Rename target descriptions to reflect actual content of description.
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux i386.
2
3 Copyright (C) 2000-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "frame.h"
23 #include "value.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "inferior.h"
27 #include "osabi.h"
28 #include "reggroups.h"
29 #include "dwarf2-frame.h"
30 #include "i386-tdep.h"
31 #include "i386-linux-tdep.h"
32 #include "linux-tdep.h"
33 #include "utils.h"
34 #include "glibc-tdep.h"
35 #include "solib-svr4.h"
36 #include "symtab.h"
37 #include "arch-utils.h"
38 #include "xml-syscall.h"
39
40 #include "i387-tdep.h"
41 #include "x86-xstate.h"
42
43 /* The syscall's XML filename for i386. */
44 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
45
46 #include "record-full.h"
47 #include "linux-record.h"
48 #include "features/i386/i386-linux.c"
49 #include "features/i386/i386-mmx-linux.c"
50 #include "features/i386/i386-mpx-linux.c"
51 #include "features/i386/i386-avx-mpx-linux.c"
52 #include "features/i386/i386-avx-linux.c"
53 #include "features/i386/i386-avx-mpx-avx512-linux.c"
54
55 /* Return non-zero, when the register is in the corresponding register
56 group. Put the LINUX_ORIG_EAX register in the system group. */
57 static int
58 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
59 struct reggroup *group)
60 {
61 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
62 return (group == system_reggroup
63 || group == save_reggroup
64 || group == restore_reggroup);
65 return i386_register_reggroup_p (gdbarch, regnum, group);
66 }
67
68 \f
69 /* Recognizing signal handler frames. */
70
71 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
72 "realtime" (RT) signals. The RT signals can provide additional
73 information to the signal handler if the SA_SIGINFO flag is set
74 when establishing a signal handler using `sigaction'. It is not
75 unlikely that future versions of GNU/Linux will support SA_SIGINFO
76 for normal signals too. */
77
78 /* When the i386 Linux kernel calls a signal handler and the
79 SA_RESTORER flag isn't set, the return address points to a bit of
80 code on the stack. This function returns whether the PC appears to
81 be within this bit of code.
82
83 The instruction sequence for normal signals is
84 pop %eax
85 mov $0x77, %eax
86 int $0x80
87 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
88
89 Checking for the code sequence should be somewhat reliable, because
90 the effect is to call the system call sigreturn. This is unlikely
91 to occur anywhere other than in a signal trampoline.
92
93 It kind of sucks that we have to read memory from the process in
94 order to identify a signal trampoline, but there doesn't seem to be
95 any other way. Therefore we only do the memory reads if no
96 function name could be identified, which should be the case since
97 the code is on the stack.
98
99 Detection of signal trampolines for handlers that set the
100 SA_RESTORER flag is in general not possible. Unfortunately this is
101 what the GNU C Library has been doing for quite some time now.
102 However, as of version 2.1.2, the GNU C Library uses signal
103 trampolines (named __restore and __restore_rt) that are identical
104 to the ones used by the kernel. Therefore, these trampolines are
105 supported too. */
106
107 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
108 #define LINUX_SIGTRAMP_OFFSET0 0
109 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
110 #define LINUX_SIGTRAMP_OFFSET1 1
111 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
112 #define LINUX_SIGTRAMP_OFFSET2 6
113
114 static const gdb_byte linux_sigtramp_code[] =
115 {
116 LINUX_SIGTRAMP_INSN0, /* pop %eax */
117 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
118 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
119 };
120
121 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
122
123 /* If THIS_FRAME is a sigtramp routine, return the address of the
124 start of the routine. Otherwise, return 0. */
125
126 static CORE_ADDR
127 i386_linux_sigtramp_start (struct frame_info *this_frame)
128 {
129 CORE_ADDR pc = get_frame_pc (this_frame);
130 gdb_byte buf[LINUX_SIGTRAMP_LEN];
131
132 /* We only recognize a signal trampoline if PC is at the start of
133 one of the three instructions. We optimize for finding the PC at
134 the start, as will be the case when the trampoline is not the
135 first frame on the stack. We assume that in the case where the
136 PC is not at the start of the instruction sequence, there will be
137 a few trailing readable bytes on the stack. */
138
139 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
140 return 0;
141
142 if (buf[0] != LINUX_SIGTRAMP_INSN0)
143 {
144 int adjust;
145
146 switch (buf[0])
147 {
148 case LINUX_SIGTRAMP_INSN1:
149 adjust = LINUX_SIGTRAMP_OFFSET1;
150 break;
151 case LINUX_SIGTRAMP_INSN2:
152 adjust = LINUX_SIGTRAMP_OFFSET2;
153 break;
154 default:
155 return 0;
156 }
157
158 pc -= adjust;
159
160 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
161 return 0;
162 }
163
164 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
165 return 0;
166
167 return pc;
168 }
169
170 /* This function does the same for RT signals. Here the instruction
171 sequence is
172 mov $0xad, %eax
173 int $0x80
174 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
175
176 The effect is to call the system call rt_sigreturn. */
