2006-03-16 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "command.h"
27 #include "dummy-frame.h"
28 #include "dwarf2-frame.h"
29 #include "doublest.h"
30 #include "floatformat.h"
31 #include "frame.h"
32 #include "frame-base.h"
33 #include "frame-unwind.h"
34 #include "inferior.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "objfiles.h"
38 #include "osabi.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "regset.h"
42 #include "symfile.h"
43 #include "symtab.h"
44 #include "target.h"
45 #include "value.h"
46 #include "dis-asm.h"
47
48 #include "gdb_assert.h"
49 #include "gdb_string.h"
50
51 #include "i386-tdep.h"
52 #include "i387-tdep.h"
53
54 /* Register names. */
55
56 static char *i386_register_names[] =
57 {
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69 };
70
71 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
72
73 /* Register names for MMX pseudo-registers. */
74
75 static char *i386_mmx_names[] =
76 {
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79 };
80
81 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
82
83 static int
84 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
85 {
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
92 }
93
94 /* SSE register? */
95
96 static int
97 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
98 {
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101 #define I387_ST0_REGNUM tdep->st0_regnum
102 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109 #undef I387_ST0_REGNUM
110 #undef I387_NUM_XMM_REGS
111 }
112
113 static int
114 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
115 {
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118 #define I387_ST0_REGNUM tdep->st0_regnum
119 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126 #undef I387_ST0_REGNUM
127 #undef I387_NUM_XMM_REGS
128 }
129
130 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134 /* FP register? */
135
136 int
137 i386_fp_regnum_p (int regnum)
138 {
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
143 }
144
145 int
146 i386_fpc_regnum_p (int regnum)
147 {
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
152 }
153
154 /* Return the name of register REGNUM. */
155
156 const char *
157 i386_register_name (int regnum)
158 {
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
161
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
164
165 return NULL;
166 }
167
168 /* Convert a dbx register number REG to the appropriate register
169 number used by GDB. */
170
171 static int
172 i386_dbx_reg_to_regnum (int reg)
173 {
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
177 if (reg >= 0 && reg <= 7)
178 {
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
190 return reg - 12 + I387_ST0_REGNUM;
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
195 return reg - 21 + I387_XMM0_REGNUM;
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
200 return reg - 29 + I387_MM0_REGNUM;
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205 }
206
207 /* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
209
210 static int
211 i386_svr4_reg_to_regnum (int reg)
212 {
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
220 /* General-purpose registers. */
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
226 return reg - 11 + I387_ST0_REGNUM;
227 }
228 else if (reg >= 21 && reg <= 36)
229 {
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
232 }
233
234 switch (reg)
235 {
236 case 37: return I387_FCTRL_REGNUM;
237 case 38: return I387_FSTAT_REGNUM;
238 case 39: return I387_MXCSR_REGNUM;
239 case 40: return I386_ES_REGNUM;
240 case 41: return I386_CS_REGNUM;
241 case 42: return I386_SS_REGNUM;
242 case 43: return I386_DS_REGNUM;
243 case 44: return I386_FS_REGNUM;
244 case 45: return I386_GS_REGNUM;
245 }
246
247 /* This will hopefully provoke a warning. */
248 return NUM_REGS + NUM_PSEUDO_REGS;
249 }
250
251 #undef I387_ST0_REGNUM
252 #undef I387_MM0_REGNUM
253 #undef I387_NUM_XMM_REGS
254 \f
255
256 /* This is the variable that is set with "set disassembly-flavor", and
257 its legitimate values. */
258 static const char att_flavor[] = "att";
259 static const char intel_flavor[] = "intel";
260 static const char *valid_flavors[] =
261 {
262 att_flavor,
263 intel_flavor,
264 NULL
265 };
266 static const char *disassembly_flavor = att_flavor;
267 \f
268
269 /* Use the program counter to determine the contents and size of a
270 breakpoint instruction. Return a pointer to a string of bytes that
271 encode a breakpoint instruction, store the length of the string in
272 *LEN and optionally adjust *PC to point to the correct memory
273 location for inserting the breakpoint.
274
275 On the i386 we have a single breakpoint that fits in a single byte
276 and can be inserted anywhere.
277
278 This function is 64-bit safe. */
279
280 static const gdb_byte *
281 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
282 {
283 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
284
285 *len = sizeof (break_insn);
286 return break_insn;
287 }
288 \f
289 #ifdef I386_REGNO_TO_SYMMETRY
290 #error "The Sequent Symmetry is no longer supported."
291 #endif
292
293 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
294 and %esp "belong" to the calling function. Therefore these
295 registers should be saved if they're going to be modified. */
296
297 /* The maximum number of saved registers. This should include all
298 registers mentioned above, and %eip. */
299 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
300
301 struct i386_frame_cache
302 {
303 /* Base address. */
304 CORE_ADDR base;
305 LONGEST sp_offset;
306 CORE_ADDR pc;
307
308 /* Saved registers. */
309 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
310 CORE_ADDR saved_sp;
311 int stack_align;
312 int pc_in_eax;
313
314 /* Stack space reserved for local variables. */
315 long locals;
316 };
317
318 /* Allocate and initialize a frame cache. */
319
320 static struct i386_frame_cache *
321 i386_alloc_frame_cache (void)
322 {
323 struct i386_frame_cache *cache;
324 int i;
325
326 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
327
328 /* Base address. */
329 cache->base = 0;
330 cache->sp_offset = -4;
331 cache->pc = 0;
332
333 /* Saved registers. We initialize these to -1 since zero is a valid
334 offset (that's where %ebp is supposed to be stored). */
335 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
336 cache->saved_regs[i] = -1;
337 cache->saved_sp = 0;
338 cache->stack_align = 0;
339 cache->pc_in_eax = 0;
340
341 /* Frameless until proven otherwise. */
342 cache->locals = -1;
343
344 return cache;
345 }
346
347 /* If the instruction at PC is a jump, return the address of its
348 target. Otherwise, return PC. */
349
350 static CORE_ADDR
351 i386_follow_jump (CORE_ADDR pc)
352 {
353 gdb_byte op;
354 long delta = 0;
355 int data16 = 0;
356
357 op = read_memory_unsigned_integer (pc, 1);
358 if (op == 0x66)
359 {
360 data16 = 1;
361 op = read_memory_unsigned_integer (pc + 1, 1);
362 }
363
364 switch (op)
365 {
366 case 0xe9:
367 /* Relative jump: if data16 == 0, disp32, else disp16. */
368 if (data16)
369 {
370 delta = read_memory_integer (pc + 2, 2);
371
372 /* Include the size of the jmp instruction (including the
373 0x66 prefix). */
374 delta += 4;
375 }
376 else
377 {
378 delta = read_memory_integer (pc + 1, 4);
379
380 /* Include the size of the jmp instruction. */
381 delta += 5;
382 }
383 break;
384 case 0xeb:
385 /* Relative jump, disp8 (ignore data16). */
386 delta = read_memory_integer (pc + data16 + 1, 1);
387
388 delta += data16 + 2;
389 break;
390 }
391
392 return pc + delta;
393 }
394
395 /* Check whether PC points at a prologue for a function returning a
396 structure or union. If so, it updates CACHE and returns the
397 address of the first instruction after the code sequence that
398 removes the "hidden" argument from the stack or CURRENT_PC,
399 whichever is smaller. Otherwise, return PC. */
400
401 static CORE_ADDR
402 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
403 struct i386_frame_cache *cache)
404 {
405 /* Functions that return a structure or union start with:
406
407 popl %eax 0x58
408 xchgl %eax, (%esp) 0x87 0x04 0x24
409 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
410
411 (the System V compiler puts out the second `xchg' instruction,
412 and the assembler doesn't try to optimize it, so the 'sib' form
413 gets generated). This sequence is used to get the address of the
414 return buffer for a function that returns a structure. */
415 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
416 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
417 gdb_byte buf[4];
418 gdb_byte op;
419
420 if (current_pc <= pc)
421 return pc;
422
423 op = read_memory_unsigned_integer (pc, 1);
424
425 if (op != 0x58) /* popl %eax */
426 return pc;
427
428 read_memory (pc + 1, buf, 4);
429 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
430 return pc;
431
432 if (current_pc == pc)
433 {
434 cache->sp_offset += 4;
435 return current_pc;
436 }
437
438 if (current_pc == pc + 1)
439 {
440 cache->pc_in_eax = 1;
441 return current_pc;
442 }
443
444 if (buf[1] == proto1[1])
445 return pc + 4;
446 else
447 return pc + 5;
448 }
449
450 static CORE_ADDR
451 i386_skip_probe (CORE_ADDR pc)
452 {
453 /* A function may start with
454
455 pushl constant
