2004-03-23 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux i386.
2
3 Copyright 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "value.h"
26 #include "regcache.h"
27 #include "inferior.h"
28 #include "osabi.h"
29 #include "reggroups.h"
30
31 #include "gdb_string.h"
32
33 #include "i386-tdep.h"
34 #include "i386-linux-tdep.h"
35 #include "glibc-tdep.h"
36 #include "solib-svr4.h"
37
38 /* Return the name of register REG. */
39
40 static const char *
41 i386_linux_register_name (int reg)
42 {
43 /* Deal with the extra "orig_eax" pseudo register. */
44 if (reg == I386_LINUX_ORIG_EAX_REGNUM)
45 return "orig_eax";
46
47 return i386_register_name (reg);
48 }
49
50 /* Return non-zero, when the register is in the corresponding register
51 group. Put the LINUX_ORIG_EAX register in the system group. */
52 static int
53 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
54 struct reggroup *group)
55 {
56 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
57 return (group == system_reggroup
58 || group == save_reggroup
59 || group == restore_reggroup);
60 return i386_register_reggroup_p (gdbarch, regnum, group);
61 }
62
63 \f
64 /* Recognizing signal handler frames. */
65
66 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
67 "realtime" (RT) signals. The RT signals can provide additional
68 information to the signal handler if the SA_SIGINFO flag is set
69 when establishing a signal handler using `sigaction'. It is not
70 unlikely that future versions of GNU/Linux will support SA_SIGINFO
71 for normal signals too. */
72
73 /* When the i386 Linux kernel calls a signal handler and the
74 SA_RESTORER flag isn't set, the return address points to a bit of
75 code on the stack. This function returns whether the PC appears to
76 be within this bit of code.
77
78 The instruction sequence for normal signals is
79 pop %eax
80 mov $0x77, %eax
81 int $0x80
82 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
83
84 Checking for the code sequence should be somewhat reliable, because
85 the effect is to call the system call sigreturn. This is unlikely
86 to occur anywhere other than a signal trampoline.
87
88 It kind of sucks that we have to read memory from the process in
89 order to identify a signal trampoline, but there doesn't seem to be
90 any other way. The DEPRECATED_PC_IN_SIGTRAMP macro in tm-linux.h
91 arranges to only call us if no function name could be identified,
92 which should be the case since the code is on the stack.
93
94 Detection of signal trampolines for handlers that set the
95 SA_RESTORER flag is in general not possible. Unfortunately this is
96 what the GNU C Library has been doing for quite some time now.
97 However, as of version 2.1.2, the GNU C Library uses signal
98 trampolines (named __restore and __restore_rt) that are identical
99 to the ones used by the kernel. Therefore, these trampolines are
100 supported too. */
101
102 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
103 #define LINUX_SIGTRAMP_OFFSET0 0
104 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
105 #define LINUX_SIGTRAMP_OFFSET1 1
106 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
107 #define LINUX_SIGTRAMP_OFFSET2 6
108
109 static const unsigned char linux_sigtramp_code[] =
110 {
111 LINUX_SIGTRAMP_INSN0, /* pop %eax */
112 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
113 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
114 };
115
116 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
117
118 /* If PC is in a sigtramp routine, return the address of the start of
119 the routine. Otherwise, return 0. */
120
121 static CORE_ADDR
122 i386_linux_sigtramp_start (CORE_ADDR pc)
123 {
124 unsigned char buf[LINUX_SIGTRAMP_LEN];
125
126 /* We only recognize a signal trampoline if PC is at the start of
127 one of the three instructions. We optimize for finding the PC at
128 the start, as will be the case when the trampoline is not the
129 first frame on the stack. We assume that in the case where the
130 PC is not at the start of the instruction sequence, there will be
131 a few trailing readable bytes on the stack. */
132
133 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
134 return 0;
135
136 if (buf[0] != LINUX_SIGTRAMP_INSN0)
137 {
138 int adjust;
139
140 switch (buf[0])
141 {
142 case LINUX_SIGTRAMP_INSN1:
143 adjust = LINUX_SIGTRAMP_OFFSET1;
144 break;
145 case LINUX_SIGTRAMP_INSN2:
146 adjust = LINUX_SIGTRAMP_OFFSET2;
147 break;
148 default:
149 return 0;
150 }
151
152 pc -= adjust;
153
154 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
155 return 0;
156 }
157
158 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
159 return 0;
160
161 return pc;
162 }
163
