcmp ("__restore_rt", name) == 0);
223 }
224
225 /* Assuming FRAME is for a GNU/Linux sigtramp routine, return the
226 address of the associated sigcontext structure. */
227
228 static CORE_ADDR
229 i386_linux_sigcontext_addr (struct frame_info *frame)
230 {
231 CORE_ADDR pc;
232
233 pc = i386_linux_sigtramp_start (frame->pc);
234 if (pc)
235 {
236 CORE_ADDR sp;
237
238 if (frame->next)
239 /* If this isn't the top frame, the next frame must be for the
240 signal handler itself. The sigcontext structure lives on
241 the stack, right after the signum argument. */
242 return frame->next->frame + 12;
243
244 /* This is the top frame. We'll have to find the address of the
245 sigcontext structure by looking at the stack pointer. Keep
246 in mind that the first instruction of the sigtramp code is
247 "pop %eax". If the PC is at this instruction, adjust the
248 returned value accordingly. */
249 sp = read_register (SP_REGNUM);
250 if (pc == frame->pc)
251 return sp + 4;
252 return sp;
253 }
254
255 pc = i386_linux_rt_sigtramp_start (frame->pc);
256 if (pc)
257 {
258 if (frame->next)
259 /* If this isn't the top frame, the next frame must be for the
260 signal handler itself. The sigcontext structure is part of
261 the user context. A pointer to the user context is passed
262 as the third argument to the signal handler. */
263 return read_memory_integer (frame->next->frame + 16, 4) + 20;
264
265 /* This is the top frame. Again, use the stack pointer to find
266 the address of the sigcontext structure. */
267 return read_memory_integer (read_register (SP_REGNUM) + 8, 4) + 20;
268 }
269
270 error ("Couldn't recognize signal trampoline.");
271 return 0;
272 }
273
274 /* Set the program counter for process PTID to PC. */
275
276 static void
277 i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
278 {
279 write_register_pid (PC_REGNUM, pc, ptid);
280
281 /* We must be careful with modifying the program counter. If we
282 just interrupted a system call, the kernel might try to restart
283 it when we resume the inferior. On restarting the system call,
284 the kernel will try backing up the program counter even though it
285 no longer points at the system call. This typically results in a
286 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
287 "orig_eax" pseudo-register.
288
289 Note that "orig_eax" is saved when setting up a dummy call frame.
290 This means that it is properly restored when that frame is
291 popped, and that the interrupted system call will be restarted
292 when we resume the inferior on return from a function call from
293 within GDB. In all other cases the system call will not be
294 restarted. */
295 write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
296 }
297 \f
298 /* Calling functions in shared libraries. */
299
300 /* Find the minimal symbol named NAME, and return both the minsym
301 struct and its objfile. This probably ought to be in minsym.c, but
302 everything there is trying to deal with things like C++ and
303 SOFUN_ADDRESS_MAYBE_TURQUOISE, ... Since this is so simple, it may
304 be considered too special-purpose for general consumption. */
305
306 static struct minimal_symbol *
307 find_minsym_and_objfile (char *name, struct objfile **objfile_p)
308 {
309 struct objfile *objfile;
310
311 ALL_OBJFILES (objfile)
312 {
313 struct minimal_symbol *msym;
314
315 ALL_OBJFILE_MSYMBOLS (objfile, msym)
316 {
317 if (SYMBOL_NAME (msym)
318 && STREQ (SYMBOL_NAME (msym), name))
319 {
320 *objfile_p = objfile;
321 return msym;
322 }
323 }
324 }
325
326 return 0;
327 }
328
329 static CORE_ADDR
330 skip_hurd_resolver (CORE_ADDR pc)
331 {
332 /* The HURD dynamic linker is part of the GNU C library, so many
333 GNU/Linux distributions use it. (All ELF versions, as far as I
334 know.) An unresolved PLT entry points to "_dl_runtime_resolve",
335 which calls "fixup" to patch the PLT, and then passes control to
336 the function.
337
338 We look for the symbol `_dl_runtime_resolve', and find `fixup' in
339 the same objfile. If we are at the entry point of `fixup', then
340 we set a breakpoint at the return address (at the top of the
341 stack), and continue.
