2004-06-06 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "command.h"
27 #include "dummy-frame.h"
28 #include "dwarf2-frame.h"
29 #include "doublest.h"
30 #include "floatformat.h"
31 #include "frame.h"
32 #include "frame-base.h"
33 #include "frame-unwind.h"
34 #include "inferior.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "objfiles.h"
38 #include "osabi.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "regset.h"
42 #include "symfile.h"
43 #include "symtab.h"
44 #include "target.h"
45 #include "value.h"
46 #include "dis-asm.h"
47
48 #include "gdb_assert.h"
49 #include "gdb_string.h"
50
51 #include "i386-tdep.h"
52 #include "i387-tdep.h"
53
54 /* Register names. */
55
56 static char *i386_register_names[] =
57 {
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69 };
70
71 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
72
73 /* Register names for MMX pseudo-registers. */
74
75 static char *i386_mmx_names[] =
76 {
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79 };
80
81 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
82
83 static int
84 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
85 {
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
92 }
93
94 /* SSE register? */
95
96 static int
97 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
98 {
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101 #define I387_ST0_REGNUM tdep->st0_regnum
102 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109 #undef I387_ST0_REGNUM
110 #undef I387_NUM_XMM_REGS
111 }
112
113 static int
114 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
115 {
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118 #define I387_ST0_REGNUM tdep->st0_regnum
119 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126 #undef I387_ST0_REGNUM
127 #undef I387_NUM_XMM_REGS
128 }
129
130 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134 /* FP register? */
135
136 int
137 i386_fp_regnum_p (int regnum)
138 {
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
143 }
144
145 int
146 i386_fpc_regnum_p (int regnum)
147 {
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
152 }
153
154 /* Return the name of register REG. */
155
156 const char *
157 i386_register_name (int reg)
158 {
159 if (i386_mmx_regnum_p (current_gdbarch, reg))
160 return i386_mmx_names[reg - I387_MM0_REGNUM];
161
162 if (reg >= 0 && reg < i386_num_register_names)
163 return i386_register_names[reg];
164
165 return NULL;
166 }
167
168 /* Convert a dbx register number REG to the appropriate register
169 number used by GDB. */
170
171 static int
172 i386_dbx_reg_to_regnum (int reg)
173 {
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
177 if (reg >= 0 && reg <= 7)
178 {
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
190 return reg - 12 + I387_ST0_REGNUM;
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
195 return reg - 21 + I387_XMM0_REGNUM;
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
200 return reg - 29 + I387_MM0_REGNUM;
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205 }
206
207 /* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
209
210 static int
211 i386_svr4_reg_to_regnum (int reg)
212 {
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
220 /* General-purpose registers. */
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
226 return reg - 11 + I387_ST0_REGNUM;
227 }
228 else if (reg >= 21)
229 {
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
232 }
233
234 /* This will hopefully provoke a warning. */
235 return NUM_REGS + NUM_PSEUDO_REGS;
236 }
237
238 #undef I387_ST0_REGNUM
239 #undef I387_MM0_REGNUM
240 #undef I387_NUM_XMM_REGS
241 \f
242
243 /* This is the variable that is set with "set disassembly-flavor", and
244 its legitimate values. */
245 static const char att_flavor[] = "att";
246 static const char intel_flavor[] = "intel";
247 static const char *valid_flavors[] =
248 {
249 att_flavor,
250 intel_flavor,
251 NULL
252 };
253 static const char *disassembly_flavor = att_flavor;
254 \f
255
256 /* Use the program counter to determine the contents and size of a
257 breakpoint instruction. Return a pointer to a string of bytes that
258 encode a breakpoint instruction, store the length of the string in
259 *LEN and optionally adjust *PC to point to the correct memory
260 location for inserting the breakpoint.
261
262 On the i386 we have a single breakpoint that fits in a single byte
263 and can be inserted anywhere.
264
265 This function is 64-bit safe. */
266
267 static const unsigned char *
268 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
269 {
270 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
271
272 *len = sizeof (break_insn);
273 return break_insn;
274 }
275 \f
276 #ifdef I386_REGNO_TO_SYMMETRY
277 #error "The Sequent Symmetry is no longer supported."
278 #endif
279
280 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281 and %esp "belong" to the calling function. Therefore these
282 registers should be saved if they're going to be modified. */
283
284 /* The maximum number of saved registers. This should include all
285 registers mentioned above, and %eip. */
286 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
287
288 struct i386_frame_cache
289 {
290 /* Base address. */
291 CORE_ADDR base;
292 CORE_ADDR sp_offset;
293 CORE_ADDR pc;
294
295 /* Saved registers. */
296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
297 CORE_ADDR saved_sp;
298 int pc_in_eax;
299
300 /* Stack space reserved for local variables. */
301 long locals;
302 };
303
304 /* Allocate and initialize a frame cache. */
305
306 static struct i386_frame_cache *
307 i386_alloc_frame_cache (void)
308 {
309 struct i386_frame_cache *cache;
310 int i;
311
312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314 /* Base address. */
315 cache->base = 0;
316 cache->sp_offset = -4;
317 cache->pc = 0;
318
319 /* Saved registers. We initialize these to -1 since zero is a valid
320 offset (that's where %ebp is supposed to be stored). */
321 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322 cache->saved_regs[i] = -1;
323 cache->saved_sp = 0;
324 cache->pc_in_eax = 0;
325
326 /* Frameless until proven otherwise. */
327 cache->locals = -1;
328
329 return cache;
330 }
331
332 /* If the instruction at PC is a jump, return the address of its
333 target. Otherwise, return PC. */
334
335 static CORE_ADDR
336 i386_follow_jump (CORE_ADDR pc)
337 {
338 unsigned char op;
339 long delta = 0;
340 int data16 = 0;
341
342 op = read_memory_unsigned_integer (pc, 1);
343 if (op == 0x66)
344 {
345 data16 = 1;
346 op = read_memory_unsigned_integer (pc + 1, 1);
347 }
348
349 switch (op)
350 {
351 case 0xe9:
352 /* Relative jump: if data16 == 0, disp32, else disp16. */
353 if (data16)
354 {
355 delta = read_memory_integer (pc + 2, 2);
356
357 /* Include the size of the jmp instruction (including the
358 0x66 prefix). */
359 delta += 4;
360 }
361 else
362 {
363 delta = read_memory_integer (pc + 1, 4);
364
365 /* Include the size of the jmp instruction. */
366 delta += 5;
367 }
368 break;
369 case 0xeb:
370 /* Relative jump, disp8 (ignore data16). */
371 delta = read_memory_integer (pc + data16 + 1, 1);
372
373 delta += data16 + 2;
374 break;
375 }
376
377 return pc + delta;
378 }
379
380 /* Check whether PC points at a prologue for a function returning a
381 structure or union. If so, it updates CACHE and returns the
382 address of the first instruction after the code sequence that
383 removes the "hidden" argument from the stack or CURRENT_PC,
384 whichever is smaller. Otherwise, return PC. */
385
386 static CORE_ADDR
387 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388 struct i386_frame_cache *cache)
389 {
390 /* Functions that return a structure or union start with:
391
392 popl %eax 0x58
393 xchgl %eax, (%esp) 0x87 0x04 0x24
394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
395
396 (the System V compiler puts out the second `xchg' instruction,
397 and the assembler doesn't try to optimize it, so the 'sib' form
398 gets generated). This sequence is used to get the address of the
399 return buffer for a function that returns a structure. */
400 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
401 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402 unsigned char buf[4];
403 unsigned char op;
404
405 if (current_pc <= pc)
406 return pc;
407
408 op = read_memory_unsigned_integer (pc, 1);
409
410 if (op != 0x58) /* popl %eax */
411 return pc;
412
413 read_memory (pc + 1, buf, 4);
414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415 return pc;
416
417 if (current_pc == pc)
418 {
419 cache->sp_offset += 4;
420 return current_pc;
421 }
422
423 if (current_pc == pc + 1)
424 {
425 cache->pc_in_eax = 1;
426 return current_pc;
427 }
428
429 if (buf[1] == proto1[1])
430 return pc + 4;
431 else
432 return pc + 5;
433 }
434
435 static CORE_ADDR
436 i386_skip_probe (CORE_ADDR pc)
437 {
438 /* A function may start with
439
440 pushl constant
441 call _probe
442 addl $4, %esp
443
444 followed by
445
446 pushl %ebp
447
448 etc. */
449 unsigned char buf[8];
450 unsigned char op;
451
452 op = read_memory_unsigned_integer (pc, 1);
453
454 if (op == 0x68 || op == 0x6a)
455 {
456 int delta;
457
458 /* Skip past the `pushl' instruction; it has either a one-byte or a
459 four-byte operand, depending on the opcode. */
460 if (op == 0x68)
461 delta = 5;
462 else
463 delta = 2;
464
465 /* Read the following 8 bytes, which should be `call _probe' (6
466 bytes) followed by `addl $4,%esp' (2 bytes). */
467 read_memory (pc + delta, buf, sizeof (buf));
468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
469 pc += delta + sizeof (buf);
470 }
471
472 return pc;
473 }
474
475 /* Check whether PC points at a code that sets up a new stack frame.
