This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for Linux running on i386's, for GDB.
2 Copyright (C) 2000 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "frame.h"
24 #include "value.h"
25
26 \f
27 /* Recognizing signal handler frames. */
28
29 /* Linux has two flavors of signals. Normal signal handlers, and
30 "realtime" (RT) signals. The RT signals can provide additional
31 information to the signal handler if the SA_SIGINFO flag is set
32 when establishing a signal handler using `sigaction'. It is not
33 unlikely that future versions of Linux will support SA_SIGINFO for
34 normal signals too. */
35
36 /* When the i386 Linux kernel calls a signal handler and the
37 SA_RESTORER flag isn't set, the return address points to a bit of
38 code on the stack. This function returns whether the PC appears to
39 be within this bit of code.
40
41 The instruction sequence for normal signals is
42 pop %eax
43 mov $0x77,%eax
44 int $0x80
45 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
46
47 Checking for the code sequence should be somewhat reliable, because
48 the effect is to call the system call sigreturn. This is unlikely
49 to occur anywhere other than a signal trampoline.
50
51 It kind of sucks that we have to read memory from the process in
52 order to identify a signal trampoline, but there doesn't seem to be
53 any other way. The IN_SIGTRAMP macro in tm-linux.h arranges to
54 only call us if no function name could be identified, which should
55 be the case since the code is on the stack.
56
57 Detection of signal trampolines for handlers that set the
58 SA_RESTORER flag is in general not possible. Unfortunately this is
59 what the GNU C Library has been doing for quite some time now.
60 However, as of version 2.1.2, the GNU C Library uses signal
61 trampolines (named __restore and __restore_rt) that are identical
62 to the ones used by the kernel. Therefore, these trampolines are
63 supported too. */
64
65 #define LINUX_SIGTRAMP_INSN0 (0x58) /* pop %eax */
66 #define LINUX_SIGTRAMP_OFFSET0 (0)
67 #define LINUX_SIGTRAMP_INSN1 (0xb8) /* mov $NNNN,%eax */
68 #define LINUX_SIGTRAMP_OFFSET1 (1)
69 #define LINUX_SIGTRAMP_INSN2 (0xcd) /* int */
70 #define LINUX_SIGTRAMP_OFFSET2 (6)
71
72 static const unsigned char linux_sigtramp_code[] =
73 {
74 LINUX_SIGTRAMP_INSN0, /* pop %eax */
75 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77,%eax */
76 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
77 };
78
79 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
80
81 /* If PC is in a sigtramp routine, return the address of the start of
82 the routine. Otherwise, return 0. */
83
84 static CORE_ADDR
85 i386_linux_sigtramp_start (CORE_ADDR pc)
86 {
87 unsigned char buf[LINUX_SIGTRAMP_LEN];
88
89 /* We only recognize a signal trampoline if PC is at the start of
90 one of the three instructions. We optimize for finding the PC at
91 the start, as will be the case when the trampoline is not the
92 first frame on the stack. We assume that in the case where the
93 PC is not at the start of the instruction sequence, there will be
94 a few trailing readable bytes on the stack. */
95
96 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
97 return 0;
98
99 if (buf[0] != LINUX_SIGTRAMP_INSN0)
100 {
101 int adjust;
102
103 switch (buf[0])
104 {
105 case LINUX_SIGTRAMP_INSN1:
106 adjust = LINUX_SIGTRAMP_OFFSET1;
107 break;
108 case LINUX_SIGTRAMP_INSN2:
109 adjust = LINUX_SIGTRAMP_OFFSET2;
110 break;
111 default:
112 return 0;
113 }
114
115 pc -= adjust;
116
117 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
118 return 0;
119 }
120
121 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
122 return 0;
123
124 return pc;
125 }
126
127 /* This function does the same for RT signals. Here the instruction
128 sequence is
129 mov $0xad,%eax
130 int $0x80
131 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
132
133 The effect is to call the system call rt_sigreturn. */
134
135 #define LINUX_RT_SIGTRAMP_INSN0 (0xb8) /* mov $NNNN,%eax */
136 #define LINUX_RT_SIGTRAMP_OFFSET0 (0)
137 #define LINUX_RT_SIGTRAMP_INSN1 (0xcd) /* int */
138 #define LINUX_RT_SIGTRAMP_OFFSET1 (5)
139
140 static const unsigned char linux_rt_sigtramp_code[] =
141 {
142 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad,%eax */
143 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
144 };
145
