* alpha-tdep.c (alpha_register_convert_to_virtual): Tidy use of
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on i386's, for GDB.
2
3 Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "value.h"
26 #include "regcache.h"
27 #include "inferior.h"
28 #include "reggroups.h"
29
30 /* For i386_linux_skip_solib_resolver. */
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34
35 #include "solib-svr4.h" /* For struct link_map_offsets. */
36
37 #include "osabi.h"
38
39 #include "i386-tdep.h"
40 #include "i386-linux-tdep.h"
41
42 /* Return the name of register REG. */
43
44 static const char *
45 i386_linux_register_name (int reg)
46 {
47 /* Deal with the extra "orig_eax" pseudo register. */
48 if (reg == I386_LINUX_ORIG_EAX_REGNUM)
49 return "orig_eax";
50
51 return i386_register_name (reg);
52 }
53
54 /* Return non-zero, when the register is in the corresponding register
55 group. Put the LINUX_ORIG_EAX register in the system group. */
56 static int
57 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
58 struct reggroup *group)
59 {
60 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
61 return (group == system_reggroup
62 || group == save_reggroup
63 || group == restore_reggroup);
64 return i386_register_reggroup_p (gdbarch, regnum, group);
65 }
66
67 \f
68 /* Recognizing signal handler frames. */
69
70 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
71 "realtime" (RT) signals. The RT signals can provide additional
72 information to the signal handler if the SA_SIGINFO flag is set
73 when establishing a signal handler using `sigaction'. It is not
74 unlikely that future versions of GNU/Linux will support SA_SIGINFO
75 for normal signals too. */
76
77 /* When the i386 Linux kernel calls a signal handler and the
78 SA_RESTORER flag isn't set, the return address points to a bit of
79 code on the stack. This function returns whether the PC appears to
80 be within this bit of code.
81
82 The instruction sequence for normal signals is
83 pop %eax
84 mov $0x77, %eax
85 int $0x80
86 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
87
88 Checking for the code sequence should be somewhat reliable, because
89 the effect is to call the system call sigreturn. This is unlikely
90 to occur anywhere other than a signal trampoline.
91
92 It kind of sucks that we have to read memory from the process in
93 order to identify a signal trampoline, but there doesn't seem to be
94 any other way. The PC_IN_SIGTRAMP macro in tm-linux.h arranges to
95 only call us if no function name could be identified, which should
96 be the case since the code is on the stack.
97
98 Detection of signal trampolines for handlers that set the
99 SA_RESTORER flag is in general not possible. Unfortunately this is
100 what the GNU C Library has been doing for quite some time now.
101 However, as of version 2.1.2, the GNU C Library uses signal
102 trampolines (named __restore and __restore_rt) that are identical
103 to the ones used by the kernel. Therefore, these trampolines are
104 supported too. */
105
106 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
107 #define LINUX_SIGTRAMP_OFFSET0 0
108 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
109 #define LINUX_SIGTRAMP_OFFSET1 1
110 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
111 #define LINUX_SIGTRAMP_OFFSET2 6
112
113 static const unsigned char linux_sigtramp_code[] =
114 {
115 LINUX_SIGTRAMP_INSN0, /* pop %eax */
116 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
117 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
118 };
119
120 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
121
122 /* If PC is in a sigtramp routine, return the address of the start of
123 the routine. Otherwise, return 0. */
124
125 static CORE_ADDR
126 i386_linux_sigtramp_start (CORE_ADDR pc)
127 {
128 unsigned char buf[LINUX_SIGTRAMP_LEN];
129
130 /* We only recognize a signal trampoline if PC is at the start of
131 one of the three instructions. We optimize for finding the PC at
132 the start, as will be the case when the trampoline is not the
133 first frame on the stack. We assume that in the case where the
134 PC is not at the start of the instruction sequence, there will be
135 a few trailing readable bytes on the stack. */
136
137 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
138 return 0;
139
140 if (buf[0] != LINUX_SIGTRAMP_INSN0)
141 {
142 int adjust;
143
144 switch (buf[0])
145 {
146 case LINUX_SIGTRAMP_INSN1:
147 adjust = LINUX_SIGTRAMP_OFFSET1;
148 break;
149 case LINUX_SIGTRAMP_INSN2:
150 adjust = LINUX_SIGTRAMP_OFFSET2;
151 break;
152 default:
153 return 0;
154 }
155
156 pc -= adjust;
157
158 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
159 return 0;
160 }
161
162 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
163 return 0;
164
165 return pc;
166 }
167
168 /* This function does the same for RT signals. Here the instruction
169 sequence is
170 mov $0xad, %eax
171 int $0x80
172 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
173
174 The effect is to call the system call rt_sigreturn. */
175
176 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
177 #define LINUX_RT_SIGTRAMP_OFFSET0 0
178 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
179 #define LINUX_RT_SIGTRAMP_OFFSET1 5
180
181 static const unsigned char linux_rt_sigtramp_code[] =
182 {
183 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
184 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
185 };
186
187 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
188
189 /* If PC is in a RT sigtramp routine, return the address of the start