177
178 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
179 #define LINUX_RT_SIGTRAMP_OFFSET0 0
180 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
181 #define LINUX_RT_SIGTRAMP_OFFSET1 5
182
183 static const gdb_byte linux_rt_sigtramp_code[] =
184 {
185 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
186 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
187 };
188
189 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
190
191 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
192 start of the routine. Otherwise, return 0. */
193
194 static CORE_ADDR
195 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
196 {
197 CORE_ADDR pc = get_frame_pc (this_frame);
198 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
199
200 /* We only recognize a signal trampoline if PC is at the start of
201 one of the two instructions. We optimize for finding the PC at
202 the start, as will be the case when the trampoline is not the
203 first frame on the stack. We assume that in the case where the
204 PC is not at the start of the instruction sequence, there will be
205 a few trailing readable bytes on the stack. */
206
207 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
208 return 0;
209
210 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
211 {
212 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
213 return 0;
214
215 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
216
217 if (!safe_frame_unwind_memory (this_frame, pc, buf,
218 LINUX_RT_SIGTRAMP_LEN))
219 return 0;
220 }
221
222 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
223 return 0;
224
225 return pc;
226 }
227
228 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
229 routine. */
230
231 static int
232 i386_linux_sigtramp_p (struct frame_info *this_frame)
233 {
234 CORE_ADDR pc = get_frame_pc (this_frame);
235 const char *name;
236
237 find_pc_partial_function (pc, &name, NULL, NULL);
238
239 /* If we have NAME, we can optimize the search. The trampolines are
240 named __restore and __restore_rt. However, they aren't dynamically
241 exported from the shared C library, so the trampoline may appear to
242 be part of the preceding function. This should always be sigaction,
243 __sigaction, or __libc_sigaction (all aliases to the same function). */
244 if (name == NULL || strstr (name, "sigaction") != NULL)
245 return (i386_linux_sigtramp_start (this_frame) != 0
246 || i386_linux_rt_sigtramp_start (this_frame) != 0);
247
248 return (strcmp ("__restore", name) == 0
249 || strcmp ("__restore_rt", name) == 0);
250 }
251
252 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
253 may have DWARF-2 CFI. */
254
255 static int
256 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
257 struct frame_info *this_frame)
258 {
259 CORE_ADDR pc = get_frame_pc (this_frame);
260 const char *name;
261
262 find_pc_partial_function (pc, &name, NULL, NULL);
263
264 /* If a vsyscall DSO is in use, the signal trampolines may have these
265 names. */
266 if (name && (strcmp (name, "__kernel_sigreturn") == 0
267 || strcmp (name, "__kernel_rt_sigreturn") == 0))
268 return 1;
269
270 return 0;
271 }
272
273 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
274 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
275
276 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
277 address of the associated sigcontext structure. */
278
279 static CORE_ADDR
280 i386_linux_sigcontext_addr (struct frame_info *this_frame)
281 {
282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
283 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
284 CORE_ADDR pc;
285 CORE_ADDR sp;
286 gdb_byte buf[4];
287
288 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
289 sp = extract_unsigned_integer (buf, 4, byte_order);
290
291 pc = i386_linux_sigtramp_start (this_frame);
292 if (pc)
293 {
294 /* The sigcontext structure lives on the stack, right after
295 the signum argument. We determine the address of the
296 sigcontext structure by looking at the frame's stack
297 pointer. Keep in mind that the first instruction of the
298 sigtramp code is "pop %eax". If the PC is after this
299 instruction, adjust the returned value accordingly. */
300 if (pc == get_frame_pc (this_frame))
301 return sp + 4;
302 return sp;
303 }
304
305 pc = i386_linux_rt_sigtramp_start (this_frame);
306 if (pc)
307 {
308 CORE_ADDR ucontext_addr;
309
310 /* The sigcontext structure is part of the user context. A
311 pointer to the user context is passed as the third argument
312 to the signal handler. */
313 read_memory (sp + 8, buf, 4);
314 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
315 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
316 }
317
318 error (_("Couldn't recognize signal trampoline."));
319 return 0;
320 }
321
322 /* Set the program counter for process PTID to PC. */
323
324 static void
325 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
326 {
327 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
328
329 /* We must be careful with modifying the program counter. If we
330 just interrupted a system call, the kernel might try to restart
331 it when we resume the inferior. On restarting the system call,
332 the kernel will try backing up the program counter even though it
333 no longer points at the system call. This typically results in a
334 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
335 "orig_eax" pseudo-register.
