1 /* Target-dependent code for GNU/Linux running on i386's, for GDB.
3 Copyright 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
29 /* For i386_linux_skip_solib_resolver. */
34 #include "solib-svr4.h" /* For struct link_map_offsets. */
36 #include "i386-tdep.h"
37 #include "i386-linux-tdep.h"
39 /* Return the name of register REG. */
42 i386_linux_register_name (int reg
)
44 /* Deal with the extra "orig_eax" pseudo register. */
45 if (reg
== I386_LINUX_ORIG_EAX_REGNUM
)
48 return i386_register_name (reg
);
52 i386_linux_register_byte (int reg
)
54 /* Deal with the extra "orig_eax" pseudo register. */
55 if (reg
== I386_LINUX_ORIG_EAX_REGNUM
)
56 return (i386_register_byte (I386_LINUX_ORIG_EAX_REGNUM
- 1)
57 + i386_register_raw_size (I386_LINUX_ORIG_EAX_REGNUM
- 1));
59 return i386_register_byte (reg
);
63 i386_linux_register_raw_size (int reg
)
65 /* Deal with the extra "orig_eax" pseudo register. */
66 if (reg
== I386_LINUX_ORIG_EAX_REGNUM
)
69 return i386_register_raw_size (reg
);
72 /* Recognizing signal handler frames. */
74 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
75 "realtime" (RT) signals. The RT signals can provide additional
76 information to the signal handler if the SA_SIGINFO flag is set
77 when establishing a signal handler using `sigaction'. It is not
78 unlikely that future versions of GNU/Linux will support SA_SIGINFO
79 for normal signals too. */
81 /* When the i386 Linux kernel calls a signal handler and the
82 SA_RESTORER flag isn't set, the return address points to a bit of
83 code on the stack. This function returns whether the PC appears to
84 be within this bit of code.
86 The instruction sequence for normal signals is
90 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
92 Checking for the code sequence should be somewhat reliable, because
93 the effect is to call the system call sigreturn. This is unlikely
94 to occur anywhere other than a signal trampoline.
96 It kind of sucks that we have to read memory from the process in
97 order to identify a signal trampoline, but there doesn't seem to be
98 any other way. The PC_IN_SIGTRAMP macro in tm-linux.h arranges to
99 only call us if no function name could be identified, which should
100 be the case since the code is on the stack.
102 Detection of signal trampolines for handlers that set the
103 SA_RESTORER flag is in general not possible. Unfortunately this is
104 what the GNU C Library has been doing for quite some time now.
105 However, as of version 2.1.2, the GNU C Library uses signal
106 trampolines (named __restore and __restore_rt) that are identical
107 to the ones used by the kernel. Therefore, these trampolines are
110 #define LINUX_SIGTRAMP_INSN0 (0x58) /* pop %eax */
111 #define LINUX_SIGTRAMP_OFFSET0 (0)
112 #define LINUX_SIGTRAMP_INSN1 (0xb8) /* mov $NNNN,%eax */
113 #define LINUX_SIGTRAMP_OFFSET1 (1)
114 #define LINUX_SIGTRAMP_INSN2 (0xcd) /* int */
115 #define LINUX_SIGTRAMP_OFFSET2 (6)
117 static const unsigned char linux_sigtramp_code
[] =
119 LINUX_SIGTRAMP_INSN0
, /* pop %eax */
120 LINUX_SIGTRAMP_INSN1
, 0x77, 0x00, 0x00, 0x00, /* mov $0x77,%eax */
121 LINUX_SIGTRAMP_INSN2
, 0x80 /* int $0x80 */
124 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
126 /* If PC is in a sigtramp routine, return the address of the start of
127 the routine. Otherwise, return 0. */
130 i386_linux_sigtramp_start (CORE_ADDR pc
)
132 unsigned char buf
[LINUX_SIGTRAMP_LEN
];
134 /* We only recognize a signal trampoline if PC is at the start of
135 one of the three instructions. We optimize for finding the PC at
136 the start, as will be the case when the trampoline is not the
137 first frame on the stack. We assume that in the case where the
138 PC is not at the start of the instruction sequence, there will be
139 a few trailing readable bytes on the stack. */
141 if (read_memory_nobpt (pc
, (char *) buf
, LINUX_SIGTRAMP_LEN
) != 0)
144 if (buf
[0] != LINUX_SIGTRAMP_INSN0
)
150 case LINUX_SIGTRAMP_INSN1
:
151 adjust
= LINUX_SIGTRAMP_OFFSET1
;
153 case LINUX_SIGTRAMP_INSN2
:
154 adjust
= LINUX_SIGTRAMP_OFFSET2
;
162 if (read_memory_nobpt (pc
, (char *) buf
, LINUX_SIGTRAMP_LEN
) != 0)
166 if (memcmp (buf
, linux_sigtramp_code
, LINUX_SIGTRAMP_LEN
) != 0)
172 /* This function does the same for RT signals. Here the instruction
176 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
