(all-cfg.text): @set SPARCLET.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2 Copyright (C) 1988, 1989, 1991, 1994 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "gdb_string.h"
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "target.h"
26 #include "floatformat.h"
27 #include "symtab.h"
28
29 static long i386_get_frame_setup PARAMS ((int));
30
31 static void i386_follow_jump PARAMS ((void));
32
33 static void codestream_read PARAMS ((unsigned char *, int));
34
35 static void codestream_seek PARAMS ((int));
36
37 static unsigned char codestream_fill PARAMS ((int));
38
39 /* Stdio style buffering was used to minimize calls to ptrace, but this
40 buffering did not take into account that the code section being accessed
41 may not be an even number of buffers long (even if the buffer is only
42 sizeof(int) long). In cases where the code section size happened to
43 be a non-integral number of buffers long, attempting to read the last
44 buffer would fail. Simply using target_read_memory and ignoring errors,
45 rather than read_memory, is not the correct solution, since legitimate
46 access errors would then be totally ignored. To properly handle this
47 situation and continue to use buffering would require that this code
48 be able to determine the minimum code section size granularity (not the
49 alignment of the section itself, since the actual failing case that
50 pointed out this problem had a section alignment of 4 but was not a
51 multiple of 4 bytes long), on a target by target basis, and then
52 adjust it's buffer size accordingly. This is messy, but potentially
53 feasible. It probably needs the bfd library's help and support. For
54 now, the buffer size is set to 1. (FIXME -fnf) */
55
56 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
57 static CORE_ADDR codestream_next_addr;
58 static CORE_ADDR codestream_addr;
59 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
60 static int codestream_off;
61 static int codestream_cnt;
62
63 #define codestream_tell() (codestream_addr + codestream_off)
64 #define codestream_peek() (codestream_cnt == 0 ? \
65 codestream_fill(1): codestream_buf[codestream_off])
66 #define codestream_get() (codestream_cnt-- == 0 ? \
67 codestream_fill(0) : codestream_buf[codestream_off++])
68
69 static unsigned char
70 codestream_fill (peek_flag)
71 int peek_flag;
72 {
73 codestream_addr = codestream_next_addr;
74 codestream_next_addr += CODESTREAM_BUFSIZ;
75 codestream_off = 0;
76 codestream_cnt = CODESTREAM_BUFSIZ;
77 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
78
79 if (peek_flag)
80 return (codestream_peek());
81 else
82 return (codestream_get());
83 }
84
85 static void
86 codestream_seek (place)
87 int place;
88 {
89 codestream_next_addr = place / CODESTREAM_BUFSIZ;
90 codestream_next_addr *= CODESTREAM_BUFSIZ;
91 codestream_cnt = 0;
92 codestream_fill (1);
93 while (codestream_tell() != place)
94 codestream_get ();
95 }
96
97 static void
98 codestream_read (buf, count)
99 unsigned char *buf;
100 int count;
101 {
102 unsigned char *p;
103 int i;
104 p = buf;
105 for (i = 0; i < count; i++)
106 *p++ = codestream_get ();
107 }
108
109 /* next instruction is a jump, move to target */
110
111 static void
112 i386_follow_jump ()
113 {
114 unsigned char buf[4];
115 long delta;
116
117 int data16;
118 CORE_ADDR pos;
119
120 pos = codestream_tell ();
121
122 data16 = 0;
123 if (codestream_peek () == 0x66)
124 {
125 codestream_get ();
126 data16 = 1;
127 }
128
129 switch (codestream_get ())
130 {
131 case 0xe9:
132 /* relative jump: if data16 == 0, disp32, else disp16 */
133 if (data16)
134 {
135 codestream_read (buf, 2);