456 call _probe
457 addl $4, %esp
458
459 followed by
460
461 pushl %ebp
462
463 etc. */
464 gdb_byte buf[8];
465 gdb_byte op;
466
467 op = read_memory_unsigned_integer (pc, 1);
468
469 if (op == 0x68 || op == 0x6a)
470 {
471 int delta;
472
473 /* Skip past the `pushl' instruction; it has either a one-byte or a
474 four-byte operand, depending on the opcode. */
475 if (op == 0x68)
476 delta = 5;
477 else
478 delta = 2;
479
480 /* Read the following 8 bytes, which should be `call _probe' (6
481 bytes) followed by `addl $4,%esp' (2 bytes). */
482 read_memory (pc + delta, buf, sizeof (buf));
483 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
484 pc += delta + sizeof (buf);
485 }
486
487 return pc;
488 }
489
490 /* GCC 4.1 and later, can put code in the prologue to realign the
491 stack pointer. Check whether PC points to such code, and update
492 CACHE accordingly. Return the first instruction after the code
493 sequence or CURRENT_PC, whichever is smaller. If we don't
494 recognize the code, return PC. */
495
496 static CORE_ADDR
497 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
498 struct i386_frame_cache *cache)
499 {
500 static const gdb_byte insns[10] = {
501 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
502 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
503 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
504 };
505 gdb_byte buf[10];
506
507 if (target_read_memory (pc, buf, sizeof buf)
508 || memcmp (buf, insns, sizeof buf) != 0)
509 return pc;
510
511 if (current_pc > pc + 4)
512 cache->stack_align = 1;
513
514 return min (pc + 10, current_pc);
515 }
516
517 /* Maximum instruction length we need to handle. */
518 #define I386_MAX_INSN_LEN 6
519
520 /* Instruction description. */
521 struct i386_insn
522 {
523 size_t len;
524 gdb_byte insn[I386_MAX_INSN_LEN];
525 gdb_byte mask[I386_MAX_INSN_LEN];
526 };
527
528 /* Search for the instruction at PC in the list SKIP_INSNS. Return
529 the first instruction description that matches. Otherwise, return
530 NULL. */
531
532 static struct i386_insn *
533 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
534 {
535 struct i386_insn *insn;
536 gdb_byte op;
537
538 op = read_memory_unsigned_integer (pc, 1);
539
540 for (insn = skip_insns; insn->len > 0; insn++)
541 {
542 if ((op & insn->mask[0]) == insn->insn[0])
543 {
544 gdb_byte buf[I386_MAX_INSN_LEN - 1];
545 int insn_matched = 1;
546 size_t i;
547
548 gdb_assert (insn->len > 1);
549 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
550
551 read_memory (pc + 1, buf, insn->len - 1);
552 for (i = 1; i < insn->len; i++)
553 {
554 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
555 insn_matched = 0;
556 }
557
558 if (insn_matched)
559 return insn;
560 }
561 }
562
563 return NULL;
564 }
565
566 /* Some special instructions that might be migrated by GCC into the
567 part of the prologue that sets up the new stack frame. Because the
568 stack frame hasn't been setup yet, no registers have been saved
569 yet, and only the scratch registers %eax, %ecx and %edx can be
570 touched. */
571
572 struct i386_insn i386_frame_setup_skip_insns[] =
573 {
574 /* Check for `movb imm8, r' and `movl imm32, r'.
575
576 ??? Should we handle 16-bit operand-sizes here? */
577
578 /* `movb imm8, %al' and `movb imm8, %ah' */
579 /* `movb imm8, %cl' and `movb imm8, %ch' */
580 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
581 /* `movb imm8, %dl' and `movb imm8, %dh' */
582 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
583 /* `movl imm32, %eax' and `movl imm32, %ecx' */
584 { 5, { 0xb8 }, { 0xfe } },
585 /* `movl imm32, %edx' */
586 { 5, { 0xba }, { 0xff } },
587
588 /* Check for `mov imm32, r32'. Note that there is an alternative
589 encoding for `mov m32, %eax'.
590
591 ??? Should we handle SIB adressing here?
592 ??? Should we handle 16-bit operand-sizes here? */
593
594 /* `movl m32, %eax' */
595 { 5, { 0xa1 }, { 0xff } },
596 /* `movl m32, %eax' and `mov; m32, %ecx' */
597 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
598 /* `movl m32, %edx' */
599 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
600
601 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
602 Because of the symmetry, there are actually two ways to encode
603 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
604 opcode bytes 0x31 and 0x33 for `xorl'. */
605
606 /* `subl %eax, %eax' */
607 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
608 /* `subl %ecx, %ecx' */
609 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
610 /* `subl %edx, %edx' */
611 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
612 /* `xorl %eax, %eax' */
613 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
614 /* `xorl %ecx, %ecx' */
615 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
616 /* `xorl %edx, %edx' */
617 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
618 { 0 }
619 };
620
621 /* Check whether PC points at a code that sets up a new stack frame.
622 If so, it updates CACHE and returns the address of the first
623 instruction after the sequence that sets up the frame or LIMIT,
624 whichever is smaller. If we don't recognize the code, return PC. */
625
626 static CORE_ADDR
627 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
628 struct i386_frame_cache *cache)
629 {
630 struct i386_insn *insn;
631 gdb_byte op;
632 int skip = 0;
633
634 if (limit <= pc)
635 return limit;
636
637 op = read_memory_unsigned_integer (pc, 1);
638
639 if (op == 0x55) /* pushl %ebp */
640 {
641 /* Take into account that we've executed the `pushl %ebp' that
642 starts this instruction sequence. */
643 cache->saved_regs[I386_EBP_REGNUM] = 0;
644 cache->sp_offset += 4;
645 pc++;
646
647 /* If that's all, return now. */
648 if (limit <= pc)
649 return limit;
650
651 /* Check for some special instructions that might be migrated by
652 GCC into the prologue and skip them. At this point in the
653 prologue, code should only touch the scratch registers %eax,
654 %ecx and %edx, so while the number of posibilities is sheer,
655 it is limited.
656
657 Make sure we only skip these instructions if we later see the
658 `movl %esp, %ebp' that actually sets up the frame. */
659 while (pc + skip < limit)
660 {
661 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
662 if (insn == NULL)
663 break;
664
665 skip += insn->len;
666 }
667
668 /* If that's all, return now. */
669 if (limit <= pc + skip)
670 return limit;
671
672 op = read_memory_unsigned_integer (pc + skip, 1);
673
674 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
675 switch (op)
676 {
677 case 0x8b:
678 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
679 return pc;
680 break;
681 case 0x89:
682 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
683 return pc;
684 break;
685 default:
686 return pc;
687 }
688
689 /* OK, we actually have a frame. We just don't know how large
690 it is yet. Set its size to zero. We'll adjust it if
691 necessary. We also now commit to skipping the special
692 instructions mentioned before. */
693 cache->locals = 0;
694 pc += (skip + 2);
695
696 /* If that's all, return now. */
697 if (limit <= pc)
698 return limit;
699
700 /* Check for stack adjustment
701
702 subl $XXX, %esp
703
704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
705 reg, so we don't have to worry about a data16 prefix. */
706 op = read_memory_unsigned_integer (pc, 1);
707 if (op == 0x83)
708 {
709 /* `subl' with 8-bit immediate. */
710 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
711 /* Some instruction starting with 0x83 other than `subl'. */
712 return pc;
713
714 /* `subl' with signed 8-bit immediate (though it wouldn't
715 make sense to be negative). */
716 cache->locals = read_memory_integer (pc + 2, 1);
717 return pc + 3;
718 }
719 else if (op == 0x81)
720 {
721 /* Maybe it is `subl' with a 32-bit immediate. */
722 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
723 /* Some instruction starting with 0x81 other than `subl'. */
724 return pc;
725
726 /* It is `subl' with a 32-bit immediate. */
727 cache->locals = read_memory_integer (pc + 2, 4);
728 return pc + 6;
729 }
730 else
731 {
732 /* Some instruction other than `subl'. */
733 return pc;
734 }
735 }
736 else if (op == 0xc8) /* enter */
737 {
738 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
739 return pc + 4;
740 }
741
742 return pc;
743 }
744
745 /* Check whether PC points at code that saves registers on the stack.
746 If so, it updates CACHE and returns the address of the first
747 instruction after the register saves or CURRENT_PC, whichever is
748 smaller. Otherwise, return PC. */
749
750 static CORE_ADDR
751 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
752 struct i386_frame_cache *cache)
753 {
754 CORE_ADDR offset = 0;
755 gdb_byte op;
756 int i;
757
758 if (cache->locals > 0)
759 offset -= cache->locals;
760 for (i = 0; i < 8 && pc < current_pc; i++)
761 {
762 op = read_memory_unsigned_integer (pc, 1);
763 if (op < 0x50 || op > 0x57)
764 break;
765
766 offset -= 4;
767 cache->saved_regs[op - 0x50] = offset;
768 cache->sp_offset += 4;
769 pc++;
770 }
771
772 return pc;
773 }
774
775 /* Do a full analysis of the prologue at PC and update CACHE
776 accordingly. Bail out early if CURRENT_PC is reached. Return the
777 address where the analysis stopped.
