2011-02-26 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46 #include "disasm.h"
47 #include "remote.h"
48
49 #include "gdb_assert.h"
50 #include "gdb_string.h"
51
52 #include "i386-tdep.h"
53 #include "i387-tdep.h"
54 #include "i386-xstate.h"
55
56 #include "record.h"
57 #include <stdint.h>
58
59 #include "features/i386/i386.c"
60 #include "features/i386/i386-avx.c"
61 #include "features/i386/i386-mmx.c"
62
63 /* Register names. */
64
65 static const char *i386_register_names[] =
66 {
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78 };
79
80 static const char *i386_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 };
85
86 static const char *i386_ymmh_names[] =
87 {
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90 };
91
92 /* Register names for MMX pseudo-registers. */
93
94 static const char *i386_mmx_names[] =
95 {
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98 };
99
100 /* Register names for byte pseudo-registers. */
101
102 static const char *i386_byte_names[] =
103 {
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106 };
107
108 /* Register names for word pseudo-registers. */
109
110 static const char *i386_word_names[] =
111 {
112 "ax", "cx", "dx", "bx",
113 "", "bp", "si", "di"
114 };
115
116 /* MMX register? */
117
118 static int
119 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
120 {
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
123
124 if (mm0_regnum < 0)
125 return 0;
126
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129 }
130
131 /* Byte register? */
132
133 int
134 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140 }
141
142 /* Word register? */
143
144 int
145 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151 }
152
153 /* Dword register? */
154
155 int
156 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
166 }
167
168 static int
169 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179 }
180
181 /* AVX register? */
182
183 int
184 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194 }
195
196 /* SSE register? */
197
198 int
199 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
200 {
201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
203
204 if (num_xmm_regs == 0)
205 return 0;
206
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
209 }
210
211 static int
212 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 if (I387_NUM_XMM_REGS (tdep) == 0)
217 return 0;
218
219 return (regnum == I387_MXCSR_REGNUM (tdep));
220 }
221
222 /* FP register? */
223
224 int
225 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
226 {
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
230 return 0;
231
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
234 }
235
236 int
237 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
238 {
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
242 return 0;
243
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
246 }
247
248 /* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251 static const char *
252 i386_register_name (struct gdbarch *gdbarch, int regnum)
253 {
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259 }
260
261 /* Return the name of register REGNUM. */
262
263 const char *
264 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265 {
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
277 }
278
279 /* Convert a dbx register number REG to the appropriate register
280 number used by GDB. */
281
282 static int
283 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
290 if (reg >= 0 && reg <= 7)
291 {
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
303 return reg - 12 + I387_ST0_REGNUM (tdep);
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
319 return reg - 29 + I387_MM0_REGNUM (tdep);
320 }
321
322 /* This will hopefully provoke a warning. */
323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
324 }
325
326 /* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
328
329 static int
330 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
341 /* General-purpose registers. */
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
347 return reg - 11 + I387_ST0_REGNUM (tdep);
348 }
349 else if (reg >= 21 && reg <= 36)
350 {
351 /* The SSE and MMX registers have the same numbers as with dbx. */
352 return i386_dbx_reg_to_regnum (gdbarch, reg);
353 }
354
355 switch (reg)
356 {
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
368 /* This will hopefully provoke a warning. */
369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
370 }
371
372 \f
373
374 /* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
376 static const char att_flavor[] = "att";
377 static const char intel_flavor[] = "intel";
378 static const char *valid_flavors[] =
379 {
380 att_flavor,
381 intel_flavor,
382 NULL
383 };
384 static const char *disassembly_flavor = att_flavor;
385 \f
386
387 /* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
392
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
395
396 This function is 64-bit safe. */
397
398 static const gdb_byte *
399 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
400 {
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
403 *len = sizeof (break_insn);
404 return break_insn;
405 }
406 \f
407 /* Displaced instruction handling. */
408
409 /* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415 static gdb_byte *
416 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417 {
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443 }
444
445 static int
446 i386_absolute_jmp_p (const gdb_byte *insn)
447 {
448 /* jmp far (absolute address in operand). */
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
454 /* jump near, absolute indirect (/4). */
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
458 /* jump far, absolute indirect (/5). */
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464 }
465
466 static int
467 i386_absolute_call_p (const gdb_byte *insn)
468 {
469 /* call far, absolute. */
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
475 /* Call near, absolute indirect (/2). */
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
479 /* Call far, absolute indirect (/3). */
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485 }
486
487 static int
488 i386_ret_p (const gdb_byte *insn)
489 {
490 switch (insn[0])
491 {
492 case 0xc2: /* ret near, pop N bytes. */
493 case 0xc3: /* ret near */
494 case 0xca: /* ret far, pop N bytes. */
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502 }
503
504 static int
505 i386_call_p (const gdb_byte *insn)
506 {
507 if (i386_absolute_call_p (insn))
508 return 1;
509
510 /* call near, relative. */
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515 }
516
517 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
519
520 static int
521 i386_syscall_p (const gdb_byte *insn, int *lengthp)
522 {
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530 }
531
532 /* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535 struct displaced_step_closure *
536 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539 {
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567 }
568
569 /* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
571
572 void
573 i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577 {
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
594 "displaced: fixup (%s, %s), "
595 "insn = 0x%02x 0x%02x ...\n",
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
627 int insn_len;
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
701 }
702 }
703
704 static void
705 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706 {
707 target_write_memory (*to, buf, len);
708 *to += len;
709 }
710
711 static void
712 i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714 {
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
739 push_buf[0] = 0x68; /* pushq $... */
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
750 store_signed_integer (insn + 1, 4, newrel, byte_order);
751
752 /* Write the adjusted jump into its displaced location. */
753 append_insns (to, 5, insn);
754 return;
755 }
756
757 /* Adjust jumps with 32-bit relative addresses. Calls are already
758 handled above. */
759 if (insn[0] == 0xe9)
760 offset = 1;
761 /* Adjust conditional jumps. */
762 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
763 offset = 2;
764
765 if (offset)
766 {
767 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
768 newrel = (oldloc - *to) + rel32;
769 store_signed_integer (insn + offset, 4, newrel, byte_order);
770 if (debug_displaced)
771 fprintf_unfiltered (gdb_stdlog,
772 "Adjusted insn rel32=0x%s at 0x%s to"
773 " rel32=0x%s at 0x%s\n",
774 hex_string (rel32), paddress (gdbarch, oldloc),
775 hex_string (newrel), paddress (gdbarch, *to));
776 }
777
778 /* Write the adjusted instructions into their displaced
779 location. */
780 append_insns (to, insn_length, buf);
781 }
782
783 \f
784 #ifdef I386_REGNO_TO_SYMMETRY
785 #error "The Sequent Symmetry is no longer supported."
786 #endif
787
788 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
789 and %esp "belong" to the calling function. Therefore these
790 registers should be saved if they're going to be modified. */
791
792 /* The maximum number of saved registers. This should include all
793 registers mentioned above, and %eip. */
794 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
795
796 struct i386_frame_cache
797 {
798 /* Base address. */
799 CORE_ADDR base;
800 LONGEST sp_offset;
801 CORE_ADDR pc;
802
803 /* Saved registers. */
804 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
805 CORE_ADDR saved_sp;
806 int saved_sp_reg;
807 int pc_in_eax;
808
809 /* Stack space reserved for local variables. */
810 long locals;
811 };
812
813 /* Allocate and initialize a frame cache. */
814
815 static struct i386_frame_cache *
816 i386_alloc_frame_cache (void)
817 {
818 struct i386_frame_cache *cache;
819 int i;
820
821 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
822
823 /* Base address. */
824 cache->base = 0;
825 cache->sp_offset = -4;
826 cache->pc = 0;
827
828 /* Saved registers. We initialize these to -1 since zero is a valid
829 offset (that's where %ebp is supposed to be stored). */
830 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
831 cache->saved_regs[i] = -1;
832 cache->saved_sp = 0;
833 cache->saved_sp_reg = -1;
834 cache->pc_in_eax = 0;
835
836 /* Frameless until proven otherwise. */
837 cache->locals = -1;
838
839 return cache;
840 }
841
842 /* If the instruction at PC is a jump, return the address of its
843 target. Otherwise, return PC. */
844
845 static CORE_ADDR
846 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849 gdb_byte op;
850 long delta = 0;
851 int data16 = 0;
852
853 target_read_memory (pc, &op, 1);
854 if (op == 0x66)
855 {
856 data16 = 1;
857 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
858 }
859
860 switch (op)
861 {
862 case 0xe9:
863 /* Relative jump: if data16 == 0, disp32, else disp16. */
864 if (data16)
865 {
866 delta = read_memory_integer (pc + 2, 2, byte_order);
867
868 /* Include the size of the jmp instruction (including the
869 0x66 prefix). */
870 delta += 4;
871 }
872 else
873 {
874 delta = read_memory_integer (pc + 1, 4, byte_order);
875
876 /* Include the size of the jmp instruction. */
877 delta += 5;
878 }
879 break;
880 case 0xeb:
881 /* Relative jump, disp8 (ignore data16). */
882 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
883
884 delta += data16 + 2;
885 break;
886 }
887
888 return pc + delta;
889 }
890
891 /* Check whether PC points at a prologue for a function returning a
892 structure or union. If so, it updates CACHE and returns the
893 address of the first instruction after the code sequence that
894 removes the "hidden" argument from the stack or CURRENT_PC,
895 whichever is smaller. Otherwise, return PC. */
896
897 static CORE_ADDR
898 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
899 struct i386_frame_cache *cache)
900 {
901 /* Functions that return a structure or union start with:
902
903 popl %eax 0x58
904 xchgl %eax, (%esp) 0x87 0x04 0x24
905 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
906
907 (the System V compiler puts out the second `xchg' instruction,
908 and the assembler doesn't try to optimize it, so the 'sib' form
909 gets generated). This sequence is used to get the address of the
910 return buffer for a function that returns a structure. */
911 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
912 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
913 gdb_byte buf[4];
914 gdb_byte op;
915
916 if (current_pc <= pc)
917 return pc;
918
919 target_read_memory (pc, &op, 1);
920
921 if (op != 0x58) /* popl %eax */
922 return pc;
923
924 target_read_memory (pc + 1, buf, 4);
925 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
926 return pc;
927
928 if (current_pc == pc)
929 {
930 cache->sp_offset += 4;
931 return current_pc;
932 }
933
934 if (current_pc == pc + 1)
935 {
936 cache->pc_in_eax = 1;
937 return current_pc;
938 }
939
940 if (buf[1] == proto1[1])
941 return pc + 4;
942 else
943 return pc + 5;
944 }
945
946 static CORE_ADDR
947 i386_skip_probe (CORE_ADDR pc)
948 {
949 /* A function may start with
950
951 pushl constant
952 call _probe
953 addl $4, %esp
954
955 followed by
956
957 pushl %ebp
958
959 etc. */
960 gdb_byte buf[8];
961 gdb_byte op;
962
963 target_read_memory (pc, &op, 1);
964
965 if (op == 0x68 || op == 0x6a)
966 {
967 int delta;
968
969 /* Skip past the `pushl' instruction; it has either a one-byte or a
970 four-byte operand, depending on the opcode. */
971 if (op == 0x68)
972 delta = 5;
973 else
974 delta = 2;
975
976 /* Read the following 8 bytes, which should be `call _probe' (6
977 bytes) followed by `addl $4,%esp' (2 bytes). */
978 read_memory (pc + delta, buf, sizeof (buf));
979 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
980 pc += delta + sizeof (buf);
981 }
982
983 return pc;
984 }
985
986 /* GCC 4.1 and later, can put code in the prologue to realign the
987 stack pointer. Check whether PC points to such code, and update
988 CACHE accordingly. Return the first instruction after the code
989 sequence or CURRENT_PC, whichever is smaller. If we don't
990 recognize the code, return PC. */
991
992 static CORE_ADDR
993 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
994 struct i386_frame_cache *cache)
995 {
996 /* There are 2 code sequences to re-align stack before the frame
997 gets set up:
998
999 1. Use a caller-saved saved register:
1000
1001 leal 4(%esp), %reg
1002 andl $-XXX, %esp
1003 pushl -4(%reg)
1004
1005 2. Use a callee-saved saved register:
1006
1007 pushl %reg
1008 leal 8(%esp), %reg
1009 andl $-XXX, %esp
1010 pushl -4(%reg)
1011
1012 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1013
1014 0x83 0xe4 0xf0 andl $-16, %esp
1015 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1016 */
1017
1018 gdb_byte buf[14];
1019 int reg;
1020 int offset, offset_and;
1021 static int regnums[8] = {
1022 I386_EAX_REGNUM, /* %eax */
1023 I386_ECX_REGNUM, /* %ecx */
1024 I386_EDX_REGNUM, /* %edx */
1025 I386_EBX_REGNUM, /* %ebx */
1026 I386_ESP_REGNUM, /* %esp */
1027 I386_EBP_REGNUM, /* %ebp */
1028 I386_ESI_REGNUM, /* %esi */
1029 I386_EDI_REGNUM /* %edi */
1030 };
1031
1032 if (target_read_memory (pc, buf, sizeof buf))
1033 return pc;
1034
1035 /* Check caller-saved saved register. The first instruction has
1036 to be "leal 4(%esp), %reg". */
1037 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1038 {
1039 /* MOD must be binary 10 and R/M must be binary 100. */
1040 if ((buf[1] & 0xc7) != 0x44)
1041 return pc;
1042
1043 /* REG has register number. */
1044 reg = (buf[1] >> 3) & 7;
1045 offset = 4;
1046 }
1047 else
1048 {
1049 /* Check callee-saved saved register. The first instruction
1050 has to be "pushl %reg". */
1051 if ((buf[0] & 0xf8) != 0x50)
1052 return pc;
1053
1054 /* Get register. */
1055 reg = buf[0] & 0x7;
1056
1057 /* The next instruction has to be "leal 8(%esp), %reg". */
1058 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1059 return pc;
1060
1061 /* MOD must be binary 10 and R/M must be binary 100. */
1062 if ((buf[2] & 0xc7) != 0x44)
1063 return pc;
1064
1065 /* REG has register number. Registers in pushl and leal have to
1066 be the same. */
1067 if (reg != ((buf[2] >> 3) & 7))
1068 return pc;
1069
1070 offset = 5;
1071 }
1072
1073 /* Rigister can't be %esp nor %ebp. */
1074 if (reg == 4 || reg == 5)
1075 return pc;
1076
1077 /* The next instruction has to be "andl $-XXX, %esp". */
1078 if (buf[offset + 1] != 0xe4
1079 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1080 return pc;
1081
1082 offset_and = offset;
1083 offset += buf[offset] == 0x81 ? 6 : 3;
1084
1085 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1086 0xfc. REG must be binary 110 and MOD must be binary 01. */
1087 if (buf[offset] != 0xff
1088 || buf[offset + 2] != 0xfc
1089 || (buf[offset + 1] & 0xf8) != 0x70)
1090 return pc;
1091
1092 /* R/M has register. Registers in leal and pushl have to be the
1093 same. */
1094 if (reg != (buf[offset + 1] & 7))
1095 return pc;
1096
1097 if (current_pc > pc + offset_and)
1098 cache->saved_sp_reg = regnums[reg];
1099
1100 return min (pc + offset + 3, current_pc);
1101 }
1102
1103 /* Maximum instruction length we need to handle. */
1104 #define I386_MAX_MATCHED_INSN_LEN 6
1105
1106 /* Instruction description. */
1107 struct i386_insn
1108 {
1109 size_t len;
1110 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1111 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1112 };
1113
1114 /* Search for the instruction at PC in the list SKIP_INSNS. Return
1115 the first instruction description that matches. Otherwise, return
1116 NULL. */
1117
1118 static struct i386_insn *
1119 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1120 {
1121 struct i386_insn *insn;
1122 gdb_byte op;
1123
1124 target_read_memory (pc, &op, 1);
1125
1126 for (insn = skip_insns; insn->len > 0; insn++)
1127 {
1128 if ((op & insn->mask[0]) == insn->insn[0])
1129 {
1130 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1131 int insn_matched = 1;
1132 size_t i;
1133
1134 gdb_assert (insn->len > 1);
1135 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
1136
1137 target_read_memory (pc + 1, buf, insn->len - 1);
1138 for (i = 1; i < insn->len; i++)
1139 {
1140 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
1141 insn_matched = 0;
1142 }
1143
1144 if (insn_matched)
1145 return insn;
1146 }
1147 }
1148
1149 return NULL;
1150 }
1151
1152 /* Some special instructions that might be migrated by GCC into the
1153 part of the prologue that sets up the new stack frame. Because the
1154 stack frame hasn't been setup yet, no registers have been saved
1155 yet, and only the scratch registers %eax, %ecx and %edx can be
1156 touched. */
1157
1158 struct i386_insn i386_frame_setup_skip_insns[] =
1159 {
1160 /* Check for `movb imm8, r' and `movl imm32, r'.