336
337 Note that "orig_eax" is saved when setting up a dummy call frame.
338 This means that it is properly restored when that frame is
339 popped, and that the interrupted system call will be restarted
340 when we resume the inferior on return from a function call from
341 within GDB. In all other cases the system call will not be
342 restarted. */
343 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
344 }
345
346 /* Record all registers but IP register for process-record. */
347
348 static int
349 i386_all_but_ip_registers_record (struct regcache *regcache)
350 {
351 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
352 return -1;
353 if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
354 return -1;
355 if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
356 return -1;
357 if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
358 return -1;
359 if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
360 return -1;
361 if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
362 return -1;
363 if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
364 return -1;
365 if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
366 return -1;
367 if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
368 return -1;
369
370 return 0;
371 }
372
373 /* i386_canonicalize_syscall maps from the native i386 Linux set
374 of syscall ids into a canonical set of syscall ids used by
375 process record (a mostly trivial mapping, since the canonical
376 set was originally taken from the i386 set). */
377
378 static enum gdb_syscall
379 i386_canonicalize_syscall (int syscall)
380 {
381 enum { i386_syscall_max = 499 };
382
383 if (syscall <= i386_syscall_max)
384 return (enum gdb_syscall) syscall;
385 else
386 return gdb_sys_no_syscall;
387 }
388
389 /* Value of the sigcode in case of a boundary fault. */
390
391 #define SIG_CODE_BONDARY_FAULT 3
392
393 /* i386 GNU/Linux implementation of the handle_segmentation_fault
394 gdbarch hook. Displays information related to MPX bound
395 violations. */
396 void
397 i386_linux_handle_segmentation_fault (struct gdbarch *gdbarch,
398 struct ui_out *uiout)
399 {
400 /* -Wmaybe-uninitialized */
401 CORE_ADDR lower_bound = 0, upper_bound = 0, access = 0;
402 int is_upper;
403 long sig_code = 0;
404
405 if (!i386_mpx_enabled ())
406 return;
407
408 TRY
409 {
410 /* Sigcode evaluates if the actual segfault is a boundary violation. */
411 sig_code = parse_and_eval_long ("$_siginfo.si_code\n");
412
413 lower_bound
414 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._lower");
415 upper_bound
416 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._upper");
417 access
418 = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
419 }
420 CATCH (exception, RETURN_MASK_ALL)
421 {
422 return;
423 }
424 END_CATCH
425
426 /* If this is not a boundary violation just return. */
427 if (sig_code != SIG_CODE_BONDARY_FAULT)
428 return;
429
430 is_upper = (access > upper_bound ? 1 : 0);
431
432 uiout->text ("\n");
433 if (is_upper)
434 uiout->field_string ("sigcode-meaning", _("Upper bound violation"));
435 else
436 uiout->field_string ("sigcode-meaning", _("Lower bound violation"));
437
438 uiout->text (_(" while accessing address "));
439 uiout->field_fmt ("bound-access", "%s", paddress (gdbarch, access));
440
441 uiout->text (_("\nBounds: [lower = "));
442 uiout->field_fmt ("lower-bound", "%s", paddress (gdbarch, lower_bound));
443
444 uiout->text (_(", upper = "));
445 uiout->field_fmt ("upper-bound", "%s", paddress (gdbarch, upper_bound));
446
447 uiout->text (_("]"));
448 }
449
450 /* Parse the arguments of current system call instruction and record
451 the values of the registers and memory that will be changed into
452 "record_arch_list". This instruction is "int 0x80" (Linux