164 /* This function does the same for RT signals. Here the instruction
165 sequence is
166 mov $0xad, %eax
167 int $0x80
168 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
169
170 The effect is to call the system call rt_sigreturn. */
171
172 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
173 #define LINUX_RT_SIGTRAMP_OFFSET0 0
174 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
175 #define LINUX_RT_SIGTRAMP_OFFSET1 5
176
177 static const unsigned char linux_rt_sigtramp_code[] =
178 {
179 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
180 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
181 };
182
183 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
184
185 /* If PC is in a RT sigtramp routine, return the address of the start
186 of the routine. Otherwise, return 0. */
187
188 static CORE_ADDR
189 i386_linux_rt_sigtramp_start (CORE_ADDR pc)
190 {
191 unsigned char buf[LINUX_RT_SIGTRAMP_LEN];
192
193 /* We only recognize a signal trampoline if PC is at the start of
194 one of the two instructions. We optimize for finding the PC at
195 the start, as will be the case when the trampoline is not the
196 first frame on the stack. We assume that in the case where the
197 PC is not at the start of the instruction sequence, there will be
198 a few trailing readable bytes on the stack. */
199
200 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
201 return 0;
202
203 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
204 {
205 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
206 return 0;
207
208 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
209
210 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
211 return 0;
212 }
213
214 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
215 return 0;
216
217 return pc;
218 }
219
220 /* Return whether PC is in a GNU/Linux sigtramp routine. */
221
222 static int
223 i386_linux_pc_in_sigtramp (CORE_ADDR pc, char *name)
224 {
225 /* If we have NAME, we can optimize the search. The trampolines are
226 named __restore and __restore_rt. However, they aren't dynamically
227 exported from the shared C library, so the trampoline may appear to
228 be part of the preceding function. This should always be sigaction,
229 __sigaction, or __libc_sigaction (all aliases to the same function). */
230 if (name == NULL || strstr (name, "sigaction") != NULL)
231 return (i386_linux_sigtramp_start (pc) != 0
232 || i386_linux_rt_sigtramp_start (pc) != 0);
233
234 return (strcmp ("__restore", name) == 0
235 || strcmp ("__restore_rt", name) == 0);
236 }
237
238 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
239 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
240
241 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
242 routine, return the address of the associated sigcontext structure. */
243
244 static CORE_ADDR
245 i386_linux_sigcontext_addr (struct frame_info *next_frame)
246 {
247 CORE_ADDR pc;
248 CORE_ADDR sp;
249 char buf[4];
250
251 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
252 sp = extract_unsigned_integer (buf, 4);
253
254 pc = i386_linux_sigtramp_start (frame_pc_unwind (next_frame));
255 if (pc)
256 {
257 /* The sigcontext structure lives on the stack, right after
258 the signum argument. We determine the address of the
259 sigcontext structure by looking at the frame's stack
260 pointer. Keep in mind that the first instruction of the
261 sigtramp code is "pop %eax". If the PC is after this
262 instruction, adjust the returned value accordingly. */
263 if (pc == frame_pc_unwind (next_frame))
264 return sp + 4;
265 return sp;
266 }
267
268 pc = i386_linux_rt_sigtramp_start (frame_pc_unwind (next_frame));
269 if (pc)
270 {
271 CORE_ADDR ucontext_addr;
272
273 /* The sigcontext structure is part of the user context. A
274 pointer to the user context is passed as the third argument
275 to the signal handler. */
276 read_memory (sp + 8, buf, 4);
277 ucontext_addr = extract_unsigned_integer (buf, 4);
278 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
279 }
280
281 error ("Couldn't recognize signal trampoline.");
282 return 0;
283 }
284
285 /* Set the program counter for process PTID to PC. */
286
287 static void
288 i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
289 {
290 write_register_pid (I386_EIP_REGNUM, pc, ptid);
291
292 /* We must be careful with modifying the program counter. If we
293 just interrupted a system call, the kernel might try to restart
294 it when we resume the inferior. On restarting the system call,
295 the kernel will try backing up the program counter even though it
296 no longer points at the system call. This typically results in a
297 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
298 "orig_eax" pseudo-register.