1161
1162 ??? Should we handle 16-bit operand-sizes here? */
1163
1164 /* `movb imm8, %al' and `movb imm8, %ah' */
1165 /* `movb imm8, %cl' and `movb imm8, %ch' */
1166 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1167 /* `movb imm8, %dl' and `movb imm8, %dh' */
1168 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1169 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1170 { 5, { 0xb8 }, { 0xfe } },
1171 /* `movl imm32, %edx' */
1172 { 5, { 0xba }, { 0xff } },
1173
1174 /* Check for `mov imm32, r32'. Note that there is an alternative
1175 encoding for `mov m32, %eax'.
1176
1177 ??? Should we handle SIB adressing here?
1178 ??? Should we handle 16-bit operand-sizes here? */
1179
1180 /* `movl m32, %eax' */
1181 { 5, { 0xa1 }, { 0xff } },
1182 /* `movl m32, %eax' and `mov; m32, %ecx' */
1183 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1184 /* `movl m32, %edx' */
1185 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1186
1187 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1188 Because of the symmetry, there are actually two ways to encode
1189 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1190 opcode bytes 0x31 and 0x33 for `xorl'. */
1191
1192 /* `subl %eax, %eax' */
1193 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1194 /* `subl %ecx, %ecx' */
1195 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1196 /* `subl %edx, %edx' */
1197 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1198 /* `xorl %eax, %eax' */
1199 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1200 /* `xorl %ecx, %ecx' */
1201 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1202 /* `xorl %edx, %edx' */
1203 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1204 { 0 }
1205 };
1206
1207
1208 /* Check whether PC points to a no-op instruction. */
1209 static CORE_ADDR
1210 i386_skip_noop (CORE_ADDR pc)
1211 {
1212 gdb_byte op;
1213 int check = 1;
1214
1215 target_read_memory (pc, &op, 1);
1216
1217 while (check)
1218 {
1219 check = 0;
1220 /* Ignore `nop' instruction. */
1221 if (op == 0x90)
1222 {
1223 pc += 1;
1224 target_read_memory (pc, &op, 1);
1225 check = 1;
1226 }
1227 /* Ignore no-op instruction `mov %edi, %edi'.
1228 Microsoft system dlls often start with
1229 a `mov %edi,%edi' instruction.
1230 The 5 bytes before the function start are
1231 filled with `nop' instructions.
1232 This pattern can be used for hot-patching:
1233 The `mov %edi, %edi' instruction can be replaced by a
1234 near jump to the location of the 5 `nop' instructions
1235 which can be replaced by a 32-bit jump to anywhere
1236 in the 32-bit address space. */
1237
1238 else if (op == 0x8b)
1239 {
1240 target_read_memory (pc + 1, &op, 1);
1241 if (op == 0xff)
1242 {
1243 pc += 2;
1244 target_read_memory (pc, &op, 1);
1245 check = 1;
1246 }
1247 }
1248 }
1249 return pc;
1250 }
1251
1252 /* Check whether PC points at a code that sets up a new stack frame.
1253 If so, it updates CACHE and returns the address of the first
1254 instruction after the sequence that sets up the frame or LIMIT,
1255 whichever is smaller. If we don't recognize the code, return PC. */
1256
1257 static CORE_ADDR
1258 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1259 CORE_ADDR pc, CORE_ADDR limit,
1260 struct i386_frame_cache *cache)
1261 {
1262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1263 struct i386_insn *insn;
1264 gdb_byte op;
1265 int skip = 0;
1266
1267 if (limit <= pc)
1268 return limit;
1269
1270 target_read_memory (pc, &op, 1);
1271
1272 if (op == 0x55) /* pushl %ebp */
1273 {
1274 /* Take into account that we've executed the `pushl %ebp' that
1275 starts this instruction sequence. */
1276 cache->saved_regs[I386_EBP_REGNUM] = 0;
1277 cache->sp_offset += 4;
1278 pc++;
1279
1280 /* If that's all, return now. */
1281 if (limit <= pc)
1282 return limit;
1283
1284 /* Check for some special instructions that might be migrated by
1285 GCC into the prologue and skip them. At this point in the
1286 prologue, code should only touch the scratch registers %eax,
1287 %ecx and %edx, so while the number of posibilities is sheer,
1288 it is limited.
1289
1290 Make sure we only skip these instructions if we later see the
1291 `movl %esp, %ebp' that actually sets up the frame. */
1292 while (pc + skip < limit)
1293 {
1294 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1295 if (insn == NULL)
1296 break;
1297
1298 skip += insn->len;
1299 }
1300
1301 /* If that's all, return now. */
1302 if (limit <= pc + skip)
1303 return limit;
1304
1305 target_read_memory (pc + skip, &op, 1);
1306
1307 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1308 switch (op)
1309 {
1310 case 0x8b:
1311 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1312 != 0xec)
1313 return pc;
1314 break;
1315 case 0x89:
1316 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1317 != 0xe5)
1318 return pc;
1319 break;
1320 default:
1321 return pc;
1322 }
1323
1324 /* OK, we actually have a frame. We just don't know how large
1325 it is yet. Set its size to zero. We'll adjust it if
1326 necessary. We also now commit to skipping the special
1327 instructions mentioned before. */
1328 cache->locals = 0;
1329 pc += (skip + 2);
1330
1331 /* If that's all, return now. */
1332 if (limit <= pc)
1333 return limit;
1334
1335 /* Check for stack adjustment
1336
1337 subl $XXX, %esp
1338
1339 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1340 reg, so we don't have to worry about a data16 prefix. */
1341 target_read_memory (pc, &op, 1);
1342 if (op == 0x83)
1343 {
1344 /* `subl' with 8-bit immediate. */
1345 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1346 /* Some instruction starting with 0x83 other than `subl'. */
1347 return pc;
1348
1349 /* `subl' with signed 8-bit immediate (though it wouldn't
1350 make sense to be negative). */
1351 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1352 return pc + 3;
1353 }
1354 else if (op == 0x81)
1355 {
1356 /* Maybe it is `subl' with a 32-bit immediate. */
1357 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1358 /* Some instruction starting with 0x81 other than `subl'. */
1359 return pc;
1360
1361 /* It is `subl' with a 32-bit immediate. */
1362 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1363 return pc + 6;
1364 }
1365 else
1366 {
1367 /* Some instruction other than `subl'. */
1368 return pc;
1369 }
1370 }
1371 else if (op == 0xc8) /* enter */
1372 {
1373 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1374 return pc + 4;
1375 }
1376
1377 return pc;
1378 }
1379
1380 /* Check whether PC points at code that saves registers on the stack.
1381 If so, it updates CACHE and returns the address of the first
1382 instruction after the register saves or CURRENT_PC, whichever is
1383 smaller. Otherwise, return PC. */
1384
1385 static CORE_ADDR
1386 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1387 struct i386_frame_cache *cache)
1388 {
1389 CORE_ADDR offset = 0;
1390 gdb_byte op;
1391 int i;
1392
1393 if (cache->locals > 0)
1394 offset -= cache->locals;
1395 for (i = 0; i < 8 && pc < current_pc; i++)
1396 {
1397 target_read_memory (pc, &op, 1);
1398 if (op < 0x50 || op > 0x57)
1399 break;
1400
1401 offset -= 4;
1402 cache->saved_regs[op - 0x50] = offset;
1403 cache->sp_offset += 4;
1404 pc++;
1405 }
1406
1407 return pc;
1408 }
1409
1410 /* Do a full analysis of the prologue at PC and update CACHE
1411 accordingly. Bail out early if CURRENT_PC is reached. Return the
1412 address where the analysis stopped.
1413
1414 We handle these cases:
1415
1416 The startup sequence can be at the start of the function, or the
1417 function can start with a branch to startup code at the end.
1418
1419 %ebp can be set up with either the 'enter' instruction, or "pushl
1420 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1421 once used in the System V compiler).
1422
1423 Local space is allocated just below the saved %ebp by either the
1424 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1425 16-bit unsigned argument for space to allocate, and the 'addl'
1426 instruction could have either a signed byte, or 32-bit immediate.
1427
1428 Next, the registers used by this function are pushed. With the
1429 System V compiler they will always be in the order: %edi, %esi,
1430 %ebx (and sometimes a harmless bug causes it to also save but not
1431 restore %eax); however, the code below is willing to see the pushes
1432 in any order, and will handle up to 8 of them.
1433
1434 If the setup sequence is at the end of the function, then the next
1435 instruction will be a branch back to the start. */
1436
1437 static CORE_ADDR
1438 i386_analyze_prologue (struct gdbarch *gdbarch,
1439 CORE_ADDR pc, CORE_ADDR current_pc,
1440 struct i386_frame_cache *cache)
1441 {
1442 pc = i386_skip_noop (pc);
1443 pc = i386_follow_jump (gdbarch, pc);
1444 pc = i386_analyze_struct_return (pc, current_pc, cache);
1445 pc = i386_skip_probe (pc);
1446 pc = i386_analyze_stack_align (pc, current_pc, cache);
1447 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1448 return i386_analyze_register_saves (pc, current_pc, cache);
1449 }
1450
1451 /* Return PC of first real instruction. */
1452
1453 static CORE_ADDR
1454 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1455 {
1456 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1457
1458 static gdb_byte pic_pat[6] =
1459 {
1460 0xe8, 0, 0, 0, 0, /* call 0x0 */
1461 0x5b, /* popl %ebx */
1462 };
1463 struct i386_frame_cache cache;
1464 CORE_ADDR pc;
1465 gdb_byte op;
1466 int i;
1467
1468 cache.locals = -1;
1469 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1470 if (cache.locals < 0)
1471 return start_pc;
1472
1473 /* Found valid frame setup. */
1474
1475 /* The native cc on SVR4 in -K PIC mode inserts the following code
1476 to get the address of the global offset table (GOT) into register
1477 %ebx:
1478
1479 call 0x0
1480 popl %ebx
1481 movl %ebx,x(%ebp) (optional)
1482 addl y,%ebx
1483
1484 This code is with the rest of the prologue (at the end of the
1485 function), so we have to skip it to get to the first real
1486 instruction at the start of the function. */
1487
1488 for (i = 0; i < 6; i++)
1489 {
1490 target_read_memory (pc + i, &op, 1);
1491 if (pic_pat[i] != op)
1492 break;
1493 }
1494 if (i == 6)
1495 {
1496 int delta = 6;
1497
1498 target_read_memory (pc + delta, &op, 1);
1499
1500 if (op == 0x89) /* movl %ebx, x(%ebp) */
1501 {
1502 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1503
1504 if (op == 0x5d) /* One byte offset from %ebp. */
1505 delta += 3;
1506 else if (op == 0x9d) /* Four byte offset from %ebp. */
1507 delta += 6;
1508 else /* Unexpected instruction. */
1509 delta = 0;
1510
1511 target_read_memory (pc + delta, &op, 1);
1512 }
1513
1514 /* addl y,%ebx */
1515 if (delta > 0 && op == 0x81
1516 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1517 == 0xc3)
1518 {
1519 pc += delta + 6;
1520 }
1521 }
1522
1523 /* If the function starts with a branch (to startup code at the end)
1524 the last instruction should bring us back to the first
1525 instruction of the real code. */
1526 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1527 pc = i386_follow_jump (gdbarch, pc);
1528
1529 return pc;
1530 }
1531
1532 /* Check that the code pointed to by PC corresponds to a call to
1533 __main, skip it if so. Return PC otherwise. */
1534
1535 CORE_ADDR
1536 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1537 {
1538 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1539 gdb_byte op;
1540
1541 target_read_memory (pc, &op, 1);
1542 if (op == 0xe8)
1543 {
1544 gdb_byte buf[4];
1545
1546 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1547 {
1548 /* Make sure address is computed correctly as a 32bit
1549 integer even if CORE_ADDR is 64 bit wide. */
1550 struct minimal_symbol *s;
1551 CORE_ADDR call_dest;
1552
1553 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1554 call_dest = call_dest & 0xffffffffU;
1555 s = lookup_minimal_symbol_by_pc (call_dest);
1556 if (s != NULL
1557 && SYMBOL_LINKAGE_NAME (s) != NULL
1558 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1559 pc += 5;
1560 }
1561 }
1562
1563 return pc;
1564 }
1565
1566 /* This function is 64-bit safe. */
1567
1568 static CORE_ADDR
1569 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1570 {
1571 gdb_byte buf[8];
1572
1573 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1574 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1575 }
1576 \f
1577
1578 /* Normal frames. */
1579
1580 static struct i386_frame_cache *
1581 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1582 {
1583 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1584 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1585 struct i386_frame_cache *cache;
1586 gdb_byte buf[4];
1587 int i;
1588
1589 if (*this_cache)
1590 return *this_cache;
1591
1592 cache = i386_alloc_frame_cache ();
1593 *this_cache = cache;
1594
1595 /* In principle, for normal frames, %ebp holds the frame pointer,
1596 which holds the base address for the current stack frame.