778
779 We handle these cases:
780
781 The startup sequence can be at the start of the function, or the
782 function can start with a branch to startup code at the end.
783
784 %ebp can be set up with either the 'enter' instruction, or "pushl
785 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
786 once used in the System V compiler).
787
788 Local space is allocated just below the saved %ebp by either the
789 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
790 16-bit unsigned argument for space to allocate, and the 'addl'
791 instruction could have either a signed byte, or 32-bit immediate.
792
793 Next, the registers used by this function are pushed. With the
794 System V compiler they will always be in the order: %edi, %esi,
795 %ebx (and sometimes a harmless bug causes it to also save but not
796 restore %eax); however, the code below is willing to see the pushes
797 in any order, and will handle up to 8 of them.
798
799 If the setup sequence is at the end of the function, then the next
800 instruction will be a branch back to the start. */
801
802 static CORE_ADDR
803 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
804 struct i386_frame_cache *cache)
805 {
806 pc = i386_follow_jump (pc);
807 pc = i386_analyze_struct_return (pc, current_pc, cache);
808 pc = i386_skip_probe (pc);
809 pc = i386_analyze_stack_align (pc, current_pc, cache);
810 pc = i386_analyze_frame_setup (pc, current_pc, cache);
811 return i386_analyze_register_saves (pc, current_pc, cache);
812 }
813
814 /* Return PC of first real instruction. */
815
816 static CORE_ADDR
817 i386_skip_prologue (CORE_ADDR start_pc)
818 {
819 static gdb_byte pic_pat[6] =
820 {
821 0xe8, 0, 0, 0, 0, /* call 0x0 */
822 0x5b, /* popl %ebx */
823 };
824 struct i386_frame_cache cache;
825 CORE_ADDR pc;
826 gdb_byte op;
827 int i;
828
829 cache.locals = -1;
830 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
831 if (cache.locals < 0)
832 return start_pc;
833
834 /* Found valid frame setup. */
835
836 /* The native cc on SVR4 in -K PIC mode inserts the following code
837 to get the address of the global offset table (GOT) into register
838 %ebx:
839
840 call 0x0
841 popl %ebx
842 movl %ebx,x(%ebp) (optional)
843 addl y,%ebx
844
845 This code is with the rest of the prologue (at the end of the
846 function), so we have to skip it to get to the first real
847 instruction at the start of the function. */
848
849 for (i = 0; i < 6; i++)
850 {
851 op = read_memory_unsigned_integer (pc + i, 1);
852 if (pic_pat[i] != op)
853 break;
854 }
855 if (i == 6)
856 {
857 int delta = 6;
858
859 op = read_memory_unsigned_integer (pc + delta, 1);
860
861 if (op == 0x89) /* movl %ebx, x(%ebp) */
862 {
863 op = read_memory_unsigned_integer (pc + delta + 1, 1);
864
865 if (op == 0x5d) /* One byte offset from %ebp. */
866 delta += 3;
867 else if (op == 0x9d) /* Four byte offset from %ebp. */
868 delta += 6;
869 else /* Unexpected instruction. */
870 delta = 0;
871
872 op = read_memory_unsigned_integer (pc + delta, 1);
873 }
874
875 /* addl y,%ebx */
876 if (delta > 0 && op == 0x81
877 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
878 {
879 pc += delta + 6;
880 }
881 }
882
883 /* If the function starts with a branch (to startup code at the end)
884 the last instruction should bring us back to the first
885 instruction of the real code. */
886 if (i386_follow_jump (start_pc) != start_pc)
887 pc = i386_follow_jump (pc);
888
889 return pc;
890 }
891
892 /* This function is 64-bit safe. */
893
894 static CORE_ADDR
895 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
896 {
897 gdb_byte buf[8];
898
899 frame_unwind_register (next_frame, PC_REGNUM, buf);
900 return extract_typed_address (buf, builtin_type_void_func_ptr);
901 }
902 \f
903
904 /* Normal frames. */
905
906 static struct i386_frame_cache *
907 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
908 {
909 struct i386_frame_cache *cache;
910 gdb_byte buf[4];
911 int i;
912
913 if (*this_cache)
914 return *this_cache;
915
916 cache = i386_alloc_frame_cache ();
917 *this_cache = cache;
918
919 /* In principle, for normal frames, %ebp holds the frame pointer,
920 which holds the base address for the current stack frame.
921 However, for functions that don't need it, the frame pointer is
922 optional. For these "frameless" functions the frame pointer is
923 actually the frame pointer of the calling frame. Signal
924 trampolines are just a special case of a "frameless" function.
925 They (usually) share their frame pointer with the frame that was
926 in progress when the signal occurred. */
927
928 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
929 cache->base = extract_unsigned_integer (buf, 4);
930 if (cache->base == 0)
931 return cache;
932
933 /* For normal frames, %eip is stored at 4(%ebp). */
934 cache->saved_regs[I386_EIP_REGNUM] = 4;
935
936 cache->pc = frame_func_unwind (next_frame);
937 if (cache->pc != 0)
938 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
939
940 if (cache->stack_align)
941 {
942 /* Saved stack pointer has been saved in %ecx. */
943 frame_unwind_register (next_frame, I386_ECX_REGNUM, buf);
944 cache->saved_sp = extract_unsigned_integer(buf, 4);
945 }
946
947 if (cache->locals < 0)
948 {
949 /* We didn't find a valid frame, which means that CACHE->base
950 currently holds the frame pointer for our calling frame. If
951 we're at the start of a function, or somewhere half-way its
952 prologue, the function's frame probably hasn't been fully
953 setup yet. Try to reconstruct the base address for the stack
954 frame by looking at the stack pointer. For truly "frameless"
955 functions this might work too. */
956
957 if (cache->stack_align)
958 {
959 /* We're halfway aligning the stack. */
960 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
961 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
962
963 /* This will be added back below. */
964 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
965 }
966 else
967 {
968 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
969 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
970 }
971 }
972
973 /* Now that we have the base address for the stack frame we can
974 calculate the value of %esp in the calling frame. */
975 if (cache->saved_sp == 0)
976 cache->saved_sp = cache->base + 8;
977
978 /* Adjust all the saved registers such that they contain addresses
979 instead of offsets. */
980 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
981 if (cache->saved_regs[i] != -1)
982 cache->saved_regs[i] += cache->base;
983
984 return cache;
985 }
986
987 static void
988 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
989 struct frame_id *this_id)
990 {
991 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
992
993 /* This marks the outermost frame. */
994 if (cache->base == 0)
995 return;
996
997 /* See the end of i386_push_dummy_call. */
998 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
999 }
1000
1001 static void
1002 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1003 int regnum, int *optimizedp,
1004 enum lval_type *lvalp, CORE_ADDR *addrp,
1005 int *realnump, gdb_byte *valuep)
1006 {
1007 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1008
1009 gdb_assert (regnum >= 0);
1010
1011 /* The System V ABI says that:
1012
1013 "The flags register contains the system flags, such as the
1014 direction flag and the carry flag. The direction flag must be
1015 set to the forward (that is, zero) direction before entry and
1016 upon exit from a function. Other user flags have no specified
1017 role in the standard calling sequence and are not preserved."
1018
1019 To guarantee the "upon exit" part of that statement we fake a
1020 saved flags register that has its direction flag cleared.
1021
1022 Note that GCC doesn't seem to rely on the fact that the direction
1023 flag is cleared after a function return; it always explicitly
1024 clears the flag before operations where it matters.