136 delta = extract_signed_integer (buf, 2);
137
138 /* include size of jmp inst (including the 0x66 prefix). */
139 pos += delta + 4;
140 }
141 else
142 {
143 codestream_read (buf, 4);
144 delta = extract_signed_integer (buf, 4);
145
146 pos += delta + 5;
147 }
148 break;
149 case 0xeb:
150 /* relative jump, disp8 (ignore data16) */
151 codestream_read (buf, 1);
152 /* Sign-extend it. */
153 delta = extract_signed_integer (buf, 1);
154
155 pos += delta + 2;
156 break;
157 }
158 codestream_seek (pos);
159 }
160
161 /*
162 * find & return amound a local space allocated, and advance codestream to
163 * first register push (if any)
164 *
165 * if entry sequence doesn't make sense, return -1, and leave
166 * codestream pointer random
167 */
168
169 static long
170 i386_get_frame_setup (pc)
171 int pc;
172 {
173 unsigned char op;
174
175 codestream_seek (pc);
176
177 i386_follow_jump ();
178
179 op = codestream_get ();
180
181 if (op == 0x58) /* popl %eax */
182 {
183 /*
184 * this function must start with
185 *
186 * popl %eax 0x58
187 * xchgl %eax, (%esp) 0x87 0x04 0x24
188 * or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
189 *
190 * (the system 5 compiler puts out the second xchg
191 * inst, and the assembler doesn't try to optimize it,
192 * so the 'sib' form gets generated)
193 *
194 * this sequence is used to get the address of the return
195 * buffer for a function that returns a structure
196 */
197 int pos;
198 unsigned char buf[4];
199 static unsigned char proto1[3] = { 0x87,0x04,0x24 };
200 static unsigned char proto2[4] = { 0x87,0x44,0x24,0x00 };
201 pos = codestream_tell ();
202 codestream_read (buf, 4);
203 if (memcmp (buf, proto1, 3) == 0)
204 pos += 3;
205 else if (memcmp (buf, proto2, 4) == 0)
206 pos += 4;
207
208 codestream_seek (pos);
209 op = codestream_get (); /* update next opcode */
210 }
211
212 if (op == 0x55) /* pushl %ebp */
213 {
214 /* check for movl %esp, %ebp - can be written two ways */
215 switch (codestream_get ())
216 {
217 case 0x8b:
218 if (codestream_get () != 0xec)
219 return (-1);
220 break;
221 case 0x89:
222 if (codestream_get () != 0xe5)
223 return (-1);
224 break;
225 default:
226 return (-1);
227 }
228 /* check for stack adjustment
229 *
230 * subl $XXX, %esp
231 *
232 * note: you can't subtract a 16 bit immediate
233 * from a 32 bit reg, so we don't have to worry
234 * about a data16 prefix
235 */
236 op = codestream_peek ();
237 if (op == 0x83)
238 {
239 /* subl with 8 bit immed */
240 codestream_get ();
241 if (codestream_get () != 0xec)
242 /* Some instruction starting with 0x83 other than subl. */
243 {
244 codestream_seek (codestream_tell () - 2);
245 return 0;
246 }
247 /* subl with signed byte immediate
248 * (though it wouldn't make sense to be negative)
249 */
250 return (codestream_get());
251 }
252 else if (op == 0x81)
253 {
254 char buf[4];
255 /* Maybe it is subl with 32 bit immedediate. */
256 codestream_get();
257 if (codestream_get () != 0xec)
258 /* Some instruction starting with 0x81 other than subl. */
259 {
260 codestream_seek (codestream_tell () - 2);
261 return 0;
262 }
263 /* It is subl with 32 bit immediate. */
264 codestream_read ((unsigned char *)buf, 4);
265 return extract_signed_integer (buf, 4);
266 }
267 else
268 {
269 return (0);
270 }
271 }
272 else if (op == 0xc8)
273 {
274 char buf[2];
275 /* enter instruction: arg is 16 bit unsigned immed */
276 codestream_read ((unsigned char *)buf, 2);
277 codestream_get (); /* flush final byte of enter instruction */
278 return extract_unsigned_integer (buf, 2);
279 }
280 return (-1);
281 }
282
283 /* Return number of args passed to a frame.
