This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on i386's, for GDB.
2
3 Copyright 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "value.h"
26 #include "regcache.h"
27 #include "inferior.h"
28
29 /* For i386_linux_skip_solib_resolver. */
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33
34 #include "solib-svr4.h" /* For struct link_map_offsets. */
35
36 #include "i386-tdep.h"
37 #include "i386-linux-tdep.h"
38
39 /* Return the name of register REG. */
40
41 static const char *
42 i386_linux_register_name (int reg)
43 {
44 /* Deal with the extra "orig_eax" pseudo register. */
45 if (reg == I386_LINUX_ORIG_EAX_REGNUM)
46 return "orig_eax";
47
48 return i386_register_name (reg);
49 }
50 \f
51 /* Recognizing signal handler frames. */
52
53 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
54 "realtime" (RT) signals. The RT signals can provide additional
55 information to the signal handler if the SA_SIGINFO flag is set
56 when establishing a signal handler using `sigaction'. It is not
57 unlikely that future versions of GNU/Linux will support SA_SIGINFO
58 for normal signals too. */
59
60 /* When the i386 Linux kernel calls a signal handler and the
61 SA_RESTORER flag isn't set, the return address points to a bit of
62 code on the stack. This function returns whether the PC appears to
63 be within this bit of code.
64
65 The instruction sequence for normal signals is
66 pop %eax
67 mov $0x77,%eax
68 int $0x80
69 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
70
71 Checking for the code sequence should be somewhat reliable, because
72 the effect is to call the system call sigreturn. This is unlikely
73 to occur anywhere other than a signal trampoline.
74
75 It kind of sucks that we have to read memory from the process in
76 order to identify a signal trampoline, but there doesn't seem to be
77 any other way. The PC_IN_SIGTRAMP macro in tm-linux.h arranges to
78 only call us if no function name could be identified, which should
79 be the case since the code is on the stack.
80
81 Detection of signal trampolines for handlers that set the
82 SA_RESTORER flag is in general not possible. Unfortunately this is
83 what the GNU C Library has been doing for quite some time now.
84 However, as of version 2.1.2, the GNU C Library uses signal
85 trampolines (named __restore and __restore_rt) that are identical
86 to the ones used by the kernel. Therefore, these trampolines are
87 supported too. */
88
89 #define LINUX_SIGTRAMP_INSN0 (0x58) /* pop %eax */
90 #define LINUX_SIGTRAMP_OFFSET0 (0)
91 #define LINUX_SIGTRAMP_INSN1 (0xb8) /* mov $NNNN,%eax */
92 #define LINUX_SIGTRAMP_OFFSET1 (1)
93 #define LINUX_SIGTRAMP_INSN2 (0xcd) /* int */
94 #define LINUX_SIGTRAMP_OFFSET2 (6)
95
96 static const unsigned char linux_sigtramp_code[] =
97 {
98 LINUX_SIGTRAMP_INSN0, /* pop %eax */
99 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77,%eax */
100 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
101 };
102
103 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
104
105 /* If PC is in a sigtramp routine, return the address of the start of
106 the routine. Otherwise, return 0. */
107
108 static CORE_ADDR
109 i386_linux_sigtramp_start (CORE_ADDR pc)
110 {
111 unsigned char buf[LINUX_SIGTRAMP_LEN];
112
113 /* We only recognize a signal trampoline if PC is at the start of
114 one of the three instructions. We optimize for finding the PC at
115 the start, as will be the case when the trampoline is not the
116 first frame on the stack. We assume that in the case where the
117 PC is not at the start of the instruction sequence, there will be
118 a few trailing readable bytes on the stack. */
119
120 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
121 return 0;
122
123 if (buf[0] != LINUX_SIGTRAMP_INSN0)
124 {
125 int adjust;
126
127 switch (buf[0])
128 {
129 case LINUX_SIGTRAMP_INSN1:
130 adjust = LINUX_SIGTRAMP_OFFSET1;
131 break;
132 case LINUX_SIGTRAMP_INSN2:
133 adjust = LINUX_SIGTRAMP_OFFSET2;
134 break;
135 default:
136 return 0;
137 }
138
139 pc -= adjust;
140
141 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
142 return 0;
143 }
144
145 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
146 return 0;
147
148 return pc;
149 }
150
151 /* This function does the same for RT signals. Here the instruction
152 sequence is
153 mov $0xad,%eax
154 int $0x80
155 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
156
157 The effect is to call the system call rt_sigreturn. */
158
159 #define LINUX_RT_SIGTRAMP_INSN0 (0xb8) /* mov $NNNN,%eax */
160 #define LINUX_RT_SIGTRAMP_OFFSET0 (0)
161 #define LINUX_RT_SIGTRAMP_INSN1 (0xcd) /* int */
162 #define LINUX_RT_SIGTRAMP_OFFSET1 (5)
163
164 static const unsigned char linux_rt_sigtramp_code[] =
165 {
166 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad,%eax */
167 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
168 };
169
170 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
171
172 /* If PC is in a RT sigtramp routine, return the address of the start
173 of the routine. Otherwise, return 0. */
174
175 static CORE_ADDR
176 i386_linux_rt_sigtramp_start (CORE_ADDR pc)
