PR gdb/13987:
[deliverable/binutils-gdb.git] / gdb / i386-nat.c
1 /* Native-dependent code for the i386.
2
3 Copyright (C) 2001-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "i386-nat.h"
22 #include "breakpoint.h"
23 #include "command.h"
24 #include "gdbcmd.h"
25 #include "target.h"
26 #include "gdb_assert.h"
27 #include "inferior.h"
28
29 /* Support for hardware watchpoints and breakpoints using the i386
30 debug registers.
31
32 This provides several functions for inserting and removing
33 hardware-assisted breakpoints and watchpoints, testing if one or
34 more of the watchpoints triggered and at what address, checking
35 whether a given region can be watched, etc.
36
37 The functions below implement debug registers sharing by reference
38 counts, and allow to watch regions up to 16 bytes long. */
39
40 struct i386_dr_low_type i386_dr_low;
41
42
43 /* Support for 8-byte wide hw watchpoints. */
44 #define TARGET_HAS_DR_LEN_8 (i386_dr_low.debug_register_length == 8)
45
46 /* DR7 Debug Control register fields. */
47
48 /* How many bits to skip in DR7 to get to R/W and LEN fields. */
49 #define DR_CONTROL_SHIFT 16
50 /* How many bits in DR7 per R/W and LEN field for each watchpoint. */
51 #define DR_CONTROL_SIZE 4
52
53 /* Watchpoint/breakpoint read/write fields in DR7. */
54 #define DR_RW_EXECUTE (0x0) /* Break on instruction execution. */
55 #define DR_RW_WRITE (0x1) /* Break on data writes. */
56 #define DR_RW_READ (0x3) /* Break on data reads or writes. */
57
58 /* This is here for completeness. No platform supports this
59 functionality yet (as of March 2001). Note that the DE flag in the
60 CR4 register needs to be set to support this. */
61 #ifndef DR_RW_IORW
62 #define DR_RW_IORW (0x2) /* Break on I/O reads or writes. */
63 #endif
64
65 /* Watchpoint/breakpoint length fields in DR7. The 2-bit left shift
66 is so we could OR this with the read/write field defined above. */
67 #define DR_LEN_1 (0x0 << 2) /* 1-byte region watch or breakpoint. */
68 #define DR_LEN_2 (0x1 << 2) /* 2-byte region watch. */
69 #define DR_LEN_4 (0x3 << 2) /* 4-byte region watch. */
70 #define DR_LEN_8 (0x2 << 2) /* 8-byte region watch (AMD64). */
71
72 /* Local and Global Enable flags in DR7.
73
74 When the Local Enable flag is set, the breakpoint/watchpoint is
75 enabled only for the current task; the processor automatically
76 clears this flag on every task switch. When the Global Enable flag
77 is set, the breakpoint/watchpoint is enabled for all tasks; the
78 processor never clears this flag.
79
80 Currently, all watchpoint are locally enabled. If you need to
81 enable them globally, read the comment which pertains to this in
82 i386_insert_aligned_watchpoint below. */
83 #define DR_LOCAL_ENABLE_SHIFT 0 /* Extra shift to the local enable bit. */
84 #define DR_GLOBAL_ENABLE_SHIFT 1 /* Extra shift to the global enable bit. */
85 #define DR_ENABLE_SIZE 2 /* Two enable bits per debug register. */
86
87 /* Local and global exact breakpoint enable flags (a.k.a. slowdown
88 flags). These are only required on i386, to allow detection of the
89 exact instruction which caused a watchpoint to break; i486 and
90 later processors do that automatically. We set these flags for
91 backwards compatibility. */
92 #define DR_LOCAL_SLOWDOWN (0x100)
93 #define DR_GLOBAL_SLOWDOWN (0x200)