476 If so, it updates CACHE and returns the address of the first
477 instruction after the sequence that sets removes the "hidden"
478 argument from the stack or CURRENT_PC, whichever is smaller.
479 Otherwise, return PC. */
480
481 static CORE_ADDR
482 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
483 struct i386_frame_cache *cache)
484 {
485 unsigned char op;
486 int skip = 0;
487
488 if (current_pc <= pc)
489 return current_pc;
490
491 op = read_memory_unsigned_integer (pc, 1);
492
493 if (op == 0x55) /* pushl %ebp */
494 {
495 /* Take into account that we've executed the `pushl %ebp' that
496 starts this instruction sequence. */
497 cache->saved_regs[I386_EBP_REGNUM] = 0;
498 cache->sp_offset += 4;
499
500 /* If that's all, return now. */
501 if (current_pc <= pc + 1)
502 return current_pc;
503
504 op = read_memory_unsigned_integer (pc + 1, 1);
505
506 /* Check for some special instructions that might be migrated
507 by GCC into the prologue. We check for
508
509 xorl %ebx, %ebx
510 xorl %ecx, %ecx
511 xorl %edx, %edx
512 xorl %eax, %eax
513
514 and the equivalent
515
516 subl %ebx, %ebx
517 subl %ecx, %ecx
518 subl %edx, %edx
519 subl %eax, %eax
520
521 Because of the symmetry, there are actually two ways to
522 encode these instructions; with opcode bytes 0x29 and 0x2b
523 for `subl' and opcode bytes 0x31 and 0x33 for `xorl'.
524
525 Make sure we only skip these instructions if we later see the
526 `movl %esp, %ebp' that actually sets up the frame. */
527 while (op == 0x29 || op == 0x2b || op == 0x31 || op == 0x33)
528 {
529 op = read_memory_unsigned_integer (pc + skip + 2, 1);
530 switch (op)
531 {
532 case 0xdb: /* %ebx */
533 case 0xc9: /* %ecx */
534 case 0xd2: /* %edx */
535 case 0xc0: /* %eax */
536 skip += 2;
537 break;
538 default:
539 return pc + 1;
540 }
541
542 op = read_memory_unsigned_integer (pc + skip + 1, 1);
543 }
544
545 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
546 switch (op)
547 {
548 case 0x8b:
549 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xec)
550 return pc + 1;
551 break;
552 case 0x89:
553 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xe5)
554 return pc + 1;
555 break;
556 default:
557 return pc + 1;
558 }
559
560 /* OK, we actually have a frame. We just don't know how large
561 it is yet. Set its size to zero. We'll adjust it if
562 necessary. We also now commit to skipping the special
563 instructions mentioned before. */
564 cache->locals = 0;
565 pc += skip;
566
567 /* If that's all, return now. */
568 if (current_pc <= pc + 3)
569 return current_pc;
570
571 /* Check for stack adjustment
572
573 subl $XXX, %esp
574
575 NOTE: You can't subtract a 16-bit immediate from a 32-bit
576 reg, so we don't have to worry about a data16 prefix. */
577 op = read_memory_unsigned_integer (pc + 3, 1);
578 if (op == 0x83)
579 {
580 /* `subl' with 8-bit immediate. */
581 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
582 /* Some instruction starting with 0x83 other than `subl'. */
583 return pc + 3;
584
585 /* `subl' with signed byte immediate (though it wouldn't make
586 sense to be negative). */
587 cache->locals = read_memory_integer (pc + 5, 1);
588 return pc + 6;
589 }
590 else if (op == 0x81)
591 {
592 /* Maybe it is `subl' with a 32-bit immediate. */
593 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
594 /* Some instruction starting with 0x81 other than `subl'. */
595 return pc + 3;
596
597 /* It is `subl' with a 32-bit immediate. */
598 cache->locals = read_memory_integer (pc + 5, 4);
599 return pc + 9;
600 }
601 else
602 {
603 /* Some instruction other than `subl'. */
604 return pc + 3;
605 }
606 }
607 else if (op == 0xc8) /* enter $XXX */
608 {
609 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
610 return pc + 4;
611 }
612
613 return pc;
614 }
615
616 /* Check whether PC points at code that saves registers on the stack.
617 If so, it updates CACHE and returns the address of the first
618 instruction after the register saves or CURRENT_PC, whichever is
619 smaller. Otherwise, return PC. */
620
621 static CORE_ADDR
622 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
623 struct i386_frame_cache *cache)
624 {
625 CORE_ADDR offset = 0;
626 unsigned char op;
627 int i;
628
629 if (cache->locals > 0)
630 offset -= cache->locals;
631 for (i = 0; i < 8 && pc < current_pc; i++)
632 {
633 op = read_memory_unsigned_integer (pc, 1);
634 if (op < 0x50 || op > 0x57)
635 break;
636
637 offset -= 4;
638 cache->saved_regs[op - 0x50] = offset;
639 cache->sp_offset += 4;
640 pc++;
641 }
642
643 return pc;
644 }
645
646 /* Do a full analysis of the prologue at PC and update CACHE
647 accordingly. Bail out early if CURRENT_PC is reached. Return the
648 address where the analysis stopped.
649
650 We handle these cases:
651
652 The startup sequence can be at the start of the function, or the
653 function can start with a branch to startup code at the end.
654
655 %ebp can be set up with either the 'enter' instruction, or "pushl
656 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
657 once used in the System V compiler).
658
659 Local space is allocated just below the saved %ebp by either the
660 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
661 16-bit unsigned argument for space to allocate, and the 'addl'
662 instruction could have either a signed byte, or 32-bit immediate.
663
664 Next, the registers used by this function are pushed. With the
665 System V compiler they will always be in the order: %edi, %esi,
666 %ebx (and sometimes a harmless bug causes it to also save but not
667 restore %eax); however, the code below is willing to see the pushes
668 in any order, and will handle up to 8 of them.