284 Can return -1, meaning no way to tell. */
285
286 int
287 i386_frame_num_args (fi)
288 struct frame_info *fi;
289 {
290 #if 1
291 return -1;
292 #else
293 /* This loses because not only might the compiler not be popping the
294 args right after the function call, it might be popping args from both
295 this call and a previous one, and we would say there are more args
296 than there really are. */
297
298 int retpc;
299 unsigned char op;
300 struct frame_info *pfi;
301
302 /* on the 386, the instruction following the call could be:
303 popl %ecx - one arg
304 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
305 anything else - zero args */
306
307 int frameless;
308
309 FRAMELESS_FUNCTION_INVOCATION (fi, frameless);
310 if (frameless)
311 /* In the absence of a frame pointer, GDB doesn't get correct values
312 for nameless arguments. Return -1, so it doesn't print any
313 nameless arguments. */
314 return -1;
315
316 pfi = get_prev_frame_info (fi);
317 if (pfi == 0)
318 {
319 /* Note: this can happen if we are looking at the frame for
320 main, because FRAME_CHAIN_VALID won't let us go into
321 start. If we have debugging symbols, that's not really
322 a big deal; it just means it will only show as many arguments
323 to main as are declared. */
324 return -1;
325 }
326 else
327 {
328 retpc = pfi->pc;
329 op = read_memory_integer (retpc, 1);
330 if (op == 0x59)
331 /* pop %ecx */
332 return 1;
333 else if (op == 0x83)
334 {
335 op = read_memory_integer (retpc+1, 1);
336 if (op == 0xc4)
337 /* addl $<signed imm 8 bits>, %esp */
338 return (read_memory_integer (retpc+2,1)&0xff)/4;
339 else
340 return 0;
341 }
342 else if (op == 0x81)
343 { /* add with 32 bit immediate */
344 op = read_memory_integer (retpc+1, 1);
345 if (op == 0xc4)
346 /* addl $<imm 32>, %esp */
347 return read_memory_integer (retpc+2, 4) / 4;
348 else
349 return 0;
350 }
351 else
352 {
353 return 0;
354 }
355 }
356 #endif
357 }
358
359 /*
360 * parse the first few instructions of the function to see
361 * what registers were stored.
362 *
363 * We handle these cases:
364 *
365 * The startup sequence can be at the start of the function,
366 * or the function can start with a branch to startup code at the end.
367 *
368 * %ebp can be set up with either the 'enter' instruction, or
369 * 'pushl %ebp, movl %esp, %ebp' (enter is too slow to be useful,
370 * but was once used in the sys5 compiler)
371 *
372 * Local space is allocated just below the saved %ebp by either the
373 * 'enter' instruction, or by 'subl $<size>, %esp'. 'enter' has
374 * a 16 bit unsigned argument for space to allocate, and the
375 * 'addl' instruction could have either a signed byte, or
376 * 32 bit immediate.
377 *
378 * Next, the registers used by this function are pushed. In
379 * the sys5 compiler they will always be in the order: %edi, %esi, %ebx
380 * (and sometimes a harmless bug causes it to also save but not restore %eax);
381 * however, the code below is willing to see the pushes in any order,
382 * and will handle up to 8 of them.
383 *
384 * If the setup sequence is at the end of the function, then the
385 * next instruction will be a branch back to the start.