94
95 /* Fields reserved by Intel. This includes the GD (General Detect
96 Enable) flag, which causes a debug exception to be generated when a
97 MOV instruction accesses one of the debug registers.
98
99 FIXME: My Intel manual says we should use 0xF800, not 0xFC00. */
100 #define DR_CONTROL_RESERVED (0xFC00)
101
102 /* Auxiliary helper macros. */
103
104 /* A value that masks all fields in DR7 that are reserved by Intel. */
105 #define I386_DR_CONTROL_MASK (~DR_CONTROL_RESERVED)
106
107 /* The I'th debug register is vacant if its Local and Global Enable
108 bits are reset in the Debug Control register. */
109 #define I386_DR_VACANT(state, i) \
110 (((state)->dr_control_mirror & (3 << (DR_ENABLE_SIZE * (i)))) == 0)
111
112 /* Locally enable the break/watchpoint in the I'th debug register. */
113 #define I386_DR_LOCAL_ENABLE(state, i) \
114 do { \
115 (state)->dr_control_mirror |= \
116 (1 << (DR_LOCAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i))); \
117 } while (0)
118
119 /* Globally enable the break/watchpoint in the I'th debug register. */
120 #define I386_DR_GLOBAL_ENABLE(state, i) \
121 do { \
122 (state)->dr_control_mirror |= \
123 (1 << (DR_GLOBAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i))); \
124 } while (0)
125
126 /* Disable the break/watchpoint in the I'th debug register. */
127 #define I386_DR_DISABLE(state, i) \
128 do { \
129 (state)->dr_control_mirror &= \
130 ~(3 << (DR_ENABLE_SIZE * (i))); \
131 } while (0)
132
133 /* Set in DR7 the RW and LEN fields for the I'th debug register. */
134 #define I386_DR_SET_RW_LEN(state, i, rwlen) \
135 do { \
136 (state)->dr_control_mirror &= \
137 ~(0x0f << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))); \
138 (state)->dr_control_mirror |= \
139 ((rwlen) << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))); \
140 } while (0)
141
142 /* Get from DR7 the RW and LEN fields for the I'th debug register. */
143 #define I386_DR_GET_RW_LEN(dr7, i) \
144 (((dr7) \
145 >> (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))) & 0x0f)
146
147 /* Mask that this I'th watchpoint has triggered. */
148 #define I386_DR_WATCH_MASK(i) (1 << (i))
149
150 /* Did the watchpoint whose address is in the I'th register break? */
151 #define I386_DR_WATCH_HIT(dr6, i) ((dr6) & (1 << (i)))
152
153 /* A macro to loop over all debug registers. */
154 #define ALL_DEBUG_REGISTERS(i) for (i = 0; i < DR_NADDR; i++)
155
156 /* Clear the reference counts and forget everything we knew about the
157 debug registers. */
158
159 static void
160 i386_init_dregs (struct i386_debug_reg_state *state)
161 {
162 int i;
163
164 ALL_DEBUG_REGISTERS (i)
165 {
166 state->dr_mirror[i] = 0;
167 state->dr_ref_count[i] = 0;
168 }
169 state->dr_control_mirror = 0;
170 state->dr_status_mirror = 0;
171 }
172
173 /* Per-inferior data key. */
174 static const struct inferior_data *i386_inferior_data;
175
176 /* Per-inferior data. */
177 struct i386_inferior_data
178 {
179 /* Copy of i386 hardware debug registers for performance reasons. */
180 struct i386_debug_reg_state state;
181 };
182
183 /* Per-inferior hook for register_inferior_data_with_cleanup. */
184
185 static void
186 i386_inferior_data_cleanup (struct inferior *inf, void *arg)
187 {
188 struct i386_inferior_data *inf_data = arg;
189
190 xfree (inf_data);
191 }
192
193 /* Get data specific for INFERIOR_PTID LWP. Return special data area
194 for processes being detached. */
195
196 static struct i386_inferior_data *
197 i386_inferior_data_get (void)
198 {
199 struct inferior *inf = current_inferior ();
200 struct i386_inferior_data *inf_data;
201
202 inf_data = inferior_data (inf, i386_inferior_data);
203 if (inf_data == NULL)
204 {
205 inf_data = xzalloc (sizeof (*inf_data));
206 set_inferior_data (current_inferior (), i386_inferior_data, inf_data);
207 }
208
209 if (inf->pid != ptid_get_pid (inferior_ptid))
210 {
211 /* INFERIOR_PTID is being detached from the inferior INF.
212 Provide local cache specific for the detached LWP. */
213
214 static struct i386_inferior_data detached_inf_data_local;
215 static int detached_inf_pid = -1;
216
217 if (detached_inf_pid != ptid_get_pid (inferior_ptid))
218 {
219 /* Reinitialize the local cache if INFERIOR_PTID is
220 different from the LWP last detached.