146 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
147
148 /* If PC is in a RT sigtramp routine, return the address of the start
149 of the routine. Otherwise, return 0. */
150
151 static CORE_ADDR
152 i386_linux_rt_sigtramp_start (CORE_ADDR pc)
153 {
154 unsigned char buf[LINUX_RT_SIGTRAMP_LEN];
155
156 /* We only recognize a signal trampoline if PC is at the start of
157 one of the two instructions. We optimize for finding the PC at
158 the start, as will be the case when the trampoline is not the
159 first frame on the stack. We assume that in the case where the
160 PC is not at the start of the instruction sequence, there will be
161 a few trailing readable bytes on the stack. */
162
163 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
164 return 0;
165
166 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
167 {
168 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
169 return 0;
170
171 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
172
173 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
174 return 0;
175 }
176
177 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
178 return 0;
179
180 return pc;
181 }
182
183 /* Return whether PC is in a Linux sigtramp routine. */
184
185 int
186 i386_linux_in_sigtramp (CORE_ADDR pc, char *name)
187 {
188 if (name)
189 return STREQ ("__restore", name) || STREQ ("__restore_rt", name);
190
191 return (i386_linux_sigtramp_start (pc) != 0
192 || i386_linux_rt_sigtramp_start (pc) != 0);
193 }
194
195 /* Assuming FRAME is for a Linux sigtramp routine, return the address
196 of the associated sigcontext structure. */
197
198 CORE_ADDR
199 i386_linux_sigcontext_addr (struct frame_info *frame)
200 {
201 CORE_ADDR pc;
202
203 pc = i386_linux_sigtramp_start (frame->pc);
204 if (pc)
205 {
206 CORE_ADDR sp;
207
208 if (frame->next)
209 /* If this isn't the top frame, the next frame must be for the
210 signal handler itself. The sigcontext structure lives on
211 the stack, right after the signum argument. */
212 return frame->next->frame + 12;
213
214 /* This is the top frame. We'll have to find the address of the
215 sigcontext structure by looking at the stack pointer. Keep
216 in mind that the first instruction of the sigtramp code is
217 "pop %eax". If the PC is at this instruction, adjust the
218 returned value accordingly. */
219 sp = read_register (SP_REGNUM);
220 if (pc == frame->pc)
221 return sp + 4;
222 return sp;
223 }
224
225 pc = i386_linux_rt_sigtramp_start (frame->pc);
226 if (pc)
227 {
228 if (frame->next)
229 /* If this isn't the top frame, the next frame must be for the
230 signal handler itself. The sigcontext structure is part of
231 the user context. A pointer to the user context is passed
232 as the third argument to the signal handler. */
233 return read_memory_integer (frame->next->frame + 16, 4) + 20;
234
235 /* This is the top frame. Again, use the stack pointer to find
236 the address of the sigcontext structure. */
237 return read_memory_integer (read_register (SP_REGNUM) + 8, 4) + 20;
238 }
239
240 error ("Couldn't recognize signal trampoline.");
241 return 0;
242 }
243
244 /* Offset to saved PC in sigcontext, from <asm/sigcontext.h>. */
245 #define LINUX_SIGCONTEXT_PC_OFFSET (56)
246
247 /* Assuming FRAME is for a Linux sigtramp routine, return the saved
248 program counter. */
249
250 CORE_ADDR
251 i386_linux_sigtramp_saved_pc (struct frame_info *frame)
252 {
253 CORE_ADDR addr;
254 addr = i386_linux_sigcontext_addr (frame);
255 return read_memory_integer (addr + LINUX_SIGCONTEXT_PC_OFFSET, 4);
256 }
257
258 /* Offset to saved SP in sigcontext, from <asm/sigcontext.h>. */
259 #define LINUX_SIGCONTEXT_SP_OFFSET (28)
260
261 /* Assuming FRAME is for a Linux sigtramp routine, return the saved
262 stack pointer. */
263
264 CORE_ADDR
265 i386_linux_sigtramp_saved_sp (struct frame_info *frame)
266 {
267 CORE_ADDR addr;
268 addr = i386_linux_sigcontext_addr (frame);
269 return read_memory_integer (addr + LINUX_SIGCONTEXT_SP_OFFSET, 4);
270 }
271
272 /* Immediately after a function call, return the saved pc. */
273
274 CORE_ADDR
275 i386_linux_saved_pc_after_call (struct frame_info *frame)
276 {
277 if (frame->signal_handler_caller)
278 return i386_linux_sigtramp_saved_pc (frame);
279
280 return read_memory_integer (read_register (SP_REGNUM), 4);
281 }
This page took 0.037471 seconds and 5 git commands to generate.