178 The effect is to call the system call rt_sigreturn. */
180 #define LINUX_RT_SIGTRAMP_INSN0 (0xb8) /* mov $NNNN,%eax */
181 #define LINUX_RT_SIGTRAMP_OFFSET0 (0)
182 #define LINUX_RT_SIGTRAMP_INSN1 (0xcd) /* int */
183 #define LINUX_RT_SIGTRAMP_OFFSET1 (5)
185 static const unsigned char linux_rt_sigtramp_code
[] =
187 LINUX_RT_SIGTRAMP_INSN0
, 0xad, 0x00, 0x00, 0x00, /* mov $0xad,%eax */
188 LINUX_RT_SIGTRAMP_INSN1
, 0x80 /* int $0x80 */
191 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
193 /* If PC is in a RT sigtramp routine, return the address of the start
194 of the routine. Otherwise, return 0. */
197 i386_linux_rt_sigtramp_start (CORE_ADDR pc
)
199 unsigned char buf
[LINUX_RT_SIGTRAMP_LEN
];
201 /* We only recognize a signal trampoline if PC is at the start of
202 one of the two instructions. We optimize for finding the PC at
203 the start, as will be the case when the trampoline is not the
204 first frame on the stack. We assume that in the case where the
205 PC is not at the start of the instruction sequence, there will be
206 a few trailing readable bytes on the stack. */
208 if (read_memory_nobpt (pc
, (char *) buf
, LINUX_RT_SIGTRAMP_LEN
) != 0)
211 if (buf
[0] != LINUX_RT_SIGTRAMP_INSN0
)
213 if (buf
[0] != LINUX_RT_SIGTRAMP_INSN1
)
216 pc
-= LINUX_RT_SIGTRAMP_OFFSET1
;
218 if (read_memory_nobpt (pc
, (char *) buf
, LINUX_RT_SIGTRAMP_LEN
) != 0)
222 if (memcmp (buf
, linux_rt_sigtramp_code
, LINUX_RT_SIGTRAMP_LEN
) != 0)
228 /* Return whether PC is in a GNU/Linux sigtramp routine. */
231 i386_linux_pc_in_sigtramp (CORE_ADDR pc
, char *name
)
234 return STREQ ("__restore", name
) || STREQ ("__restore_rt", name
);
236 return (i386_linux_sigtramp_start (pc
) != 0
237 || i386_linux_rt_sigtramp_start (pc
) != 0);
240 /* Assuming FRAME is for a GNU/Linux sigtramp routine, return the
241 address of the associated sigcontext structure. */
244 i386_linux_sigcontext_addr (struct frame_info
*frame
)
248 pc
= i386_linux_sigtramp_start (frame
->pc
);
254 /* If this isn't the top frame, the next frame must be for the
255 signal handler itself. The sigcontext structure lives on
256 the stack, right after the signum argument. */
257 return frame
->next
->frame
+ 12;
259 /* This is the top frame. We'll have to find the address of the
260 sigcontext structure by looking at the stack pointer. Keep
261 in mind that the first instruction of the sigtramp code is
262 "pop %eax". If the PC is at this instruction, adjust the
263 returned value accordingly. */
264 sp
= read_register (SP_REGNUM
);
270 pc
= i386_linux_rt_sigtramp_start (frame
->pc
);
274 /* If this isn't the top frame, the next frame must be for the
275 signal handler itself. The sigcontext structure is part of
276 the user context. A pointer to the user context is passed
277 as the third argument to the signal handler. */
278 return read_memory_integer (frame
->next
->frame
+ 16, 4) + 20;
280 /* This is the top frame. Again, use the stack pointer to find
281 the address of the sigcontext structure. */
282 return read_memory_integer (read_register (SP_REGNUM
) + 8, 4) + 20;
285 error ("Couldn't recognize signal trampoline.");
289 /* Offset to saved PC in sigcontext, from <asm/sigcontext.h>. */
290 #define LINUX_SIGCONTEXT_PC_OFFSET (56)
292 /* Assuming FRAME is for a GNU/Linux sigtramp routine, return the
293 saved program counter. */
296 i386_linux_sigtramp_saved_pc (struct frame_info
*frame
)
299 addr
= i386_linux_sigcontext_addr (frame
);
300 return read_memory_integer (addr
+ LINUX_SIGCONTEXT_PC_OFFSET
, 4);
303 /* Offset to saved SP in sigcontext, from <asm/sigcontext.h>. */
304 #define LINUX_SIGCONTEXT_SP_OFFSET (28)
306 /* Assuming FRAME is for a GNU/Linux sigtramp routine, return the
307 saved stack pointer. */
310 i386_linux_sigtramp_saved_sp (struct frame_info
*frame
)
313 addr
= i386_linux_sigcontext_addr (frame
);
314 return read_memory_integer (addr
+ LINUX_SIGCONTEXT_SP_OFFSET
, 4);
317 /* Signal trampolines don't have a meaningful frame. As in
318 "i386/tm-i386.h", the frame pointer value we use is actually the
319 frame pointer of the calling frame -- that is, the frame which was
320 in progress when the signal trampoline was entered. GDB mostly
321 treats this frame pointer value as a magic cookie. We detect the
322 case of a signal trampoline by looking at the SIGNAL_HANDLER_CALLER
323 field, which is set based on PC_IN_SIGTRAMP.