1597 However, for functions that don't need it, the frame pointer is
1598 optional. For these "frameless" functions the frame pointer is
1599 actually the frame pointer of the calling frame. Signal
1600 trampolines are just a special case of a "frameless" function.
1601 They (usually) share their frame pointer with the frame that was
1602 in progress when the signal occurred. */
1603
1604 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1605 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1606 if (cache->base == 0)
1607 return cache;
1608
1609 /* For normal frames, %eip is stored at 4(%ebp). */
1610 cache->saved_regs[I386_EIP_REGNUM] = 4;
1611
1612 cache->pc = get_frame_func (this_frame);
1613 if (cache->pc != 0)
1614 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1615 cache);
1616
1617 if (cache->saved_sp_reg != -1)
1618 {
1619 /* Saved stack pointer has been saved. */
1620 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1621 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1622 }
1623
1624 if (cache->locals < 0)
1625 {
1626 /* We didn't find a valid frame, which means that CACHE->base
1627 currently holds the frame pointer for our calling frame. If
1628 we're at the start of a function, or somewhere half-way its
1629 prologue, the function's frame probably hasn't been fully
1630 setup yet. Try to reconstruct the base address for the stack
1631 frame by looking at the stack pointer. For truly "frameless"
1632 functions this might work too. */
1633
1634 if (cache->saved_sp_reg != -1)
1635 {
1636 /* We're halfway aligning the stack. */
1637 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1638 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1639
1640 /* This will be added back below. */
1641 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1642 }
1643 else if (cache->pc != 0
1644 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1645 {
1646 /* We're in a known function, but did not find a frame
1647 setup. Assume that the function does not use %ebp.
1648 Alternatively, we may have jumped to an invalid
1649 address; in that case there is definitely no new
1650 frame in %ebp. */
1651 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1652 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1653 + cache->sp_offset;
1654 }
1655 else
1656 /* We're in an unknown function. We could not find the start
1657 of the function to analyze the prologue; our best option is
1658 to assume a typical frame layout with the caller's %ebp
1659 saved. */
1660 cache->saved_regs[I386_EBP_REGNUM] = 0;
1661 }
1662
1663 /* Now that we have the base address for the stack frame we can
1664 calculate the value of %esp in the calling frame. */
1665 if (cache->saved_sp == 0)
1666 cache->saved_sp = cache->base + 8;
1667
1668 /* Adjust all the saved registers such that they contain addresses
1669 instead of offsets. */
1670 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1671 if (cache->saved_regs[i] != -1)
1672 cache->saved_regs[i] += cache->base;
1673
1674 return cache;
1675 }
1676
1677 static void
1678 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1679 struct frame_id *this_id)
1680 {
1681 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1682
1683 /* This marks the outermost frame. */
1684 if (cache->base == 0)
1685 return;
1686
1687 /* See the end of i386_push_dummy_call. */
1688 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1689 }
1690
1691 static struct value *
1692 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1693 int regnum)
1694 {
1695 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1696
1697 gdb_assert (regnum >= 0);
1698
1699 /* The System V ABI says that:
1700
1701 "The flags register contains the system flags, such as the
1702 direction flag and the carry flag. The direction flag must be
1703 set to the forward (that is, zero) direction before entry and
1704 upon exit from a function. Other user flags have no specified
1705 role in the standard calling sequence and are not preserved."
1706
1707 To guarantee the "upon exit" part of that statement we fake a
1708 saved flags register that has its direction flag cleared.
1709
1710 Note that GCC doesn't seem to rely on the fact that the direction
1711 flag is cleared after a function return; it always explicitly
1712 clears the flag before operations where it matters.
1713
1714 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1715 right thing to do. The way we fake the flags register here makes
1716 it impossible to change it. */
1717
1718 if (regnum == I386_EFLAGS_REGNUM)
1719 {
1720 ULONGEST val;
1721
1722 val = get_frame_register_unsigned (this_frame, regnum);
1723 val &= ~(1 << 10);
1724 return frame_unwind_got_constant (this_frame, regnum, val);
1725 }
1726
1727 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1728 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1729
1730 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1731 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1732
1733 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1734 return frame_unwind_got_memory (this_frame, regnum,
1735 cache->saved_regs[regnum]);
1736
1737 return frame_unwind_got_register (this_frame, regnum, regnum);
1738 }
1739
1740 static const struct frame_unwind i386_frame_unwind =
1741 {
1742 NORMAL_FRAME,
1743 i386_frame_this_id,
1744 i386_frame_prev_register,
1745 NULL,
1746 default_frame_sniffer
1747 };
1748
1749 /* Normal frames, but in a function epilogue. */
1750
1751 /* The epilogue is defined here as the 'ret' instruction, which will
1752 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1753 the function's stack frame. */
1754
1755 static int
1756 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1757 {
1758 gdb_byte insn;
1759
1760 if (target_read_memory (pc, &insn, 1))
1761 return 0; /* Can't read memory at pc. */
1762
1763 if (insn != 0xc3) /* 'ret' instruction. */
1764 return 0;
1765
1766 return 1;
1767 }
1768
1769 static int
1770 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1771 struct frame_info *this_frame,
1772 void **this_prologue_cache)
1773 {
1774 if (frame_relative_level (this_frame) == 0)
1775 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1776 get_frame_pc (this_frame));
1777 else
1778 return 0;
1779 }
1780
1781 static struct i386_frame_cache *
1782 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1783 {
1784 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1785 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1786 struct i386_frame_cache *cache;
1787 gdb_byte buf[4];
1788
1789 if (*this_cache)
1790 return *this_cache;
1791
1792 cache = i386_alloc_frame_cache ();
1793 *this_cache = cache;
1794
1795 /* Cache base will be %esp plus cache->sp_offset (-4). */
1796 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1797 cache->base = extract_unsigned_integer (buf, 4,
1798 byte_order) + cache->sp_offset;
1799
1800 /* Cache pc will be the frame func. */
1801 cache->pc = get_frame_pc (this_frame);
1802
1803 /* The saved %esp will be at cache->base plus 8. */
1804 cache->saved_sp = cache->base + 8;
1805
1806 /* The saved %eip will be at cache->base plus 4. */
1807 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1808
1809 return cache;
1810 }
1811
1812 static void
1813 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1814 void **this_cache,
1815 struct frame_id *this_id)
1816 {
1817 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1818 this_cache);
1819
1820 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1821 }
1822
1823 static const struct frame_unwind i386_epilogue_frame_unwind =
1824 {
1825 NORMAL_FRAME,
1826 i386_epilogue_frame_this_id,
1827 i386_frame_prev_register,
1828 NULL,
1829 i386_epilogue_frame_sniffer
1830 };
1831 \f
1832
1833 /* Signal trampolines. */
1834
1835 static struct i386_frame_cache *
1836 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1837 {
1838 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1839 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1840 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1841 struct i386_frame_cache *cache;
1842 CORE_ADDR addr;
1843 gdb_byte buf[4];
1844
1845 if (*this_cache)
1846 return *this_cache;
1847
1848 cache = i386_alloc_frame_cache ();
1849
1850 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1851 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
1852
1853 addr = tdep->sigcontext_addr (this_frame);
1854 if (tdep->sc_reg_offset)
1855 {
1856 int i;
1857
1858 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1859
1860 for (i = 0; i < tdep->sc_num_regs; i++)
1861 if (tdep->sc_reg_offset[i] != -1)
1862 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1863 }
1864 else
1865 {
1866 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1867 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1868 }
1869
1870 *this_cache = cache;
1871 return cache;
1872 }
1873
1874 static void
1875 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1876 struct frame_id *this_id)
1877 {
1878 struct i386_frame_cache *cache =
1879 i386_sigtramp_frame_cache (this_frame, this_cache);
1880
1881 /* See the end of i386_push_dummy_call. */
1882 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1883 }
1884
1885 static struct value *
1886 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1887 void **this_cache, int regnum)
1888 {
1889 /* Make sure we've initialized the cache. */
1890 i386_sigtramp_frame_cache (this_frame, this_cache);
1891
1892 return i386_frame_prev_register (this_frame, this_cache, regnum);
1893 }
1894
1895 static int
1896 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1897 struct frame_info *this_frame,
1898 void **this_prologue_cache)
1899 {
1900 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1901
1902 /* We shouldn't even bother if we don't have a sigcontext_addr
1903 handler. */
1904 if (tdep->sigcontext_addr == NULL)
1905 return 0;
1906
1907 if (tdep->sigtramp_p != NULL)
1908 {
1909 if (tdep->sigtramp_p (this_frame))
1910 return 1;
1911 }
1912
1913 if (tdep->sigtramp_start != 0)
1914 {
1915 CORE_ADDR pc = get_frame_pc (this_frame);
1916
1917 gdb_assert (tdep->sigtramp_end != 0);
1918 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1919 return 1;
1920 }
1921
1922 return 0;
1923 }
1924
1925 static const struct frame_unwind i386_sigtramp_frame_unwind =
1926 {
1927 SIGTRAMP_FRAME,
1928 i386_sigtramp_frame_this_id,
1929 i386_sigtramp_frame_prev_register,
1930 NULL,
1931 i386_sigtramp_frame_sniffer
1932 };
1933 \f
1934
1935 static CORE_ADDR
1936 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1937 {
1938 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1939
1940 return cache->base;
1941 }
1942
1943 static const struct frame_base i386_frame_base =
1944 {
1945 &i386_frame_unwind,
1946 i386_frame_base_address,
1947 i386_frame_base_address,
1948 i386_frame_base_address
1949 };
1950
1951 static struct frame_id
1952 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1953 {
1954 CORE_ADDR fp;
1955
1956 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1957
1958 /* See the end of i386_push_dummy_call. */
1959 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1960 }
1961 \f
1962
1963 /* Figure out where the longjmp will land. Slurp the args out of the
1964 stack. We expect the first arg to be a pointer to the jmp_buf
1965 structure from which we extract the address that we will land at.
1966 This address is copied into PC. This routine returns non-zero on
1967 success. */
1968
1969 static int
1970 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1971 {
1972 gdb_byte buf[4];
1973 CORE_ADDR sp, jb_addr;
1974 struct gdbarch *gdbarch = get_frame_arch (frame);
1975 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1976 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1977
1978 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1979 longjmp will land. */
1980 if (jb_pc_offset == -1)
1981 return 0;
1982
1983 get_frame_register (frame, I386_ESP_REGNUM, buf);
1984 sp = extract_unsigned_integer (buf, 4, byte_order);
1985 if (target_read_memory (sp + 4, buf, 4))
1986 return 0;
1987
1988 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1989 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
1990 return 0;
1991
1992 *pc = extract_unsigned_integer (buf, 4, byte_order);
1993 return 1;
1994 }
1995 \f
1996
1997 /* Check whether TYPE must be 16-byte-aligned when passed as a
1998 function argument. 16-byte vectors, _Decimal128 and structures or
1999 unions containing such types must be 16-byte-aligned; other
2000 arguments are 4-byte-aligned. */
2001
2002 static int
2003 i386_16_byte_align_p (struct type *type)
2004 {
2005 type = check_typedef (type);
2006 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2007 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2008 && TYPE_LENGTH (type) == 16)
2009 return 1;
2010 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2011 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2012 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2013 || TYPE_CODE (type) == TYPE_CODE_UNION)
2014 {
2015 int i;
2016 for (i = 0; i < TYPE_NFIELDS (type); i++)
2017 {
2018 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2019 return 1;
2020 }
2021 }
2022 return 0;
2023 }
2024
2025 static CORE_ADDR
2026 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2027 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2028 struct value **args, CORE_ADDR sp, int struct_return,
2029 CORE_ADDR struct_addr)
2030 {
2031 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2032 gdb_byte buf[4];
2033 int i;
2034 int write_pass;
2035 int args_space = 0;
2036
2037 /* Determine the total space required for arguments and struct
2038 return address in a first pass (allowing for 16-byte-aligned
2039 arguments), then push arguments in a second pass. */
2040
2041 for (write_pass = 0; write_pass < 2; write_pass++)
2042 {
2043 int args_space_used = 0;
2044 int have_16_byte_aligned_arg = 0;
2045
2046 if (struct_return)
2047 {
2048 if (write_pass)
2049 {
2050 /* Push value address. */
2051 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2052 write_memory (sp, buf, 4);
2053 args_space_used += 4;
2054 }
2055 else
2056 args_space += 4;
2057 }
2058
2059 for (i = 0; i < nargs; i++)
2060 {
2061 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2062
2063 if (write_pass)
2064 {
2065 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2066 args_space_used = align_up (args_space_used, 16);
2067
2068 write_memory (sp + args_space_used,
2069 value_contents_all (args[i]), len);
2070 /* The System V ABI says that:
2071
2072 "An argument's size is increased, if necessary, to make it a
2073 multiple of [32-bit] words. This may require tail padding,
2074 depending on the size of the argument."
