Implementing catch syscall.
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux i386.
2
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "osabi.h"
28 #include "reggroups.h"
29 #include "dwarf2-frame.h"
30 #include "gdb_string.h"
31
32 #include "i386-tdep.h"
33 #include "i386-linux-tdep.h"
34 #include "linux-tdep.h"
35 #include "glibc-tdep.h"
36 #include "solib-svr4.h"
37 #include "symtab.h"
38 #include "arch-utils.h"
39 #include "regset.h"
40 #include "xml-syscall.h"
41
42 /* The syscall's XML filename for i386. */
43 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
44
45 #include "record.h"
46 #include "linux-record.h"
47 #include <stdint.h>
48
49 /* Supported register note sections. */
50 static struct core_regset_section i386_linux_regset_sections[] =
51 {
52 { ".reg", 144 },
53 { ".reg2", 108 },
54 { ".reg-xfp", 512 },
55 { NULL, 0 }
56 };
57
58 /* Return the name of register REG. */
59
60 static const char *
61 i386_linux_register_name (struct gdbarch *gdbarch, int reg)
62 {
63 /* Deal with the extra "orig_eax" pseudo register. */
64 if (reg == I386_LINUX_ORIG_EAX_REGNUM)
65 return "orig_eax";
66
67 return i386_register_name (gdbarch, reg);
68 }
69
70 /* Return non-zero, when the register is in the corresponding register
71 group. Put the LINUX_ORIG_EAX register in the system group. */
72 static int
73 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
74 struct reggroup *group)
75 {
76 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
77 return (group == system_reggroup
78 || group == save_reggroup
79 || group == restore_reggroup);
80 return i386_register_reggroup_p (gdbarch, regnum, group);
81 }
82
83 \f
84 /* Recognizing signal handler frames. */
85
86 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
87 "realtime" (RT) signals. The RT signals can provide additional
88 information to the signal handler if the SA_SIGINFO flag is set
89 when establishing a signal handler using `sigaction'. It is not
90 unlikely that future versions of GNU/Linux will support SA_SIGINFO
91 for normal signals too. */
92
93 /* When the i386 Linux kernel calls a signal handler and the
94 SA_RESTORER flag isn't set, the return address points to a bit of
95 code on the stack. This function returns whether the PC appears to
96 be within this bit of code.
97
98 The instruction sequence for normal signals is
99 pop %eax
100 mov $0x77, %eax
101 int $0x80
102 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
103
104 Checking for the code sequence should be somewhat reliable, because
105 the effect is to call the system call sigreturn. This is unlikely
106 to occur anywhere other than in a signal trampoline.
107
108 It kind of sucks that we have to read memory from the process in
109 order to identify a signal trampoline, but there doesn't seem to be
110 any other way. Therefore we only do the memory reads if no
111 function name could be identified, which should be the case since
112 the code is on the stack.
113
114 Detection of signal trampolines for handlers that set the
115 SA_RESTORER flag is in general not possible. Unfortunately this is
116 what the GNU C Library has been doing for quite some time now.
117 However, as of version 2.1.2, the GNU C Library uses signal
118 trampolines (named __restore and __restore_rt) that are identical
119 to the ones used by the kernel. Therefore, these trampolines are
120 supported too. */
121
122 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
123 #define LINUX_SIGTRAMP_OFFSET0 0
124 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
125 #define LINUX_SIGTRAMP_OFFSET1 1
126 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
127 #define LINUX_SIGTRAMP_OFFSET2 6
128
129 static const gdb_byte linux_sigtramp_code[] =
130 {
131 LINUX_SIGTRAMP_INSN0, /* pop %eax */
132 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
133 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
134 };
135
136 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
137
138 /* If THIS_FRAME is a sigtramp routine, return the address of the
139 start of the routine. Otherwise, return 0. */
140
141 static CORE_ADDR
142 i386_linux_sigtramp_start (struct frame_info *this_frame)
143 {
144 CORE_ADDR pc = get_frame_pc (this_frame);
145 gdb_byte buf[LINUX_SIGTRAMP_LEN];
146
147 /* We only recognize a signal trampoline if PC is at the start of
148 one of the three instructions. We optimize for finding the PC at
149 the start, as will be the case when the trampoline is not the
150 first frame on the stack. We assume that in the case where the
151 PC is not at the start of the instruction sequence, there will be
152 a few trailing readable bytes on the stack. */
153
154 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
155 return 0;
156
157 if (buf[0] != LINUX_SIGTRAMP_INSN0)
158 {
159 int adjust;
160
161 switch (buf[0])
162 {
163 case LINUX_SIGTRAMP_INSN1:
164 adjust = LINUX_SIGTRAMP_OFFSET1;
165 break;
166 case LINUX_SIGTRAMP_INSN2:
167 adjust = LINUX_SIGTRAMP_OFFSET2;
168 break;
169 default:
170 return 0;
171 }
172
173 pc -= adjust;
174
175 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
176 return 0;
177 }
178
179 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
180 return 0;
181
182 return pc;
183 }
184
185 /* This function does the same for RT signals. Here the instruction
186 sequence is
187 mov $0xad, %eax
188 int $0x80
189 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
190