325 When a signal trampoline is invoked from a frameless function, we
326 essentially have two frameless functions in a row. In this case,
327 we use the same magic cookie for three frames in a row. We detect
328 this case by seeing whether the next frame has
329 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
330 current frame is actually frameless. In this case, we need to get
331 the PC by looking at the SP register value stored in the signal
334 This should work in most cases except in horrible situations where
335 a signal occurs just as we enter a function but before the frame
338 #define FRAMELESS_SIGNAL(frame) \
339 ((frame)->next != NULL \
340 && (frame)->next->signal_handler_caller \
341 && frameless_look_for_prologue (frame))
344 i386_linux_frame_chain (struct frame_info
*frame
)
346 if (frame
->signal_handler_caller
|| FRAMELESS_SIGNAL (frame
))
349 if (! inside_entry_file (frame
->pc
))
350 return read_memory_unsigned_integer (frame
->frame
, 4);
355 /* Return the saved program counter for FRAME. */
358 i386_linux_frame_saved_pc (struct frame_info
*frame
)
360 if (frame
->signal_handler_caller
)
361 return i386_linux_sigtramp_saved_pc (frame
);
363 if (FRAMELESS_SIGNAL (frame
))
365 CORE_ADDR sp
= i386_linux_sigtramp_saved_sp (frame
->next
);
366 return read_memory_unsigned_integer (sp
, 4);
369 return read_memory_unsigned_integer (frame
->frame
+ 4, 4);
372 /* Immediately after a function call, return the saved pc. */
375 i386_linux_saved_pc_after_call (struct frame_info
*frame
)
377 if (frame
->signal_handler_caller
)
378 return i386_linux_sigtramp_saved_pc (frame
);
380 return read_memory_unsigned_integer (read_register (SP_REGNUM
), 4);
383 /* Set the program counter for process PTID to PC. */
386 i386_linux_write_pc (CORE_ADDR pc
, ptid_t ptid
)
388 write_register_pid (PC_REGNUM
, pc
, ptid
);
390 /* We must be careful with modifying the program counter. If we
391 just interrupted a system call, the kernel might try to restart
392 it when we resume the inferior. On restarting the system call,
393 the kernel will try backing up the program counter even though it
394 no longer points at the system call. This typically results in a
395 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
396 "orig_eax" pseudo-register.
398 Note that "orig_eax" is saved when setting up a dummy call frame.
399 This means that it is properly restored when that frame is
400 popped, and that the interrupted system call will be restarted
401 when we resume the inferior on return from a function call from
402 within GDB. In all other cases the system call will not be
404 write_register_pid (I386_LINUX_ORIG_EAX_REGNUM
, -1, ptid
);
407 /* Calling functions in shared libraries. */
409 /* Find the minimal symbol named NAME, and return both the minsym
410 struct and its objfile. This probably ought to be in minsym.c, but
411 everything there is trying to deal with things like C++ and
412 SOFUN_ADDRESS_MAYBE_TURQUOISE, ... Since this is so simple, it may
413 be considered too special-purpose for general consumption. */
415 static struct minimal_symbol
*
416 find_minsym_and_objfile (char *name
, struct objfile
**objfile_p
)
418 struct objfile
*objfile
;
420 ALL_OBJFILES (objfile
)
422 struct minimal_symbol
*msym
;
424 ALL_OBJFILE_MSYMBOLS (objfile
, msym
)
426 if (SYMBOL_NAME (msym
)
427 && STREQ (SYMBOL_NAME (msym
), name
))
429 *objfile_p
= objfile
;
439 skip_hurd_resolver (CORE_ADDR pc
)
441 /* The HURD dynamic linker is part of the GNU C library, so many
442 GNU/Linux distributions use it. (All ELF versions, as far as I
443 know.) An unresolved PLT entry points to "_dl_runtime_resolve",
444 which calls "fixup" to patch the PLT, and then passes control to
447 We look for the symbol `_dl_runtime_resolve', and find `fixup' in
448 the same objfile. If we are at the entry point of `fixup', then
449 we set a breakpoint at the return address (at the top of the
450 stack), and continue.