453 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
454
455 Return -1 if something wrong. */
456
457 static struct linux_record_tdep i386_linux_record_tdep;
458
459 static int
460 i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
461 {
462 int ret;
463 LONGEST syscall_native;
464 enum gdb_syscall syscall_gdb;
465
466 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
467
468 syscall_gdb = i386_canonicalize_syscall (syscall_native);
469
470 if (syscall_gdb < 0)
471 {
472 printf_unfiltered (_("Process record and replay target doesn't "
473 "support syscall number %s\n"),
474 plongest (syscall_native));
475 return -1;
476 }
477
478 if (syscall_gdb == gdb_sys_sigreturn
479 || syscall_gdb == gdb_sys_rt_sigreturn)
480 {
481 if (i386_all_but_ip_registers_record (regcache))
482 return -1;
483 return 0;
484 }
485
486 ret = record_linux_system_call (syscall_gdb, regcache,
487 &i386_linux_record_tdep);
488 if (ret)
489 return ret;
490
491 /* Record the return value of the system call. */
492 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
493 return -1;
494
495 return 0;
496 }
497
498 #define I386_LINUX_xstate 270
499 #define I386_LINUX_frame_size 732
500
501 static int
502 i386_linux_record_signal (struct gdbarch *gdbarch,
503 struct regcache *regcache,
504 enum gdb_signal signal)
505 {
506 ULONGEST esp;
507
508 if (i386_all_but_ip_registers_record (regcache))
509 return -1;
510
511 if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
512 return -1;
513
514 /* Record the change in the stack. */
515 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
516 /* This is for xstate.
517 sp -= sizeof (struct _fpstate); */
518 esp -= I386_LINUX_xstate;
519 /* This is for frame_size.
520 sp -= sizeof (struct rt_sigframe); */
521 esp -= I386_LINUX_frame_size;
522 if (record_full_arch_list_add_mem (esp,
523 I386_LINUX_xstate + I386_LINUX_frame_size))
524 return -1;
525
526 if (record_full_arch_list_add_end ())
527 return -1;
528
529 return 0;
530 }
531 \f
532
533 /* Core of the implementation for gdbarch get_syscall_number. Get pending
534 syscall number from REGCACHE. If there is no pending syscall -1 will be
535 returned. Pending syscall means ptrace has stepped into the syscall but
536 another ptrace call will step out. PC is right after the int $0x80
537 / syscall / sysenter instruction in both cases, PC does not change during
538 the second ptrace step. */
539
540 static LONGEST
541 i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
542 {
543 struct gdbarch *gdbarch = get_regcache_arch (regcache);
544 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
545 /* The content of a register. */
546 gdb_byte buf[4];
547 /* The result. */
548 LONGEST ret;
549
550 /* Getting the system call number from the register.
551 When dealing with x86 architecture, this information
552 is stored at %eax register. */
553 regcache_cooked_read (regcache, I386_LINUX_ORIG_EAX_REGNUM, buf);
554
555 ret = extract_signed_integer (buf, 4, byte_order);
556
557 return ret;
558 }
559
560 /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
561 compatible with gdbarch get_syscall_number method prototype. */
562
563 static LONGEST
564 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
565 ptid_t ptid)
566 {
567 struct regcache *regcache = get_thread_regcache (ptid);
568
569 return i386_linux_get_syscall_number_from_regcache (regcache);
570 }
571
572 /* The register sets used in GNU/Linux ELF core-dumps are identical to
573 the register sets in `struct user' that are used for a.out
574 core-dumps. These are also used by ptrace(2). The corresponding
575 types are `elf_gregset_t' for the general-purpose registers (with
576 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
577 for the floating-point registers.