191 The effect is to call the system call rt_sigreturn. */
192
193 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
194 #define LINUX_RT_SIGTRAMP_OFFSET0 0
195 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
196 #define LINUX_RT_SIGTRAMP_OFFSET1 5
197
198 static const gdb_byte linux_rt_sigtramp_code[] =
199 {
200 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
201 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
202 };
203
204 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
205
206 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
207 start of the routine. Otherwise, return 0. */
208
209 static CORE_ADDR
210 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
211 {
212 CORE_ADDR pc = get_frame_pc (this_frame);
213 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
214
215 /* We only recognize a signal trampoline if PC is at the start of
216 one of the two instructions. We optimize for finding the PC at
217 the start, as will be the case when the trampoline is not the
218 first frame on the stack. We assume that in the case where the
219 PC is not at the start of the instruction sequence, there will be
220 a few trailing readable bytes on the stack. */
221
222 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
223 return 0;
224
225 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
226 {
227 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
228 return 0;
229
230 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
231
232 if (!safe_frame_unwind_memory (this_frame, pc, buf,
233 LINUX_RT_SIGTRAMP_LEN))
234 return 0;
235 }
236
237 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
238 return 0;
239
240 return pc;
241 }
242
243 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
244 routine. */
245
246 static int
247 i386_linux_sigtramp_p (struct frame_info *this_frame)
248 {
249 CORE_ADDR pc = get_frame_pc (this_frame);
250 char *name;
251
252 find_pc_partial_function (pc, &name, NULL, NULL);
253
254 /* If we have NAME, we can optimize the search. The trampolines are
255 named __restore and __restore_rt. However, they aren't dynamically
256 exported from the shared C library, so the trampoline may appear to
257 be part of the preceding function. This should always be sigaction,
258 __sigaction, or __libc_sigaction (all aliases to the same function). */
259 if (name == NULL || strstr (name, "sigaction") != NULL)
260 return (i386_linux_sigtramp_start (this_frame) != 0
261 || i386_linux_rt_sigtramp_start (this_frame) != 0);
262
263 return (strcmp ("__restore", name) == 0
264 || strcmp ("__restore_rt", name) == 0);
265 }
266
267 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
268 may have DWARF-2 CFI. */
269
270 static int
271 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
272 struct frame_info *this_frame)
273 {
274 CORE_ADDR pc = get_frame_pc (this_frame);
275 char *name;
276
277 find_pc_partial_function (pc, &name, NULL, NULL);
278
279 /* If a vsyscall DSO is in use, the signal trampolines may have these
280 names. */
281 if (name && (strcmp (name, "__kernel_sigreturn") == 0
282 || strcmp (name, "__kernel_rt_sigreturn") == 0))
283 return 1;
284
285 return 0;
286 }
287
288 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
289 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
290
291 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
292 address of the associated sigcontext structure. */
293
294 static CORE_ADDR
295 i386_linux_sigcontext_addr (struct frame_info *this_frame)
296 {
297 struct gdbarch *gdbarch = get_frame_arch (this_frame);
298 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
299 CORE_ADDR pc;
300 CORE_ADDR sp;
301 gdb_byte buf[4];
302
303 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
304 sp = extract_unsigned_integer (buf, 4, byte_order);
305
306 pc = i386_linux_sigtramp_start (this_frame);
307 if (pc)
308 {
309 /* The sigcontext structure lives on the stack, right after
310 the signum argument. We determine the address of the
311 sigcontext structure by looking at the frame's stack
312 pointer. Keep in mind that the first instruction of the
313 sigtramp code is "pop %eax". If the PC is after this
314 instruction, adjust the returned value accordingly. */
315 if (pc == get_frame_pc (this_frame))
316 return sp + 4;
317 return sp;
318 }
319
320 pc = i386_linux_rt_sigtramp_start (this_frame);
321 if (pc)
322 {
323 CORE_ADDR ucontext_addr;
324
325 /* The sigcontext structure is part of the user context. A
326 pointer to the user context is passed as the third argument
327 to the signal handler. */
328 read_memory (sp + 8, buf, 4);
329 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
330 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
331 }
332
333 error (_("Couldn't recognize signal trampoline."));
334 return 0;
335 }
336
337 /* Set the program counter for process PTID to PC. */
338
339 static void
340 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
341 {
342 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
343
344 /* We must be careful with modifying the program counter. If we
345 just interrupted a system call, the kernel might try to restart
346 it when we resume the inferior. On restarting the system call,
347 the kernel will try backing up the program counter even though it
348 no longer points at the system call. This typically results in a
349 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
350 "orig_eax" pseudo-register.