221
222 Linux kernel before 2.6.33 commit
223 72f674d203cd230426437cdcf7dd6f681dad8b0d
224 will inherit hardware debug registers from parent
225 on fork/vfork/clone. Newer Linux kernels create such tasks with
226 zeroed debug registers.
227
228 GDB will remove all breakpoints (and watchpoints) from the forked
229 off process. We also need to reset the debug registers in that
230 process to be compatible with the older Linux kernels.
231
232 Copy the debug registers mirrors into the new process so that all
233 breakpoints and watchpoints can be removed together. The debug
234 registers mirror will become zeroed in the end before detaching
235 the forked off process. */
236
237 detached_inf_pid = ptid_get_pid (inferior_ptid);
238 detached_inf_data_local = *inf_data;
239 }
240
241 return &detached_inf_data_local;
242 }
243
244 return inf_data;
245 }
246
247 /* Get debug registers state for INFERIOR_PTID, see
248 i386_inferior_data_get. */
249
250 struct i386_debug_reg_state *
251 i386_debug_reg_state (void)
252 {
253 return &i386_inferior_data_get ()->state;
254 }
255
256 /* Whether or not to print the mirrored debug registers. */
257 static int maint_show_dr;
258
259 /* Types of operations supported by i386_handle_nonaligned_watchpoint. */
260 typedef enum { WP_INSERT, WP_REMOVE, WP_COUNT } i386_wp_op_t;
261
262 /* Internal functions. */
263
264 /* Return the value of a 4-bit field for DR7 suitable for watching a
265 region of LEN bytes for accesses of type TYPE. LEN is assumed to
266 have the value of 1, 2, or 4. */
267 static unsigned i386_length_and_rw_bits (int len, enum target_hw_bp_type type);
268
269 /* Insert a watchpoint at address ADDR, which is assumed to be aligned
270 according to the length of the region to watch. LEN_RW_BITS is the
271 value of the bit-field from DR7 which describes the length and
272 access type of the region to be watched by this watchpoint. Return
273 0 on success, -1 on failure. */
274 static int i386_insert_aligned_watchpoint (struct i386_debug_reg_state *state,
275 CORE_ADDR addr,
276 unsigned len_rw_bits);
277
278 /* Remove a watchpoint at address ADDR, which is assumed to be aligned
279 according to the length of the region to watch. LEN_RW_BITS is the
280 value of the bits from DR7 which describes the length and access
281 type of the region watched by this watchpoint. Return 0 on
282 success, -1 on failure. */
283 static int i386_remove_aligned_watchpoint (struct i386_debug_reg_state *state,
284 CORE_ADDR addr,
285 unsigned len_rw_bits);
286
287 /* Insert or remove a (possibly non-aligned) watchpoint, or count the
288 number of debug registers required to watch a region at address
289 ADDR whose length is LEN for accesses of type TYPE. Return 0 on
290 successful insertion or removal, a positive number when queried
291 about the number of registers, or -1 on failure. If WHAT is not a
292 valid value, bombs through internal_error. */
293 static int i386_handle_nonaligned_watchpoint (struct i386_debug_reg_state *state,
294 i386_wp_op_t what,
295 CORE_ADDR addr, int len,
296 enum target_hw_bp_type type);
297
298 /* Implementation. */
299
300 /* Clear the reference counts and forget everything we knew about the
301 debug registers. */
302
303 void
304 i386_cleanup_dregs (void)
305 {
306 struct i386_debug_reg_state *state = i386_debug_reg_state ();
307
308 i386_init_dregs (state);
309 }
310
311 /* Print the values of the mirrored debug registers. This is called
312 when maint_show_dr is non-zero. To set that up, type "maint
313 show-debug-regs" at GDB's prompt. */