669
670 If the setup sequence is at the end of the function, then the next
671 instruction will be a branch back to the start. */
672
673 static CORE_ADDR
674 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
675 struct i386_frame_cache *cache)
676 {
677 pc = i386_follow_jump (pc);
678 pc = i386_analyze_struct_return (pc, current_pc, cache);
679 pc = i386_skip_probe (pc);
680 pc = i386_analyze_frame_setup (pc, current_pc, cache);
681 return i386_analyze_register_saves (pc, current_pc, cache);
682 }
683
684 /* Return PC of first real instruction. */
685
686 static CORE_ADDR
687 i386_skip_prologue (CORE_ADDR start_pc)
688 {
689 static unsigned char pic_pat[6] =
690 {
691 0xe8, 0, 0, 0, 0, /* call 0x0 */
692 0x5b, /* popl %ebx */
693 };
694 struct i386_frame_cache cache;
695 CORE_ADDR pc;
696 unsigned char op;
697 int i;
698
699 cache.locals = -1;
700 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
701 if (cache.locals < 0)
702 return start_pc;
703
704 /* Found valid frame setup. */
705
706 /* The native cc on SVR4 in -K PIC mode inserts the following code
707 to get the address of the global offset table (GOT) into register
708 %ebx:
709
710 call 0x0
711 popl %ebx
712 movl %ebx,x(%ebp) (optional)
713 addl y,%ebx
714
715 This code is with the rest of the prologue (at the end of the
716 function), so we have to skip it to get to the first real
717 instruction at the start of the function. */
718
719 for (i = 0; i < 6; i++)
720 {
721 op = read_memory_unsigned_integer (pc + i, 1);
722 if (pic_pat[i] != op)
723 break;
724 }
725 if (i == 6)
726 {
727 int delta = 6;
728
729 op = read_memory_unsigned_integer (pc + delta, 1);
730
731 if (op == 0x89) /* movl %ebx, x(%ebp) */
732 {
733 op = read_memory_unsigned_integer (pc + delta + 1, 1);
734
735 if (op == 0x5d) /* One byte offset from %ebp. */
736 delta += 3;
737 else if (op == 0x9d) /* Four byte offset from %ebp. */
738 delta += 6;
739 else /* Unexpected instruction. */
740 delta = 0;
741
742 op = read_memory_unsigned_integer (pc + delta, 1);
743 }
744
745 /* addl y,%ebx */
746 if (delta > 0 && op == 0x81
747 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
748 {
749 pc += delta + 6;
750 }
751 }
752
753 /* If the function starts with a branch (to startup code at the end)
754 the last instruction should bring us back to the first
755 instruction of the real code. */
756 if (i386_follow_jump (start_pc) != start_pc)
757 pc = i386_follow_jump (pc);
758
759 return pc;
760 }
761
762 /* This function is 64-bit safe. */
763
764 static CORE_ADDR
765 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
766 {
767 char buf[8];
768
769 frame_unwind_register (next_frame, PC_REGNUM, buf);
770 return extract_typed_address (buf, builtin_type_void_func_ptr);
771 }
772 \f
773
774 /* Normal frames. */
775
776 static struct i386_frame_cache *
777 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
778 {
779 struct i386_frame_cache *cache;
780 char buf[4];
781 int i;
782
783 if (*this_cache)
784 return *this_cache;
785
786 cache = i386_alloc_frame_cache ();
787 *this_cache = cache;
788
789 /* In principle, for normal frames, %ebp holds the frame pointer,
790 which holds the base address for the current stack frame.
791 However, for functions that don't need it, the frame pointer is
792 optional. For these "frameless" functions the frame pointer is
793 actually the frame pointer of the calling frame. Signal
794 trampolines are just a special case of a "frameless" function.
795 They (usually) share their frame pointer with the frame that was
796 in progress when the signal occurred. */
797
798 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
799 cache->base = extract_unsigned_integer (buf, 4);
800 if (cache->base == 0)
801 return cache;
802
803 /* For normal frames, %eip is stored at 4(%ebp). */
804 cache->saved_regs[I386_EIP_REGNUM] = 4;
805
806 cache->pc = frame_func_unwind (next_frame);
807 if (cache->pc != 0)
808 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
809
810 if (cache->locals < 0)
811 {
812 /* We didn't find a valid frame, which means that CACHE->base
813 currently holds the frame pointer for our calling frame. If
814 we're at the start of a function, or somewhere half-way its
815 prologue, the function's frame probably hasn't been fully
816 setup yet. Try to reconstruct the base address for the stack
817 frame by looking at the stack pointer. For truly "frameless"
818 functions this might work too. */
819
820 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
821 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
822 }
823
824 /* Now that we have the base address for the stack frame we can
825 calculate the value of %esp in the calling frame. */
826 cache->saved_sp = cache->base + 8;
827
828 /* Adjust all the saved registers such that they contain addresses
829 instead of offsets. */
830 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
831 if (cache->saved_regs[i] != -1)
832 cache->saved_regs[i] += cache->base;
833
834 return cache;
835 }
836
837 static void
838 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
839 struct frame_id *this_id)
840 {
841 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
842
843 /* This marks the outermost frame. */
844 if (cache->base == 0)
845 return;
846
847 /* See the end of i386_push_dummy_call. */
848 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
849 }
850
851 static void
852 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
853 int regnum, int *optimizedp,
854 enum lval_type *lvalp, CORE_ADDR *addrp,
855 int *realnump, void *valuep)
856 {
857 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
858
859 gdb_assert (regnum >= 0);
860
861 /* The System V ABI says that:
862
863 "The flags register contains the system flags, such as the
864 direction flag and the carry flag. The direction flag must be
865 set to the forward (that is, zero) direction before entry and
866 upon exit from a function. Other user flags have no specified
867 role in the standard calling sequence and are not preserved."
868
869 To guarantee the "upon exit" part of that statement we fake a
870 saved flags register that has its direction flag cleared.
871
872 Note that GCC doesn't seem to rely on the fact that the direction
873 flag is cleared after a function return; it always explicitly
874 clears the flag before operations where it matters.