578
579 Those types used to be available under the names `gregset_t' and
580 `fpregset_t' too, and GDB used those names in the past. But those
581 names are now used for the register sets used in the `mcontext_t'
582 type, which have a different size and layout. */
583
584 /* Mapping between the general-purpose registers in `struct user'
585 format and GDB's register cache layout. */
586
587 /* From <sys/reg.h>. */
588 int i386_linux_gregset_reg_offset[] =
589 {
590 6 * 4, /* %eax */
591 1 * 4, /* %ecx */
592 2 * 4, /* %edx */
593 0 * 4, /* %ebx */
594 15 * 4, /* %esp */
595 5 * 4, /* %ebp */
596 3 * 4, /* %esi */
597 4 * 4, /* %edi */
598 12 * 4, /* %eip */
599 14 * 4, /* %eflags */
600 13 * 4, /* %cs */
601 16 * 4, /* %ss */
602 7 * 4, /* %ds */
603 8 * 4, /* %es */
604 9 * 4, /* %fs */
605 10 * 4, /* %gs */
606 -1, -1, -1, -1, -1, -1, -1, -1,
607 -1, -1, -1, -1, -1, -1, -1, -1,
608 -1, -1, -1, -1, -1, -1, -1, -1,
609 -1,
610 -1, -1, -1, -1, -1, -1, -1, -1,
611 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
612 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
613 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
614 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
615 11 * 4, /* "orig_eax" */
616 };
617
618 /* Mapping between the general-purpose registers in `struct
619 sigcontext' format and GDB's register cache layout. */
620
621 /* From <asm/sigcontext.h>. */
622 static int i386_linux_sc_reg_offset[] =
623 {
624 11 * 4, /* %eax */
625 10 * 4, /* %ecx */
626 9 * 4, /* %edx */
627 8 * 4, /* %ebx */
628 7 * 4, /* %esp */
629 6 * 4, /* %ebp */
630 5 * 4, /* %esi */
631 4 * 4, /* %edi */
632 14 * 4, /* %eip */
633 16 * 4, /* %eflags */
634 15 * 4, /* %cs */
635 18 * 4, /* %ss */
636 3 * 4, /* %ds */
637 2 * 4, /* %es */
638 1 * 4, /* %fs */
639 0 * 4 /* %gs */
640 };
641
642 /* Get XSAVE extended state xcr0 from core dump. */
643
644 uint64_t
645 i386_linux_core_read_xcr0 (bfd *abfd)
646 {
647 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
648 uint64_t xcr0;
649
650 if (xstate)
651 {
652 size_t size = bfd_section_size (abfd, xstate);
653
654 /* Check extended state size. */
655 if (size < X86_XSTATE_AVX_SIZE)
656 xcr0 = X86_XSTATE_SSE_MASK;
657 else
658 {
659 char contents[8];
660
661 if (! bfd_get_section_contents (abfd, xstate, contents,
662 I386_LINUX_XSAVE_XCR0_OFFSET,
663 8))
664 {
665 warning (_("Couldn't read `xcr0' bytes from "
666 "`.reg-xstate' section in core file."));
667 return 0;
668 }
669
670 xcr0 = bfd_get_64 (abfd, contents);
671 }
672 }
673 else
674 xcr0 = 0;
675
676 return xcr0;
677 }
678
679 /* Get Linux/x86 target description from core dump. */
680
681 static const struct target_desc *
682 i386_linux_core_read_description (struct gdbarch *gdbarch,
683 struct target_ops *target,
684 bfd *abfd)
685 {
686 /* Linux/i386. */
687 uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd);
688
689 switch ((xcr0 & X86_XSTATE_ALL_MASK))
690 {
691 case X86_XSTATE_AVX_MPX_AVX512_MASK:
692 case X86_XSTATE_AVX_AVX512_MASK:
693 return tdesc_i386_avx_mpx_avx512_linux;
694 case X86_XSTATE_MPX_MASK:
695 return tdesc_i386_mpx_linux;
696 case X86_XSTATE_AVX_MPX_MASK:
697 return tdesc_i386_avx_mpx_linux;
698 case X86_XSTATE_AVX_MASK:
699 return tdesc_i386_avx_linux;
700 case X86_XSTATE_SSE_MASK:
701 return tdesc_i386_linux;
702 case X86_XSTATE_X87_MASK:
703 return tdesc_i386_mmx_linux;
704 default:
705 break;
706 }
707
708 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
709 return tdesc_i386_linux;
710 else
711 return tdesc_i386_mmx_linux;
712 }
713
714 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
715
716 static void
717 i386_linux_supply_xstateregset (const struct regset *regset,
718 struct regcache *regcache, int regnum,
719 const void *xstateregs, size_t len)
720 {
721 i387_supply_xsave (regcache, regnum, xstateregs);
722 }
723
724 struct type *
725 x86_linux_get_siginfo_type (struct gdbarch *gdbarch)
726 {
727 return linux_get_siginfo_type_with_fields (gdbarch, LINUX_SIGINFO_FIELD_ADDR_BND);
728 }
729
730 /* Similar to i386_collect_fpregset, but use XSAVE extended state. */
731
732 static void
733 i386_linux_collect_xstateregset (const struct regset *regset,