314
315 static void
316 i386_show_dr (struct i386_debug_reg_state *state,
317 const char *func, CORE_ADDR addr,
318 int len, enum target_hw_bp_type type)
319 {
320 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
321 int i;
322
323 puts_unfiltered (func);
324 if (addr || len)
325 printf_unfiltered (" (addr=%lx, len=%d, type=%s)",
326 /* This code is for ia32, so casting CORE_ADDR
327 to unsigned long should be okay. */
328 (unsigned long)addr, len,
329 type == hw_write ? "data-write"
330 : (type == hw_read ? "data-read"
331 : (type == hw_access ? "data-read/write"
332 : (type == hw_execute ? "instruction-execute"
333 /* FIXME: if/when I/O read/write
334 watchpoints are supported, add them
335 here. */
336 : "??unknown??"))));
337 puts_unfiltered (":\n");
338 printf_unfiltered ("\tCONTROL (DR7): %s STATUS (DR6): %s\n",
339 phex (state->dr_control_mirror, 8),
340 phex (state->dr_status_mirror, 8));
341 ALL_DEBUG_REGISTERS(i)
342 {
343 printf_unfiltered ("\
344 \tDR%d: addr=0x%s, ref.count=%d DR%d: addr=0x%s, ref.count=%d\n",
345 i, phex (state->dr_mirror[i], addr_size),
346 state->dr_ref_count[i],
347 i + 1, phex (state->dr_mirror[i + 1], addr_size),
348 state->dr_ref_count[i+1]);
349 i++;
350 }
351 }
352
353 /* Return the value of a 4-bit field for DR7 suitable for watching a
354 region of LEN bytes for accesses of type TYPE. LEN is assumed to
355 have the value of 1, 2, or 4. */
356
357 static unsigned
358 i386_length_and_rw_bits (int len, enum target_hw_bp_type type)
359 {
360 unsigned rw;
361
362 switch (type)
363 {
364 case hw_execute:
365 rw = DR_RW_EXECUTE;
366 break;
367 case hw_write:
368 rw = DR_RW_WRITE;
369 break;
370 case hw_read:
371 internal_error (__FILE__, __LINE__,
372 _("The i386 doesn't support "
373 "data-read watchpoints.\n"));
374 case hw_access:
375 rw = DR_RW_READ;
376 break;
377 #if 0
378 /* Not yet supported. */
379 case hw_io_access:
380 rw = DR_RW_IORW;
381 break;
382 #endif
383 default:
384 internal_error (__FILE__, __LINE__, _("\
385 Invalid hardware breakpoint type %d in i386_length_and_rw_bits.\n"),
386 (int) type);
387 }
388
389 switch (len)
390 {
391 case 1:
392 return (DR_LEN_1 | rw);
393 case 2:
394 return (DR_LEN_2 | rw);
395 case 4:
396 return (DR_LEN_4 | rw);
397 case 8:
398 if (TARGET_HAS_DR_LEN_8)
399 return (DR_LEN_8 | rw);
400 /* ELSE FALL THROUGH */
401 default:
402 internal_error (__FILE__, __LINE__, _("\
403 Invalid hardware breakpoint length %d in i386_length_and_rw_bits.\n"), len);
404 }
405 }
406
407 /* Insert a watchpoint at address ADDR, which is assumed to be aligned
408 according to the length of the region to watch. LEN_RW_BITS is the
409 value of the bits from DR7 which describes the length and access
410 type of the region to be watched by this watchpoint. Return 0 on
411 success, -1 on failure. */
412
413 static int
414 i386_insert_aligned_watchpoint (struct i386_debug_reg_state *state,
415 CORE_ADDR addr, unsigned len_rw_bits)
416 {
417 int i;
418
419 if (!i386_dr_low.set_addr || !i386_dr_low.set_control)
420 return -1;
421
422 /* First, look for an occupied debug register with the same address
423 and the same RW and LEN definitions. If we find one, we can
424 reuse it for this watchpoint as well (and save a register). */
425 ALL_DEBUG_REGISTERS(i)
426 {
427 if (!I386_DR_VACANT (state, i)
428 && state->dr_mirror[i] == addr
429 && I386_DR_GET_RW_LEN (state->dr_control_mirror, i) == len_rw_bits)
430 {
431 state->dr_ref_count[i]++;
432 return 0;
433 }
434 }
435
436 /* Next, look for a vacant debug register. */