386 */
387
388 void
389 i386_frame_find_saved_regs (fip, fsrp)
390 struct frame_info *fip;
391 struct frame_saved_regs *fsrp;
392 {
393 long locals;
394 unsigned char op;
395 CORE_ADDR dummy_bottom;
396 CORE_ADDR adr;
397 int i;
398
399 memset (fsrp, 0, sizeof *fsrp);
400
401 /* if frame is the end of a dummy, compute where the
402 * beginning would be
403 */
404 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
405
406 /* check if the PC is in the stack, in a dummy frame */
407 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
408 {
409 /* all regs were saved by push_call_dummy () */
410 adr = fip->frame;
411 for (i = 0; i < NUM_REGS; i++)
412 {
413 adr -= REGISTER_RAW_SIZE (i);
414 fsrp->regs[i] = adr;
415 }
416 return;
417 }
418
419 locals = i386_get_frame_setup (get_pc_function_start (fip->pc));
420
421 if (locals >= 0)
422 {
423 adr = fip->frame - 4 - locals;
424 for (i = 0; i < 8; i++)
425 {
426 op = codestream_get ();
427 if (op < 0x50 || op > 0x57)
428 break;
429 #ifdef I386_REGNO_TO_SYMMETRY
430 /* Dynix uses different internal numbering. Ick. */
431 fsrp->regs[I386_REGNO_TO_SYMMETRY(op - 0x50)] = adr;
432 #else
433 fsrp->regs[op - 0x50] = adr;
434 #endif
435 adr -= 4;
436 }
437 }
438
439 fsrp->regs[PC_REGNUM] = fip->frame + 4;
440 fsrp->regs[FP_REGNUM] = fip->frame;
441 }
442
443 /* return pc of first real instruction */
444
445 int
446 i386_skip_prologue (pc)
447 int pc;
448 {
449 unsigned char op;
450 int i;
451 static unsigned char pic_pat[6] = { 0xe8, 0, 0, 0, 0, /* call 0x0 */
452 0x5b, /* popl %ebx */
453 };
454 CORE_ADDR pos;
455
456 if (i386_get_frame_setup (pc) < 0)
457 return (pc);
458
459 /* found valid frame setup - codestream now points to
460 * start of push instructions for saving registers
461 */
462
463 /* skip over register saves */
464 for (i = 0; i < 8; i++)
465 {
466 op = codestream_peek ();
467 /* break if not pushl inst */
468 if (op < 0x50 || op > 0x57)
469 break;
470 codestream_get ();
471 }
472
473 /* The native cc on SVR4 in -K PIC mode inserts the following code to get
474 the address of the global offset table (GOT) into register %ebx.
475 call 0x0
476 popl %ebx
477 movl %ebx,x(%ebp) (optional)
478 addl y,%ebx
479 This code is with the rest of the prologue (at the end of the
480 function), so we have to skip it to get to the first real
481 instruction at the start of the function. */
482
483 pos = codestream_tell ();
484 for (i = 0; i < 6; i++)
485 {
486 op = codestream_get ();
487 if (pic_pat [i] != op)
488 break;
489 }
490 if (i == 6)
491 {
492 unsigned char buf[4];
493 long delta = 6;
494
495 op = codestream_get ();
496 if (op == 0x89) /* movl %ebx, x(%ebp) */
497 {
498 op = codestream_get ();
499 if (op == 0x5d) /* one byte offset from %ebp */
500 {
501 delta += 3;
502 codestream_read (buf, 1);
503 }
504 else if (op == 0x9d) /* four byte offset from %ebp */
505 {
506 delta += 6;
507 codestream_read (buf, 4);
508 }
509 else /* unexpected instruction */
510 delta = -1;
511 op = codestream_get ();
512 }
513 /* addl y,%ebx */
514 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
515 {
516 pos += delta + 6;
517 }
518 }
519 codestream_seek (pos);
520
521 i386_follow_jump ();
522
523 return (codestream_tell ());
524 }
525
526 void
527 i386_push_dummy_frame ()
528 {
529 CORE_ADDR sp = read_register (SP_REGNUM);
530 int regnum;
531 char regbuf[MAX_REGISTER_RAW_SIZE];
532
533 sp = push_word (sp, read_register (PC_REGNUM));
534 sp = push_word (sp, read_register (FP_REGNUM));