177 {
178 unsigned char buf[LINUX_RT_SIGTRAMP_LEN];
179
180 /* We only recognize a signal trampoline if PC is at the start of
181 one of the two instructions. We optimize for finding the PC at
182 the start, as will be the case when the trampoline is not the
183 first frame on the stack. We assume that in the case where the
184 PC is not at the start of the instruction sequence, there will be
185 a few trailing readable bytes on the stack. */
186
187 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
188 return 0;
189
190 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
191 {
192 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
193 return 0;
194
195 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
196
197 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
198 return 0;
199 }
200
201 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
202 return 0;
203
204 return pc;
205 }
206
207 /* Return whether PC is in a GNU/Linux sigtramp routine. */
208
209 static int
210 i386_linux_pc_in_sigtramp (CORE_ADDR pc, char *name)
211 {
212 if (name)
213 return STREQ ("__restore", name) || STREQ ("__restore_rt", name);
214
215 return (i386_linux_sigtramp_start (pc) != 0
216 || i386_linux_rt_sigtramp_start (pc) != 0);
217 }
218
219 /* Assuming FRAME is for a GNU/Linux sigtramp routine, return the
220 address of the associated sigcontext structure. */
221
222 static CORE_ADDR
223 i386_linux_sigcontext_addr (struct frame_info *frame)
224 {
225 CORE_ADDR pc;
226
227 pc = i386_linux_sigtramp_start (frame->pc);
228 if (pc)
229 {
230 CORE_ADDR sp;
231
232 if (frame->next)
233 /* If this isn't the top frame, the next frame must be for the
234 signal handler itself. The sigcontext structure lives on
235 the stack, right after the signum argument. */
236 return frame->next->frame + 12;
237
238 /* This is the top frame. We'll have to find the address of the
239 sigcontext structure by looking at the stack pointer. Keep
240 in mind that the first instruction of the sigtramp code is
241 "pop %eax". If the PC is at this instruction, adjust the
242 returned value accordingly. */
243 sp = read_register (SP_REGNUM);
244 if (pc == frame->pc)
245 return sp + 4;
246 return sp;
247 }
248
249 pc = i386_linux_rt_sigtramp_start (frame->pc);
250 if (pc)
251 {
252 if (frame->next)
253 /* If this isn't the top frame, the next frame must be for the
254 signal handler itself. The sigcontext structure is part of
255 the user context. A pointer to the user context is passed
256 as the third argument to the signal handler. */
257 return read_memory_integer (frame->next->frame + 16, 4) + 20;
258
259 /* This is the top frame. Again, use the stack pointer to find
260 the address of the sigcontext structure. */
261 return read_memory_integer (read_register (SP_REGNUM) + 8, 4) + 20;
262 }
263
264 error ("Couldn't recognize signal trampoline.");
265 return 0;
266 }
267
268 /* Set the program counter for process PTID to PC. */
269
270 static void
271 i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
272 {
273 write_register_pid (PC_REGNUM, pc, ptid);
274
275 /* We must be careful with modifying the program counter. If we
276 just interrupted a system call, the kernel might try to restart
277 it when we resume the inferior. On restarting the system call,
278 the kernel will try backing up the program counter even though it
279 no longer points at the system call. This typically results in a
280 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
281 "orig_eax" pseudo-register.
282
283 Note that "orig_eax" is saved when setting up a dummy call frame.
284 This means that it is properly restored when that frame is
285 popped, and that the interrupted system call will be restarted
286 when we resume the inferior on return from a function call from
287 within GDB. In all other cases the system call will not be
288 restarted. */
289 write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
290 }
291 \f
292 /* Calling functions in shared libraries. */
293
294 /* Find the minimal symbol named NAME, and return both the minsym
295 struct and its objfile. This probably ought to be in minsym.c, but
296 everything there is trying to deal with things like C++ and
297 SOFUN_ADDRESS_MAYBE_TURQUOISE, ... Since this is so simple, it may
298 be considered too special-purpose for general consumption. */
299
300 static struct minimal_symbol *
301 find_minsym_and_objfile (char *name, struct objfile **objfile_p)
302 {
303 struct objfile *objfile;
304
305 ALL_OBJFILES (objfile)
306 {
307 struct minimal_symbol *msym;
308
309 ALL_OBJFILE_MSYMBOLS (objfile, msym)
310 {
311 if (SYMBOL_NAME (msym)
312 && STREQ (SYMBOL_NAME (msym), name))
313 {
314 *objfile_p = objfile;
315 return msym;
316 }
317 }
318 }
319
320 return 0;
321 }
322
323 static CORE_ADDR
324 skip_hurd_resolver (CORE_ADDR pc)
325 {
326 /* The HURD dynamic linker is part of the GNU C library, so many
327 GNU/Linux distributions use it. (All ELF versions, as far as I
328 know.) An unresolved PLT entry points to "_dl_runtime_resolve",
329 which calls "fixup" to patch the PLT, and then passes control to
330 the function.