190 of the routine. Otherwise, return 0. */
191
192 static CORE_ADDR
193 i386_linux_rt_sigtramp_start (CORE_ADDR pc)
194 {
195 unsigned char buf[LINUX_RT_SIGTRAMP_LEN];
196
197 /* We only recognize a signal trampoline if PC is at the start of
198 one of the two instructions. We optimize for finding the PC at
199 the start, as will be the case when the trampoline is not the
200 first frame on the stack. We assume that in the case where the
201 PC is not at the start of the instruction sequence, there will be
202 a few trailing readable bytes on the stack. */
203
204 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
205 return 0;
206
207 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
208 {
209 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
210 return 0;
211
212 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
213
214 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
215 return 0;
216 }
217
218 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
219 return 0;
220
221 return pc;
222 }
223
224 /* Return whether PC is in a GNU/Linux sigtramp routine. */
225
226 static int
227 i386_linux_pc_in_sigtramp (CORE_ADDR pc, char *name)
228 {
229 /* If we have NAME, we can optimize the search. The trampolines are
230 named __restore and __restore_rt. However, they aren't dynamically
231 exported from the shared C library, so the trampoline may appear to
232 be part of the preceding function. This should always be sigaction,
233 __sigaction, or __libc_sigaction (all aliases to the same function). */
234 if (name == NULL || strstr (name, "sigaction") != NULL)
235 return (i386_linux_sigtramp_start (pc) != 0
236 || i386_linux_rt_sigtramp_start (pc) != 0);
237
238 return (strcmp ("__restore", name) == 0
239 || strcmp ("__restore_rt", name) == 0);
240 }
241
242 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
243 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
244
245 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
246 routine, return the address of the associated sigcontext structure. */
247
248 static CORE_ADDR
249 i386_linux_sigcontext_addr (struct frame_info *next_frame)
250 {
251 CORE_ADDR pc;
252 CORE_ADDR sp;
253 char buf[4];
254
255 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
256 sp = extract_unsigned_integer (buf, 4);
257
258 pc = i386_linux_sigtramp_start (frame_pc_unwind (next_frame));
259 if (pc)
260 {
261 /* The sigcontext structure lives on the stack, right after
262 the signum argument. We determine the address of the
263 sigcontext structure by looking at the frame's stack
264 pointer. Keep in mind that the first instruction of the
265 sigtramp code is "pop %eax". If the PC is after this
266 instruction, adjust the returned value accordingly. */
267 if (pc == frame_pc_unwind (next_frame))
268 return sp + 4;
269 return sp;
270 }
271
272 pc = i386_linux_rt_sigtramp_start (frame_pc_unwind (next_frame));
273 if (pc)
274 {
275 CORE_ADDR ucontext_addr;
276
277 /* The sigcontext structure is part of the user context. A
278 pointer to the user context is passed as the third argument
279 to the signal handler. */
280 read_memory (sp + 8, buf, 4);
281 ucontext_addr = extract_unsigned_integer (buf, 4) + 20;
282 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
283 }
284
285 error ("Couldn't recognize signal trampoline.");
286 return 0;
287 }
288
289 /* Set the program counter for process PTID to PC. */
290
291 static void
292 i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
293 {
294 write_register_pid (I386_EIP_REGNUM, pc, ptid);
295
296 /* We must be careful with modifying the program counter. If we
297 just interrupted a system call, the kernel might try to restart
298 it when we resume the inferior. On restarting the system call,
299 the kernel will try backing up the program counter even though it
300 no longer points at the system call. This typically results in a
301 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
302 "orig_eax" pseudo-register.
303
304 Note that "orig_eax" is saved when setting up a dummy call frame.
305 This means that it is properly restored when that frame is
306 popped, and that the interrupted system call will be restarted
307 when we resume the inferior on return from a function call from
308 within GDB. In all other cases the system call will not be
309 restarted. */
310 write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
311 }
312 \f
313 /* Calling functions in shared libraries. */
314
315 /* Find the minimal symbol named NAME, and return both the minsym
316 struct and its objfile. This probably ought to be in minsym.c, but
317 everything there is trying to deal with things like C++ and
318 SOFUN_ADDRESS_MAYBE_TURQUOISE, ... Since this is so simple, it may
319 be considered too special-purpose for general consumption. */
320
321 static struct minimal_symbol *
322 find_minsym_and_objfile (char *name, struct objfile **objfilep)
323 {
324 struct objfile *objfile;
325
326 ALL_OBJFILES (objfile)
327 {
328 struct minimal_symbol *msym;
329
330 ALL_OBJFILE_MSYMBOLS (objfile, msym)
331 {
332 if (SYMBOL_LINKAGE_NAME (msym)
333 && strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
334 {
335 *objfilep = objfile;
336 return msym;
337 }
338 }
339 }
340
341 return 0;
342 }
343
344 static CORE_ADDR
345 skip_gnu_resolver (CORE_ADDR pc)
346 {
347 /* The GNU dynamic linker is part of the GNU C library, so many
348 GNU/Linux distributions use it. (All ELF versions, as far as I
349 know.) An unresolved PLT entry points to "_dl_runtime_resolve",
350 which calls "fixup" to patch the PLT, and then passes control to
351 the function.