875
876 FIXME: kettenis/20030316: I'm not quite sure whether this is the
877 right thing to do. The way we fake the flags register here makes
878 it impossible to change it. */
879
880 if (regnum == I386_EFLAGS_REGNUM)
881 {
882 *optimizedp = 0;
883 *lvalp = not_lval;
884 *addrp = 0;
885 *realnump = -1;
886 if (valuep)
887 {
888 ULONGEST val;
889
890 /* Clear the direction flag. */
891 val = frame_unwind_register_unsigned (next_frame,
892 I386_EFLAGS_REGNUM);
893 val &= ~(1 << 10);
894 store_unsigned_integer (valuep, 4, val);
895 }
896
897 return;
898 }
899
900 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
901 {
902 frame_register_unwind (next_frame, I386_EAX_REGNUM,
903 optimizedp, lvalp, addrp, realnump, valuep);
904 return;
905 }
906
907 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
908 {
909 *optimizedp = 0;
910 *lvalp = not_lval;
911 *addrp = 0;
912 *realnump = -1;
913 if (valuep)
914 {
915 /* Store the value. */
916 store_unsigned_integer (valuep, 4, cache->saved_sp);
917 }
918 return;
919 }
920
921 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
922 {
923 *optimizedp = 0;
924 *lvalp = lval_memory;
925 *addrp = cache->saved_regs[regnum];
926 *realnump = -1;
927 if (valuep)
928 {
929 /* Read the value in from memory. */
930 read_memory (*addrp, valuep,
931 register_size (current_gdbarch, regnum));
932 }
933 return;
934 }
935
936 frame_register_unwind (next_frame, regnum,
937 optimizedp, lvalp, addrp, realnump, valuep);
938 }
939
940 static const struct frame_unwind i386_frame_unwind =
941 {
942 NORMAL_FRAME,
943 i386_frame_this_id,
944 i386_frame_prev_register
945 };
946
947 static const struct frame_unwind *
948 i386_frame_sniffer (struct frame_info *next_frame)
949 {
950 return &i386_frame_unwind;
951 }
952 \f
953
954 /* Signal trampolines. */
955
956 static struct i386_frame_cache *
957 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
958 {
959 struct i386_frame_cache *cache;
960 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
961 CORE_ADDR addr;
962 char buf[4];
963
964 if (*this_cache)
965 return *this_cache;
966
967 cache = i386_alloc_frame_cache ();
968
969 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
970 cache->base = extract_unsigned_integer (buf, 4) - 4;
971
972 addr = tdep->sigcontext_addr (next_frame);
973 if (tdep->sc_reg_offset)
974 {
975 int i;
976
977 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
978
979 for (i = 0; i < tdep->sc_num_regs; i++)
980 if (tdep->sc_reg_offset[i] != -1)
981 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
982 }
983 else
984 {
985 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
986 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
987 }
988
989 *this_cache = cache;
990 return cache;
991 }
992
993 static void
994 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
995 struct frame_id *this_id)
996 {
997 struct i386_frame_cache *cache =
998 i386_sigtramp_frame_cache (next_frame, this_cache);
999
1000 /* See the end of i386_push_dummy_call. */
1001 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1002 }
1003
1004 static void
1005 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1006 void **this_cache,
1007 int regnum, int *optimizedp,
1008 enum lval_type *lvalp, CORE_ADDR *addrp,
1009 int *realnump, void *valuep)
1010 {
1011 /* Make sure we've initialized the cache. */
1012 i386_sigtramp_frame_cache (next_frame, this_cache);
1013
1014 i386_frame_prev_register (next_frame, this_cache, regnum,
1015 optimizedp, lvalp, addrp, realnump, valuep);
1016 }
1017
1018 static const struct frame_unwind i386_sigtramp_frame_unwind =
1019 {
1020 SIGTRAMP_FRAME,
1021 i386_sigtramp_frame_this_id,
1022 i386_sigtramp_frame_prev_register
1023 };
1024
1025 static const struct frame_unwind *
1026 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1027 {
1028 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1029
1030 /* We shouldn't even bother if we don't have a sigcontext_addr
1031 handler. */
1032 if (tdep->sigcontext_addr == NULL)
1033 return NULL;
1034
1035 if (tdep->sigtramp_p != NULL)
1036 {
1037 if (tdep->sigtramp_p (next_frame))
1038 return &i386_sigtramp_frame_unwind;
1039 }
1040
1041 if (tdep->sigtramp_start != 0)
1042 {
1043 CORE_ADDR pc = frame_pc_unwind (next_frame);
1044
1045 gdb_assert (tdep->sigtramp_end != 0);
1046 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1047 return &i386_sigtramp_frame_unwind;
1048 }
1049
1050 return NULL;
1051 }
1052 \f
1053
1054 static CORE_ADDR
1055 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1056 {
1057 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1058
1059 return cache->base;
1060 }
1061
1062 static const struct frame_base i386_frame_base =
1063 {
1064 &i386_frame_unwind,
1065 i386_frame_base_address,
1066 i386_frame_base_address,
1067 i386_frame_base_address
1068 };
1069
1070 static struct frame_id
1071 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1072 {
1073 char buf[4];
1074 CORE_ADDR fp;
1075
1076 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1077 fp = extract_unsigned_integer (buf, 4);
1078
1079 /* See the end of i386_push_dummy_call. */
1080 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1081 }
1082 \f
1083
1084 /* Figure out where the longjmp will land. Slurp the args out of the
1085 stack. We expect the first arg to be a pointer to the jmp_buf
1086 structure from which we extract the address that we will land at.
1087 This address is copied into PC. This routine returns non-zero on
1088 success.
1089
1090 This function is 64-bit safe. */
1091
1092 static int
1093 i386_get_longjmp_target (CORE_ADDR *pc)
1094 {
1095 char buf[8];
1096 CORE_ADDR sp, jb_addr;
1097 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
1098 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1099
1100 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1101 longjmp will land. */
1102 if (jb_pc_offset == -1)
1103 return 0;
1104
1105 /* Don't use I386_ESP_REGNUM here, since this function is also used
1106 for AMD64. */
1107 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1108 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1109 if (target_read_memory (sp + len, buf, len))
1110 return 0;
1111
1112 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1113 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1114 return 0;
1115
1116 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1117 return 1;
1118 }
1119 \f
1120
1121 static CORE_ADDR
1122 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1123 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1124 struct value **args, CORE_ADDR sp, int struct_return,
1125 CORE_ADDR struct_addr)
1126 {
1127 char buf[4];
1128 int i;
1129
1130 /* Push arguments in reverse order. */
1131 for (i = nargs - 1; i >= 0; i--)
1132 {
1133 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1134
1135 /* The System V ABI says that:
1136
1137 "An argument's size is increased, if necessary, to make it a
1138 multiple of [32-bit] words. This may require tail padding,
1139 depending on the size of the argument."