331
332 We look for the symbol `_dl_runtime_resolve', and find `fixup' in
333 the same objfile. If we are at the entry point of `fixup', then
334 we set a breakpoint at the return address (at the top of the
335 stack), and continue.
336
337 It's kind of gross to do all these checks every time we're
338 called, since they don't change once the executable has gotten
339 started. But this is only a temporary hack --- upcoming versions
340 of GNU/Linux will provide a portable, efficient interface for
341 debugging programs that use shared libraries. */
342
343 struct objfile *objfile;
344 struct minimal_symbol *resolver
345 = find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);
346
347 if (resolver)
348 {
349 struct minimal_symbol *fixup
350 = lookup_minimal_symbol ("fixup", NULL, objfile);
351
352 if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
353 return (SAVED_PC_AFTER_CALL (get_current_frame ()));
354 }
355
356 return 0;
357 }
358
359 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
360 This function:
361 1) decides whether a PLT has sent us into the linker to resolve
362 a function reference, and
363 2) if so, tells us where to set a temporary breakpoint that will
364 trigger when the dynamic linker is done. */
365
366 CORE_ADDR
367 i386_linux_skip_solib_resolver (CORE_ADDR pc)
368 {
369 CORE_ADDR result;
370
371 /* Plug in functions for other kinds of resolvers here. */
372 result = skip_hurd_resolver (pc);
373 if (result)
374 return result;
375
376 return 0;
377 }
378
379 /* Fetch (and possibly build) an appropriate link_map_offsets
380 structure for native GNU/Linux x86 targets using the struct offsets
381 defined in link.h (but without actual reference to that file).
382
383 This makes it possible to access GNU/Linux x86 shared libraries
384 from a GDB that was not built on an GNU/Linux x86 host (for cross
385 debugging). */
386
387 static struct link_map_offsets *
388 i386_linux_svr4_fetch_link_map_offsets (void)
389 {
390 static struct link_map_offsets lmo;
391 static struct link_map_offsets *lmp = NULL;
392
393 if (lmp == NULL)
394 {
395 lmp = &lmo;
396
397 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
398 this is all we need. */
399 lmo.r_map_offset = 4;
400 lmo.r_map_size = 4;
401
402 lmo.link_map_size = 20; /* The actual size is 552 bytes, but
403 this is all we need. */
404 lmo.l_addr_offset = 0;
405 lmo.l_addr_size = 4;
406
407 lmo.l_name_offset = 4;
408 lmo.l_name_size = 4;
409
410 lmo.l_next_offset = 12;
411 lmo.l_next_size = 4;
412
413 lmo.l_prev_offset = 16;
414 lmo.l_prev_size = 4;
415 }
416
417 return lmp;
418 }
419 \f
420
421 static void
422 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
423 {
424 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
425
426 /* GNU/Linux uses ELF. */
427 i386_elf_init_abi (info, gdbarch);
428
429 /* We support the SSE registers on GNU/Linux. */
430 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
431 /* set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS); */
432
433 /* Since we have the extra "orig_eax" register on GNU/Linux, we have
434 to adjust a few things. */
435
436 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
437 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS + 1);
438 set_gdbarch_register_name (gdbarch, i386_linux_register_name);
439 set_gdbarch_register_bytes (gdbarch, I386_SSE_SIZEOF_REGS + 4);
440
441 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
442
443 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
444 tdep->sc_pc_offset = 14 * 4; /* From <asm/sigcontext.h>. */
445 tdep->sc_sp_offset = 7 * 4;
446
447 /* When the i386 Linux kernel calls a signal handler, the return
448 address points to a bit of code on the stack. This function is
449 used to identify this bit of code as a signal trampoline in order
450 to support backtracing through calls to signal handlers. */
451 set_gdbarch_pc_in_sigtramp (gdbarch, i386_linux_pc_in_sigtramp);
452
453 set_solib_svr4_fetch_link_map_offsets (gdbarch,
454 i386_linux_svr4_fetch_link_map_offsets);
455 }
456
457 /* Provide a prototype to silence -Wmissing-prototypes. */
458 extern void _initialize_i386_linux_tdep (void);
459
460 void
461 _initialize_i386_linux_tdep (void)
462 {
463 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_LINUX,
464 i386_linux_init_abi);
465 }
This page took 0.041907 seconds and 5 git commands to generate.