342
343 It's kind of gross to do all these checks every time we're
344 called, since they don't change once the executable has gotten
345 started. But this is only a temporary hack --- upcoming versions
346 of GNU/Linux will provide a portable, efficient interface for
347 debugging programs that use shared libraries. */
348
349 struct objfile *objfile;
350 struct minimal_symbol *resolver
351 = find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);
352
353 if (resolver)
354 {
355 struct minimal_symbol *fixup
356 = lookup_minimal_symbol ("fixup", NULL, objfile);
357
358 if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
359 return (SAVED_PC_AFTER_CALL (get_current_frame ()));
360 }
361
362 return 0;
363 }
364
365 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
366 This function:
367 1) decides whether a PLT has sent us into the linker to resolve
368 a function reference, and
369 2) if so, tells us where to set a temporary breakpoint that will
370 trigger when the dynamic linker is done. */
371
372 CORE_ADDR
373 i386_linux_skip_solib_resolver (CORE_ADDR pc)
374 {
375 CORE_ADDR result;
376
377 /* Plug in functions for other kinds of resolvers here. */
378 result = skip_hurd_resolver (pc);
379 if (result)
380 return result;
381
382 return 0;
383 }
384
385 /* Fetch (and possibly build) an appropriate link_map_offsets
386 structure for native GNU/Linux x86 targets using the struct offsets
387 defined in link.h (but without actual reference to that file).
388
389 This makes it possible to access GNU/Linux x86 shared libraries
390 from a GDB that was not built on an GNU/Linux x86 host (for cross
391 debugging). */
392
393 static struct link_map_offsets *
394 i386_linux_svr4_fetch_link_map_offsets (void)
395 {
396 static struct link_map_offsets lmo;
397 static struct link_map_offsets *lmp = NULL;
398
399 if (lmp == NULL)
400 {
401 lmp = &lmo;
402
403 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
404 this is all we need. */
405 lmo.r_map_offset = 4;
406 lmo.r_map_size = 4;
407
408 lmo.link_map_size = 20; /* The actual size is 552 bytes, but
409 this is all we need. */
410 lmo.l_addr_offset = 0;
411 lmo.l_addr_size = 4;
412
413 lmo.l_name_offset = 4;
414 lmo.l_name_size = 4;
415
416 lmo.l_next_offset = 12;
417 lmo.l_next_size = 4;
418
419 lmo.l_prev_offset = 16;
420 lmo.l_prev_size = 4;
421 }
422
423 return lmp;
424 }
425 \f
426
427 static void
428 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
429 {
430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
431
432 /* GNU/Linux uses ELF. */
433 i386_elf_init_abi (info, gdbarch);
434
435 /* We support the SSE registers on GNU/Linux. */
436 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
437 /* set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS); */
438
439 /* Since we have the extra "orig_eax" register on GNU/Linux, we have
440 to adjust a few things. */
441
442 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
443 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS + 1);
444 set_gdbarch_register_name (gdbarch, i386_linux_register_name);
445 set_gdbarch_register_bytes (gdbarch, I386_SSE_SIZEOF_REGS + 4);
446
447 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
448
449 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
450 tdep->sc_pc_offset = 14 * 4; /* From <asm/sigcontext.h>. */
451 tdep->sc_sp_offset = 7 * 4;
452
453 /* When the i386 Linux kernel calls a signal handler, the return
454 address points to a bit of code on the stack. This function is
455 used to identify this bit of code as a signal trampoline in order
456 to support backtracing through calls to signal handlers. */
457 set_gdbarch_pc_in_sigtramp (gdbarch, i386_linux_pc_in_sigtramp);
458
459 set_solib_svr4_fetch_link_map_offsets (gdbarch,
460 i386_linux_svr4_fetch_link_map_offsets);
461 }
462
463 /* Provide a prototype to silence -Wmissing-prototypes. */
464 extern void _initialize_i386_linux_tdep (void);
465
466 void
467 _initialize_i386_linux_tdep (void)
468 {
469 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_LINUX,
470 i386_linux_init_abi);
471 }
This page took 0.059521 seconds and 3 git commands to generate.