437 ALL_DEBUG_REGISTERS(i)
438 {
439 if (I386_DR_VACANT (state, i))
440 break;
441 }
442
443 /* No more debug registers! */
444 if (i >= DR_NADDR)
445 return -1;
446
447 /* Now set up the register I to watch our region. */
448
449 /* Record the info in our local mirrored array. */
450 state->dr_mirror[i] = addr;
451 state->dr_ref_count[i] = 1;
452 I386_DR_SET_RW_LEN (state, i, len_rw_bits);
453 /* Note: we only enable the watchpoint locally, i.e. in the current
454 task. Currently, no i386 target allows or supports global
455 watchpoints; however, if any target would want that in the
456 future, GDB should probably provide a command to control whether
457 to enable watchpoints globally or locally, and the code below
458 should use global or local enable and slow-down flags as
459 appropriate. */
460 I386_DR_LOCAL_ENABLE (state, i);
461 state->dr_control_mirror |= DR_LOCAL_SLOWDOWN;
462 state->dr_control_mirror &= I386_DR_CONTROL_MASK;
463
464 return 0;
465 }
466
467 /* Remove a watchpoint at address ADDR, which is assumed to be aligned
468 according to the length of the region to watch. LEN_RW_BITS is the
469 value of the bits from DR7 which describes the length and access
470 type of the region watched by this watchpoint. Return 0 on
471 success, -1 on failure. */
472
473 static int
474 i386_remove_aligned_watchpoint (struct i386_debug_reg_state *state,
475 CORE_ADDR addr, unsigned len_rw_bits)
476 {
477 int i, retval = -1;
478
479 ALL_DEBUG_REGISTERS(i)
480 {
481 if (!I386_DR_VACANT (state, i)
482 && state->dr_mirror[i] == addr
483 && I386_DR_GET_RW_LEN (state->dr_control_mirror, i) == len_rw_bits)
484 {
485 if (--state->dr_ref_count[i] == 0) /* no longer in use? */
486 {
487 /* Reset our mirror. */
488 state->dr_mirror[i] = 0;
489 I386_DR_DISABLE (state, i);
490 }
491 retval = 0;
492 }
493 }
494
495 return retval;
496 }
497
498 /* Insert or remove a (possibly non-aligned) watchpoint, or count the
499 number of debug registers required to watch a region at address
500 ADDR whose length is LEN for accesses of type TYPE. Return 0 on
501 successful insertion or removal, a positive number when queried
502 about the number of registers, or -1 on failure. If WHAT is not a
503 valid value, bombs through internal_error. */
504
505 static int
506 i386_handle_nonaligned_watchpoint (struct i386_debug_reg_state *state,
507 i386_wp_op_t what, CORE_ADDR addr, int len,
508 enum target_hw_bp_type type)
509 {
510 int retval = 0;
511 int max_wp_len = TARGET_HAS_DR_LEN_8 ? 8 : 4;
512
513 static int size_try_array[8][8] =
514 {
515 {1, 1, 1, 1, 1, 1, 1, 1}, /* Trying size one. */
516 {2, 1, 2, 1, 2, 1, 2, 1}, /* Trying size two. */
517 {2, 1, 2, 1, 2, 1, 2, 1}, /* Trying size three. */
518 {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size four. */
519 {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size five. */
520 {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size six. */
521 {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size seven. */
522 {8, 1, 2, 1, 4, 1, 2, 1}, /* Trying size eight. */
523 };
524
525 while (len > 0)
526 {
527 int align = addr % max_wp_len;
528 /* Four (eight on AMD64) is the maximum length a debug register
529 can watch. */
530 int try = (len > max_wp_len ? (max_wp_len - 1) : len - 1);
531 int size = size_try_array[try][align];
532
533 if (what == WP_COUNT)
534 {
535 /* size_try_array[] is defined such that each iteration
536 through the loop is guaranteed to produce an address and a
537 size that can be watched with a single debug register.