1025
1026 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1027 right thing to do. The way we fake the flags register here makes
1028 it impossible to change it. */
1029
1030 if (regnum == I386_EFLAGS_REGNUM)
1031 {
1032 *optimizedp = 0;
1033 *lvalp = not_lval;
1034 *addrp = 0;
1035 *realnump = -1;
1036 if (valuep)
1037 {
1038 ULONGEST val;
1039
1040 /* Clear the direction flag. */
1041 val = frame_unwind_register_unsigned (next_frame,
1042 I386_EFLAGS_REGNUM);
1043 val &= ~(1 << 10);
1044 store_unsigned_integer (valuep, 4, val);
1045 }
1046
1047 return;
1048 }
1049
1050 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1051 {
1052 *optimizedp = 0;
1053 *lvalp = lval_register;
1054 *addrp = 0;
1055 *realnump = I386_EAX_REGNUM;
1056 if (valuep)
1057 frame_unwind_register (next_frame, (*realnump), valuep);
1058 return;
1059 }
1060
1061 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1062 {
1063 *optimizedp = 0;
1064 *lvalp = not_lval;
1065 *addrp = 0;
1066 *realnump = -1;
1067 if (valuep)
1068 {
1069 /* Store the value. */
1070 store_unsigned_integer (valuep, 4, cache->saved_sp);
1071 }
1072 return;
1073 }
1074
1075 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1076 {
1077 *optimizedp = 0;
1078 *lvalp = lval_memory;
1079 *addrp = cache->saved_regs[regnum];
1080 *realnump = -1;
1081 if (valuep)
1082 {
1083 /* Read the value in from memory. */
1084 read_memory (*addrp, valuep,
1085 register_size (current_gdbarch, regnum));
1086 }
1087 return;
1088 }
1089
1090 *optimizedp = 0;
1091 *lvalp = lval_register;
1092 *addrp = 0;
1093 *realnump = regnum;
1094 if (valuep)
1095 frame_unwind_register (next_frame, (*realnump), valuep);
1096 }
1097
1098 static const struct frame_unwind i386_frame_unwind =
1099 {
1100 NORMAL_FRAME,
1101 i386_frame_this_id,
1102 i386_frame_prev_register
1103 };
1104
1105 static const struct frame_unwind *
1106 i386_frame_sniffer (struct frame_info *next_frame)
1107 {
1108 return &i386_frame_unwind;
1109 }
1110 \f
1111
1112 /* Signal trampolines. */
1113
1114 static struct i386_frame_cache *
1115 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1116 {
1117 struct i386_frame_cache *cache;
1118 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1119 CORE_ADDR addr;
1120 gdb_byte buf[4];
1121
1122 if (*this_cache)
1123 return *this_cache;
1124
1125 cache = i386_alloc_frame_cache ();
1126
1127 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1128 cache->base = extract_unsigned_integer (buf, 4) - 4;
1129
1130 addr = tdep->sigcontext_addr (next_frame);
1131 if (tdep->sc_reg_offset)
1132 {
1133 int i;
1134
1135 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1136
1137 for (i = 0; i < tdep->sc_num_regs; i++)
1138 if (tdep->sc_reg_offset[i] != -1)
1139 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1140 }
1141 else
1142 {
1143 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1144 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1145 }
1146
1147 *this_cache = cache;
1148 return cache;
1149 }
1150
1151 static void
1152 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1153 struct frame_id *this_id)
1154 {
1155 struct i386_frame_cache *cache =
1156 i386_sigtramp_frame_cache (next_frame, this_cache);
1157
1158 /* See the end of i386_push_dummy_call. */
1159 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1160 }
1161
1162 static void
1163 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1164 void **this_cache,
1165 int regnum, int *optimizedp,
1166 enum lval_type *lvalp, CORE_ADDR *addrp,
1167 int *realnump, gdb_byte *valuep)
1168 {
1169 /* Make sure we've initialized the cache. */
1170 i386_sigtramp_frame_cache (next_frame, this_cache);
1171
1172 i386_frame_prev_register (next_frame, this_cache, regnum,
1173 optimizedp, lvalp, addrp, realnump, valuep);
1174 }
1175
1176 static const struct frame_unwind i386_sigtramp_frame_unwind =
1177 {
1178 SIGTRAMP_FRAME,
1179 i386_sigtramp_frame_this_id,
1180 i386_sigtramp_frame_prev_register
1181 };
1182
1183 static const struct frame_unwind *
1184 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1185 {
1186 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1187
1188 /* We shouldn't even bother if we don't have a sigcontext_addr
1189 handler. */
1190 if (tdep->sigcontext_addr == NULL)
1191 return NULL;
1192
1193 if (tdep->sigtramp_p != NULL)
1194 {
1195 if (tdep->sigtramp_p (next_frame))
1196 return &i386_sigtramp_frame_unwind;
1197 }
1198
1199 if (tdep->sigtramp_start != 0)
1200 {
1201 CORE_ADDR pc = frame_pc_unwind (next_frame);
1202
1203 gdb_assert (tdep->sigtramp_end != 0);
1204 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1205 return &i386_sigtramp_frame_unwind;
1206 }
1207
1208 return NULL;
1209 }
1210 \f
1211
1212 static CORE_ADDR
1213 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1214 {
1215 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1216
1217 return cache->base;
1218 }
1219
1220 static const struct frame_base i386_frame_base =
1221 {
1222 &i386_frame_unwind,
1223 i386_frame_base_address,
1224 i386_frame_base_address,
1225 i386_frame_base_address
1226 };
1227
1228 static struct frame_id
1229 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1230 {
1231 gdb_byte buf[4];
1232 CORE_ADDR fp;
1233
1234 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1235 fp = extract_unsigned_integer (buf, 4);
1236
1237 /* See the end of i386_push_dummy_call. */
1238 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1239 }
1240 \f
1241
1242 /* Figure out where the longjmp will land. Slurp the args out of the
1243 stack. We expect the first arg to be a pointer to the jmp_buf
1244 structure from which we extract the address that we will land at.
1245 This address is copied into PC. This routine returns non-zero on
1246 success.
1247
1248 This function is 64-bit safe. */
1249
1250 static int
1251 i386_get_longjmp_target (CORE_ADDR *pc)
1252 {
1253 gdb_byte buf[8];
1254 CORE_ADDR sp, jb_addr;
1255 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
1256 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1257
1258 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1259 longjmp will land. */
1260 if (jb_pc_offset == -1)
1261 return 0;
1262
1263 /* Don't use I386_ESP_REGNUM here, since this function is also used
1264 for AMD64. */
1265 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1266 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1267 if (target_read_memory (sp + len, buf, len))
1268 return 0;
1269
1270 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1271 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1272 return 0;
1273
1274 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1275 return 1;
1276 }
1277 \f
1278
1279 static CORE_ADDR
1280 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1281 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1282 struct value **args, CORE_ADDR sp, int struct_return,
1283 CORE_ADDR struct_addr)
1284 {
1285 gdb_byte buf[4];
1286 int i;
1287
1288 /* Push arguments in reverse order. */
1289 for (i = nargs - 1; i >= 0; i--)
1290 {
1291 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1292
1293 /* The System V ABI says that:
1294
1295 "An argument's size is increased, if necessary, to make it a
1296 multiple of [32-bit] words. This may require tail padding,
1297 depending on the size of the argument."