734 const struct regcache *regcache,
735 int regnum, void *xstateregs, size_t len)
736 {
737 i387_collect_xsave (regcache, regnum, xstateregs, 1);
738 }
739
740 /* Register set definitions. */
741
742 static const struct regset i386_linux_xstateregset =
743 {
744 NULL,
745 i386_linux_supply_xstateregset,
746 i386_linux_collect_xstateregset
747 };
748
749 /* Iterate over core file register note sections. */
750
751 static void
752 i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
753 iterate_over_regset_sections_cb *cb,
754 void *cb_data,
755 const struct regcache *regcache)
756 {
757 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
758
759 cb (".reg", 68, &i386_gregset, NULL, cb_data);
760
761 if (tdep->xcr0 & X86_XSTATE_AVX)
762 cb (".reg-xstate", X86_XSTATE_SIZE (tdep->xcr0),
763 &i386_linux_xstateregset, "XSAVE extended state", cb_data);
764 else if (tdep->xcr0 & X86_XSTATE_SSE)
765 cb (".reg-xfp", 512, &i386_fpregset, "extended floating-point",
766 cb_data);
767 else
768 cb (".reg2", 108, &i386_fpregset, NULL, cb_data);
769 }
770
771 /* Linux kernel shows PC value after the 'int $0x80' instruction even if
772 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
773 finish the syscall but PC will not change.
774
775 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
776 i386_displaced_step_fixup would keep PC at the displaced pad location.
777 As PC is pointing to the 'ret' instruction before the step
778 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
779 and PC should not be adjusted. In reality it finished syscall instead and
780 PC should get relocated back to its vDSO address. Hide the 'ret'
781 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
782
783 It is not fully correct as the bytes in struct displaced_step_closure will
784 not match the inferior code. But we would need some new flag in
785 displaced_step_closure otherwise to keep the state that syscall is finishing
786 for the later i386_displaced_step_fixup execution as the syscall execution
787 is already no longer detectable there. The new flag field would mean
788 i386-linux-tdep.c needs to wrap all the displacement methods of i386-tdep.c
789 which does not seem worth it. The same effect is achieved by patching that
790 'nop' instruction there instead. */
791
792 static struct displaced_step_closure *
793 i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
794 CORE_ADDR from, CORE_ADDR to,
795 struct regcache *regs)
796 {
797 struct displaced_step_closure *closure;
798
799 closure = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
800
801 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
802 {
803 /* Since we use simple_displaced_step_copy_insn, our closure is a
804 copy of the instruction. */
805 gdb_byte *insn = (gdb_byte *) closure;
806
807 /* Fake nop. */
808 insn[0] = 0x90;
809 }
810
811 return closure;
812 }
813
814 static void
815 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
816 {
817 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
818 const struct target_desc *tdesc = info.target_desc;
819 struct tdesc_arch_data *tdesc_data
820 = (struct tdesc_arch_data *) info.tdep_info;
821 const struct tdesc_feature *feature;
822 int valid_p;
823
824 gdb_assert (tdesc_data);
825
826 linux_init_abi (info, gdbarch);
827
828 /* GNU/Linux uses ELF. */
829 i386_elf_init_abi (info, gdbarch);
830
831 /* Reserve a number for orig_eax. */
832 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
833
834 if (! tdesc_has_registers (tdesc))
835 tdesc = tdesc_i386_linux;
836 tdep->tdesc = tdesc;
837
838 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
839 if (feature == NULL)
840 return;
841
842 valid_p = tdesc_numbered_register (feature, tdesc_data,
843 I386_LINUX_ORIG_EAX_REGNUM,
844 "orig_eax");
845 if (!valid_p)
846 return;
847
848 /* Add the %orig_eax register used for syscall restarting. */
849 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
850
851 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
852
853 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
854 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
855 tdep->sizeof_gregset = 17 * 4;
856