538 Thus, for counting the registers required to watch a
539 region, we simply need to increment the count on each
540 iteration. */
541 retval++;
542 }
543 else
544 {
545 unsigned len_rw = i386_length_and_rw_bits (size, type);
546
547 if (what == WP_INSERT)
548 retval = i386_insert_aligned_watchpoint (state, addr, len_rw);
549 else if (what == WP_REMOVE)
550 retval = i386_remove_aligned_watchpoint (state, addr, len_rw);
551 else
552 internal_error (__FILE__, __LINE__, _("\
553 Invalid value %d of operation in i386_handle_nonaligned_watchpoint.\n"),
554 (int)what);
555 if (retval)
556 break;
557 }
558
559 addr += size;
560 len -= size;
561 }
562
563 return retval;
564 }
565
566 /* Update the inferior's debug registers with the new debug registers
567 state, in NEW_STATE, and then update our local mirror to match. */
568
569 static void
570 i386_update_inferior_debug_regs (struct i386_debug_reg_state *new_state)
571 {
572 struct i386_debug_reg_state *state = i386_debug_reg_state ();
573 int i;
574
575 ALL_DEBUG_REGISTERS (i)
576 {
577 if (I386_DR_VACANT (new_state, i) != I386_DR_VACANT (state, i))
578 i386_dr_low.set_addr (i, new_state->dr_mirror[i]);
579 else
580 gdb_assert (new_state->dr_mirror[i] == state->dr_mirror[i]);
581 }
582
583 if (new_state->dr_control_mirror != state->dr_control_mirror)
584 i386_dr_low.set_control (new_state->dr_control_mirror);
585
586 *state = *new_state;
587 }
588
589 /* Insert a watchpoint to watch a memory region which starts at
590 address ADDR and whose length is LEN bytes. Watch memory accesses
591 of the type TYPE. Return 0 on success, -1 on failure. */
592
593 static int
594 i386_insert_watchpoint (CORE_ADDR addr, int len, int type,
595 struct expression *cond)
596 {
597 struct i386_debug_reg_state *state = i386_debug_reg_state ();
598 int retval;
599 /* Work on a local copy of the debug registers, and on success,
600 commit the change back to the inferior. */
601 struct i386_debug_reg_state local_state = *state;
602
603 if (type == hw_read)
604 return 1; /* unsupported */
605
606 if (((len != 1 && len !=2 && len !=4) && !(TARGET_HAS_DR_LEN_8 && len == 8))
607 || addr % len != 0)
608 retval = i386_handle_nonaligned_watchpoint (&local_state,
609 WP_INSERT, addr, len, type);
610 else
611 {
612 unsigned len_rw = i386_length_and_rw_bits (len, type);
613
614 retval = i386_insert_aligned_watchpoint (&local_state,
615 addr, len_rw);
616 }
617
618 if (retval == 0)
619 i386_update_inferior_debug_regs (&local_state);
620
621 if (maint_show_dr)
622 i386_show_dr (state, "insert_watchpoint", addr, len, type);
623
624 return retval;
625 }
626
627 /* Remove a watchpoint that watched the memory region which starts at
628 address ADDR, whose length is LEN bytes, and for accesses of the
629 type TYPE. Return 0 on success, -1 on failure. */
630 static int
631 i386_remove_watchpoint (CORE_ADDR addr, int len, int type,
632 struct expression *cond)
633 {
634 struct i386_debug_reg_state *state = i386_debug_reg_state ();
635 int retval;
636 /* Work on a local copy of the debug registers, and on success,
637 commit the change back to the inferior. */
638 struct i386_debug_reg_state local_state = *state;
639
640 if (((len != 1 && len !=2 && len !=4) && !(TARGET_HAS_DR_LEN_8 && len == 8))
641 || addr % len != 0)
642 retval = i386_handle_nonaligned_watchpoint (&local_state,
643 WP_REMOVE, addr, len, type);
644 else
645 {
646 unsigned len_rw = i386_length_and_rw_bits (len, type);
647
648 retval = i386_remove_aligned_watchpoint (&local_state,
649 addr, len_rw);
650 }
651
652 if (retval == 0)
653 i386_update_inferior_debug_regs (&local_state);
654
655 if (maint_show_dr)
656 i386_show_dr (state, "remove_watchpoint", addr, len, type);
657
658 return retval;
659 }
660
661 /* Return non-zero if we can watch a memory region that starts at
662 address ADDR and whose length is LEN bytes. */
663
664 static int
665 i386_region_ok_for_watchpoint (CORE_ADDR addr, int len)
666 {
667 struct i386_debug_reg_state *state = i386_debug_reg_state ();
668 int nregs;
669
670 /* Compute how many aligned watchpoints we would need to cover this
671 region. */
672 nregs = i386_handle_nonaligned_watchpoint (state,
673 WP_COUNT, addr, len, hw_write);
674 return nregs <= DR_NADDR ? 1 : 0;
675 }
676
677 /* If the inferior has some watchpoint that triggered, set the
678 address associated with that watchpoint and return non-zero.