1298
1299 This makes sure the stack stays word-aligned. */
1300 sp -= (len + 3) & ~3;
1301 write_memory (sp, value_contents_all (args[i]), len);
1302 }
1303
1304 /* Push value address. */
1305 if (struct_return)
1306 {
1307 sp -= 4;
1308 store_unsigned_integer (buf, 4, struct_addr);
1309 write_memory (sp, buf, 4);
1310 }
1311
1312 /* Store return address. */
1313 sp -= 4;
1314 store_unsigned_integer (buf, 4, bp_addr);
1315 write_memory (sp, buf, 4);
1316
1317 /* Finally, update the stack pointer... */
1318 store_unsigned_integer (buf, 4, sp);
1319 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1320
1321 /* ...and fake a frame pointer. */
1322 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1323
1324 /* MarkK wrote: This "+ 8" is all over the place:
1325 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1326 i386_unwind_dummy_id). It's there, since all frame unwinders for
1327 a given target have to agree (within a certain margin) on the
1328 definition of the stack address of a frame. Otherwise
1329 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1330 stack address *before* the function call as a frame's CFA. On
1331 the i386, when %ebp is used as a frame pointer, the offset
1332 between the contents %ebp and the CFA as defined by GCC. */
1333 return sp + 8;
1334 }
1335
1336 /* These registers are used for returning integers (and on some
1337 targets also for returning `struct' and `union' values when their
1338 size and alignment match an integer type). */
1339 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1340 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1341
1342 /* Read, for architecture GDBARCH, a function return value of TYPE
1343 from REGCACHE, and copy that into VALBUF. */
1344
1345 static void
1346 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1347 struct regcache *regcache, gdb_byte *valbuf)
1348 {
1349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1350 int len = TYPE_LENGTH (type);
1351 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1352
1353 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1354 {
1355 if (tdep->st0_regnum < 0)
1356 {
1357 warning (_("Cannot find floating-point return value."));
1358 memset (valbuf, 0, len);
1359 return;
1360 }
1361
1362 /* Floating-point return values can be found in %st(0). Convert
1363 its contents to the desired type. This is probably not
1364 exactly how it would happen on the target itself, but it is
1365 the best we can do. */
1366 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1367 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1368 }
1369 else
1370 {
1371 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1372 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1373
1374 if (len <= low_size)
1375 {
1376 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1377 memcpy (valbuf, buf, len);
1378 }
1379 else if (len <= (low_size + high_size))
1380 {
1381 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1382 memcpy (valbuf, buf, low_size);
1383 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1384 memcpy (valbuf + low_size, buf, len - low_size);
1385 }
1386 else
1387 internal_error (__FILE__, __LINE__,
1388 _("Cannot extract return value of %d bytes long."), len);
1389 }
1390 }
1391
1392 /* Write, for architecture GDBARCH, a function return value of TYPE
1393 from VALBUF into REGCACHE. */
1394
1395 static void
1396 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1397 struct regcache *regcache, const gdb_byte *valbuf)
1398 {
1399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1400 int len = TYPE_LENGTH (type);
1401
1402 /* Define I387_ST0_REGNUM such that we use the proper definitions
1403 for the architecture. */
1404 #define I387_ST0_REGNUM I386_ST0_REGNUM
1405
1406 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1407 {
1408 ULONGEST fstat;
1409 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1410
1411 if (tdep->st0_regnum < 0)
1412 {
1413 warning (_("Cannot set floating-point return value."));
1414 return;
1415 }
1416
1417 /* Returning floating-point values is a bit tricky. Apart from
1418 storing the return value in %st(0), we have to simulate the
1419 state of the FPU at function return point. */
1420
1421 /* Convert the value found in VALBUF to the extended
1422 floating-point format used by the FPU. This is probably
1423 not exactly how it would happen on the target itself, but
1424 it is the best we can do. */
1425 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1426 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1427
1428 /* Set the top of the floating-point register stack to 7. The
1429 actual value doesn't really matter, but 7 is what a normal
1430 function return would end up with if the program started out
1431 with a freshly initialized FPU. */
1432 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1433 fstat |= (7 << 11);
1434 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1435
1436 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1437 the floating-point register stack to 7, the appropriate value
1438 for the tag word is 0x3fff. */
1439 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1440 }
1441 else
1442 {
1443 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1444 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1445
1446 if (len <= low_size)
1447 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1448 else if (len <= (low_size + high_size))
1449 {
1450 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1451 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1452 len - low_size, valbuf + low_size);
1453 }
1454 else
1455 internal_error (__FILE__, __LINE__,
1456 _("Cannot store return value of %d bytes long."), len);
1457 }
1458
1459 #undef I387_ST0_REGNUM
1460 }
1461 \f
1462
1463 /* This is the variable that is set with "set struct-convention", and
1464 its legitimate values. */
1465 static const char default_struct_convention[] = "default";
1466 static const char pcc_struct_convention[] = "pcc";
1467 static const char reg_struct_convention[] = "reg";
1468 static const char *valid_conventions[] =
1469 {
1470 default_struct_convention,
1471 pcc_struct_convention,
1472 reg_struct_convention,
1473 NULL
1474 };
1475 static const char *struct_convention = default_struct_convention;
1476
1477 /* Return non-zero if TYPE, which is assumed to be a structure,
1478 a union type, or an array type, should be returned in registers
1479 for architecture GDBARCH. */
1480
1481 static int
1482 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1483 {
1484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1485 enum type_code code = TYPE_CODE (type);
1486 int len = TYPE_LENGTH (type);
1487
1488 gdb_assert (code == TYPE_CODE_STRUCT
1489 || code == TYPE_CODE_UNION
1490 || code == TYPE_CODE_ARRAY);
1491
1492 if (struct_convention == pcc_struct_convention
1493 || (struct_convention == default_struct_convention
1494 && tdep->struct_return == pcc_struct_return))
1495 return 0;
1496
1497 /* Structures consisting of a single `float', `double' or 'long
1498 double' member are returned in %st(0). */
1499 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1500 {
1501 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1502 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1503 return (len == 4 || len == 8 || len == 12);
1504 }
1505
1506 return (len == 1 || len == 2 || len == 4 || len == 8);
1507 }
1508
1509 /* Determine, for architecture GDBARCH, how a return value of TYPE
1510 should be returned. If it is supposed to be returned in registers,
1511 and READBUF is non-zero, read the appropriate value from REGCACHE,
1512 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1513 from WRITEBUF into REGCACHE. */
1514
1515 static enum return_value_convention
1516 i386_return_value (struct gdbarch *gdbarch, struct type *type,
1517 struct regcache *regcache, gdb_byte *readbuf,
1518 const gdb_byte *writebuf)
1519 {
1520 enum type_code code = TYPE_CODE (type);
1521
1522 if ((code == TYPE_CODE_STRUCT
1523 || code == TYPE_CODE_UNION
1524 || code == TYPE_CODE_ARRAY)
1525 && !i386_reg_struct_return_p (gdbarch, type))
1526 {
1527 /* The System V ABI says that:
1528
1529 "A function that returns a structure or union also sets %eax
1530 to the value of the original address of the caller's area
1531 before it returns. Thus when the caller receives control
1532 again, the address of the returned object resides in register
1533 %eax and can be used to access the object."
1534
1535 So the ABI guarantees that we can always find the return
1536 value just after the function has returned. */
1537
1538 /* Note that the ABI doesn't mention functions returning arrays,
1539 which is something possible in certain languages such as Ada.
1540 In this case, the value is returned as if it was wrapped in
1541 a record, so the convention applied to records also applies
1542 to arrays. */
1543
1544 if (readbuf)
1545 {
1546 ULONGEST addr;
1547
1548 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1549 read_memory (addr, readbuf, TYPE_LENGTH (type));
1550 }
1551
1552 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1553 }
1554
1555 /* This special case is for structures consisting of a single
1556 `float', `double' or 'long double' member. These structures are
1557 returned in %st(0). For these structures, we call ourselves
1558 recursively, changing TYPE into the type of the first member of
1559 the structure. Since that should work for all structures that
1560 have only one member, we don't bother to check the member's type
1561 here. */
1562 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1563 {
1564 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1565 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1566 }
1567
1568 if (readbuf)
1569 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1570 if (writebuf)
1571 i386_store_return_value (gdbarch, type, regcache, writebuf);
1572
1573 return RETURN_VALUE_REGISTER_CONVENTION;
1574 }
1575 \f
1576
1577 /* Type for %eflags. */
1578 struct type *i386_eflags_type;
1579
1580 /* Types for the MMX and SSE registers. */
1581 struct type *i386_mmx_type;
1582 struct type *i386_sse_type;
1583 struct type *i386_mxcsr_type;
1584
1585 /* Construct types for ISA-specific registers. */
1586 static void
1587 i386_init_types (void)
1588 {
1589 struct type *type;
1590
1591 type = init_flags_type ("builtin_type_i386_eflags", 4);
1592 append_flags_type_flag (type, 0, "CF");
1593 append_flags_type_flag (type, 1, NULL);
1594 append_flags_type_flag (type, 2, "PF");
1595 append_flags_type_flag (type, 4, "AF");
1596 append_flags_type_flag (type, 6, "ZF");
1597 append_flags_type_flag (type, 7, "SF");
1598 append_flags_type_flag (type, 8, "TF");
1599 append_flags_type_flag (type, 9, "IF");