857 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
858
859 tdep->sigtramp_p = i386_linux_sigtramp_p;
860 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
861 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
862 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
863
864 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
865
866 set_gdbarch_process_record (gdbarch, i386_process_record);
867 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
868
869 /* Initialize the i386_linux_record_tdep. */
870 /* These values are the size of the type that will be used in a system
871 call. They are obtained from Linux Kernel source. */
872 i386_linux_record_tdep.size_pointer
873 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
874 i386_linux_record_tdep.size__old_kernel_stat = 32;
875 i386_linux_record_tdep.size_tms = 16;
876 i386_linux_record_tdep.size_loff_t = 8;
877 i386_linux_record_tdep.size_flock = 16;
878 i386_linux_record_tdep.size_oldold_utsname = 45;
879 i386_linux_record_tdep.size_ustat = 20;
880 i386_linux_record_tdep.size_old_sigaction = 16;
881 i386_linux_record_tdep.size_old_sigset_t = 4;
882 i386_linux_record_tdep.size_rlimit = 8;
883 i386_linux_record_tdep.size_rusage = 72;
884 i386_linux_record_tdep.size_timeval = 8;
885 i386_linux_record_tdep.size_timezone = 8;
886 i386_linux_record_tdep.size_old_gid_t = 2;
887 i386_linux_record_tdep.size_old_uid_t = 2;
888 i386_linux_record_tdep.size_fd_set = 128;
889 i386_linux_record_tdep.size_old_dirent = 268;
890 i386_linux_record_tdep.size_statfs = 64;
891 i386_linux_record_tdep.size_statfs64 = 84;
892 i386_linux_record_tdep.size_sockaddr = 16;
893 i386_linux_record_tdep.size_int
894 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
895 i386_linux_record_tdep.size_long
896 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
897 i386_linux_record_tdep.size_ulong
898 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
899 i386_linux_record_tdep.size_msghdr = 28;
900 i386_linux_record_tdep.size_itimerval = 16;
901 i386_linux_record_tdep.size_stat = 88;
902 i386_linux_record_tdep.size_old_utsname = 325;
903 i386_linux_record_tdep.size_sysinfo = 64;
904 i386_linux_record_tdep.size_msqid_ds = 88;
905 i386_linux_record_tdep.size_shmid_ds = 84;
906 i386_linux_record_tdep.size_new_utsname = 390;
907 i386_linux_record_tdep.size_timex = 128;
908 i386_linux_record_tdep.size_mem_dqinfo = 24;
909 i386_linux_record_tdep.size_if_dqblk = 68;
910 i386_linux_record_tdep.size_fs_quota_stat = 68;
911 i386_linux_record_tdep.size_timespec = 8;
912 i386_linux_record_tdep.size_pollfd = 8;
913 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
914 i386_linux_record_tdep.size_knfsd_fh = 132;
915 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
916 i386_linux_record_tdep.size_sigaction = 20;
917 i386_linux_record_tdep.size_sigset_t = 8;
918 i386_linux_record_tdep.size_siginfo_t = 128;
919 i386_linux_record_tdep.size_cap_user_data_t = 12;
920 i386_linux_record_tdep.size_stack_t = 12;
921 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
922 i386_linux_record_tdep.size_stat64 = 96;
923 i386_linux_record_tdep.size_gid_t = 4;
924 i386_linux_record_tdep.size_uid_t = 4;
925 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
926 i386_linux_record_tdep.size_flock64 = 24;
927 i386_linux_record_tdep.size_user_desc = 16;
928 i386_linux_record_tdep.size_io_event = 32;
929 i386_linux_record_tdep.size_iocb = 64;
930 i386_linux_record_tdep.size_epoll_event = 12;
931 i386_linux_record_tdep.size_itimerspec
932 = i386_linux_record_tdep.size_timespec * 2;
933 i386_linux_record_tdep.size_mq_attr = 32;
934 i386_linux_record_tdep.size_termios = 36;
935 i386_linux_record_tdep.size_termios2 = 44;
936 i386_linux_record_tdep.size_pid_t = 4;
937 i386_linux_record_tdep.size_winsize = 8;
938 i386_linux_record_tdep.size_serial_struct = 60;
939 i386_linux_record_tdep.size_serial_icounter_struct = 80;
940 i386_linux_record_tdep.size_hayes_esp_config = 12;
941 i386_linux_record_tdep.size_size_t = 4;
942 i386_linux_record_tdep.size_iovec = 8;
943 i386_linux_record_tdep.size_time_t = 4;
944
945 /* These values are the second argument of system call "sys_ioctl".