679 Otherwise, return zero. */
680
681 static int
682 i386_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
683 {
684 struct i386_debug_reg_state *state = i386_debug_reg_state ();
685 CORE_ADDR addr = 0;
686 int i;
687 int rc = 0;
688 /* The current thread's DR_STATUS. We always need to read this to
689 check whether some watchpoint caused the trap. */
690 unsigned status;
691 /* We need DR_CONTROL as well, but only iff DR_STATUS indicates a
692 data breakpoint trap. Only fetch it when necessary, to avoid an
693 unnecessary extra syscall when no watchpoint triggered. */
694 int control_p = 0;
695 unsigned control = 0;
696
697 /* In non-stop/async, threads can be running while we change the
698 STATE (and friends). Say, we set a watchpoint, and let threads
699 resume. Now, say you delete the watchpoint, or add/remove
700 watchpoints such that STATE changes while threads are running.
701 On targets that support non-stop, inserting/deleting watchpoints
702 updates the STATE only. It does not update the real thread's
703 debug registers; that's only done prior to resume. Instead, if
704 threads are running when the mirror changes, a temporary and
705 transparent stop on all threads is forced so they can get their
706 copy of the debug registers updated on re-resume. Now, say,
707 a thread hit a watchpoint before having been updated with the new
708 STATE contents, and we haven't yet handled the corresponding
709 SIGTRAP. If we trusted STATE below, we'd mistake the real
710 trapped address (from the last time we had updated debug
711 registers in the thread) with whatever was currently in STATE.
712 So to fix this, STATE always represents intention, what we _want_
713 threads to have in debug registers. To get at the address and
714 cause of the trap, we need to read the state the thread still has
715 in its debug registers.
716
717 In sum, always get the current debug register values the current
718 thread has, instead of trusting the global mirror. If the thread
719 was running when we last changed watchpoints, the mirror no
720 longer represents what was set in this thread's debug
721 registers. */
722 status = i386_dr_low.get_status ();
723
724 ALL_DEBUG_REGISTERS(i)
725 {
726 if (!I386_DR_WATCH_HIT (status, i))
727 continue;
728
729 if (!control_p)
730 {
731 control = i386_dr_low.get_control ();
732 control_p = 1;
733 }
734
735 /* This second condition makes sure DRi is set up for a data
736 watchpoint, not a hardware breakpoint. The reason is that
737 GDB doesn't call the target_stopped_data_address method
738 except for data watchpoints. In other words, I'm being
739 paranoiac. */
740 if (I386_DR_GET_RW_LEN (control, i) != 0)
741 {
742 addr = i386_dr_low.get_addr (i);
743 rc = 1;
744 if (maint_show_dr)
745 i386_show_dr (state, "watchpoint_hit", addr, -1, hw_write);
746 }
747 }
748 if (maint_show_dr && addr == 0)
749 i386_show_dr (state, "stopped_data_addr", 0, 0, hw_write);
750
751 if (rc)
752 *addr_p = addr;
753 return rc;
754 }
755
756 static int
757 i386_stopped_by_watchpoint (void)
758 {
759 CORE_ADDR addr = 0;
760 return i386_stopped_data_address (&current_target, &addr);
761 }
762
763 /* Insert a hardware-assisted breakpoint at BP_TGT->placed_address.