1600 append_flags_type_flag (type, 10, "DF");
1601 append_flags_type_flag (type, 11, "OF");
1602 append_flags_type_flag (type, 14, "NT");
1603 append_flags_type_flag (type, 16, "RF");
1604 append_flags_type_flag (type, 17, "VM");
1605 append_flags_type_flag (type, 18, "AC");
1606 append_flags_type_flag (type, 19, "VIF");
1607 append_flags_type_flag (type, 20, "VIP");
1608 append_flags_type_flag (type, 21, "ID");
1609 i386_eflags_type = type;
1610
1611 /* The type we're building is this: */
1612 #if 0
1613 union __gdb_builtin_type_vec64i
1614 {
1615 int64_t uint64;
1616 int32_t v2_int32[2];
1617 int16_t v4_int16[4];
1618 int8_t v8_int8[8];
1619 };
1620 #endif
1621
1622 type = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1623 append_composite_type_field (type, "uint64", builtin_type_int64);
1624 append_composite_type_field (type, "v2_int32", builtin_type_v2_int32);
1625 append_composite_type_field (type, "v4_int16", builtin_type_v4_int16);
1626 append_composite_type_field (type, "v8_int8", builtin_type_v8_int8);
1627 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1628 TYPE_NAME (type) = "builtin_type_vec64i";
1629 i386_mmx_type = type;
1630
1631 /* The type we're building is this: */
1632 #if 0
1633 union __gdb_builtin_type_vec128i
1634 {
1635 int128_t uint128;
1636 int64_t v2_int64[2];
1637 int32_t v4_int32[4];
1638 int16_t v8_int16[8];
1639 int8_t v16_int8[16];
1640 double v2_double[2];
1641 float v4_float[4];
1642 };
1643 #endif
1644
1645 type = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1646 append_composite_type_field (type, "v4_float", builtin_type_v4_float);
1647 append_composite_type_field (type, "v2_double", builtin_type_v2_double);
1648 append_composite_type_field (type, "v16_int8", builtin_type_v16_int8);
1649 append_composite_type_field (type, "v8_int16", builtin_type_v8_int16);
1650 append_composite_type_field (type, "v4_int32", builtin_type_v4_int32);
1651 append_composite_type_field (type, "v2_int64", builtin_type_v2_int64);
1652 append_composite_type_field (type, "uint128", builtin_type_int128);
1653 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1654 TYPE_NAME (type) = "builtin_type_vec128i";
1655 i386_sse_type = type;
1656
1657 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1658 append_flags_type_flag (type, 0, "IE");
1659 append_flags_type_flag (type, 1, "DE");
1660 append_flags_type_flag (type, 2, "ZE");
1661 append_flags_type_flag (type, 3, "OE");
1662 append_flags_type_flag (type, 4, "UE");
1663 append_flags_type_flag (type, 5, "PE");
1664 append_flags_type_flag (type, 6, "DAZ");
1665 append_flags_type_flag (type, 7, "IM");
1666 append_flags_type_flag (type, 8, "DM");
1667 append_flags_type_flag (type, 9, "ZM");
1668 append_flags_type_flag (type, 10, "OM");
1669 append_flags_type_flag (type, 11, "UM");
1670 append_flags_type_flag (type, 12, "PM");
1671 append_flags_type_flag (type, 15, "FZ");
1672 i386_mxcsr_type = type;
1673 }
1674
1675 /* Return the GDB type object for the "standard" data type of data in
1676 register REGNUM. Perhaps %esi and %edi should go here, but
1677 potentially they could be used for things other than address. */
1678
1679 static struct type *
1680 i386_register_type (struct gdbarch *gdbarch, int regnum)
1681 {
1682 if (regnum == I386_EIP_REGNUM)
1683 return builtin_type_void_func_ptr;
1684
1685 if (regnum == I386_EFLAGS_REGNUM)
1686 return i386_eflags_type;
1687
1688 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1689 return builtin_type_void_data_ptr;
1690
1691 if (i386_fp_regnum_p (regnum))
1692 return builtin_type_i387_ext;
1693
1694 if (i386_mmx_regnum_p (gdbarch, regnum))
1695 return i386_mmx_type;
1696
1697 if (i386_sse_regnum_p (gdbarch, regnum))
1698 return i386_sse_type;
1699
1700 #define I387_ST0_REGNUM I386_ST0_REGNUM
1701 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
1702
1703 if (regnum == I387_MXCSR_REGNUM)
1704 return i386_mxcsr_type;
1705
1706 #undef I387_ST0_REGNUM
1707 #undef I387_NUM_XMM_REGS
1708
1709 return builtin_type_int;
1710 }
1711
1712 /* Map a cooked register onto a raw register or memory. For the i386,
1713 the MMX registers need to be mapped onto floating point registers. */
1714
1715 static int
1716 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1717 {
1718 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1719 int mmxreg, fpreg;
1720 ULONGEST fstat;
1721 int tos;
1722
1723 /* Define I387_ST0_REGNUM such that we use the proper definitions
1724 for REGCACHE's architecture. */
1725 #define I387_ST0_REGNUM tdep->st0_regnum
1726
1727 mmxreg = regnum - tdep->mm0_regnum;
1728 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1729 tos = (fstat >> 11) & 0x7;
1730 fpreg = (mmxreg + tos) % 8;
1731
1732 return (I387_ST0_REGNUM + fpreg);
1733
1734 #undef I387_ST0_REGNUM
1735 }
1736
1737 static void
1738 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1739 int regnum, gdb_byte *buf)
1740 {
1741 if (i386_mmx_regnum_p (gdbarch, regnum))
1742 {
1743 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1744 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1745
1746 /* Extract (always little endian). */
1747 regcache_raw_read (regcache, fpnum, mmx_buf);
1748 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1749 }
1750 else
1751 regcache_raw_read (regcache, regnum, buf);
1752 }
1753
1754 static void
1755 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1756 int regnum, const gdb_byte *buf)
1757 {
1758 if (i386_mmx_regnum_p (gdbarch, regnum))
1759 {
1760 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1761 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1762
1763 /* Read ... */
1764 regcache_raw_read (regcache, fpnum, mmx_buf);
1765 /* ... Modify ... (always little endian). */
1766 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1767 /* ... Write. */
1768 regcache_raw_write (regcache, fpnum, mmx_buf);
1769 }
1770 else
1771 regcache_raw_write (regcache, regnum, buf);
1772 }
1773 \f
1774
1775 /* Return the register number of the register allocated by GCC after
1776 REGNUM, or -1 if there is no such register. */
1777
1778 static int
1779 i386_next_regnum (int regnum)
1780 {
1781 /* GCC allocates the registers in the order:
1782
1783 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1784
1785 Since storing a variable in %esp doesn't make any sense we return
1786 -1 for %ebp and for %esp itself. */
1787 static int next_regnum[] =
1788 {
1789 I386_EDX_REGNUM, /* Slot for %eax. */
1790 I386_EBX_REGNUM, /* Slot for %ecx. */
1791 I386_ECX_REGNUM, /* Slot for %edx. */
1792 I386_ESI_REGNUM, /* Slot for %ebx. */
1793 -1, -1, /* Slots for %esp and %ebp. */
1794 I386_EDI_REGNUM, /* Slot for %esi. */
1795 I386_EBP_REGNUM /* Slot for %edi. */
1796 };
1797
1798 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1799 return next_regnum[regnum];
1800
1801 return -1;
1802 }
1803
1804 /* Return nonzero if a value of type TYPE stored in register REGNUM
1805 needs any special handling. */
1806
1807 static int
1808 i386_convert_register_p (int regnum, struct type *type)
1809 {
1810 int len = TYPE_LENGTH (type);
1811
1812 /* Values may be spread across multiple registers. Most debugging
1813 formats aren't expressive enough to specify the locations, so
1814 some heuristics is involved. Right now we only handle types that
1815 have a length that is a multiple of the word size, since GCC
1816 doesn't seem to put any other types into registers. */
1817 if (len > 4 && len % 4 == 0)
1818 {
1819 int last_regnum = regnum;
1820
1821 while (len > 4)
1822 {
1823 last_regnum = i386_next_regnum (last_regnum);
1824 len -= 4;
1825 }
1826
1827 if (last_regnum != -1)
1828 return 1;
1829 }
1830
1831 return i386_fp_regnum_p (regnum);
1832 }
1833
1834 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1835 return its contents in TO. */
1836
1837 static void
1838 i386_register_to_value (struct frame_info *frame, int regnum,
1839 struct type *type, gdb_byte *to)
1840 {
1841 int len = TYPE_LENGTH (type);
1842
1843 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1844 available in FRAME (i.e. if it wasn't saved)? */
1845
1846 if (i386_fp_regnum_p (regnum))
1847 {
1848 i387_register_to_value (frame, regnum, type, to);
1849 return;
1850 }
1851
1852 /* Read a value spread across multiple registers. */
1853
1854 gdb_assert (len > 4 && len % 4 == 0);
1855
1856 while (len > 0)
1857 {
1858 gdb_assert (regnum != -1);
1859 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1860
1861 get_frame_register (frame, regnum, to);
1862 regnum = i386_next_regnum (regnum);
1863 len -= 4;
1864 to += 4;
1865 }
1866 }
1867
1868 /* Write the contents FROM of a value of type TYPE into register
1869 REGNUM in frame FRAME. */
1870
1871 static void
1872 i386_value_to_register (struct frame_info *frame, int regnum,
1873 struct type *type, const gdb_byte *from)
1874 {
1875 int len = TYPE_LENGTH (type);
1876
1877 if (i386_fp_regnum_p (regnum))
1878 {
1879 i387_value_to_register (frame, regnum, type, from);
1880 return;
1881 }
1882
1883 /* Write a value spread across multiple registers. */
1884
1885 gdb_assert (len > 4 && len % 4 == 0);
1886
1887 while (len > 0)
1888 {
1889 gdb_assert (regnum != -1);
1890 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1891
1892 put_frame_register (frame, regnum, from);
1893 regnum = i386_next_regnum (regnum);
1894 len -= 4;
1895 from += 4;
1896 }
1897 }
1898 \f
1899 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1900 in the general-purpose register set REGSET to register cache
1901 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1902
1903 void
1904 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1905 int regnum, const void *gregs, size_t len)
1906 {
1907 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1908 const gdb_byte *regs = gregs;
1909 int i;
1910
1911 gdb_assert (len == tdep->sizeof_gregset);
1912
1913 for (i = 0; i < tdep->gregset_num_regs; i++)
1914 {
1915 if ((regnum == i || regnum == -1)
1916 && tdep->gregset_reg_offset[i] != -1)
1917 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1918 }
1919 }
1920
1921 /* Collect register REGNUM from the register cache REGCACHE and store
1922 it in the buffer specified by GREGS and LEN as described by the
1923 general-purpose register set REGSET. If REGNUM is -1, do this for
1924 all registers in REGSET. */
1925
1926 void
1927 i386_collect_gregset (const struct regset *regset,
1928 const struct regcache *regcache,
1929 int regnum, void *gregs, size_t len)
1930 {
1931 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1932 gdb_byte *regs = gregs;
1933 int i;
1934
1935 gdb_assert (len == tdep->sizeof_gregset);
1936
1937 for (i = 0; i < tdep->gregset_num_regs; i++)
1938 {
1939 if ((regnum == i || regnum == -1)
1940 && tdep->gregset_reg_offset[i] != -1)