351
352 Note that "orig_eax" is saved when setting up a dummy call frame.
353 This means that it is properly restored when that frame is
354 popped, and that the interrupted system call will be restarted
355 when we resume the inferior on return from a function call from
356 within GDB. In all other cases the system call will not be
357 restarted. */
358 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
359 }
360
361 static struct linux_record_tdep i386_linux_record_tdep;
362
363 /* i386_canonicalize_syscall maps from the native i386 Linux set
364 of syscall ids into a canonical set of syscall ids used by
365 process record (a mostly trivial mapping, since the canonical
366 set was originally taken from the i386 set). */
367
368 static enum gdb_syscall
369 i386_canonicalize_syscall (int syscall)
370 {
371 enum { i386_syscall_max = 499 };
372
373 if (syscall <= i386_syscall_max)
374 return syscall;
375 else
376 return -1;
377 }
378
379 /* Parse the arguments of current system call instruction and record
380 the values of the registers and memory that will be changed into
381 "record_arch_list". This instruction is "int 0x80" (Linux
382 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
383
384 Return -1 if something wrong. */
385
386 static int
387 i386_linux_intx80_sysenter_record (struct regcache *regcache)
388 {
389 int ret;
390 LONGEST syscall_native;
391 enum gdb_syscall syscall_gdb;
392
393 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
394
395 syscall_gdb = i386_canonicalize_syscall (syscall_native);
396
397 if (syscall_gdb < 0)
398 {
399 printf_unfiltered (_("Process record and replay target doesn't "
400 "support syscall number %s\n"),
401 plongest (syscall_native));
402 return -1;
403 }
404
405 ret = record_linux_system_call (syscall_gdb, regcache,
406 &i386_linux_record_tdep);
407 if (ret)
408 return ret;
409
410 /* Record the return value of the system call. */
411 if (record_arch_list_add_reg (regcache, I386_EAX_REGNUM))
412 return -1;
413
414 return 0;
415 }
416 \f
417
418 static LONGEST
419 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
420 ptid_t ptid)
421 {
422 struct regcache *regcache = get_thread_regcache (ptid);
423 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
424 /* The content of a register. */
425 gdb_byte buf[4];
426 /* The result. */
427 LONGEST ret;
428
429 /* Getting the system call number from the register.
430 When dealing with x86 architecture, this information
431 is stored at %eax register. */
432 regcache_cooked_read (regcache, I386_LINUX_ORIG_EAX_REGNUM, buf);
433
434 ret = extract_signed_integer (buf, 4, byte_order);
435
436 return ret;
437 }
438
439 /* The register sets used in GNU/Linux ELF core-dumps are identical to
440 the register sets in `struct user' that are used for a.out
441 core-dumps. These are also used by ptrace(2). The corresponding
442 types are `elf_gregset_t' for the general-purpose registers (with
443 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
444 for the floating-point registers.