452 It's kind of gross to do all these checks every time we're
453 called, since they don't change once the executable has gotten
454 started. But this is only a temporary hack --- upcoming versions
455 of GNU/Linux will provide a portable, efficient interface for
456 debugging programs that use shared libraries. */
458 struct objfile
*objfile
;
459 struct minimal_symbol
*resolver
460 = find_minsym_and_objfile ("_dl_runtime_resolve", &objfile
);
464 struct minimal_symbol
*fixup
465 = lookup_minimal_symbol ("fixup", NULL
, objfile
);
467 if (fixup
&& SYMBOL_VALUE_ADDRESS (fixup
) == pc
)
468 return (SAVED_PC_AFTER_CALL (get_current_frame ()));
474 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
476 1) decides whether a PLT has sent us into the linker to resolve
477 a function reference, and
478 2) if so, tells us where to set a temporary breakpoint that will
479 trigger when the dynamic linker is done. */
482 i386_linux_skip_solib_resolver (CORE_ADDR pc
)
486 /* Plug in functions for other kinds of resolvers here. */
487 result
= skip_hurd_resolver (pc
);
494 /* Fetch (and possibly build) an appropriate link_map_offsets
495 structure for native GNU/Linux x86 targets using the struct offsets
496 defined in link.h (but without actual reference to that file).
498 This makes it possible to access GNU/Linux x86 shared libraries
499 from a GDB that was not built on an GNU/Linux x86 host (for cross
502 static struct link_map_offsets
*
503 i386_linux_svr4_fetch_link_map_offsets (void)
505 static struct link_map_offsets lmo
;
506 static struct link_map_offsets
*lmp
= NULL
;
512 lmo
.r_debug_size
= 8; /* The actual size is 20 bytes, but
513 this is all we need. */
514 lmo
.r_map_offset
= 4;
517 lmo
.link_map_size
= 20; /* The actual size is 552 bytes, but
518 this is all we need. */
519 lmo
.l_addr_offset
= 0;
522 lmo
.l_name_offset
= 4;
525 lmo
.l_next_offset
= 12;
528 lmo
.l_prev_offset
= 16;
537 i386_linux_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
539 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
541 /* GNU/Linux uses ELF. */
542 i386_elf_init_abi (info
, gdbarch
);
544 /* We support the SSE registers on GNU/Linux. */
545 tdep
->num_xmm_regs
= I386_NUM_XREGS
- 1;
546 /* set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS); */
548 /* Since we have the extra "orig_eax" register on GNU/Linux, we have
549 to adjust a few things. */
551 set_gdbarch_write_pc (gdbarch
, i386_linux_write_pc
);
552 set_gdbarch_num_regs (gdbarch
, I386_SSE_NUM_REGS
+ 1);
553 set_gdbarch_register_name (gdbarch
, i386_linux_register_name
);
554 set_gdbarch_register_bytes (gdbarch
, I386_SSE_SIZEOF_REGS
+ 4);
555 set_gdbarch_register_byte (gdbarch
, i386_linux_register_byte
);
556 set_gdbarch_register_raw_size (gdbarch
, i386_linux_register_raw_size
);
558 tdep
->jb_pc_offset
= 20; /* From <bits/setjmp.h>. */
560 /* When the i386 Linux kernel calls a signal handler, the return
561 address points to a bit of code on the stack. These definitions
562 are used to identify this bit of code as a signal trampoline in
563 order to support backtracing through calls to signal handlers. */
565 set_gdbarch_pc_in_sigtramp (gdbarch
, i386_linux_pc_in_sigtramp
);
566 set_gdbarch_frame_chain (gdbarch
, i386_linux_frame_chain
);
567 set_gdbarch_frame_saved_pc (gdbarch
, i386_linux_frame_saved_pc
);
568 set_gdbarch_saved_pc_after_call (gdbarch
, i386_linux_saved_pc_after_call
);
569 tdep
->sigtramp_saved_pc
= i386_linux_sigtramp_saved_pc
;
571 set_solib_svr4_fetch_link_map_offsets (gdbarch
,
572 i386_linux_svr4_fetch_link_map_offsets
);
575 /* Provide a prototype to silence -Wmissing-prototypes. */
576 extern void _initialize_i386_linux_tdep (void);
579 _initialize_i386_linux_tdep (void)
581 gdbarch_register_osabi (bfd_arch_i386
, GDB_OSABI_LINUX
,
582 i386_linux_init_abi
);