1140
1141 This makes sure the stack says word-aligned. */
1142 sp -= (len + 3) & ~3;
1143 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1144 }
1145
1146 /* Push value address. */
1147 if (struct_return)
1148 {
1149 sp -= 4;
1150 store_unsigned_integer (buf, 4, struct_addr);
1151 write_memory (sp, buf, 4);
1152 }
1153
1154 /* Store return address. */
1155 sp -= 4;
1156 store_unsigned_integer (buf, 4, bp_addr);
1157 write_memory (sp, buf, 4);
1158
1159 /* Finally, update the stack pointer... */
1160 store_unsigned_integer (buf, 4, sp);
1161 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1162
1163 /* ...and fake a frame pointer. */
1164 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1165
1166 /* MarkK wrote: This "+ 8" is all over the place:
1167 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1168 i386_unwind_dummy_id). It's there, since all frame unwinders for
1169 a given target have to agree (within a certain margin) on the
1170 definition of the stack address of a frame. Otherwise
1171 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1172 stack address *before* the function call as a frame's CFA. On
1173 the i386, when %ebp is used as a frame pointer, the offset
1174 between the contents %ebp and the CFA as defined by GCC. */
1175 return sp + 8;
1176 }
1177
1178 /* These registers are used for returning integers (and on some
1179 targets also for returning `struct' and `union' values when their
1180 size and alignment match an integer type). */
1181 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1182 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1183
1184 /* Read, for architecture GDBARCH, a function return value of TYPE
1185 from REGCACHE, and copy that into VALBUF. */
1186
1187 static void
1188 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1189 struct regcache *regcache, void *valbuf)
1190 {
1191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1192 int len = TYPE_LENGTH (type);
1193 char buf[I386_MAX_REGISTER_SIZE];
1194
1195 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1196 {
1197 if (tdep->st0_regnum < 0)
1198 {
1199 warning ("Cannot find floating-point return value.");
1200 memset (valbuf, 0, len);
1201 return;
1202 }
1203
1204 /* Floating-point return values can be found in %st(0). Convert
1205 its contents to the desired type. This is probably not
1206 exactly how it would happen on the target itself, but it is
1207 the best we can do. */
1208 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1209 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1210 }
1211 else
1212 {
1213 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1214 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1215
1216 if (len <= low_size)
1217 {
1218 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1219 memcpy (valbuf, buf, len);
1220 }
1221 else if (len <= (low_size + high_size))
1222 {
1223 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1224 memcpy (valbuf, buf, low_size);
1225 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1226 memcpy ((char *) valbuf + low_size, buf, len - low_size);
1227 }
1228 else
1229 internal_error (__FILE__, __LINE__,
1230 "Cannot extract return value of %d bytes long.", len);
1231 }
1232 }
1233
1234 /* Write, for architecture GDBARCH, a function return value of TYPE
1235 from VALBUF into REGCACHE. */
1236
1237 static void
1238 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1239 struct regcache *regcache, const void *valbuf)
1240 {
1241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1242 int len = TYPE_LENGTH (type);
1243
1244 /* Define I387_ST0_REGNUM such that we use the proper definitions
1245 for the architecture. */
1246 #define I387_ST0_REGNUM I386_ST0_REGNUM
1247
1248 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1249 {
1250 ULONGEST fstat;
1251 char buf[I386_MAX_REGISTER_SIZE];
1252
1253 if (tdep->st0_regnum < 0)
1254 {
1255 warning ("Cannot set floating-point return value.");
1256 return;
1257 }
1258
1259 /* Returning floating-point values is a bit tricky. Apart from
1260 storing the return value in %st(0), we have to simulate the
1261 state of the FPU at function return point. */
1262
1263 /* Convert the value found in VALBUF to the extended
1264 floating-point format used by the FPU. This is probably
1265 not exactly how it would happen on the target itself, but
1266 it is the best we can do. */
1267 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1268 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1269
1270 /* Set the top of the floating-point register stack to 7. The
1271 actual value doesn't really matter, but 7 is what a normal
1272 function return would end up with if the program started out
1273 with a freshly initialized FPU. */
1274 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1275 fstat |= (7 << 11);
1276 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1277
1278 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1279 the floating-point register stack to 7, the appropriate value
1280 for the tag word is 0x3fff. */
1281 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1282 }
1283 else
1284 {
1285 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1286 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1287
1288 if (len <= low_size)
1289 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1290 else if (len <= (low_size + high_size))
1291 {
1292 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1293 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1294 len - low_size, (char *) valbuf + low_size);
1295 }
1296 else
1297 internal_error (__FILE__, __LINE__,
1298 "Cannot store return value of %d bytes long.", len);
1299 }
1300
1301 #undef I387_ST0_REGNUM
1302 }
1303 \f
1304
1305 /* This is the variable that is set with "set struct-convention", and
1306 its legitimate values. */
1307 static const char default_struct_convention[] = "default";
1308 static const char pcc_struct_convention[] = "pcc";
1309 static const char reg_struct_convention[] = "reg";
1310 static const char *valid_conventions[] =
1311 {
1312 default_struct_convention,
1313 pcc_struct_convention,
1314 reg_struct_convention,
1315 NULL
1316 };
1317 static const char *struct_convention = default_struct_convention;
1318
1319 /* Return non-zero if TYPE, which is assumed to be a structure or
1320 union type, should be returned in registers for architecture
1321 GDBARCH. */
1322
1323 static int
1324 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1325 {
1326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1327 enum type_code code = TYPE_CODE (type);
1328 int len = TYPE_LENGTH (type);
1329
1330 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1331
1332 if (struct_convention == pcc_struct_convention
1333 || (struct_convention == default_struct_convention
1334 && tdep->struct_return == pcc_struct_return))
1335 return 0;
1336
1337 return (len == 1 || len == 2 || len == 4 || len == 8);
1338 }
1339
1340 /* Determine, for architecture GDBARCH, how a return value of TYPE
1341 should be returned. If it is supposed to be returned in registers,
1342 and READBUF is non-zero, read the appropriate value from REGCACHE,
1343 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1344 from WRITEBUF into REGCACHE. */
1345
1346 static enum return_value_convention
1347 i386_return_value (struct gdbarch *gdbarch, struct type *type,
1348 struct regcache *regcache, void *readbuf,
1349 const void *writebuf)
1350 {
1351 enum type_code code = TYPE_CODE (type);
1352
1353 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1354 && !i386_reg_struct_return_p (gdbarch, type))
1355 {
1356 /* The System V ABI says that:
1357
1358 "A function that returns a structure or union also sets %eax
1359 to the value of the original address of the caller's area
1360 before it returns. Thus when the caller receives control
1361 again, the address of the returned object resides in register
1362 %eax and can be used to access the object."
1363
1364 So the ABI guarantees that we can always find the return
1365 value just after the function has returned. */
1366
1367 if (readbuf)
1368 {
1369 ULONGEST addr;
1370
1371 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1372 read_memory (addr, readbuf, TYPE_LENGTH (type));
1373 }
1374
1375 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1376 }
1377
1378 /* This special case is for structures consisting of a single
1379 `float' or `double' member. These structures are returned in
1380 %st(0). For these structures, we call ourselves recursively,
1381 changing TYPE into the type of the first member of the structure.
1382 Since that should work for all structures that have only one
1383 member, we don't bother to check the member's type here. */
1384 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1385 {
1386 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1387 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1388 }
1389
1390 if (readbuf)
1391 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1392 if (writebuf)
1393 i386_store_return_value (gdbarch, type, regcache, writebuf);
1394
1395 return RETURN_VALUE_REGISTER_CONVENTION;