445
446 Those types used to be available under the names `gregset_t' and
447 `fpregset_t' too, and GDB used those names in the past. But those
448 names are now used for the register sets used in the `mcontext_t'
449 type, which have a different size and layout. */
450
451 /* Mapping between the general-purpose registers in `struct user'
452 format and GDB's register cache layout. */
453
454 /* From <sys/reg.h>. */
455 static int i386_linux_gregset_reg_offset[] =
456 {
457 6 * 4, /* %eax */
458 1 * 4, /* %ecx */
459 2 * 4, /* %edx */
460 0 * 4, /* %ebx */
461 15 * 4, /* %esp */
462 5 * 4, /* %ebp */
463 3 * 4, /* %esi */
464 4 * 4, /* %edi */
465 12 * 4, /* %eip */
466 14 * 4, /* %eflags */
467 13 * 4, /* %cs */
468 16 * 4, /* %ss */
469 7 * 4, /* %ds */
470 8 * 4, /* %es */
471 9 * 4, /* %fs */
472 10 * 4, /* %gs */
473 -1, -1, -1, -1, -1, -1, -1, -1,
474 -1, -1, -1, -1, -1, -1, -1, -1,
475 -1, -1, -1, -1, -1, -1, -1, -1,
476 -1,
477 11 * 4 /* "orig_eax" */
478 };
479
480 /* Mapping between the general-purpose registers in `struct
481 sigcontext' format and GDB's register cache layout. */
482
483 /* From <asm/sigcontext.h>. */
484 static int i386_linux_sc_reg_offset[] =
485 {
486 11 * 4, /* %eax */
487 10 * 4, /* %ecx */
488 9 * 4, /* %edx */
489 8 * 4, /* %ebx */
490 7 * 4, /* %esp */
491 6 * 4, /* %ebp */
492 5 * 4, /* %esi */
493 4 * 4, /* %edi */
494 14 * 4, /* %eip */
495 16 * 4, /* %eflags */
496 15 * 4, /* %cs */
497 18 * 4, /* %ss */
498 3 * 4, /* %ds */
499 2 * 4, /* %es */
500 1 * 4, /* %fs */
501 0 * 4 /* %gs */
502 };
503
504 static void
505 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
506 {
507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
508
509 /* GNU/Linux uses ELF. */
510 i386_elf_init_abi (info, gdbarch);
511
512 /* Since we have the extra "orig_eax" register on GNU/Linux, we have
513 to adjust a few things. */
514
515 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
516 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
517 set_gdbarch_register_name (gdbarch, i386_linux_register_name);
518 set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
519
520 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
521 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
522 tdep->sizeof_gregset = 17 * 4;
523
524 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
525
526 tdep->sigtramp_p = i386_linux_sigtramp_p;
527 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
528 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
529 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
530
531 set_gdbarch_process_record (gdbarch, i386_process_record);
532
533 /* Initialize the i386_linux_record_tdep. */
534 /* These values are the size of the type that will be used in a system
535 call. They are obtained from Linux Kernel source. */
536 i386_linux_record_tdep.size_pointer
537 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
538 i386_linux_record_tdep.size__old_kernel_stat = 32;
539 i386_linux_record_tdep.size_tms = 16;
540 i386_linux_record_tdep.size_loff_t = 8;
541 i386_linux_record_tdep.size_flock = 16;
542 i386_linux_record_tdep.size_oldold_utsname = 45;
543 i386_linux_record_tdep.size_ustat = 20;
544 i386_linux_record_tdep.size_old_sigaction = 140;
545 i386_linux_record_tdep.size_old_sigset_t = 128;
546 i386_linux_record_tdep.size_rlimit = 8;
547 i386_linux_record_tdep.size_rusage = 72;
548 i386_linux_record_tdep.size_timeval = 8;
549 i386_linux_record_tdep.size_timezone = 8;
550 i386_linux_record_tdep.size_old_gid_t = 2;
551 i386_linux_record_tdep.size_old_uid_t = 2;
552 i386_linux_record_tdep.size_fd_set = 128;
553 i386_linux_record_tdep.size_dirent = 268;
554 i386_linux_record_tdep.size_dirent64 = 276;
555 i386_linux_record_tdep.size_statfs = 64;
556 i386_linux_record_tdep.size_statfs64 = 84;
557 i386_linux_record_tdep.size_sockaddr = 16;
558 i386_linux_record_tdep.size_int
559 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
560 i386_linux_record_tdep.size_long
561 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
562 i386_linux_record_tdep.size_ulong
563 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
564 i386_linux_record_tdep.size_msghdr = 28;
565 i386_linux_record_tdep.size_itimerval = 16;
566 i386_linux_record_tdep.size_stat = 88;
567 i386_linux_record_tdep.size_old_utsname = 325;
568 i386_linux_record_tdep.size_sysinfo = 64;
569 i386_linux_record_tdep.size_msqid_ds = 88;
570 i386_linux_record_tdep.size_shmid_ds = 84;
571 i386_linux_record_tdep.size_new_utsname = 390;
572 i386_linux_record_tdep.size_timex = 128;
573 i386_linux_record_tdep.size_mem_dqinfo = 24;
574 i386_linux_record_tdep.size_if_dqblk = 68;
575 i386_linux_record_tdep.size_fs_quota_stat = 68;
576 i386_linux_record_tdep.size_timespec = 8;
577 i386_linux_record_tdep.size_pollfd = 8;
578 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
579 i386_linux_record_tdep.size_knfsd_fh = 132;
580 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
581 i386_linux_record_tdep.size_sigaction = 140;
582 i386_linux_record_tdep.size_sigset_t = 8;
583 i386_linux_record_tdep.size_siginfo_t = 128;
584 i386_linux_record_tdep.size_cap_user_data_t = 12;
585 i386_linux_record_tdep.size_stack_t = 12;
586 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
587 i386_linux_record_tdep.size_stat64 = 96;
588 i386_linux_record_tdep.size_gid_t = 2;
589 i386_linux_record_tdep.size_uid_t = 2;
590 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
591 i386_linux_record_tdep.size_flock64 = 24;
592 i386_linux_record_tdep.size_user_desc = 16;
593 i386_linux_record_tdep.size_io_event = 32;
594 i386_linux_record_tdep.size_iocb = 64;
595 i386_linux_record_tdep.size_epoll_event = 12;
596 i386_linux_record_tdep.size_itimerspec
597 = i386_linux_record_tdep.size_timespec * 2;
598 i386_linux_record_tdep.size_mq_attr = 32;
599 i386_linux_record_tdep.size_siginfo = 128;
600 i386_linux_record_tdep.size_termios = 36;
601 i386_linux_record_tdep.size_termios2 = 44;
602 i386_linux_record_tdep.size_pid_t = 4;
603 i386_linux_record_tdep.size_winsize = 8;
604 i386_linux_record_tdep.size_serial_struct = 60;
605 i386_linux_record_tdep.size_serial_icounter_struct = 80;
606 i386_linux_record_tdep.size_hayes_esp_config = 12;
607 i386_linux_record_tdep.size_size_t = 4;
608 i386_linux_record_tdep.size_iovec = 8;
609
610 /* These values are the second argument of system call "sys_ioctl".