1941 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1942 }
1943 }
1944
1945 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1946 in the floating-point register set REGSET to register cache
1947 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1948
1949 static void
1950 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1951 int regnum, const void *fpregs, size_t len)
1952 {
1953 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1954
1955 if (len == I387_SIZEOF_FXSAVE)
1956 {
1957 i387_supply_fxsave (regcache, regnum, fpregs);
1958 return;
1959 }
1960
1961 gdb_assert (len == tdep->sizeof_fpregset);
1962 i387_supply_fsave (regcache, regnum, fpregs);
1963 }
1964
1965 /* Collect register REGNUM from the register cache REGCACHE and store
1966 it in the buffer specified by FPREGS and LEN as described by the
1967 floating-point register set REGSET. If REGNUM is -1, do this for
1968 all registers in REGSET. */
1969
1970 static void
1971 i386_collect_fpregset (const struct regset *regset,
1972 const struct regcache *regcache,
1973 int regnum, void *fpregs, size_t len)
1974 {
1975 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1976
1977 if (len == I387_SIZEOF_FXSAVE)
1978 {
1979 i387_collect_fxsave (regcache, regnum, fpregs);
1980 return;
1981 }
1982
1983 gdb_assert (len == tdep->sizeof_fpregset);
1984 i387_collect_fsave (regcache, regnum, fpregs);
1985 }
1986
1987 /* Return the appropriate register set for the core section identified
1988 by SECT_NAME and SECT_SIZE. */
1989
1990 const struct regset *
1991 i386_regset_from_core_section (struct gdbarch *gdbarch,
1992 const char *sect_name, size_t sect_size)
1993 {
1994 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1995
1996 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1997 {
1998 if (tdep->gregset == NULL)
1999 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2000 i386_collect_gregset);
2001 return tdep->gregset;
2002 }
2003
2004 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2005 || (strcmp (sect_name, ".reg-xfp") == 0
2006 && sect_size == I387_SIZEOF_FXSAVE))
2007 {
2008 if (tdep->fpregset == NULL)
2009 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2010 i386_collect_fpregset);
2011 return tdep->fpregset;
2012 }
2013
2014 return NULL;
2015 }
2016 \f
2017
2018 #ifdef STATIC_TRANSFORM_NAME
2019 /* SunPRO encodes the static variables. This is not related to C++
2020 mangling, it is done for C too. */
2021
2022 char *
2023 sunpro_static_transform_name (char *name)
2024 {
2025 char *p;
2026 if (IS_STATIC_TRANSFORM_NAME (name))
2027 {
2028 /* For file-local statics there will be a period, a bunch of
2029 junk (the contents of which match a string given in the
2030 N_OPT), a period and the name. For function-local statics
2031 there will be a bunch of junk (which seems to change the
2032 second character from 'A' to 'B'), a period, the name of the
2033 function, and the name. So just skip everything before the
2034 last period. */
2035 p = strrchr (name, '.');
2036 if (p != NULL)
2037 name = p + 1;
2038 }
2039 return name;
2040 }
2041 #endif /* STATIC_TRANSFORM_NAME */
2042 \f
2043
2044 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2045
2046 CORE_ADDR
2047 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
2048 {
2049 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
2050 {
2051 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
2052 struct minimal_symbol *indsym =
2053 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2054 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2055
2056 if (symname)
2057 {
2058 if (strncmp (symname, "__imp_", 6) == 0
2059 || strncmp (symname, "_imp_", 5) == 0)
2060 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2061 }
2062 }
2063 return 0; /* Not a trampoline. */
2064 }
2065 \f
2066
2067 /* Return whether the frame preceding NEXT_FRAME corresponds to a
2068 sigtramp routine. */
2069
2070 static int
2071 i386_sigtramp_p (struct frame_info *next_frame)
2072 {
2073 CORE_ADDR pc = frame_pc_unwind (next_frame);
2074 char *name;
2075
2076 find_pc_partial_function (pc, &name, NULL, NULL);
2077 return (name && strcmp ("_sigtramp", name) == 0);
2078 }
2079 \f
2080
2081 /* We have two flavours of disassembly. The machinery on this page
2082 deals with switching between those. */
2083
2084 static int
2085 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2086 {
2087 gdb_assert (disassembly_flavor == att_flavor
2088 || disassembly_flavor == intel_flavor);
2089
2090 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2091 constified, cast to prevent a compiler warning. */
2092 info->disassembler_options = (char *) disassembly_flavor;
2093 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
2094
2095 return print_insn_i386 (pc, info);
2096 }
2097 \f
2098
2099 /* There are a few i386 architecture variants that differ only
2100 slightly from the generic i386 target. For now, we don't give them
2101 their own source file, but include them here. As a consequence,
2102 they'll always be included. */
2103
2104 /* System V Release 4 (SVR4). */
2105
2106 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
2107 sigtramp routine. */
2108
2109 static int
2110 i386_svr4_sigtramp_p (struct frame_info *next_frame)
2111 {
2112 CORE_ADDR pc = frame_pc_unwind (next_frame);
2113 char *name;
2114
2115 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2116 currently unknown. */
2117 find_pc_partial_function (pc, &name, NULL, NULL);
2118 return (name && (strcmp ("_sigreturn", name) == 0
2119 || strcmp ("_sigacthandler", name) == 0
2120 || strcmp ("sigvechandler", name) == 0));
2121 }
2122
2123 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2124 routine, return the address of the associated sigcontext (ucontext)
2125 structure. */
2126
2127 static CORE_ADDR
2128 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
2129 {
2130 gdb_byte buf[4];
2131 CORE_ADDR sp;
2132
2133 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2134 sp = extract_unsigned_integer (buf, 4);
2135
2136 return read_memory_unsigned_integer (sp + 8, 4);
2137 }
2138 \f
2139
2140 /* Generic ELF. */
2141
2142 void
2143 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2144 {
2145 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2146 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2147 }
2148
2149 /* System V Release 4 (SVR4). */
2150
2151 void
2152 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2153 {
2154 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2155
2156 /* System V Release 4 uses ELF. */
2157 i386_elf_init_abi (info, gdbarch);
2158
2159 /* System V Release 4 has shared libraries. */
2160 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2161
2162 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2163 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2164 tdep->sc_pc_offset = 36 + 14 * 4;
2165 tdep->sc_sp_offset = 36 + 17 * 4;
2166
2167 tdep->jb_pc_offset = 20;
2168 }
2169
2170 /* DJGPP. */
2171
2172 static void
2173 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2174 {
2175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2176
2177 /* DJGPP doesn't have any special frames for signal handlers. */
2178 tdep->sigtramp_p = NULL;
2179
2180 tdep->jb_pc_offset = 36;
2181 }
2182
2183 /* NetWare. */
2184
2185 static void
2186 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2187 {
2188 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2189
2190 tdep->jb_pc_offset = 24;
2191 }
2192 \f
2193
2194 /* i386 register groups. In addition to the normal groups, add "mmx"
2195 and "sse". */
2196
2197 static struct reggroup *i386_sse_reggroup;
2198 static struct reggroup *i386_mmx_reggroup;
2199
2200 static void
2201 i386_init_reggroups (void)
2202 {
2203 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2204 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2205 }
2206
2207 static void
2208 i386_add_reggroups (struct gdbarch *gdbarch)
2209 {
2210 reggroup_add (gdbarch, i386_sse_reggroup);
2211 reggroup_add (gdbarch, i386_mmx_reggroup);
2212 reggroup_add (gdbarch, general_reggroup);
2213 reggroup_add (gdbarch, float_reggroup);
2214 reggroup_add (gdbarch, all_reggroup);
2215 reggroup_add (gdbarch, save_reggroup);
2216 reggroup_add (gdbarch, restore_reggroup);
2217 reggroup_add (gdbarch, vector_reggroup);
2218 reggroup_add (gdbarch, system_reggroup);
2219 }
2220
2221 int
2222 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2223 struct reggroup *group)
2224 {
2225 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2226 || i386_mxcsr_regnum_p (gdbarch, regnum));
2227 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2228 || i386_fpc_regnum_p (regnum));
2229 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2230
2231 if (group == i386_mmx_reggroup)
2232 return mmx_regnum_p;
2233 if (group == i386_sse_reggroup)
2234 return sse_regnum_p;
2235 if (group == vector_reggroup)
2236 return (mmx_regnum_p || sse_regnum_p);
2237 if (group == float_reggroup)
2238 return fp_regnum_p;
2239 if (group == general_reggroup)
2240 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2241
2242 return default_register_reggroup_p (gdbarch, regnum, group);
2243 }
2244 \f
2245
2246 /* Get the ARGIth function argument for the current function. */
2247
2248 static CORE_ADDR
2249 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2250 struct type *type)
2251 {
2252 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2253 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2254 }
2255
2256 \f
2257 static struct gdbarch *
2258 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2259 {
2260 struct gdbarch_tdep *tdep;
2261 struct gdbarch *gdbarch;
2262
2263 /* If there is already a candidate, use it. */
2264 arches = gdbarch_list_lookup_by_info (arches, &info);
2265 if (arches != NULL)
2266 return arches->gdbarch;
2267
2268 /* Allocate space for the new architecture. */
2269 tdep = XMALLOC (struct gdbarch_tdep);
2270 gdbarch = gdbarch_alloc (&info, tdep);
2271
2272 /* General-purpose registers. */
2273 tdep->gregset = NULL;
2274 tdep->gregset_reg_offset = NULL;
2275 tdep->gregset_num_regs = I386_NUM_GREGS;
2276 tdep->sizeof_gregset = 0;
2277
2278 /* Floating-point registers. */
2279 tdep->fpregset = NULL;
2280 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2281
2282 /* The default settings include the FPU registers, the MMX registers
2283 and the SSE registers. This can be overridden for a specific ABI
2284 by adjusting the members `st0_regnum', `mm0_regnum' and
2285 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2286 will show up in the output of "info all-registers". Ideally we
2287 should try to autodetect whether they are available, such that we
2288 can prevent "info all-registers" from displaying registers that
2289 aren't available.