1396 }
1397 \f
1398
1399 /* Return the GDB type object for the "standard" data type of data in
1400 register REGNUM. Perhaps %esi and %edi should go here, but
1401 potentially they could be used for things other than address. */
1402
1403 static struct type *
1404 i386_register_type (struct gdbarch *gdbarch, int regnum)
1405 {
1406 if (regnum == I386_EIP_REGNUM
1407 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1408 return lookup_pointer_type (builtin_type_void);
1409
1410 if (i386_fp_regnum_p (regnum))
1411 return builtin_type_i387_ext;
1412
1413 if (i386_sse_regnum_p (gdbarch, regnum))
1414 return builtin_type_vec128i;
1415
1416 if (i386_mmx_regnum_p (gdbarch, regnum))
1417 return builtin_type_vec64i;
1418
1419 return builtin_type_int;
1420 }
1421
1422 /* Map a cooked register onto a raw register or memory. For the i386,
1423 the MMX registers need to be mapped onto floating point registers. */
1424
1425 static int
1426 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1427 {
1428 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1429 int mmxreg, fpreg;
1430 ULONGEST fstat;
1431 int tos;
1432
1433 /* Define I387_ST0_REGNUM such that we use the proper definitions
1434 for REGCACHE's architecture. */
1435 #define I387_ST0_REGNUM tdep->st0_regnum
1436
1437 mmxreg = regnum - tdep->mm0_regnum;
1438 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1439 tos = (fstat >> 11) & 0x7;
1440 fpreg = (mmxreg + tos) % 8;
1441
1442 return (I387_ST0_REGNUM + fpreg);
1443
1444 #undef I387_ST0_REGNUM
1445 }
1446
1447 static void
1448 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1449 int regnum, void *buf)
1450 {
1451 if (i386_mmx_regnum_p (gdbarch, regnum))
1452 {
1453 char mmx_buf[MAX_REGISTER_SIZE];
1454 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1455
1456 /* Extract (always little endian). */
1457 regcache_raw_read (regcache, fpnum, mmx_buf);
1458 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1459 }
1460 else
1461 regcache_raw_read (regcache, regnum, buf);
1462 }
1463
1464 static void
1465 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1466 int regnum, const void *buf)
1467 {
1468 if (i386_mmx_regnum_p (gdbarch, regnum))
1469 {
1470 char mmx_buf[MAX_REGISTER_SIZE];
1471 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1472
1473 /* Read ... */
1474 regcache_raw_read (regcache, fpnum, mmx_buf);
1475 /* ... Modify ... (always little endian). */
1476 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1477 /* ... Write. */
1478 regcache_raw_write (regcache, fpnum, mmx_buf);
1479 }
1480 else
1481 regcache_raw_write (regcache, regnum, buf);
1482 }
1483 \f
1484
1485 /* Return the register number of the register allocated by GCC after
1486 REGNUM, or -1 if there is no such register. */
1487
1488 static int
1489 i386_next_regnum (int regnum)
1490 {
1491 /* GCC allocates the registers in the order:
1492
1493 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1494
1495 Since storing a variable in %esp doesn't make any sense we return
1496 -1 for %ebp and for %esp itself. */
1497 static int next_regnum[] =
1498 {
1499 I386_EDX_REGNUM, /* Slot for %eax. */
1500 I386_EBX_REGNUM, /* Slot for %ecx. */
1501 I386_ECX_REGNUM, /* Slot for %edx. */
1502 I386_ESI_REGNUM, /* Slot for %ebx. */
1503 -1, -1, /* Slots for %esp and %ebp. */
1504 I386_EDI_REGNUM, /* Slot for %esi. */
1505 I386_EBP_REGNUM /* Slot for %edi. */
1506 };
1507
1508 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1509 return next_regnum[regnum];
1510
1511 return -1;
1512 }
1513
1514 /* Return nonzero if a value of type TYPE stored in register REGNUM
1515 needs any special handling. */
1516
1517 static int
1518 i386_convert_register_p (int regnum, struct type *type)
1519 {
1520 int len = TYPE_LENGTH (type);
1521
1522 /* Values may be spread across multiple registers. Most debugging
1523 formats aren't expressive enough to specify the locations, so
1524 some heuristics is involved. Right now we only handle types that
1525 have a length that is a multiple of the word size, since GCC
1526 doesn't seem to put any other types into registers. */
1527 if (len > 4 && len % 4 == 0)
1528 {
1529 int last_regnum = regnum;
1530
1531 while (len > 4)
1532 {
1533 last_regnum = i386_next_regnum (last_regnum);
1534 len -= 4;
1535 }
1536
1537 if (last_regnum != -1)
1538 return 1;
1539 }
1540
1541 return i386_fp_regnum_p (regnum);
1542 }
1543
1544 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1545 return its contents in TO. */
1546
1547 static void
1548 i386_register_to_value (struct frame_info *frame, int regnum,
1549 struct type *type, void *to)
1550 {
1551 int len = TYPE_LENGTH (type);
1552 char *buf = to;
1553
1554 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1555 available in FRAME (i.e. if it wasn't saved)? */
1556
1557 if (i386_fp_regnum_p (regnum))
1558 {
1559 i387_register_to_value (frame, regnum, type, to);
1560 return;
1561 }
1562
1563 /* Read a value spread across multiple registers. */
1564
1565 gdb_assert (len > 4 && len % 4 == 0);
1566
1567 while (len > 0)
1568 {
1569 gdb_assert (regnum != -1);
1570 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1571
1572 get_frame_register (frame, regnum, buf);
1573 regnum = i386_next_regnum (regnum);
1574 len -= 4;
1575 buf += 4;
1576 }
1577 }
1578
1579 /* Write the contents FROM of a value of type TYPE into register
1580 REGNUM in frame FRAME. */
1581
1582 static void
1583 i386_value_to_register (struct frame_info *frame, int regnum,
1584 struct type *type, const void *from)
1585 {
1586 int len = TYPE_LENGTH (type);
1587 const char *buf = from;
1588
1589 if (i386_fp_regnum_p (regnum))
1590 {
1591 i387_value_to_register (frame, regnum, type, from);
1592 return;
1593 }
1594
1595 /* Write a value spread across multiple registers. */
1596
1597 gdb_assert (len > 4 && len % 4 == 0);
1598
1599 while (len > 0)
1600 {
1601 gdb_assert (regnum != -1);
1602 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1603
1604 put_frame_register (frame, regnum, buf);
1605 regnum = i386_next_regnum (regnum);
1606 len -= 4;
1607 buf += 4;
1608 }
1609 }
1610 \f
1611 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1612 in the general-purpose register set REGSET to register cache
1613 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1614
1615 void
1616 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1617 int regnum, const void *gregs, size_t len)
1618 {
1619 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1620 const char *regs = gregs;
1621 int i;
1622
1623 gdb_assert (len == tdep->sizeof_gregset);
1624
1625 for (i = 0; i < tdep->gregset_num_regs; i++)
1626 {
1627 if ((regnum == i || regnum == -1)
1628 && tdep->gregset_reg_offset[i] != -1)
1629 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1630 }
1631 }
1632
1633 /* Collect register REGNUM from the register cache REGCACHE and store
1634 it in the buffer specified by GREGS and LEN as described by the
1635 general-purpose register set REGSET. If REGNUM is -1, do this for
1636 all registers in REGSET. */
1637
1638 void
1639 i386_collect_gregset (const struct regset *regset,
1640 const struct regcache *regcache,
1641 int regnum, void *gregs, size_t len)
1642 {
1643 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1644 char *regs = gregs;
1645 int i;
1646
1647 gdb_assert (len == tdep->sizeof_gregset);
1648
1649 for (i = 0; i < tdep->gregset_num_regs; i++)
1650 {
1651 if ((regnum == i || regnum == -1)
1652 && tdep->gregset_reg_offset[i] != -1)
1653 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1654 }
1655 }
1656
1657 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1658 in the floating-point register set REGSET to register cache
1659 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1660
1661 static void
1662 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1663 int regnum, const void *fpregs, size_t len)
1664 {
1665 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1666
1667 if (len == I387_SIZEOF_FXSAVE)
1668 {
1669 i387_supply_fxsave (regcache, regnum, fpregs);
1670 return;
1671 }
1672
1673 gdb_assert (len == tdep->sizeof_fpregset);
1674 i387_supply_fsave (regcache, regnum, fpregs);
1675 }
1676
1677 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1678 in the floating-point register set REGSET to register cache
1679 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1680
1681 static void
1682 i386_collect_fpregset (const struct regset *regset,
1683 const struct regcache *regcache,
1684 int regnum, void *fpregs, size_t len)
1685 {
1686 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1687
1688 if (len == I387_SIZEOF_FXSAVE)
1689 {
1690 i387_collect_fxsave (regcache, regnum, fpregs);
1691 return;
1692 }
1693
1694 gdb_assert (len == tdep->sizeof_fpregset);
1695 i387_collect_fsave (regcache, regnum, fpregs);
1696 }
1697
1698 /* Return the appropriate register set for the core section identified
1699 by SECT_NAME and SECT_SIZE. */
1700
1701 const struct regset *
1702 i386_regset_from_core_section (struct gdbarch *gdbarch,
1703 const char *sect_name, size_t sect_size)
1704 {
1705 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1706