2075
2076 This makes sure the stack stays word-aligned. */
2077 args_space_used += align_up (len, 4);
2078 }
2079 else
2080 {
2081 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2082 {
2083 args_space = align_up (args_space, 16);
2084 have_16_byte_aligned_arg = 1;
2085 }
2086 args_space += align_up (len, 4);
2087 }
2088 }
2089
2090 if (!write_pass)
2091 {
2092 if (have_16_byte_aligned_arg)
2093 args_space = align_up (args_space, 16);
2094 sp -= args_space;
2095 }
2096 }
2097
2098 /* Store return address. */
2099 sp -= 4;
2100 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2101 write_memory (sp, buf, 4);
2102
2103 /* Finally, update the stack pointer... */
2104 store_unsigned_integer (buf, 4, byte_order, sp);
2105 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2106
2107 /* ...and fake a frame pointer. */
2108 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2109
2110 /* MarkK wrote: This "+ 8" is all over the place:
2111 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2112 i386_dummy_id). It's there, since all frame unwinders for
2113 a given target have to agree (within a certain margin) on the
2114 definition of the stack address of a frame. Otherwise frame id
2115 comparison might not work correctly. Since DWARF2/GCC uses the
2116 stack address *before* the function call as a frame's CFA. On
2117 the i386, when %ebp is used as a frame pointer, the offset
2118 between the contents %ebp and the CFA as defined by GCC. */
2119 return sp + 8;
2120 }
2121
2122 /* These registers are used for returning integers (and on some
2123 targets also for returning `struct' and `union' values when their
2124 size and alignment match an integer type). */
2125 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2126 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2127
2128 /* Read, for architecture GDBARCH, a function return value of TYPE
2129 from REGCACHE, and copy that into VALBUF. */
2130
2131 static void
2132 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2133 struct regcache *regcache, gdb_byte *valbuf)
2134 {
2135 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2136 int len = TYPE_LENGTH (type);
2137 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2138
2139 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2140 {
2141 if (tdep->st0_regnum < 0)
2142 {
2143 warning (_("Cannot find floating-point return value."));
2144 memset (valbuf, 0, len);
2145 return;
2146 }
2147
2148 /* Floating-point return values can be found in %st(0). Convert
2149 its contents to the desired type. This is probably not
2150 exactly how it would happen on the target itself, but it is
2151 the best we can do. */
2152 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2153 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2154 }
2155 else
2156 {
2157 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2158 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2159
2160 if (len <= low_size)
2161 {
2162 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2163 memcpy (valbuf, buf, len);
2164 }
2165 else if (len <= (low_size + high_size))
2166 {
2167 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2168 memcpy (valbuf, buf, low_size);
2169 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2170 memcpy (valbuf + low_size, buf, len - low_size);
2171 }
2172 else
2173 internal_error (__FILE__, __LINE__,
2174 _("Cannot extract return value of %d bytes long."),
2175 len);
2176 }
2177 }
2178
2179 /* Write, for architecture GDBARCH, a function return value of TYPE
2180 from VALBUF into REGCACHE. */
2181
2182 static void
2183 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2184 struct regcache *regcache, const gdb_byte *valbuf)
2185 {
2186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2187 int len = TYPE_LENGTH (type);
2188
2189 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2190 {
2191 ULONGEST fstat;
2192 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2193
2194 if (tdep->st0_regnum < 0)
2195 {
2196 warning (_("Cannot set floating-point return value."));
2197 return;
2198 }
2199
2200 /* Returning floating-point values is a bit tricky. Apart from
2201 storing the return value in %st(0), we have to simulate the
2202 state of the FPU at function return point. */
2203
2204 /* Convert the value found in VALBUF to the extended
2205 floating-point format used by the FPU. This is probably
2206 not exactly how it would happen on the target itself, but
2207 it is the best we can do. */
2208 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2209 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2210
2211 /* Set the top of the floating-point register stack to 7. The
2212 actual value doesn't really matter, but 7 is what a normal
2213 function return would end up with if the program started out
2214 with a freshly initialized FPU. */
2215 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2216 fstat |= (7 << 11);
2217 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2218
2219 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2220 the floating-point register stack to 7, the appropriate value
2221 for the tag word is 0x3fff. */
2222 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2223 }
2224 else
2225 {
2226 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2227 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2228
2229 if (len <= low_size)
2230 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2231 else if (len <= (low_size + high_size))
2232 {
2233 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2234 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2235 len - low_size, valbuf + low_size);
2236 }
2237 else
2238 internal_error (__FILE__, __LINE__,
2239 _("Cannot store return value of %d bytes long."), len);
2240 }
2241 }
2242 \f
2243
2244 /* This is the variable that is set with "set struct-convention", and
2245 its legitimate values. */
2246 static const char default_struct_convention[] = "default";
2247 static const char pcc_struct_convention[] = "pcc";
2248 static const char reg_struct_convention[] = "reg";
2249 static const char *valid_conventions[] =
2250 {
2251 default_struct_convention,
2252 pcc_struct_convention,
2253 reg_struct_convention,
2254 NULL
2255 };
2256 static const char *struct_convention = default_struct_convention;
2257
2258 /* Return non-zero if TYPE, which is assumed to be a structure,
2259 a union type, or an array type, should be returned in registers
2260 for architecture GDBARCH. */
2261
2262 static int
2263 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2264 {
2265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2266 enum type_code code = TYPE_CODE (type);
2267 int len = TYPE_LENGTH (type);
2268
2269 gdb_assert (code == TYPE_CODE_STRUCT
2270 || code == TYPE_CODE_UNION
2271 || code == TYPE_CODE_ARRAY);
2272
2273 if (struct_convention == pcc_struct_convention
2274 || (struct_convention == default_struct_convention
2275 && tdep->struct_return == pcc_struct_return))
2276 return 0;
2277
2278 /* Structures consisting of a single `float', `double' or 'long
2279 double' member are returned in %st(0). */
2280 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2281 {
2282 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2283 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2284 return (len == 4 || len == 8 || len == 12);
2285 }
2286
2287 return (len == 1 || len == 2 || len == 4 || len == 8);
2288 }
2289
2290 /* Determine, for architecture GDBARCH, how a return value of TYPE
2291 should be returned. If it is supposed to be returned in registers,
2292 and READBUF is non-zero, read the appropriate value from REGCACHE,
2293 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2294 from WRITEBUF into REGCACHE. */
2295
2296 static enum return_value_convention
2297 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2298 struct type *type, struct regcache *regcache,
2299 gdb_byte *readbuf, const gdb_byte *writebuf)
2300 {
2301 enum type_code code = TYPE_CODE (type);
2302
2303 if (((code == TYPE_CODE_STRUCT
2304 || code == TYPE_CODE_UNION
2305 || code == TYPE_CODE_ARRAY)
2306 && !i386_reg_struct_return_p (gdbarch, type))
2307 /* 128-bit decimal float uses the struct return convention. */
2308 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2309 {
2310 /* The System V ABI says that:
2311
2312 "A function that returns a structure or union also sets %eax
2313 to the value of the original address of the caller's area
2314 before it returns. Thus when the caller receives control
2315 again, the address of the returned object resides in register
2316 %eax and can be used to access the object."
2317
2318 So the ABI guarantees that we can always find the return
2319 value just after the function has returned. */
2320
2321 /* Note that the ABI doesn't mention functions returning arrays,
2322 which is something possible in certain languages such as Ada.
2323 In this case, the value is returned as if it was wrapped in
2324 a record, so the convention applied to records also applies
2325 to arrays. */
2326
2327 if (readbuf)
2328 {
2329 ULONGEST addr;
2330
2331 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2332 read_memory (addr, readbuf, TYPE_LENGTH (type));
2333 }
2334
2335 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2336 }
2337
2338 /* This special case is for structures consisting of a single
2339 `float', `double' or 'long double' member. These structures are
2340 returned in %st(0). For these structures, we call ourselves
2341 recursively, changing TYPE into the type of the first member of
2342 the structure. Since that should work for all structures that
2343 have only one member, we don't bother to check the member's type
2344 here. */
2345 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2346 {
2347 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2348 return i386_return_value (gdbarch, func_type, type, regcache,
2349 readbuf, writebuf);
2350 }
2351
2352 if (readbuf)
2353 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2354 if (writebuf)
2355 i386_store_return_value (gdbarch, type, regcache, writebuf);
2356
2357 return RETURN_VALUE_REGISTER_CONVENTION;
2358 }
2359 \f
2360
2361 struct type *
2362 i387_ext_type (struct gdbarch *gdbarch)
2363 {
2364 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2365
2366 if (!tdep->i387_ext_type)
2367 {
2368 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2369 gdb_assert (tdep->i387_ext_type != NULL);
2370 }
2371
2372 return tdep->i387_ext_type;
2373 }
2374
2375 /* Construct vector type for pseudo YMM registers. We can't use
2376 tdesc_find_type since YMM isn't described in target description. */
2377
2378 static struct type *
2379 i386_ymm_type (struct gdbarch *gdbarch)
2380 {
2381 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2382
2383 if (!tdep->i386_ymm_type)
2384 {
2385 const struct builtin_type *bt = builtin_type (gdbarch);
2386
2387 /* The type we're building is this: */
2388 #if 0
2389 union __gdb_builtin_type_vec256i
2390 {
2391 int128_t uint128[2];
2392 int64_t v2_int64[4];
2393 int32_t v4_int32[8];
2394 int16_t v8_int16[16];
2395 int8_t v16_int8[32];
2396 double v2_double[4];
2397 float v4_float[8];
2398 };
2399 #endif
2400
2401 struct type *t;
2402
2403 t = arch_composite_type (gdbarch,
2404 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2405 append_composite_type_field (t, "v8_float",
2406 init_vector_type (bt->builtin_float, 8));
2407 append_composite_type_field (t, "v4_double",
2408 init_vector_type (bt->builtin_double, 4));
2409 append_composite_type_field (t, "v32_int8",
2410 init_vector_type (bt->builtin_int8, 32));
2411 append_composite_type_field (t, "v16_int16",
2412 init_vector_type (bt->builtin_int16, 16));
2413 append_composite_type_field (t, "v8_int32",
2414 init_vector_type (bt->builtin_int32, 8));
2415 append_composite_type_field (t, "v4_int64",
2416 init_vector_type (bt->builtin_int64, 4));
2417 append_composite_type_field (t, "v2_int128",
2418 init_vector_type (bt->builtin_int128, 2));
2419
2420 TYPE_VECTOR (t) = 1;
2421 TYPE_NAME (t) = "builtin_type_vec256i";
2422 tdep->i386_ymm_type = t;
2423 }
2424
2425 return tdep->i386_ymm_type;
2426 }
2427
2428 /* Construct vector type for MMX registers. */
2429 static struct type *
2430 i386_mmx_type (struct gdbarch *gdbarch)
2431 {
2432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2433
2434 if (!tdep->i386_mmx_type)
2435 {
2436 const struct builtin_type *bt = builtin_type (gdbarch);
2437
2438 /* The type we're building is this: */
2439 #if 0
2440 union __gdb_builtin_type_vec64i
2441 {
2442 int64_t uint64;
2443 int32_t v2_int32[2];
2444 int16_t v4_int16[4];
2445 int8_t v8_int8[8];
2446 };
2447 #endif
2448
2449 struct type *t;
2450
2451 t = arch_composite_type (gdbarch,
2452 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2453
2454 append_composite_type_field (t, "uint64", bt->builtin_int64);
2455 append_composite_type_field (t, "v2_int32",
2456 init_vector_type (bt->builtin_int32, 2));
2457 append_composite_type_field (t, "v4_int16",
2458 init_vector_type (bt->builtin_int16, 4));
2459 append_composite_type_field (t, "v8_int8",
2460 init_vector_type (bt->builtin_int8, 8));
2461
2462 TYPE_VECTOR (t) = 1;
2463 TYPE_NAME (t) = "builtin_type_vec64i";
2464 tdep->i386_mmx_type = t;
2465 }
2466
2467 return tdep->i386_mmx_type;
2468 }
2469
2470 /* Return the GDB type object for the "standard" data type of data in
2471 register REGNUM. */
2472
2473 static struct type *
2474 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2475 {
2476 if (i386_mmx_regnum_p (gdbarch, regnum))
2477 return i386_mmx_type (gdbarch);
2478 else if (i386_ymm_regnum_p (gdbarch, regnum))
2479 return i386_ymm_type (gdbarch);
2480 else
2481 {
2482 const struct builtin_type *bt = builtin_type (gdbarch);
2483 if (i386_byte_regnum_p (gdbarch, regnum))
2484 return bt->builtin_int8;
2485 else if (i386_word_regnum_p (gdbarch, regnum))
2486 return bt->builtin_int16;
2487 else if (i386_dword_regnum_p (gdbarch, regnum))
2488 return bt->builtin_int32;
2489 }
2490
2491 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2492 }
2493
2494 /* Map a cooked register onto a raw register or memory. For the i386,
2495 the MMX registers need to be mapped onto floating point registers. */