299
300 Note that "orig_eax" is saved when setting up a dummy call frame.
301 This means that it is properly restored when that frame is
302 popped, and that the interrupted system call will be restarted
303 when we resume the inferior on return from a function call from
304 within GDB. In all other cases the system call will not be
305 restarted. */
306 write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
307 }
308 \f
309
310 /* The register sets used in GNU/Linux ELF core-dumps are identical to
311 the register sets in `struct user' that are used for a.out
312 core-dumps. These are also used by ptrace(2). The corresponding
313 types are `elf_gregset_t' for the general-purpose registers (with
314 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
315 for the floating-point registers.
316
317 Those types used to be available under the names `gregset_t' and
318 `fpregset_t' too, and GDB used those names in the past. But those
319 names are now used for the register sets used in the `mcontext_t'
320 type, which have a different size and layout. */
321
322 /* Mapping between the general-purpose registers in `struct user'
323 format and GDB's register cache layout. */
324
325 /* From <sys/reg.h>. */
326 static int i386_linux_gregset_reg_offset[] =
327 {
328 6 * 4, /* %eax */
329 1 * 4, /* %ecx */
330 2 * 4, /* %edx */
331 0 * 4, /* %ebx */
332 15 * 4, /* %esp */
333 5 * 4, /* %ebp */
334 3 * 4, /* %esi */
335 4 * 4, /* %edi */
336 12 * 4, /* %eip */
337 14 * 4, /* %eflags */
338 13 * 4, /* %cs */
339 16 * 4, /* %ss */
340 7 * 4, /* %ds */
341 8 * 4, /* %es */
342 9 * 4, /* %fs */
343 10 * 4, /* %gs */
344 -1, -1, -1, -1, -1, -1, -1, -1,
345 -1, -1, -1, -1, -1, -1, -1, -1,
346 -1, -1, -1, -1, -1, -1, -1, -1,
347 -1,
348 11 * 4 /* "orig_eax" */
349 };
350
351 /* Mapping between the general-purpose registers in `struct
352 sigcontext' format and GDB's register cache layout. */
353
354 /* From <asm/sigcontext.h>. */
355 static int i386_linux_sc_reg_offset[] =
356 {
357 11 * 4, /* %eax */
358 10 * 4, /* %ecx */
359 9 * 4, /* %edx */
360 8 * 4, /* %ebx */
361 7 * 4, /* %esp */
362 6 * 4, /* %ebp */
363 5 * 4, /* %esi */
364 4 * 4, /* %edi */
365 14 * 4, /* %eip */
366 16 * 4, /* %eflags */
367 15 * 4, /* %cs */
368 18 * 4, /* %ss */
369 3 * 4, /* %ds */
370 2 * 4, /* %es */
371 1 * 4, /* %fs */
372 0 * 4 /* %gs */
373 };
374
375 static void
376 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
377 {
378 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
379
380 /* GNU/Linux uses ELF. */
381 i386_elf_init_abi (info, gdbarch);
382
383 /* Since we have the extra "orig_eax" register on GNU/Linux, we have
384 to adjust a few things. */
385
386 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
387 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
388 set_gdbarch_register_name (gdbarch, i386_linux_register_name);
389 set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
390
391 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
392 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
393 tdep->sizeof_gregset = 17 * 4;
394
395 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
396
397 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
398 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
399 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
400
401 /* When the i386 Linux kernel calls a signal handler, the return
402 address points to a bit of code on the stack. This function is
403 used to identify this bit of code as a signal trampoline in order
404 to support backtracing through calls to signal handlers. */
405 set_gdbarch_deprecated_pc_in_sigtramp (gdbarch, i386_linux_pc_in_sigtramp);
406
407 /* GNU/Linux uses SVR4-style shared libraries. */
408 set_solib_svr4_fetch_link_map_offsets
409 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
410
411 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
412 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
413 }
414
415 /* Provide a prototype to silence -Wmissing-prototypes. */
416 extern void _initialize_i386_linux_tdep (void);
417
418 void
419 _initialize_i386_linux_tdep (void)
420 {
421 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
422 i386_linux_init_abi);
423 }
This page took 0.039125 seconds and 4 git commands to generate.