1707 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1708 {
1709 if (tdep->gregset == NULL)
1710 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1711 i386_collect_gregset);
1712 return tdep->gregset;
1713 }
1714
1715 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1716 || (strcmp (sect_name, ".reg-xfp") == 0
1717 && sect_size == I387_SIZEOF_FXSAVE))
1718 {
1719 if (tdep->fpregset == NULL)
1720 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1721 i386_collect_fpregset);
1722 return tdep->fpregset;
1723 }
1724
1725 return NULL;
1726 }
1727 \f
1728
1729 #ifdef STATIC_TRANSFORM_NAME
1730 /* SunPRO encodes the static variables. This is not related to C++
1731 mangling, it is done for C too. */
1732
1733 char *
1734 sunpro_static_transform_name (char *name)
1735 {
1736 char *p;
1737 if (IS_STATIC_TRANSFORM_NAME (name))
1738 {
1739 /* For file-local statics there will be a period, a bunch of
1740 junk (the contents of which match a string given in the
1741 N_OPT), a period and the name. For function-local statics
1742 there will be a bunch of junk (which seems to change the
1743 second character from 'A' to 'B'), a period, the name of the
1744 function, and the name. So just skip everything before the
1745 last period. */
1746 p = strrchr (name, '.');
1747 if (p != NULL)
1748 name = p + 1;
1749 }
1750 return name;
1751 }
1752 #endif /* STATIC_TRANSFORM_NAME */
1753 \f
1754
1755 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1756
1757 CORE_ADDR
1758 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1759 {
1760 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1761 {
1762 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1763 struct minimal_symbol *indsym =
1764 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1765 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1766
1767 if (symname)
1768 {
1769 if (strncmp (symname, "__imp_", 6) == 0
1770 || strncmp (symname, "_imp_", 5) == 0)
1771 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1772 }
1773 }
1774 return 0; /* Not a trampoline. */
1775 }
1776 \f
1777
1778 /* Return whether the frame preceding NEXT_FRAME corresponds to a
1779 sigtramp routine. */
1780
1781 static int
1782 i386_sigtramp_p (struct frame_info *next_frame)
1783 {
1784 CORE_ADDR pc = frame_pc_unwind (next_frame);
1785 char *name;
1786
1787 find_pc_partial_function (pc, &name, NULL, NULL);
1788 return (name && strcmp ("_sigtramp", name) == 0);
1789 }
1790 \f
1791
1792 /* We have two flavours of disassembly. The machinery on this page
1793 deals with switching between those. */
1794
1795 static int
1796 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
1797 {
1798 gdb_assert (disassembly_flavor == att_flavor
1799 || disassembly_flavor == intel_flavor);
1800
1801 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1802 constified, cast to prevent a compiler warning. */
1803 info->disassembler_options = (char *) disassembly_flavor;
1804 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1805
1806 return print_insn_i386 (pc, info);
1807 }
1808 \f
1809
1810 /* There are a few i386 architecture variants that differ only
1811 slightly from the generic i386 target. For now, we don't give them
1812 their own source file, but include them here. As a consequence,
1813 they'll always be included. */
1814
1815 /* System V Release 4 (SVR4). */
1816
1817 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
1818 sigtramp routine. */
1819
1820 static int
1821 i386_svr4_sigtramp_p (struct frame_info *next_frame)
1822 {
1823 CORE_ADDR pc = frame_pc_unwind (next_frame);
1824 char *name;
1825
1826 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1827 currently unknown. */
1828 find_pc_partial_function (pc, &name, NULL, NULL);
1829 return (name && (strcmp ("_sigreturn", name) == 0
1830 || strcmp ("_sigacthandler", name) == 0
1831 || strcmp ("sigvechandler", name) == 0));
1832 }
1833
1834 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1835 routine, return the address of the associated sigcontext (ucontext)
1836 structure. */
1837
1838 static CORE_ADDR
1839 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
1840 {
1841 char buf[4];
1842 CORE_ADDR sp;
1843
1844 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1845 sp = extract_unsigned_integer (buf, 4);
1846
1847 return read_memory_unsigned_integer (sp + 8, 4);
1848 }
1849 \f
1850
1851 /* Generic ELF. */
1852
1853 void
1854 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1855 {
1856 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
1857 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
1858 }
1859
1860 /* System V Release 4 (SVR4). */
1861
1862 void
1863 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1864 {
1865 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1866
1867 /* System V Release 4 uses ELF. */
1868 i386_elf_init_abi (info, gdbarch);
1869
1870 /* System V Release 4 has shared libraries. */
1871 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1872 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1873
1874 tdep->sigtramp_p = i386_svr4_sigtramp_p;
1875 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1876 tdep->sc_pc_offset = 36 + 14 * 4;
1877 tdep->sc_sp_offset = 36 + 17 * 4;
1878
1879 tdep->jb_pc_offset = 20;
1880 }
1881
1882 /* DJGPP. */
1883
1884 static void
1885 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1886 {
1887 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1888
1889 /* DJGPP doesn't have any special frames for signal handlers. */
1890 tdep->sigtramp_p = NULL;
1891
1892 tdep->jb_pc_offset = 36;
1893 }
1894
1895 /* NetWare. */
1896
1897 static void
1898 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1899 {
1900 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1901
1902 tdep->jb_pc_offset = 24;
1903 }
1904 \f
1905
1906 /* i386 register groups. In addition to the normal groups, add "mmx"
1907 and "sse". */
1908
1909 static struct reggroup *i386_sse_reggroup;
1910 static struct reggroup *i386_mmx_reggroup;
1911
1912 static void
1913 i386_init_reggroups (void)
1914 {
1915 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1916 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1917 }
1918
1919 static void
1920 i386_add_reggroups (struct gdbarch *gdbarch)
1921 {
1922 reggroup_add (gdbarch, i386_sse_reggroup);
1923 reggroup_add (gdbarch, i386_mmx_reggroup);
1924 reggroup_add (gdbarch, general_reggroup);
1925 reggroup_add (gdbarch, float_reggroup);
1926 reggroup_add (gdbarch, all_reggroup);
1927 reggroup_add (gdbarch, save_reggroup);
1928 reggroup_add (gdbarch, restore_reggroup);
1929 reggroup_add (gdbarch, vector_reggroup);
1930 reggroup_add (gdbarch, system_reggroup);
1931 }
1932
1933 int
1934 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1935 struct reggroup *group)
1936 {
1937 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
1938 || i386_mxcsr_regnum_p (gdbarch, regnum));
1939 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1940 || i386_fpc_regnum_p (regnum));
1941 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
1942
1943 if (group == i386_mmx_reggroup)
1944 return mmx_regnum_p;
1945 if (group == i386_sse_reggroup)
1946 return sse_regnum_p;
1947 if (group == vector_reggroup)
1948 return (mmx_regnum_p || sse_regnum_p);
1949 if (group == float_reggroup)
1950 return fp_regnum_p;
1951 if (group == general_reggroup)
1952 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1953
1954 return default_register_reggroup_p (gdbarch, regnum, group);
1955 }
1956 \f
1957
1958 /* Get the ARGIth function argument for the current function. */
1959
1960 static CORE_ADDR
1961 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1962 struct type *type)
1963 {
1964 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
1965 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
1966 }
1967
1968 \f
1969 static struct gdbarch *
1970 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1971 {
1972 struct gdbarch_tdep *tdep;
1973 struct gdbarch *gdbarch;
1974
1975 /* If there is already a candidate, use it. */
1976 arches = gdbarch_list_lookup_by_info (arches, &info);
1977 if (arches != NULL)
1978 return arches->gdbarch;
1979
1980 /* Allocate space for the new architecture. */
1981 tdep = XMALLOC (struct gdbarch_tdep);
1982 gdbarch = gdbarch_alloc (&info, tdep);
1983
1984 /* General-purpose registers. */
1985 tdep->gregset = NULL;
1986 tdep->gregset_reg_offset = NULL;
1987 tdep->gregset_num_regs = I386_NUM_GREGS;
1988 tdep->sizeof_gregset = 0;
1989
1990 /* Floating-point registers. */
1991 tdep->fpregset = NULL;
1992 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
1993
1994 /* The default settings include the FPU registers, the MMX registers
1995 and the SSE registers. This can be overridden for a specific ABI
1996 by adjusting the members `st0_regnum', `mm0_regnum' and
1997 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
1998 will show up in the output of "info all-registers". Ideally we
1999 should try to autodetect whether they are available, such that we
2000 can prevent "info all-registers" from displaying registers that
2001 aren't available.