2496
2497 static int
2498 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2499 {
2500 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2501 int mmxreg, fpreg;
2502 ULONGEST fstat;
2503 int tos;
2504
2505 mmxreg = regnum - tdep->mm0_regnum;
2506 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2507 tos = (fstat >> 11) & 0x7;
2508 fpreg = (mmxreg + tos) % 8;
2509
2510 return (I387_ST0_REGNUM (tdep) + fpreg);
2511 }
2512
2513 void
2514 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2515 int regnum, gdb_byte *buf)
2516 {
2517 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2518
2519 if (i386_mmx_regnum_p (gdbarch, regnum))
2520 {
2521 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2522
2523 /* Extract (always little endian). */
2524 regcache_raw_read (regcache, fpnum, raw_buf);
2525 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2526 }
2527 else
2528 {
2529 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2530
2531 if (i386_ymm_regnum_p (gdbarch, regnum))
2532 {
2533 regnum -= tdep->ymm0_regnum;
2534
2535 /* Extract (always little endian). Read lower 128bits. */
2536 regcache_raw_read (regcache,
2537 I387_XMM0_REGNUM (tdep) + regnum,
2538 raw_buf);
2539 memcpy (buf, raw_buf, 16);
2540 /* Read upper 128bits. */
2541 regcache_raw_read (regcache,
2542 tdep->ymm0h_regnum + regnum,
2543 raw_buf);
2544 memcpy (buf + 16, raw_buf, 16);
2545 }
2546 else if (i386_word_regnum_p (gdbarch, regnum))
2547 {
2548 int gpnum = regnum - tdep->ax_regnum;
2549
2550 /* Extract (always little endian). */
2551 regcache_raw_read (regcache, gpnum, raw_buf);
2552 memcpy (buf, raw_buf, 2);
2553 }
2554 else if (i386_byte_regnum_p (gdbarch, regnum))
2555 {
2556 /* Check byte pseudo registers last since this function will
2557 be called from amd64_pseudo_register_read, which handles
2558 byte pseudo registers differently. */
2559 int gpnum = regnum - tdep->al_regnum;
2560
2561 /* Extract (always little endian). We read both lower and
2562 upper registers. */
2563 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2564 if (gpnum >= 4)
2565 memcpy (buf, raw_buf + 1, 1);
2566 else
2567 memcpy (buf, raw_buf, 1);
2568 }
2569 else
2570 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2571 }
2572 }
2573
2574 void
2575 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2576 int regnum, const gdb_byte *buf)
2577 {
2578 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2579
2580 if (i386_mmx_regnum_p (gdbarch, regnum))
2581 {
2582 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2583
2584 /* Read ... */
2585 regcache_raw_read (regcache, fpnum, raw_buf);
2586 /* ... Modify ... (always little endian). */
2587 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2588 /* ... Write. */
2589 regcache_raw_write (regcache, fpnum, raw_buf);
2590 }
2591 else
2592 {
2593 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2594
2595 if (i386_ymm_regnum_p (gdbarch, regnum))
2596 {
2597 regnum -= tdep->ymm0_regnum;
2598
2599 /* ... Write lower 128bits. */
2600 regcache_raw_write (regcache,
2601 I387_XMM0_REGNUM (tdep) + regnum,
2602 buf);
2603 /* ... Write upper 128bits. */
2604 regcache_raw_write (regcache,
2605 tdep->ymm0h_regnum + regnum,
2606 buf + 16);
2607 }
2608 else if (i386_word_regnum_p (gdbarch, regnum))
2609 {
2610 int gpnum = regnum - tdep->ax_regnum;
2611
2612 /* Read ... */
2613 regcache_raw_read (regcache, gpnum, raw_buf);
2614 /* ... Modify ... (always little endian). */
2615 memcpy (raw_buf, buf, 2);
2616 /* ... Write. */
2617 regcache_raw_write (regcache, gpnum, raw_buf);
2618 }
2619 else if (i386_byte_regnum_p (gdbarch, regnum))
2620 {
2621 /* Check byte pseudo registers last since this function will
2622 be called from amd64_pseudo_register_read, which handles
2623 byte pseudo registers differently. */
2624 int gpnum = regnum - tdep->al_regnum;
2625
2626 /* Read ... We read both lower and upper registers. */
2627 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2628 /* ... Modify ... (always little endian). */
2629 if (gpnum >= 4)
2630 memcpy (raw_buf + 1, buf, 1);
2631 else
2632 memcpy (raw_buf, buf, 1);
2633 /* ... Write. */
2634 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2635 }
2636 else
2637 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2638 }
2639 }
2640 \f
2641
2642 /* Return the register number of the register allocated by GCC after
2643 REGNUM, or -1 if there is no such register. */
2644
2645 static int
2646 i386_next_regnum (int regnum)
2647 {
2648 /* GCC allocates the registers in the order:
2649
2650 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2651
2652 Since storing a variable in %esp doesn't make any sense we return
2653 -1 for %ebp and for %esp itself. */
2654 static int next_regnum[] =
2655 {
2656 I386_EDX_REGNUM, /* Slot for %eax. */
2657 I386_EBX_REGNUM, /* Slot for %ecx. */
2658 I386_ECX_REGNUM, /* Slot for %edx. */
2659 I386_ESI_REGNUM, /* Slot for %ebx. */
2660 -1, -1, /* Slots for %esp and %ebp. */
2661 I386_EDI_REGNUM, /* Slot for %esi. */
2662 I386_EBP_REGNUM /* Slot for %edi. */
2663 };
2664
2665 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2666 return next_regnum[regnum];
2667
2668 return -1;
2669 }
2670
2671 /* Return nonzero if a value of type TYPE stored in register REGNUM
2672 needs any special handling. */
2673
2674 static int
2675 i386_convert_register_p (struct gdbarch *gdbarch,
2676 int regnum, struct type *type)
2677 {
2678 int len = TYPE_LENGTH (type);
2679
2680 /* Values may be spread across multiple registers. Most debugging
2681 formats aren't expressive enough to specify the locations, so
2682 some heuristics is involved. Right now we only handle types that
2683 have a length that is a multiple of the word size, since GCC
2684 doesn't seem to put any other types into registers. */
2685 if (len > 4 && len % 4 == 0)
2686 {
2687 int last_regnum = regnum;
2688
2689 while (len > 4)
2690 {
2691 last_regnum = i386_next_regnum (last_regnum);
2692 len -= 4;
2693 }
2694
2695 if (last_regnum != -1)
2696 return 1;
2697 }
2698
2699 return i387_convert_register_p (gdbarch, regnum, type);
2700 }
2701
2702 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2703 return its contents in TO. */
2704
2705 static void
2706 i386_register_to_value (struct frame_info *frame, int regnum,
2707 struct type *type, gdb_byte *to)
2708 {
2709 struct gdbarch *gdbarch = get_frame_arch (frame);
2710 int len = TYPE_LENGTH (type);
2711
2712 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2713 available in FRAME (i.e. if it wasn't saved)? */
2714
2715 if (i386_fp_regnum_p (gdbarch, regnum))
2716 {
2717 i387_register_to_value (frame, regnum, type, to);
2718 return;
2719 }
2720
2721 /* Read a value spread across multiple registers. */
2722
2723 gdb_assert (len > 4 && len % 4 == 0);
2724
2725 while (len > 0)
2726 {
2727 gdb_assert (regnum != -1);
2728 gdb_assert (register_size (gdbarch, regnum) == 4);
2729
2730 get_frame_register (frame, regnum, to);
2731 regnum = i386_next_regnum (regnum);
2732 len -= 4;
2733 to += 4;
2734 }
2735 }
2736
2737 /* Write the contents FROM of a value of type TYPE into register
2738 REGNUM in frame FRAME. */
2739
2740 static void
2741 i386_value_to_register (struct frame_info *frame, int regnum,
2742 struct type *type, const gdb_byte *from)
2743 {
2744 int len = TYPE_LENGTH (type);
2745
2746 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2747 {
2748 i387_value_to_register (frame, regnum, type, from);
2749 return;
2750 }
2751
2752 /* Write a value spread across multiple registers. */
2753
2754 gdb_assert (len > 4 && len % 4 == 0);
2755
2756 while (len > 0)
2757 {
2758 gdb_assert (regnum != -1);
2759 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2760
2761 put_frame_register (frame, regnum, from);
2762 regnum = i386_next_regnum (regnum);
2763 len -= 4;
2764 from += 4;
2765 }
2766 }
2767 \f
2768 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2769 in the general-purpose register set REGSET to register cache
2770 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2771
2772 void
2773 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2774 int regnum, const void *gregs, size_t len)
2775 {
2776 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2777 const gdb_byte *regs = gregs;
2778 int i;
2779
2780 gdb_assert (len == tdep->sizeof_gregset);
2781
2782 for (i = 0; i < tdep->gregset_num_regs; i++)
2783 {
2784 if ((regnum == i || regnum == -1)
2785 && tdep->gregset_reg_offset[i] != -1)
2786 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2787 }
2788 }
2789
2790 /* Collect register REGNUM from the register cache REGCACHE and store
2791 it in the buffer specified by GREGS and LEN as described by the
2792 general-purpose register set REGSET. If REGNUM is -1, do this for
2793 all registers in REGSET. */
2794
2795 void
2796 i386_collect_gregset (const struct regset *regset,
2797 const struct regcache *regcache,
2798 int regnum, void *gregs, size_t len)
2799 {
2800 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2801 gdb_byte *regs = gregs;
2802 int i;
2803
2804 gdb_assert (len == tdep->sizeof_gregset);
2805
2806 for (i = 0; i < tdep->gregset_num_regs; i++)
2807 {
2808 if ((regnum == i || regnum == -1)
2809 && tdep->gregset_reg_offset[i] != -1)
2810 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2811 }
2812 }
2813
2814 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2815 in the floating-point register set REGSET to register cache
2816 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2817
2818 static void
2819 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2820 int regnum, const void *fpregs, size_t len)
2821 {
2822 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2823
2824 if (len == I387_SIZEOF_FXSAVE)
2825 {
2826 i387_supply_fxsave (regcache, regnum, fpregs);
2827 return;
2828 }
2829
2830 gdb_assert (len == tdep->sizeof_fpregset);
2831 i387_supply_fsave (regcache, regnum, fpregs);
2832 }
2833
2834 /* Collect register REGNUM from the register cache REGCACHE and store
2835 it in the buffer specified by FPREGS and LEN as described by the
2836 floating-point register set REGSET. If REGNUM is -1, do this for
2837 all registers in REGSET. */
2838
2839 static void
2840 i386_collect_fpregset (const struct regset *regset,
2841 const struct regcache *regcache,
2842 int regnum, void *fpregs, size_t len)
2843 {
2844 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2845
2846 if (len == I387_SIZEOF_FXSAVE)
2847 {
2848 i387_collect_fxsave (regcache, regnum, fpregs);
2849 return;
2850 }
2851
2852 gdb_assert (len == tdep->sizeof_fpregset);
2853 i387_collect_fsave (regcache, regnum, fpregs);
2854 }
2855
2856 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
2857
2858 static void
2859 i386_supply_xstateregset (const struct regset *regset,
2860 struct regcache *regcache, int regnum,
2861 const void *xstateregs, size_t len)
2862 {
2863 i387_supply_xsave (regcache, regnum, xstateregs);
2864 }
2865
2866 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
2867
2868 static void
2869 i386_collect_xstateregset (const struct regset *regset,
2870 const struct regcache *regcache,
2871 int regnum, void *xstateregs, size_t len)
2872 {
2873 i387_collect_xsave (regcache, regnum, xstateregs, 1);
2874 }
2875
2876 /* Return the appropriate register set for the core section identified
2877 by SECT_NAME and SECT_SIZE. */
2878
2879 const struct regset *
2880 i386_regset_from_core_section (struct gdbarch *gdbarch,
2881 const char *sect_name, size_t sect_size)
2882 {
2883 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2884
2885 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2886 {
2887 if (tdep->gregset == NULL)
2888 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2889 i386_collect_gregset);
2890 return tdep->gregset;
2891 }
2892
2893 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2894 || (strcmp (sect_name, ".reg-xfp") == 0
2895 && sect_size == I387_SIZEOF_FXSAVE))
2896 {
2897 if (tdep->fpregset == NULL)
2898 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2899 i386_collect_fpregset);
2900 return tdep->fpregset;
2901 }
2902
2903 if (strcmp (sect_name, ".reg-xstate") == 0)
2904 {
2905 if (tdep->xstateregset == NULL)
2906 tdep->xstateregset = regset_alloc (gdbarch,
2907 i386_supply_xstateregset,
2908 i386_collect_xstateregset);
2909
2910 return tdep->xstateregset;
2911 }
2912
2913 return NULL;
2914 }
2915 \f
2916
2917 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2918
2919 CORE_ADDR
2920 i386_pe_skip_trampoline_code (struct frame_info *frame,
2921 CORE_ADDR pc, char *name)
2922 {
2923 struct gdbarch *gdbarch = get_frame_arch (frame);
2924 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2925
2926 /* jmp *(dest) */
2927 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
2928 {
2929 unsigned long indirect =
2930 read_memory_unsigned_integer (pc + 2, 4, byte_order);
2931 struct minimal_symbol *indsym =
2932 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2933 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2934
2935 if (symname)
2936 {
2937 if (strncmp (symname, "__imp_", 6) == 0
2938 || strncmp (symname, "_imp_", 5) == 0)
2939 return name ? 1 :
2940 read_memory_unsigned_integer (indirect, 4, byte_order);
2941 }
2942 }
2943 return 0; /* Not a trampoline. */
2944 }
2945 \f
2946
2947 /* Return whether the THIS_FRAME corresponds to a sigtramp
2948 routine. */
2949
2950 int
2951 i386_sigtramp_p (struct frame_info *this_frame)
2952 {
2953 CORE_ADDR pc = get_frame_pc (this_frame);
2954 char *name;
2955
2956 find_pc_partial_function (pc, &name, NULL, NULL);
2957 return (name && strcmp ("_sigtramp", name) == 0);
2958 }
2959 \f
2960
2961 /* We have two flavours of disassembly. The machinery on this page
2962 deals with switching between those. */
2963
2964 static int
2965 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2966 {
2967 gdb_assert (disassembly_flavor == att_flavor
2968 || disassembly_flavor == intel_flavor);
2969
2970 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2971 constified, cast to prevent a compiler warning. */
2972 info->disassembler_options = (char *) disassembly_flavor;
2973
2974 return print_insn_i386 (pc, info);
2975 }
2976 \f
2977
2978 /* There are a few i386 architecture variants that differ only