946 They are obtained from Linux Kernel source. */
947 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
948 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
949 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
950 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
951 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
952 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
953 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
954 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
955 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
956 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
957 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
958 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
959 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
960 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
961 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
962 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
963 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
964 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
965 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
966 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
967 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
968 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
969 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
970 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
971 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
972 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
973 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
974 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
975 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
976 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
977 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
978 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
979 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
980 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
981 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
982 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
983 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
984 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
985 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
986 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
987 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
988 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
989 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
990 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
991 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
992 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
993 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
994 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
995 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
996 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
997 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
998 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
999 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1000 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1001 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1002 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1003 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1004 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1005 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
1006 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
1007 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
1008 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
1009 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
1010 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
1011 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1012
1013 /* These values are the second argument of system call "sys_fcntl"
1014 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1015 i386_linux_record_tdep.fcntl_F_GETLK = 5;
1016 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
1017 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
1018 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1019
1020 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
1021 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
1022 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
1023 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
1024 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
1025 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
1026
1027 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
1028 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
1029 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
1030
1031 /* N_FUN symbols in shared libaries have 0 for their values and need
1032 to be relocated. */
1033 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
1034
1035 /* GNU/Linux uses SVR4-style shared libraries. */
1036 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1037 set_solib_svr4_fetch_link_map_offsets
1038 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1039
1040 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
1041 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1042
1043 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
1044
1045 /* Enable TLS support. */
1046 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1047 svr4_fetch_objfile_link_map);
1048
1049 /* Core file support. */
1050 set_gdbarch_iterate_over_regset_sections
1051 (gdbarch, i386_linux_iterate_over_regset_sections);
1052 set_gdbarch_core_read_description (gdbarch,
1053 i386_linux_core_read_description);
1054
1055 /* Displaced stepping. */
1056 set_gdbarch_displaced_step_copy_insn (gdbarch,
1057 i386_linux_displaced_step_copy_insn);
1058 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
1059 set_gdbarch_displaced_step_free_closure (gdbarch,
1060 simple_displaced_step_free_closure);
1061 set_gdbarch_displaced_step_location (gdbarch,
1062 linux_displaced_step_location);
1063
1064 /* Functions for 'catch syscall'. */
1065 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
1066 set_gdbarch_get_syscall_number (gdbarch,
1067 i386_linux_get_syscall_number);
1068
1069 set_gdbarch_get_siginfo_type (gdbarch, x86_linux_get_siginfo_type);
1070 set_gdbarch_handle_segmentation_fault (gdbarch,
1071 i386_linux_handle_segmentation_fault);
1072 }
1073
1074 /* Provide a prototype to silence -Wmissing-prototypes. */
1075 extern void _initialize_i386_linux_tdep (void);
1076
1077 void
1078 _initialize_i386_linux_tdep (void)
1079 {
1080 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
1081 i386_linux_init_abi);
1082
1083 /* Initialize the Linux target description. */
1084 initialize_tdesc_i386_linux ();
1085 initialize_tdesc_i386_mmx_linux ();
1086 initialize_tdesc_i386_avx_linux ();
1087 initialize_tdesc_i386_mpx_linux ();
1088 initialize_tdesc_i386_avx_mpx_linux ();
1089 initialize_tdesc_i386_avx_mpx_avx512_linux ();
1090 }
This page took 0.102479 seconds and 5 git commands to generate.