2002
2003 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2004 [the SSE registers] always (even when they don't exist) or never
2005 showing them to the user (even when they do exist), I prefer the
2006 former over the latter. */
2007
2008 tdep->st0_regnum = I386_ST0_REGNUM;
2009
2010 /* The MMX registers are implemented as pseudo-registers. Put off
2011 calculating the register number for %mm0 until we know the number
2012 of raw registers. */
2013 tdep->mm0_regnum = 0;
2014
2015 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2016 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2017
2018 tdep->jb_pc_offset = -1;
2019 tdep->struct_return = pcc_struct_return;
2020 tdep->sigtramp_start = 0;
2021 tdep->sigtramp_end = 0;
2022 tdep->sigtramp_p = i386_sigtramp_p;
2023 tdep->sigcontext_addr = NULL;
2024 tdep->sc_reg_offset = NULL;
2025 tdep->sc_pc_offset = -1;
2026 tdep->sc_sp_offset = -1;
2027
2028 /* The format used for `long double' on almost all i386 targets is
2029 the i387 extended floating-point format. In fact, of all targets
2030 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2031 on having a `long double' that's not `long' at all. */
2032 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
2033
2034 /* Although the i387 extended floating-point has only 80 significant
2035 bits, a `long double' actually takes up 96, probably to enforce
2036 alignment. */
2037 set_gdbarch_long_double_bit (gdbarch, 96);
2038
2039 /* The default ABI includes general-purpose registers,
2040 floating-point registers, and the SSE registers. */
2041 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2042 set_gdbarch_register_name (gdbarch, i386_register_name);
2043 set_gdbarch_register_type (gdbarch, i386_register_type);
2044
2045 /* Register numbers of various important registers. */
2046 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2047 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2048 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2049 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2050
2051 /* NOTE: kettenis/20040418: GCC does have two possible register
2052 numbering schemes on the i386: dbx and SVR4. These schemes
2053 differ in how they number %ebp, %esp, %eflags, and the
2054 floating-point registers, and are implemented by the arrays
2055 dbx_register_map[] and svr4_dbx_register_map in
2056 gcc/config/i386.c. GCC also defines a third numbering scheme in
2057 gcc/config/i386.c, which it designates as the "default" register
2058 map used in 64bit mode. This last register numbering scheme is
2059 implemented in dbx64_register_map, and is used for AMD64; see
2060 amd64-tdep.c.
2061
2062 Currently, each GCC i386 target always uses the same register
2063 numbering scheme across all its supported debugging formats
2064 i.e. SDB (COFF), stabs and DWARF 2. This is because
2065 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2066 DBX_REGISTER_NUMBER macro which is defined by each target's
2067 respective config header in a manner independent of the requested
2068 output debugging format.
2069
2070 This does not match the arrangement below, which presumes that
2071 the SDB and stabs numbering schemes differ from the DWARF and
2072 DWARF 2 ones. The reason for this arrangement is that it is
2073 likely to get the numbering scheme for the target's
2074 default/native debug format right. For targets where GCC is the
2075 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2076 targets where the native toolchain uses a different numbering
2077 scheme for a particular debug format (stabs-in-ELF on Solaris)
2078 the defaults below will have to be overridden, like
2079 i386_elf_init_abi() does. */
2080
2081 /* Use the dbx register numbering scheme for stabs and COFF. */
2082 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2083 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2084
2085 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2086 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2087 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2088
2089 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2090 be in use on any of the supported i386 targets. */
2091
2092 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2093
2094 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2095
2096 /* Call dummy code. */
2097 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2098
2099 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2100 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2101 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2102
2103 set_gdbarch_return_value (gdbarch, i386_return_value);
2104
2105 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2106
2107 /* Stack grows downward. */
2108 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2109
2110 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2111 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2112
2113 set_gdbarch_frame_args_skip (gdbarch, 8);
2114
2115 /* Wire in the MMX registers. */
2116 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2117 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2118 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2119
2120 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2121
2122 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2123
2124 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2125
2126 /* Add the i386 register groups. */
2127 i386_add_reggroups (gdbarch);
2128 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2129
2130 /* Helper for function argument information. */
2131 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2132
2133 /* Hook in the DWARF CFI frame unwinder. */
2134 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2135
2136 frame_base_set_default (gdbarch, &i386_frame_base);
2137
2138 /* Hook in ABI-specific overrides, if they have been registered. */
2139 gdbarch_init_osabi (info, gdbarch);
2140
2141 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2142 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2143
2144 /* If we have a register mapping, enable the generic core file
2145 support, unless it has already been enabled. */
2146 if (tdep->gregset_reg_offset
2147 && !gdbarch_regset_from_core_section_p (gdbarch))
2148 set_gdbarch_regset_from_core_section (gdbarch,
2149 i386_regset_from_core_section);
2150
2151 /* Unless support for MMX has been disabled, make %mm0 the first
2152 pseudo-register. */
2153 if (tdep->mm0_regnum == 0)
2154 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2155
2156 return gdbarch;
2157 }
2158
2159 static enum gdb_osabi
2160 i386_coff_osabi_sniffer (bfd *abfd)
2161 {
2162 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2163 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2164 return GDB_OSABI_GO32;
2165
2166 return GDB_OSABI_UNKNOWN;
2167 }
2168
2169 static enum gdb_osabi
2170 i386_nlm_osabi_sniffer (bfd *abfd)
2171 {
2172 return GDB_OSABI_NETWARE;
2173 }
2174 \f
2175
2176 /* Provide a prototype to silence -Wmissing-prototypes. */
2177 void _initialize_i386_tdep (void);
2178
2179 void
2180 _initialize_i386_tdep (void)
2181 {
2182 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2183
2184 /* Add the variable that controls the disassembly flavor. */
2185 {
2186 struct cmd_list_element *new_cmd;
2187
2188 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2189 valid_flavors,
2190 &disassembly_flavor,
2191 "\
2192 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
2193 and the default value is \"att\".",
2194 &setlist);
2195 add_show_from_set (new_cmd, &showlist);
2196 }
2197
2198 /* Add the variable that controls the convention for returning
2199 structs. */
2200 {
2201 struct cmd_list_element *new_cmd;
2202
2203 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
2204 valid_conventions,
2205 &struct_convention, "\
2206 Set the convention for returning small structs, valid values \
2207 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
2208 &setlist);
2209 add_show_from_set (new_cmd, &showlist);
2210 }
2211
2212 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2213 i386_coff_osabi_sniffer);
2214 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2215 i386_nlm_osabi_sniffer);
2216
2217 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2218 i386_svr4_init_abi);
2219 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2220 i386_go32_init_abi);
2221 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
2222 i386_nw_init_abi);
2223
2224 /* Initialize the i386 specific register groups. */
2225 i386_init_reggroups ();
2226 }
This page took 0.102274 seconds and 4 git commands to generate.