2979 slightly from the generic i386 target. For now, we don't give them
2980 their own source file, but include them here. As a consequence,
2981 they'll always be included. */
2982
2983 /* System V Release 4 (SVR4). */
2984
2985 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2986 routine. */
2987
2988 static int
2989 i386_svr4_sigtramp_p (struct frame_info *this_frame)
2990 {
2991 CORE_ADDR pc = get_frame_pc (this_frame);
2992 char *name;
2993
2994 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2995 currently unknown. */
2996 find_pc_partial_function (pc, &name, NULL, NULL);
2997 return (name && (strcmp ("_sigreturn", name) == 0
2998 || strcmp ("_sigacthandler", name) == 0
2999 || strcmp ("sigvechandler", name) == 0));
3000 }
3001
3002 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3003 address of the associated sigcontext (ucontext) structure. */
3004
3005 static CORE_ADDR
3006 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3007 {
3008 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3009 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3010 gdb_byte buf[4];
3011 CORE_ADDR sp;
3012
3013 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3014 sp = extract_unsigned_integer (buf, 4, byte_order);
3015
3016 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3017 }
3018 \f
3019
3020 /* Generic ELF. */
3021
3022 void
3023 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3024 {
3025 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3026 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3027 }
3028
3029 /* System V Release 4 (SVR4). */
3030
3031 void
3032 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3033 {
3034 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3035
3036 /* System V Release 4 uses ELF. */
3037 i386_elf_init_abi (info, gdbarch);
3038
3039 /* System V Release 4 has shared libraries. */
3040 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3041
3042 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3043 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3044 tdep->sc_pc_offset = 36 + 14 * 4;
3045 tdep->sc_sp_offset = 36 + 17 * 4;
3046
3047 tdep->jb_pc_offset = 20;
3048 }
3049
3050 /* DJGPP. */
3051
3052 static void
3053 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3054 {
3055 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3056
3057 /* DJGPP doesn't have any special frames for signal handlers. */
3058 tdep->sigtramp_p = NULL;
3059
3060 tdep->jb_pc_offset = 36;
3061
3062 /* DJGPP does not support the SSE registers. */
3063 if (! tdesc_has_registers (info.target_desc))
3064 tdep->tdesc = tdesc_i386_mmx;
3065
3066 /* Native compiler is GCC, which uses the SVR4 register numbering
3067 even in COFF and STABS. See the comment in i386_gdbarch_init,
3068 before the calls to set_gdbarch_stab_reg_to_regnum and
3069 set_gdbarch_sdb_reg_to_regnum. */
3070 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3071 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3072
3073 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3074 }
3075 \f
3076
3077 /* i386 register groups. In addition to the normal groups, add "mmx"
3078 and "sse". */
3079
3080 static struct reggroup *i386_sse_reggroup;
3081 static struct reggroup *i386_mmx_reggroup;
3082
3083 static void
3084 i386_init_reggroups (void)
3085 {
3086 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3087 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3088 }
3089
3090 static void
3091 i386_add_reggroups (struct gdbarch *gdbarch)
3092 {
3093 reggroup_add (gdbarch, i386_sse_reggroup);
3094 reggroup_add (gdbarch, i386_mmx_reggroup);
3095 reggroup_add (gdbarch, general_reggroup);
3096 reggroup_add (gdbarch, float_reggroup);
3097 reggroup_add (gdbarch, all_reggroup);
3098 reggroup_add (gdbarch, save_reggroup);
3099 reggroup_add (gdbarch, restore_reggroup);
3100 reggroup_add (gdbarch, vector_reggroup);
3101 reggroup_add (gdbarch, system_reggroup);
3102 }
3103
3104 int
3105 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3106 struct reggroup *group)
3107 {
3108 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3109 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3110 ymm_regnum_p, ymmh_regnum_p;
3111
3112 /* Don't include pseudo registers, except for MMX, in any register
3113 groups. */
3114 if (i386_byte_regnum_p (gdbarch, regnum))
3115 return 0;
3116
3117 if (i386_word_regnum_p (gdbarch, regnum))
3118 return 0;
3119
3120 if (i386_dword_regnum_p (gdbarch, regnum))
3121 return 0;
3122
3123 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3124 if (group == i386_mmx_reggroup)
3125 return mmx_regnum_p;
3126
3127 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3128 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3129 if (group == i386_sse_reggroup)
3130 return xmm_regnum_p || mxcsr_regnum_p;
3131
3132 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3133 if (group == vector_reggroup)
3134 return (mmx_regnum_p
3135 || ymm_regnum_p
3136 || mxcsr_regnum_p
3137 || (xmm_regnum_p
3138 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3139 == I386_XSTATE_SSE_MASK)));
3140
3141 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3142 || i386_fpc_regnum_p (gdbarch, regnum));
3143 if (group == float_reggroup)
3144 return fp_regnum_p;
3145
3146 /* For "info reg all", don't include upper YMM registers nor XMM
3147 registers when AVX is supported. */
3148 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3149 if (group == all_reggroup
3150 && ((xmm_regnum_p
3151 && (tdep->xcr0 & I386_XSTATE_AVX))
3152 || ymmh_regnum_p))
3153 return 0;
3154
3155 if (group == general_reggroup)
3156 return (!fp_regnum_p
3157 && !mmx_regnum_p
3158 && !mxcsr_regnum_p
3159 && !xmm_regnum_p
3160 && !ymm_regnum_p
3161 && !ymmh_regnum_p);
3162
3163 return default_register_reggroup_p (gdbarch, regnum, group);
3164 }
3165 \f
3166
3167 /* Get the ARGIth function argument for the current function. */
3168
3169 static CORE_ADDR
3170 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3171 struct type *type)
3172 {
3173 struct gdbarch *gdbarch = get_frame_arch (frame);
3174 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3175 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3176 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3177 }
3178
3179 static void
3180 i386_skip_permanent_breakpoint (struct regcache *regcache)
3181 {
3182 CORE_ADDR current_pc = regcache_read_pc (regcache);
3183
3184 /* On i386, breakpoint is exactly 1 byte long, so we just
3185 adjust the PC in the regcache. */
3186 current_pc += 1;
3187 regcache_write_pc (regcache, current_pc);
3188 }
3189
3190
3191 #define PREFIX_REPZ 0x01
3192 #define PREFIX_REPNZ 0x02
3193 #define PREFIX_LOCK 0x04
3194 #define PREFIX_DATA 0x08
3195 #define PREFIX_ADDR 0x10
3196
3197 /* operand size */
3198 enum
3199 {
3200 OT_BYTE = 0,
3201 OT_WORD,
3202 OT_LONG,
3203 OT_QUAD,
3204 OT_DQUAD,
3205 };
3206
3207 /* i386 arith/logic operations */
3208 enum
3209 {
3210 OP_ADDL,
3211 OP_ORL,
3212 OP_ADCL,
3213 OP_SBBL,
3214 OP_ANDL,
3215 OP_SUBL,
3216 OP_XORL,
3217 OP_CMPL,
3218 };
3219
3220 struct i386_record_s
3221 {
3222 struct gdbarch *gdbarch;
3223 struct regcache *regcache;
3224 CORE_ADDR orig_addr;
3225 CORE_ADDR addr;
3226 int aflag;
3227 int dflag;
3228 int override;
3229 uint8_t modrm;
3230 uint8_t mod, reg, rm;
3231 int ot;
3232 uint8_t rex_x;
3233 uint8_t rex_b;
3234 int rip_offset;
3235 int popl_esp_hack;
3236 const int *regmap;
3237 };
3238
3239 /* Parse "modrm" part in current memory address that irp->addr point to
3240 Return -1 if something wrong. */
3241
3242 static int
3243 i386_record_modrm (struct i386_record_s *irp)
3244 {
3245 struct gdbarch *gdbarch = irp->gdbarch;
3246
3247 if (target_read_memory (irp->addr, &irp->modrm, 1))
3248 {
3249 if (record_debug)
3250 printf_unfiltered (_("Process record: error reading memory at "
3251 "addr %s len = 1.\n"),
3252 paddress (gdbarch, irp->addr));
3253 return -1;
3254 }
3255 irp->addr++;
3256 irp->mod = (irp->modrm >> 6) & 3;
3257 irp->reg = (irp->modrm >> 3) & 7;
3258 irp->rm = irp->modrm & 7;
3259
3260 return 0;
3261 }
3262
3263 /* Get the memory address that current instruction write to and set it to
3264 the argument "addr".
3265 Return -1 if something wrong. */
3266
3267 static int
3268 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3269 {
3270 struct gdbarch *gdbarch = irp->gdbarch;
3271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3272 gdb_byte buf[4];
3273 ULONGEST offset64;
3274
3275 *addr = 0;
3276 if (irp->aflag)
3277 {
3278 /* 32 bits */
3279 int havesib = 0;
3280 uint8_t scale = 0;
3281 uint8_t byte;
3282 uint8_t index = 0;
3283 uint8_t base = irp->rm;
3284
3285 if (base == 4)
3286 {
3287 havesib = 1;
3288 if (target_read_memory (irp->addr, &byte, 1))
3289 {
3290 if (record_debug)
3291 printf_unfiltered (_("Process record: error reading memory "
3292 "at addr %s len = 1.\n"),
3293 paddress (gdbarch, irp->addr));
3294 return -1;
3295 }
3296 irp->addr++;
3297 scale = (byte >> 6) & 3;
3298 index = ((byte >> 3) & 7) | irp->rex_x;
3299 base = (byte & 7);
3300 }
3301 base |= irp->rex_b;
3302
3303 switch (irp->mod)
3304 {
3305 case 0:
3306 if ((base & 7) == 5)
3307 {
3308 base = 0xff;
3309 if (target_read_memory (irp->addr, buf, 4))
3310 {
3311 if (record_debug)
3312 printf_unfiltered (_("Process record: error reading "
3313 "memory at addr %s len = 4.\n"),
3314 paddress (gdbarch, irp->addr));
3315 return -1;
3316 }
3317 irp->addr += 4;
3318 *addr = extract_signed_integer (buf, 4, byte_order);
3319 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3320 *addr += irp->addr + irp->rip_offset;
3321 }
3322 break;
3323 case 1:
3324 if (target_read_memory (irp->addr, buf, 1))
3325 {
3326 if (record_debug)
3327 printf_unfiltered (_("Process record: error reading memory "
3328 "at addr %s len = 1.\n"),
3329 paddress (gdbarch, irp->addr));
3330 return -1;
3331 }
3332 irp->addr++;
3333 *addr = (int8_t) buf[0];
3334 break;
3335 case 2:
3336 if (target_read_memory (irp->addr, buf, 4))
3337 {
3338 if (record_debug)
3339 printf_unfiltered (_("Process record: error reading memory "
3340 "at addr %s len = 4.\n"),
3341 paddress (gdbarch, irp->addr));
3342 return -1;
3343 }
3344 *addr = extract_signed_integer (buf, 4, byte_order);
3345 irp->addr += 4;
3346 break;
3347 }
3348
3349 offset64 = 0;
3350 if (base != 0xff)
3351 {
3352 if (base == 4 && irp->popl_esp_hack)
3353 *addr += irp->popl_esp_hack;
3354 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3355 &offset64);
3356 }
3357 if (irp->aflag == 2)
3358 {
3359 *addr += offset64;
3360 }
3361 else
3362 *addr = (uint32_t) (offset64 + *addr);
3363
3364 if (havesib && (index != 4 || scale != 0))
3365 {
3366 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3367 &offset64);
3368 if (irp->aflag == 2)
3369 *addr += offset64 << scale;
3370 else
3371 *addr = (uint32_t) (*addr + (offset64 << scale));
3372 }
3373 }
3374 else
3375 {
3376 /* 16 bits */
3377 switch (irp->mod)
3378 {
3379 case 0:
3380 if (irp->rm == 6)
3381 {
3382 if (target_read_memory (irp->addr, buf, 2))
3383 {
3384 if (record_debug)
3385 printf_unfiltered (_("Process record: error reading "
3386 "memory at addr %s len = 2.\n"),
3387 paddress (gdbarch, irp->addr));
3388 return -1;
3389 }
3390 irp->addr += 2;
3391 *addr = extract_signed_integer (buf, 2, byte_order);
3392 irp->rm = 0;
3393 goto no_rm;
3394 }
3395 break;
3396 case 1:
3397 if (target_read_memory (irp->addr, buf, 1))
3398 {
3399 if (record_debug)
3400 printf_unfiltered (_("Process record: error reading memory "
3401 "at addr %s len = 1.\n"),
3402 paddress (gdbarch, irp->addr));
3403 return -1;
3404 }
3405 irp->addr++;
3406 *addr = (int8_t) buf[0];
3407 break;
3408 case 2:
3409 if (target_read_memory (irp->addr, buf, 2))
3410 {
3411 if (record_debug)
3412 printf_unfiltered (_("Process record: error reading memory "
3413 "at addr %s len = 2.\n"),
3414 paddress (gdbarch, irp->addr));
3415 return -1;
3416 }
3417 irp->addr += 2;
3418 *addr = extract_signed_integer (buf, 2, byte_order);
3419 break;
3420 }
3421
3422 switch (irp->rm)
3423 {
3424 case 0:
3425 regcache_raw_read_unsigned (irp->regcache,
3426 irp->regmap[X86_RECORD_REBX_REGNUM],
3427 &offset64);
3428 *addr = (uint32_t) (*addr + offset64);
3429 regcache_raw_read_unsigned (irp->regcache,
3430 irp->regmap[X86_RECORD_RESI_REGNUM],
3431 &offset64);
3432 *addr = (uint32_t) (*addr + offset64);
3433 break;
3434 case 1:
3435 regcache_raw_read_unsigned (irp->regcache,
3436 irp->regmap[X86_RECORD_REBX_REGNUM],
3437 &offset64);
3438 *addr = (uint32_t) (*addr + offset64);
3439 regcache_raw_read_unsigned (irp->regcache,
3440 irp->regmap[X86_RECORD_REDI_REGNUM],
3441 &offset64);
3442 *addr = (uint32_t) (*addr + offset64);
3443 break;
3444 case 2:
3445 regcache_raw_read_unsigned (irp->regcache,
3446 irp->regmap[X86_RECORD_REBP_REGNUM],
3447 &offset64);
3448 *addr = (uint32_t) (*addr + offset64);
3449 regcache_raw_read_unsigned (irp->regcache,
3450 irp->regmap[X86_RECORD_RESI_REGNUM],
3451 &offset64);
3452 *addr = (uint32_t) (*addr + offset64);
3453 break;
3454 case 3:
3455 regcache_raw_read_unsigned (irp->regcache,
3456 irp->regmap[X86_RECORD_REBP_REGNUM],
3457 &offset64);
3458 *addr = (uint32_t) (*addr + offset64);
3459 regcache_raw_read_unsigned (irp->regcache,
3460 irp->regmap[X86_RECORD_REDI_REGNUM],
3461 &offset64);
3462 *addr = (uint32_t) (*addr + offset64);
3463 break;
3464 case 4:
3465 regcache_raw_read_unsigned (irp->regcache,
3466 irp->regmap[X86_RECORD_RESI_REGNUM],
3467 &offset64);
3468 *addr = (uint32_t) (*addr + offset64);
3469 break;
3470 case 5:
3471 regcache_raw_read_unsigned (irp->regcache,
3472 irp->regmap[X86_RECORD_REDI_REGNUM],
3473 &offset64);
3474 *addr = (uint32_t) (*addr + offset64);
3475 break;
3476 case 6:
3477 regcache_raw_read_unsigned (irp->regcache,
3478 irp->regmap[X86_RECORD_REBP_REGNUM],
3479 &offset64);
3480 *addr = (uint32_t) (*addr + offset64);
3481 break;
3482 case 7:
3483 regcache_raw_read_unsigned (irp->regcache,
3484 irp->regmap[X86_RECORD_REBX_REGNUM],
3485 &offset64);
3486 *addr = (uint32_t) (*addr + offset64);
3487 break;
3488 }
3489 *addr &= 0xffff;
3490 }
3491
3492 no_rm:
3493 return 0;
3494 }
3495
3496 /* Record the value of the memory that willbe changed in current instruction
3497 to "record_arch_list".