2290
2291 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2292 [the SSE registers] always (even when they don't exist) or never
2293 showing them to the user (even when they do exist), I prefer the
2294 former over the latter. */
2295
2296 tdep->st0_regnum = I386_ST0_REGNUM;
2297
2298 /* The MMX registers are implemented as pseudo-registers. Put off
2299 calculating the register number for %mm0 until we know the number
2300 of raw registers. */
2301 tdep->mm0_regnum = 0;
2302
2303 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2304 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2305
2306 tdep->jb_pc_offset = -1;
2307 tdep->struct_return = pcc_struct_return;
2308 tdep->sigtramp_start = 0;
2309 tdep->sigtramp_end = 0;
2310 tdep->sigtramp_p = i386_sigtramp_p;
2311 tdep->sigcontext_addr = NULL;
2312 tdep->sc_reg_offset = NULL;
2313 tdep->sc_pc_offset = -1;
2314 tdep->sc_sp_offset = -1;
2315
2316 /* The format used for `long double' on almost all i386 targets is
2317 the i387 extended floating-point format. In fact, of all targets
2318 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2319 on having a `long double' that's not `long' at all. */
2320 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
2321
2322 /* Although the i387 extended floating-point has only 80 significant
2323 bits, a `long double' actually takes up 96, probably to enforce
2324 alignment. */
2325 set_gdbarch_long_double_bit (gdbarch, 96);
2326
2327 /* The default ABI includes general-purpose registers,
2328 floating-point registers, and the SSE registers. */
2329 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2330 set_gdbarch_register_name (gdbarch, i386_register_name);
2331 set_gdbarch_register_type (gdbarch, i386_register_type);
2332
2333 /* Register numbers of various important registers. */
2334 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2335 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2336 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2337 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2338
2339 /* NOTE: kettenis/20040418: GCC does have two possible register
2340 numbering schemes on the i386: dbx and SVR4. These schemes
2341 differ in how they number %ebp, %esp, %eflags, and the
2342 floating-point registers, and are implemented by the arrays
2343 dbx_register_map[] and svr4_dbx_register_map in
2344 gcc/config/i386.c. GCC also defines a third numbering scheme in
2345 gcc/config/i386.c, which it designates as the "default" register
2346 map used in 64bit mode. This last register numbering scheme is
2347 implemented in dbx64_register_map, and is used for AMD64; see
2348 amd64-tdep.c.
2349
2350 Currently, each GCC i386 target always uses the same register
2351 numbering scheme across all its supported debugging formats
2352 i.e. SDB (COFF), stabs and DWARF 2. This is because
2353 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2354 DBX_REGISTER_NUMBER macro which is defined by each target's
2355 respective config header in a manner independent of the requested
2356 output debugging format.
2357
2358 This does not match the arrangement below, which presumes that
2359 the SDB and stabs numbering schemes differ from the DWARF and
2360 DWARF 2 ones. The reason for this arrangement is that it is
2361 likely to get the numbering scheme for the target's
2362 default/native debug format right. For targets where GCC is the
2363 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2364 targets where the native toolchain uses a different numbering
2365 scheme for a particular debug format (stabs-in-ELF on Solaris)
2366 the defaults below will have to be overridden, like
2367 i386_elf_init_abi() does. */
2368
2369 /* Use the dbx register numbering scheme for stabs and COFF. */
2370 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2371 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2372
2373 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2374 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2375 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2376
2377 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2378 be in use on any of the supported i386 targets. */
2379
2380 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2381
2382 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2383
2384 /* Call dummy code. */
2385 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2386
2387 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2388 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2389 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2390
2391 set_gdbarch_return_value (gdbarch, i386_return_value);
2392
2393 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2394
2395 /* Stack grows downward. */
2396 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2397
2398 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2399 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2400
2401 set_gdbarch_frame_args_skip (gdbarch, 8);
2402
2403 /* Wire in the MMX registers. */
2404 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2405 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2406 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2407
2408 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2409
2410 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2411
2412 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2413
2414 /* Add the i386 register groups. */
2415 i386_add_reggroups (gdbarch);
2416 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2417
2418 /* Helper for function argument information. */
2419 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2420
2421 /* Hook in the DWARF CFI frame unwinder. */
2422 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2423
2424 frame_base_set_default (gdbarch, &i386_frame_base);
2425
2426 /* Hook in ABI-specific overrides, if they have been registered. */
2427 gdbarch_init_osabi (info, gdbarch);
2428
2429 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2430 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2431
2432 /* If we have a register mapping, enable the generic core file
2433 support, unless it has already been enabled. */
2434 if (tdep->gregset_reg_offset
2435 && !gdbarch_regset_from_core_section_p (gdbarch))
2436 set_gdbarch_regset_from_core_section (gdbarch,
2437 i386_regset_from_core_section);
2438
2439 /* Unless support for MMX has been disabled, make %mm0 the first
2440 pseudo-register. */
2441 if (tdep->mm0_regnum == 0)
2442 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2443
2444 return gdbarch;
2445 }
2446
2447 static enum gdb_osabi
2448 i386_coff_osabi_sniffer (bfd *abfd)
2449 {
2450 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2451 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2452 return GDB_OSABI_GO32;
2453
2454 return GDB_OSABI_UNKNOWN;
2455 }
2456
2457 static enum gdb_osabi
2458 i386_nlm_osabi_sniffer (bfd *abfd)
2459 {
2460 return GDB_OSABI_NETWARE;
2461 }
2462 \f
2463
2464 /* Provide a prototype to silence -Wmissing-prototypes. */
2465 void _initialize_i386_tdep (void);
2466
2467 void
2468 _initialize_i386_tdep (void)
2469 {
2470 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2471
2472 /* Add the variable that controls the disassembly flavor. */
2473 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2474 &disassembly_flavor, _("\
2475 Set the disassembly flavor."), _("\
2476 Show the disassembly flavor."), _("\
2477 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2478 NULL,
2479 NULL, /* FIXME: i18n: */
2480 &setlist, &showlist);
2481
2482 /* Add the variable that controls the convention for returning
2483 structs. */
2484 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2485 &struct_convention, _("\
2486 Set the convention for returning small structs."), _("\
2487 Show the convention for returning small structs."), _("\
2488 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2489 is \"default\"."),
2490 NULL,
2491 NULL, /* FIXME: i18n: */
2492 &setlist, &showlist);
2493
2494 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2495 i386_coff_osabi_sniffer);
2496 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2497 i386_nlm_osabi_sniffer);
2498
2499 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2500 i386_svr4_init_abi);
2501 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2502 i386_go32_init_abi);
2503 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
2504 i386_nw_init_abi);
2505
2506 /* Initialize the i386-specific register groups & types. */
2507 i386_init_reggroups ();
2508 i386_init_types();
2509 }
This page took 0.098414 seconds and 4 git commands to generate.