535 write_register (FP_REGNUM, sp);
536 for (regnum = 0; regnum < NUM_REGS; regnum++)
537 {
538 read_register_gen (regnum, regbuf);
539 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
540 }
541 write_register (SP_REGNUM, sp);
542 }
543
544 void
545 i386_pop_frame ()
546 {
547 struct frame_info *frame = get_current_frame ();
548 CORE_ADDR fp;
549 int regnum;
550 struct frame_saved_regs fsr;
551 char regbuf[MAX_REGISTER_RAW_SIZE];
552
553 fp = FRAME_FP (frame);
554 get_frame_saved_regs (frame, &fsr);
555 for (regnum = 0; regnum < NUM_REGS; regnum++)
556 {
557 CORE_ADDR adr;
558 adr = fsr.regs[regnum];
559 if (adr)
560 {
561 read_memory (adr, regbuf, REGISTER_RAW_SIZE (regnum));
562 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
563 REGISTER_RAW_SIZE (regnum));
564 }
565 }
566 write_register (FP_REGNUM, read_memory_integer (fp, 4));
567 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
568 write_register (SP_REGNUM, fp + 8);
569 flush_cached_frames ();
570 }
571
572 #ifdef GET_LONGJMP_TARGET
573
574 /* Figure out where the longjmp will land. Slurp the args out of the stack.
575 We expect the first arg to be a pointer to the jmp_buf structure from which
576 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
577 This routine returns true on success. */
578
579 int
580 get_longjmp_target(pc)
581 CORE_ADDR *pc;
582 {
583 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
584 CORE_ADDR sp, jb_addr;
585
586 sp = read_register (SP_REGNUM);
587
588 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
589 buf,
590 TARGET_PTR_BIT / TARGET_CHAR_BIT))
591 return 0;
592
593 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
594
595 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
596 TARGET_PTR_BIT / TARGET_CHAR_BIT))
597 return 0;
598
599 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
600
601 return 1;
602 }
603
604 #endif /* GET_LONGJMP_TARGET */
605
606 #ifdef I386_AIX_TARGET
607 /* On AIX, floating point values are returned in floating point registers. */
608
609 void
610 i386_extract_return_value(type, regbuf, valbuf)
611 struct type *type;
612 char regbuf[REGISTER_BYTES];
613 char *valbuf;
614 {
615 if (TYPE_CODE_FLT == TYPE_CODE(type))
616 {
617 double d;
618 /* 387 %st(0), gcc uses this */
619 floatformat_to_double (&floatformat_i387_ext,
620 &regbuf[REGISTER_BYTE(FP0_REGNUM)],
621 &d);
622 store_floating (valbuf, TYPE_LENGTH (type), d);
623 }
624 else
625 {
626 memcpy (valbuf, regbuf, TYPE_LENGTH (type));
627 }
628 }
629 #endif /* I386_AIX_TARGET */
630
631 #ifdef I386V4_SIGTRAMP_SAVED_PC
632 /* Get saved user PC for sigtramp from the pushed ucontext on the stack
633 for all three variants of SVR4 sigtramps. */
634
635 CORE_ADDR
636 i386v4_sigtramp_saved_pc (frame)
637 struct frame_info *frame;
638 {
639 CORE_ADDR saved_pc_offset = 4;
640 char *name = NULL;
641
642 find_pc_partial_function (frame->pc, &name, NULL, NULL);
643 if (name)
644 {
645 if (STREQ (name, "_sigreturn"))
646 saved_pc_offset = 132 + 14 * 4;
647 else if (STREQ (name, "_sigacthandler"))
648 saved_pc_offset = 80 + 14 * 4;
649 else if (STREQ (name, "sigvechandler"))
650 saved_pc_offset = 120 + 14 * 4;
651 }
652
653 if (frame->next)
654 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
655 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
656 }
657 #endif /* I386V4_SIGTRAMP_SAVED_PC */
658
659 void
660 _initialize_i386_tdep ()
661 {
662 tm_print_insn = print_insn_i386;
663 }
This page took 0.071826 seconds and 4 git commands to generate.