3498 Return -1 if something wrong. */
3499
3500 static int
3501 i386_record_lea_modrm (struct i386_record_s *irp)
3502 {
3503 struct gdbarch *gdbarch = irp->gdbarch;
3504 uint64_t addr;
3505
3506 if (irp->override >= 0)
3507 {
3508 if (record_memory_query)
3509 {
3510 int q;
3511
3512 target_terminal_ours ();
3513 q = yquery (_("\
3514 Process record ignores the memory change of instruction at address %s\n\
3515 because it can't get the value of the segment register.\n\
3516 Do you want to stop the program?"),
3517 paddress (gdbarch, irp->orig_addr));
3518 target_terminal_inferior ();
3519 if (q)
3520 return -1;
3521 }
3522
3523 return 0;
3524 }
3525
3526 if (i386_record_lea_modrm_addr (irp, &addr))
3527 return -1;
3528
3529 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3530 return -1;
3531
3532 return 0;
3533 }
3534
3535 /* Record the push operation to "record_arch_list".
3536 Return -1 if something wrong. */
3537
3538 static int
3539 i386_record_push (struct i386_record_s *irp, int size)
3540 {
3541 ULONGEST addr;
3542
3543 if (record_arch_list_add_reg (irp->regcache,
3544 irp->regmap[X86_RECORD_RESP_REGNUM]))
3545 return -1;
3546 regcache_raw_read_unsigned (irp->regcache,
3547 irp->regmap[X86_RECORD_RESP_REGNUM],
3548 &addr);
3549 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
3550 return -1;
3551
3552 return 0;
3553 }
3554
3555
3556 /* Defines contents to record. */
3557 #define I386_SAVE_FPU_REGS 0xfffd
3558 #define I386_SAVE_FPU_ENV 0xfffe
3559 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3560
3561 /* Record the value of floating point registers which will be changed
3562 by the current instruction to "record_arch_list". Return -1 if
3563 something is wrong. */
3564
3565 static int i386_record_floats (struct gdbarch *gdbarch,
3566 struct i386_record_s *ir,
3567 uint32_t iregnum)
3568 {
3569 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3570 int i;
3571
3572 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3573 happen. Currently we store st0-st7 registers, but we need not store all
3574 registers all the time, in future we use ftag register and record only
3575 those who are not marked as an empty. */
3576
3577 if (I386_SAVE_FPU_REGS == iregnum)
3578 {
3579 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3580 {
3581 if (record_arch_list_add_reg (ir->regcache, i))
3582 return -1;
3583 }
3584 }
3585 else if (I386_SAVE_FPU_ENV == iregnum)
3586 {
3587 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3588 {
3589 if (record_arch_list_add_reg (ir->regcache, i))
3590 return -1;
3591 }
3592 }
3593 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3594 {
3595 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3596 {
3597 if (record_arch_list_add_reg (ir->regcache, i))
3598 return -1;
3599 }
3600 }
3601 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3602 (iregnum <= I387_FOP_REGNUM (tdep)))
3603 {
3604 if (record_arch_list_add_reg (ir->regcache,iregnum))
3605 return -1;
3606 }
3607 else
3608 {
3609 /* Parameter error. */
3610 return -1;
3611 }
3612 if(I386_SAVE_FPU_ENV != iregnum)
3613 {
3614 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3615 {
3616 if (record_arch_list_add_reg (ir->regcache, i))
3617 return -1;
3618 }
3619 }
3620 return 0;
3621 }
3622
3623 /* Parse the current instruction and record the values of the registers and
3624 memory that will be changed in current instruction to "record_arch_list".
3625 Return -1 if something wrong. */
3626
3627 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3628 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3629
3630 int
3631 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3632 CORE_ADDR input_addr)
3633 {
3634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3635 int prefixes = 0;
3636 int regnum = 0;
3637 uint32_t opcode;
3638 uint8_t opcode8;
3639 ULONGEST addr;
3640 gdb_byte buf[MAX_REGISTER_SIZE];
3641 struct i386_record_s ir;
3642 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3643 int rex = 0;
3644 uint8_t rex_w = -1;
3645 uint8_t rex_r = 0;
3646
3647 memset (&ir, 0, sizeof (struct i386_record_s));
3648 ir.regcache = regcache;
3649 ir.addr = input_addr;
3650 ir.orig_addr = input_addr;
3651 ir.aflag = 1;
3652 ir.dflag = 1;
3653 ir.override = -1;
3654 ir.popl_esp_hack = 0;
3655 ir.regmap = tdep->record_regmap;
3656 ir.gdbarch = gdbarch;
3657
3658 if (record_debug > 1)
3659 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3660 "addr = %s\n",
3661 paddress (gdbarch, ir.addr));
3662
3663 /* prefixes */
3664 while (1)
3665 {
3666 if (target_read_memory (ir.addr, &opcode8, 1))
3667 {
3668 if (record_debug)
3669 printf_unfiltered (_("Process record: error reading memory at "
3670 "addr %s len = 1.\n"),
3671 paddress (gdbarch, ir.addr));
3672 return -1;
3673 }
3674 ir.addr++;
3675 switch (opcode8) /* Instruction prefixes */
3676 {
3677 case REPE_PREFIX_OPCODE:
3678 prefixes |= PREFIX_REPZ;
3679 break;
3680 case REPNE_PREFIX_OPCODE:
3681 prefixes |= PREFIX_REPNZ;
3682 break;
3683 case LOCK_PREFIX_OPCODE:
3684 prefixes |= PREFIX_LOCK;
3685 break;
3686 case CS_PREFIX_OPCODE:
3687 ir.override = X86_RECORD_CS_REGNUM;
3688 break;
3689 case SS_PREFIX_OPCODE:
3690 ir.override = X86_RECORD_SS_REGNUM;
3691 break;
3692 case DS_PREFIX_OPCODE:
3693 ir.override = X86_RECORD_DS_REGNUM;
3694 break;
3695 case ES_PREFIX_OPCODE:
3696 ir.override = X86_RECORD_ES_REGNUM;
3697 break;
3698 case FS_PREFIX_OPCODE:
3699 ir.override = X86_RECORD_FS_REGNUM;
3700 break;
3701 case GS_PREFIX_OPCODE:
3702 ir.override = X86_RECORD_GS_REGNUM;
3703 break;
3704 case DATA_PREFIX_OPCODE:
3705 prefixes |= PREFIX_DATA;
3706 break;
3707 case ADDR_PREFIX_OPCODE:
3708 prefixes |= PREFIX_ADDR;
3709 break;
3710 case 0x40: /* i386 inc %eax */
3711 case 0x41: /* i386 inc %ecx */
3712 case 0x42: /* i386 inc %edx */
3713 case 0x43: /* i386 inc %ebx */
3714 case 0x44: /* i386 inc %esp */
3715 case 0x45: /* i386 inc %ebp */
3716 case 0x46: /* i386 inc %esi */
3717 case 0x47: /* i386 inc %edi */
3718 case 0x48: /* i386 dec %eax */
3719 case 0x49: /* i386 dec %ecx */
3720 case 0x4a: /* i386 dec %edx */
3721 case 0x4b: /* i386 dec %ebx */
3722 case 0x4c: /* i386 dec %esp */
3723 case 0x4d: /* i386 dec %ebp */
3724 case 0x4e: /* i386 dec %esi */
3725 case 0x4f: /* i386 dec %edi */
3726 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
3727 {
3728 /* REX */
3729 rex = 1;
3730 rex_w = (opcode8 >> 3) & 1;
3731 rex_r = (opcode8 & 0x4) << 1;
3732 ir.rex_x = (opcode8 & 0x2) << 2;
3733 ir.rex_b = (opcode8 & 0x1) << 3;
3734 }
3735 else /* 32 bit target */
3736 goto out_prefixes;
3737 break;
3738 default:
3739 goto out_prefixes;
3740 break;
3741 }
3742 }
3743 out_prefixes:
3744 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3745 {
3746 ir.dflag = 2;
3747 }
3748 else
3749 {
3750 if (prefixes & PREFIX_DATA)
3751 ir.dflag ^= 1;
3752 }
3753 if (prefixes & PREFIX_ADDR)
3754 ir.aflag ^= 1;
3755 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3756 ir.aflag = 2;
3757
3758 /* Now check op code. */
3759 opcode = (uint32_t) opcode8;
3760 reswitch:
3761 switch (opcode)
3762 {
3763 case 0x0f:
3764 if (target_read_memory (ir.addr, &opcode8, 1))
3765 {
3766 if (record_debug)
3767 printf_unfiltered (_("Process record: error reading memory at "
3768 "addr %s len = 1.\n"),
3769 paddress (gdbarch, ir.addr));
3770 return -1;
3771 }
3772 ir.addr++;
3773 opcode = (uint32_t) opcode8 | 0x0f00;
3774 goto reswitch;
3775 break;
3776
3777 case 0x00: /* arith & logic */
3778 case 0x01:
3779 case 0x02:
3780 case 0x03:
3781 case 0x04:
3782 case 0x05:
3783 case 0x08:
3784 case 0x09:
3785 case 0x0a:
3786 case 0x0b:
3787 case 0x0c:
3788 case 0x0d:
3789 case 0x10:
3790 case 0x11:
3791 case 0x12:
3792 case 0x13:
3793 case 0x14:
3794 case 0x15:
3795 case 0x18:
3796 case 0x19:
3797 case 0x1a:
3798 case 0x1b:
3799 case 0x1c:
3800 case 0x1d:
3801 case 0x20:
3802 case 0x21:
3803 case 0x22:
3804 case 0x23:
3805 case 0x24:
3806 case 0x25:
3807 case 0x28:
3808 case 0x29:
3809 case 0x2a:
3810 case 0x2b:
3811 case 0x2c:
3812 case 0x2d:
3813 case 0x30:
3814 case 0x31:
3815 case 0x32:
3816 case 0x33:
3817 case 0x34:
3818 case 0x35:
3819 case 0x38:
3820 case 0x39:
3821 case 0x3a:
3822 case 0x3b:
3823 case 0x3c:
3824 case 0x3d:
3825 if (((opcode >> 3) & 7) != OP_CMPL)
3826 {
3827 if ((opcode & 1) == 0)
3828 ir.ot = OT_BYTE;
3829 else
3830 ir.ot = ir.dflag + OT_WORD;
3831
3832 switch ((opcode >> 1) & 3)
3833 {
3834 case 0: /* OP Ev, Gv */
3835 if (i386_record_modrm (&ir))
3836 return -1;
3837 if (ir.mod != 3)
3838 {
3839 if (i386_record_lea_modrm (&ir))
3840 return -1;
3841 }
3842 else
3843 {
3844 ir.rm |= ir.rex_b;
3845 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3846 ir.rm &= 0x3;
3847 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3848 }
3849 break;
3850 case 1: /* OP Gv, Ev */
3851 if (i386_record_modrm (&ir))
3852 return -1;
3853 ir.reg |= rex_r;
3854 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3855 ir.reg &= 0x3;
3856 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3857 break;
3858 case 2: /* OP A, Iv */
3859 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3860 break;
3861 }
3862 }
3863 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3864 break;
3865
3866 case 0x80: /* GRP1 */
3867 case 0x81:
3868 case 0x82:
3869 case 0x83:
3870 if (i386_record_modrm (&ir))
3871 return -1;
3872
3873 if (ir.reg != OP_CMPL)
3874 {
3875 if ((opcode & 1) == 0)
3876 ir.ot = OT_BYTE;
3877 else
3878 ir.ot = ir.dflag + OT_WORD;
3879
3880 if (ir.mod != 3)
3881 {
3882 if (opcode == 0x83)
3883 ir.rip_offset = 1;
3884 else
3885 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3886 if (i386_record_lea_modrm (&ir))
3887 return -1;
3888 }
3889 else
3890 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
3891 }
3892 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3893 break;
3894
3895 case 0x40: /* inc */
3896 case 0x41:
3897 case 0x42:
3898 case 0x43:
3899 case 0x44:
3900 case 0x45:
3901 case 0x46:
3902 case 0x47:
3903
3904 case 0x48: /* dec */
3905 case 0x49:
3906 case 0x4a:
3907 case 0x4b:
3908 case 0x4c:
3909 case 0x4d:
3910 case 0x4e:
3911 case 0x4f:
3912
3913 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3914 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3915 break;
3916
3917 case 0xf6: /* GRP3 */
3918 case 0xf7:
3919 if ((opcode & 1) == 0)
3920 ir.ot = OT_BYTE;
3921 else
3922 ir.ot = ir.dflag + OT_WORD;
3923 if (i386_record_modrm (&ir))
3924 return -1;
3925
3926 if (ir.mod != 3 && ir.reg == 0)
3927 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3928
3929 switch (ir.reg)
3930 {
3931 case 0: /* test */
3932 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3933 break;
3934 case 2: /* not */
3935 case 3: /* neg */
3936 if (ir.mod != 3)
3937 {
3938 if (i386_record_lea_modrm (&ir))
3939 return -1;
3940 }
3941 else
3942 {
3943 ir.rm |= ir.rex_b;
3944 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3945 ir.rm &= 0x3;
3946 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3947 }
3948 if (ir.reg == 3) /* neg */
3949 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3950 break;
3951 case 4: /* mul */
3952 case 5: /* imul */
3953 case 6: /* div */
3954 case 7: /* idiv */
3955 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3956 if (ir.ot != OT_BYTE)
3957 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3958 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3959 break;
3960 default:
3961 ir.addr -= 2;
3962 opcode = opcode << 8 | ir.modrm;
3963 goto no_support;
3964 break;
3965 }
3966 break;
3967
3968 case 0xfe: /* GRP4 */
3969 case 0xff: /* GRP5 */
3970 if (i386_record_modrm (&ir))
3971 return -1;
3972 if (ir.reg >= 2 && opcode == 0xfe)
3973 {
3974 ir.addr -= 2;
3975 opcode = opcode << 8 | ir.modrm;
3976 goto no_support;
3977 }
3978 switch (ir.reg)
3979 {
3980 case 0: /* inc */
3981 case 1: /* dec */
3982 if ((opcode & 1) == 0)
3983 ir.ot = OT_BYTE;
3984 else
3985 ir.ot = ir.dflag + OT_WORD;
3986 if (ir.mod != 3)
3987 {
3988 if (i386_record_lea_modrm (&ir))
3989 return -1;
3990 }
3991 else
3992 {
3993 ir.rm |= ir.rex_b;
3994 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3995 ir.rm &= 0x3;
3996 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3997 }
3998 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3999 break;
4000 case 2: /* call */
4001 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4002 ir.dflag = 2;