764 Return 0 on success, EBUSY on failure. */
765 static int
766 i386_insert_hw_breakpoint (struct gdbarch *gdbarch,
767 struct bp_target_info *bp_tgt)
768 {
769 struct i386_debug_reg_state *state = i386_debug_reg_state ();
770 unsigned len_rw = i386_length_and_rw_bits (1, hw_execute);
771 CORE_ADDR addr = bp_tgt->placed_address;
772 /* Work on a local copy of the debug registers, and on success,
773 commit the change back to the inferior. */
774 struct i386_debug_reg_state local_state = *state;
775 int retval = i386_insert_aligned_watchpoint (&local_state,
776 addr, len_rw) ? EBUSY : 0;
777
778 if (retval == 0)
779 i386_update_inferior_debug_regs (&local_state);
780
781 if (maint_show_dr)
782 i386_show_dr (state, "insert_hwbp", addr, 1, hw_execute);
783
784 return retval;
785 }
786
787 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
788 Return 0 on success, -1 on failure. */
789
790 static int
791 i386_remove_hw_breakpoint (struct gdbarch *gdbarch,
792 struct bp_target_info *bp_tgt)
793 {
794 struct i386_debug_reg_state *state = i386_debug_reg_state ();
795 unsigned len_rw = i386_length_and_rw_bits (1, hw_execute);
796 CORE_ADDR addr = bp_tgt->placed_address;
797 /* Work on a local copy of the debug registers, and on success,
798 commit the change back to the inferior. */
799 struct i386_debug_reg_state local_state = *state;
800 int retval = i386_remove_aligned_watchpoint (&local_state,
801 addr, len_rw);
802
803 if (retval == 0)
804 i386_update_inferior_debug_regs (&local_state);
805
806 if (maint_show_dr)
807 i386_show_dr (state, "remove_hwbp", addr, 1, hw_execute);
808
809 return retval;
810 }
811
812 /* Returns the number of hardware watchpoints of type TYPE that we can
813 set. Value is positive if we can set CNT watchpoints, zero if
814 setting watchpoints of type TYPE is not supported, and negative if
815 CNT is more than the maximum number of watchpoints of type TYPE
816 that we can support. TYPE is one of bp_hardware_watchpoint,
817 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
818 CNT is the number of such watchpoints used so far (including this
819 one). OTHERTYPE is non-zero if other types of watchpoints are
820 currently enabled.
821
822 We always return 1 here because we don't have enough information
823 about possible overlap of addresses that they want to watch. As an
824 extreme example, consider the case where all the watchpoints watch
825 the same address and the same region length: then we can handle a
826 virtually unlimited number of watchpoints, due to debug register
827 sharing implemented via reference counts in i386-nat.c. */
828
829 static int
830 i386_can_use_hw_breakpoint (int type, int cnt, int othertype)
831 {
832 return 1;
833 }
834
835 static void
836 add_show_debug_regs_command (void)
837 {
838 /* A maintenance command to enable printing the internal DRi mirror
839 variables. */
840 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
841 &maint_show_dr, _("\
842 Set whether to show variables that mirror the x86 debug registers."), _("\
843 Show whether to show variables that mirror the x86 debug registers."), _("\
844 Use \"on\" to enable, \"off\" to disable.\n\
845 If enabled, the debug registers values are shown when GDB inserts\n\
846 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
847 triggers a breakpoint or watchpoint."),
848 NULL,
849 NULL,
850 &maintenance_set_cmdlist,
851 &maintenance_show_cmdlist);
852 }
853
854 /* There are only two global functions left. */
855
856 void
857 i386_use_watchpoints (struct target_ops *t)
858 {
859 /* After a watchpoint trap, the PC points to the instruction after the
860 one that caused the trap. Therefore we don't need to step over it.
861 But we do need to reset the status register to avoid another trap. */
862 t->to_have_continuable_watchpoint = 1;
863
864 t->to_can_use_hw_breakpoint = i386_can_use_hw_breakpoint;
865 t->to_region_ok_for_hw_watchpoint = i386_region_ok_for_watchpoint;
866 t->to_stopped_by_watchpoint = i386_stopped_by_watchpoint;
867 t->to_stopped_data_address = i386_stopped_data_address;
868 t->to_insert_watchpoint = i386_insert_watchpoint;
869 t->to_remove_watchpoint = i386_remove_watchpoint;
870 t->to_insert_hw_breakpoint = i386_insert_hw_breakpoint;
871 t->to_remove_hw_breakpoint = i386_remove_hw_breakpoint;
872
873 if (i386_inferior_data == NULL)
874 i386_inferior_data
875 = register_inferior_data_with_cleanup (NULL, i386_inferior_data_cleanup);
876 }
877
878 void
879 i386_set_debug_register_length (int len)
880 {
881 /* This function should be called only once for each native target. */
882 gdb_assert (i386_dr_low.debug_register_length == 0);
883 gdb_assert (len == 4 || len == 8);
884 i386_dr_low.debug_register_length = len;
885 add_show_debug_regs_command ();
886 }
This page took 0.047488 seconds and 4 git commands to generate.