611 They are obtained from Linux Kernel source. */
612 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
613 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
614 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
615 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
616 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
617 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
618 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
619 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
620 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
621 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
622 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
623 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
624 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
625 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
626 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
627 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
628 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
629 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
630 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
631 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
632 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
633 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
634 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
635 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
636 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
637 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
638 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
639 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
640 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
641 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
642 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
643 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
644 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
645 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
646 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
647 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
648 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
649 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
650 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
651 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
652 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
653 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
654 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
655 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
656 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
657 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
658 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
659 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
660 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
661 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
662 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
663 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
664 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
665 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
666 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
667 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
668 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
669 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
670 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
671 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
672 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
673 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
674 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
675 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
676 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
677
678 /* These values are the second argument of system call "sys_fcntl"
679 and "sys_fcntl64". They are obtained from Linux Kernel source. */
680 i386_linux_record_tdep.fcntl_F_GETLK = 5;
681 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
682 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
683 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
684
685 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
686 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
687 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
688 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
689 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
690 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
691
692 tdep->i386_intx80_record = i386_linux_intx80_sysenter_record;
693 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_record;
694
695 /* N_FUN symbols in shared libaries have 0 for their values and need
696 to be relocated. */
697 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
698
699 /* GNU/Linux uses SVR4-style shared libraries. */
700 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
701 set_solib_svr4_fetch_link_map_offsets
702 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
703
704 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
705 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
706
707 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
708
709 /* Enable TLS support. */
710 set_gdbarch_fetch_tls_load_module_address (gdbarch,
711 svr4_fetch_objfile_link_map);
712
713 /* Install supported register note sections. */
714 set_gdbarch_core_regset_sections (gdbarch, i386_linux_regset_sections);
715
716 /* Displaced stepping. */
717 set_gdbarch_displaced_step_copy_insn (gdbarch,
718 simple_displaced_step_copy_insn);
719 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
720 set_gdbarch_displaced_step_free_closure (gdbarch,
721 simple_displaced_step_free_closure);
722 set_gdbarch_displaced_step_location (gdbarch,
723 displaced_step_at_entry_point);
724
725 /* Functions for 'catch syscall'. */
726 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_I386);
727 set_gdbarch_get_syscall_number (gdbarch,
728 i386_linux_get_syscall_number);
729
730 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
731 }
732
733 /* Provide a prototype to silence -Wmissing-prototypes. */
734 extern void _initialize_i386_linux_tdep (void);
735
736 void
737 _initialize_i386_linux_tdep (void)
738 {
739 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
740 i386_linux_init_abi);
741 }
This page took 0.044461 seconds and 5 git commands to generate.