352
353 We look for the symbol `_dl_runtime_resolve', and find `fixup' in
354 the same objfile. If we are at the entry point of `fixup', then
355 we set a breakpoint at the return address (at the top of the
356 stack), and continue.
357
358 It's kind of gross to do all these checks every time we're
359 called, since they don't change once the executable has gotten
360 started. But this is only a temporary hack --- upcoming versions
361 of GNU/Linux will provide a portable, efficient interface for
362 debugging programs that use shared libraries. */
363
364 struct objfile *objfile;
365 struct minimal_symbol *resolver
366 = find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);
367
368 if (resolver)
369 {
370 struct minimal_symbol *fixup
371 = lookup_minimal_symbol ("fixup", NULL, objfile);
372
373 if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
374 return frame_pc_unwind (get_current_frame ());
375 }
376
377 return 0;
378 }
379
380 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
381 This function:
382 1) decides whether a PLT has sent us into the linker to resolve
383 a function reference, and
384 2) if so, tells us where to set a temporary breakpoint that will
385 trigger when the dynamic linker is done. */
386
387 CORE_ADDR
388 i386_linux_skip_solib_resolver (CORE_ADDR pc)
389 {
390 CORE_ADDR result;
391
392 /* Plug in functions for other kinds of resolvers here. */
393 result = skip_gnu_resolver (pc);
394 if (result)
395 return result;
396
397 return 0;
398 }
399
400 /* Fetch (and possibly build) an appropriate link_map_offsets
401 structure for native GNU/Linux x86 targets using the struct offsets
402 defined in link.h (but without actual reference to that file).
403
404 This makes it possible to access GNU/Linux x86 shared libraries
405 from a GDB that was not built on an GNU/Linux x86 host (for cross
406 debugging). */
407
408 static struct link_map_offsets *
409 i386_linux_svr4_fetch_link_map_offsets (void)
410 {
411 static struct link_map_offsets lmo;
412 static struct link_map_offsets *lmp = NULL;
413
414 if (lmp == NULL)
415 {
416 lmp = &lmo;
417
418 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
419 this is all we need. */
420 lmo.r_map_offset = 4;
421 lmo.r_map_size = 4;
422
423 lmo.link_map_size = 20; /* The actual size is 552 bytes, but
424 this is all we need. */
425 lmo.l_addr_offset = 0;
426 lmo.l_addr_size = 4;
427
428 lmo.l_name_offset = 4;
429 lmo.l_name_size = 4;
430
431 lmo.l_next_offset = 12;
432 lmo.l_next_size = 4;
433
434 lmo.l_prev_offset = 16;
435 lmo.l_prev_size = 4;
436 }
437
438 return lmp;
439 }
440 \f
441
442 /* From <asm/sigcontext.h>. */
443 static int i386_linux_sc_reg_offset[I386_NUM_GREGS] =
444 {
445 11 * 4, /* %eax */
446 10 * 4, /* %ecx */
447 9 * 4, /* %edx */
448 8 * 4, /* %ebx */
449 7 * 4, /* %esp */
450 6 * 4, /* %ebp */
451 5 * 4, /* %esi */
452 4 * 4, /* %edi */
453 14 * 4, /* %eip */
454 16 * 4, /* %eflags */
455 15 * 4, /* %cs */
456 18 * 4, /* %ss */
457 3 * 4, /* %ds */
458 2 * 4, /* %es */
459 1 * 4, /* %fs */
460 0 * 4 /* %gs */
461 };
462
463 static void
464 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
465 {
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
468 /* GNU/Linux uses ELF. */
469 i386_elf_init_abi (info, gdbarch);
470
471 /* We support the SSE registers on GNU/Linux. */
472 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
473 /* set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS); */
474
475 /* Since we have the extra "orig_eax" register on GNU/Linux, we have
476 to adjust a few things. */
477
478 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
479 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS + 1);
480 set_gdbarch_register_name (gdbarch, i386_linux_register_name);
481 set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
482
483 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
484
485 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
486 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
487 tdep->sc_num_regs = I386_NUM_GREGS;
488
489 /* When the i386 Linux kernel calls a signal handler, the return
490 address points to a bit of code on the stack. This function is
491 used to identify this bit of code as a signal trampoline in order
492 to support backtracing through calls to signal handlers. */
493 set_gdbarch_pc_in_sigtramp (gdbarch, i386_linux_pc_in_sigtramp);
494
495 set_solib_svr4_fetch_link_map_offsets (gdbarch,
496 i386_linux_svr4_fetch_link_map_offsets);
497 }
498
499 /* Provide a prototype to silence -Wmissing-prototypes. */
500 extern void _initialize_i386_linux_tdep (void);
501
502 void
503 _initialize_i386_linux_tdep (void)
504 {
505 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
506 i386_linux_init_abi);
507 }
This page took 0.045529 seconds and 4 git commands to generate.