4003 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4004 return -1;
4005 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4006 break;
4007 case 3: /* lcall */
4008 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4009 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4010 return -1;
4011 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4012 break;
4013 case 4: /* jmp */
4014 case 5: /* ljmp */
4015 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4016 break;
4017 case 6: /* push */
4018 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4019 ir.dflag = 2;
4020 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4021 return -1;
4022 break;
4023 default:
4024 ir.addr -= 2;
4025 opcode = opcode << 8 | ir.modrm;
4026 goto no_support;
4027 break;
4028 }
4029 break;
4030
4031 case 0x84: /* test */
4032 case 0x85:
4033 case 0xa8:
4034 case 0xa9:
4035 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4036 break;
4037
4038 case 0x98: /* CWDE/CBW */
4039 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4040 break;
4041
4042 case 0x99: /* CDQ/CWD */
4043 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4044 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4045 break;
4046
4047 case 0x0faf: /* imul */
4048 case 0x69:
4049 case 0x6b:
4050 ir.ot = ir.dflag + OT_WORD;
4051 if (i386_record_modrm (&ir))
4052 return -1;
4053 if (opcode == 0x69)
4054 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4055 else if (opcode == 0x6b)
4056 ir.rip_offset = 1;
4057 ir.reg |= rex_r;
4058 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4059 ir.reg &= 0x3;
4060 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4061 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4062 break;
4063
4064 case 0x0fc0: /* xadd */
4065 case 0x0fc1:
4066 if ((opcode & 1) == 0)
4067 ir.ot = OT_BYTE;
4068 else
4069 ir.ot = ir.dflag + OT_WORD;
4070 if (i386_record_modrm (&ir))
4071 return -1;
4072 ir.reg |= rex_r;
4073 if (ir.mod == 3)
4074 {
4075 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4076 ir.reg &= 0x3;
4077 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4078 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4079 ir.rm &= 0x3;
4080 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4081 }
4082 else
4083 {
4084 if (i386_record_lea_modrm (&ir))
4085 return -1;
4086 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4087 ir.reg &= 0x3;
4088 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4089 }
4090 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4091 break;
4092
4093 case 0x0fb0: /* cmpxchg */
4094 case 0x0fb1:
4095 if ((opcode & 1) == 0)
4096 ir.ot = OT_BYTE;
4097 else
4098 ir.ot = ir.dflag + OT_WORD;
4099 if (i386_record_modrm (&ir))
4100 return -1;
4101 if (ir.mod == 3)
4102 {
4103 ir.reg |= rex_r;
4104 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4105 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4106 ir.reg &= 0x3;
4107 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4108 }
4109 else
4110 {
4111 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4112 if (i386_record_lea_modrm (&ir))
4113 return -1;
4114 }
4115 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4116 break;
4117
4118 case 0x0fc7: /* cmpxchg8b */
4119 if (i386_record_modrm (&ir))
4120 return -1;
4121 if (ir.mod == 3)
4122 {
4123 ir.addr -= 2;
4124 opcode = opcode << 8 | ir.modrm;
4125 goto no_support;
4126 }
4127 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4128 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4129 if (i386_record_lea_modrm (&ir))
4130 return -1;
4131 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4132 break;
4133
4134 case 0x50: /* push */
4135 case 0x51:
4136 case 0x52:
4137 case 0x53:
4138 case 0x54:
4139 case 0x55:
4140 case 0x56:
4141 case 0x57:
4142 case 0x68:
4143 case 0x6a:
4144 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4145 ir.dflag = 2;
4146 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4147 return -1;
4148 break;
4149
4150 case 0x06: /* push es */
4151 case 0x0e: /* push cs */
4152 case 0x16: /* push ss */
4153 case 0x1e: /* push ds */
4154 if (ir.regmap[X86_RECORD_R8_REGNUM])
4155 {
4156 ir.addr -= 1;
4157 goto no_support;
4158 }
4159 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4160 return -1;
4161 break;
4162
4163 case 0x0fa0: /* push fs */
4164 case 0x0fa8: /* push gs */
4165 if (ir.regmap[X86_RECORD_R8_REGNUM])
4166 {
4167 ir.addr -= 2;
4168 goto no_support;
4169 }
4170 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4171 return -1;
4172 break;
4173
4174 case 0x60: /* pusha */
4175 if (ir.regmap[X86_RECORD_R8_REGNUM])
4176 {
4177 ir.addr -= 1;
4178 goto no_support;
4179 }
4180 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4181 return -1;
4182 break;
4183
4184 case 0x58: /* pop */
4185 case 0x59:
4186 case 0x5a:
4187 case 0x5b:
4188 case 0x5c:
4189 case 0x5d:
4190 case 0x5e:
4191 case 0x5f:
4192 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4193 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4194 break;
4195
4196 case 0x61: /* popa */
4197 if (ir.regmap[X86_RECORD_R8_REGNUM])
4198 {
4199 ir.addr -= 1;
4200 goto no_support;
4201 }
4202 for (regnum = X86_RECORD_REAX_REGNUM;
4203 regnum <= X86_RECORD_REDI_REGNUM;
4204 regnum++)
4205 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4206 break;
4207
4208 case 0x8f: /* pop */
4209 if (ir.regmap[X86_RECORD_R8_REGNUM])
4210 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4211 else
4212 ir.ot = ir.dflag + OT_WORD;
4213 if (i386_record_modrm (&ir))
4214 return -1;
4215 if (ir.mod == 3)
4216 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4217 else
4218 {
4219 ir.popl_esp_hack = 1 << ir.ot;
4220 if (i386_record_lea_modrm (&ir))
4221 return -1;
4222 }
4223 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4224 break;
4225
4226 case 0xc8: /* enter */
4227 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4228 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4229 ir.dflag = 2;
4230 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4231 return -1;
4232 break;
4233
4234 case 0xc9: /* leave */
4235 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4236 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4237 break;
4238
4239 case 0x07: /* pop es */
4240 if (ir.regmap[X86_RECORD_R8_REGNUM])
4241 {
4242 ir.addr -= 1;
4243 goto no_support;
4244 }
4245 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4246 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4247 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4248 break;
4249
4250 case 0x17: /* pop ss */
4251 if (ir.regmap[X86_RECORD_R8_REGNUM])
4252 {
4253 ir.addr -= 1;
4254 goto no_support;
4255 }
4256 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4257 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4258 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4259 break;
4260
4261 case 0x1f: /* pop ds */
4262 if (ir.regmap[X86_RECORD_R8_REGNUM])
4263 {
4264 ir.addr -= 1;
4265 goto no_support;
4266 }
4267 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4268 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4269 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4270 break;
4271
4272 case 0x0fa1: /* pop fs */
4273 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4274 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4275 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4276 break;
4277
4278 case 0x0fa9: /* pop gs */
4279 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4280 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4281 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4282 break;
4283
4284 case 0x88: /* mov */
4285 case 0x89:
4286 case 0xc6:
4287 case 0xc7:
4288 if ((opcode & 1) == 0)
4289 ir.ot = OT_BYTE;
4290 else
4291 ir.ot = ir.dflag + OT_WORD;
4292
4293 if (i386_record_modrm (&ir))
4294 return -1;
4295
4296 if (ir.mod != 3)
4297 {
4298 if (opcode == 0xc6 || opcode == 0xc7)
4299 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4300 if (i386_record_lea_modrm (&ir))
4301 return -1;
4302 }
4303 else
4304 {
4305 if (opcode == 0xc6 || opcode == 0xc7)
4306 ir.rm |= ir.rex_b;
4307 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4308 ir.rm &= 0x3;
4309 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4310 }
4311 break;
4312
4313 case 0x8a: /* mov */
4314 case 0x8b:
4315 if ((opcode & 1) == 0)
4316 ir.ot = OT_BYTE;
4317 else
4318 ir.ot = ir.dflag + OT_WORD;
4319 if (i386_record_modrm (&ir))
4320 return -1;
4321 ir.reg |= rex_r;
4322 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4323 ir.reg &= 0x3;
4324 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4325 break;
4326
4327 case 0x8c: /* mov seg */
4328 if (i386_record_modrm (&ir))
4329 return -1;
4330 if (ir.reg > 5)
4331 {
4332 ir.addr -= 2;
4333 opcode = opcode << 8 | ir.modrm;
4334 goto no_support;
4335 }
4336
4337 if (ir.mod == 3)
4338 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4339 else
4340 {
4341 ir.ot = OT_WORD;
4342 if (i386_record_lea_modrm (&ir))
4343 return -1;
4344 }
4345 break;
4346
4347 case 0x8e: /* mov seg */
4348 if (i386_record_modrm (&ir))
4349 return -1;
4350 switch (ir.reg)
4351 {
4352 case 0:
4353 regnum = X86_RECORD_ES_REGNUM;
4354 break;
4355 case 2:
4356 regnum = X86_RECORD_SS_REGNUM;
4357 break;
4358 case 3:
4359 regnum = X86_RECORD_DS_REGNUM;
4360 break;
4361 case 4:
4362 regnum = X86_RECORD_FS_REGNUM;
4363 break;
4364 case 5:
4365 regnum = X86_RECORD_GS_REGNUM;
4366 break;
4367 default:
4368 ir.addr -= 2;
4369 opcode = opcode << 8 | ir.modrm;
4370 goto no_support;
4371 break;
4372 }
4373 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4374 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4375 break;
4376
4377 case 0x0fb6: /* movzbS */
4378 case 0x0fb7: /* movzwS */
4379 case 0x0fbe: /* movsbS */
4380 case 0x0fbf: /* movswS */
4381 if (i386_record_modrm (&ir))
4382 return -1;
4383 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4384 break;
4385
4386 case 0x8d: /* lea */
4387 if (i386_record_modrm (&ir))
4388 return -1;
4389 if (ir.mod == 3)
4390 {
4391 ir.addr -= 2;
4392 opcode = opcode << 8 | ir.modrm;
4393 goto no_support;
4394 }
4395 ir.ot = ir.dflag;
4396 ir.reg |= rex_r;
4397 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4398 ir.reg &= 0x3;
4399 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4400 break;
4401
4402 case 0xa0: /* mov EAX */
4403 case 0xa1:
4404
4405 case 0xd7: /* xlat */
4406 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4407 break;
4408
4409 case 0xa2: /* mov EAX */
4410 case 0xa3:
4411 if (ir.override >= 0)
4412 {
4413 if (record_memory_query)
4414 {
4415 int q;
4416
4417 target_terminal_ours ();
4418 q = yquery (_("\
4419 Process record ignores the memory change of instruction at address %s\n\
4420 because it can't get the value of the segment register.\n\
4421 Do you want to stop the program?"),
4422 paddress (gdbarch, ir.orig_addr));
4423 target_terminal_inferior ();
4424 if (q)
4425 return -1;
4426 }
4427 }
4428 else
4429 {
4430 if ((opcode & 1) == 0)
4431 ir.ot = OT_BYTE;
4432 else
4433 ir.ot = ir.dflag + OT_WORD;
4434 if (ir.aflag == 2)
4435 {
4436 if (target_read_memory (ir.addr, buf, 8))
4437 {
4438 if (record_debug)
4439 printf_unfiltered (_("Process record: error reading "
4440 "memory at addr 0x%s len = 8.\n"),
4441 paddress (gdbarch, ir.addr));
4442 return -1;
4443 }
4444 ir.addr += 8;
4445 addr = extract_unsigned_integer (buf, 8, byte_order);
4446 }
4447 else if (ir.aflag)
4448 {
4449 if (target_read_memory (ir.addr, buf, 4))
4450 {
4451 if (record_debug)
4452 printf_unfiltered (_("Process record: error reading "
4453 "memory at addr 0x%s len = 4.\n"),
4454 paddress (gdbarch, ir.addr));
4455 return -1;
4456 }
4457 ir.addr += 4;
4458 addr = extract_unsigned_integer (buf, 4, byte_order);
4459 }
4460 else
4461 {
4462 if (target_read_memory (ir.addr, buf, 2))
4463 {
4464 if (record_debug)
4465 printf_unfiltered (_("Process record: error reading "
4466 "memory at addr 0x%s len = 2.\n"),
4467 paddress (gdbarch, ir.addr));
4468 return -1;
4469 }
4470 ir.addr += 2;
4471 addr = extract_unsigned_integer (buf, 2, byte_order);
4472 }
4473 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4474 return -1;
4475 }
4476 break;
4477
4478 case 0xb0: /* mov R, Ib */
4479 case 0xb1:
4480 case 0xb2:
4481 case 0xb3:
4482 case 0xb4:
4483 case 0xb5:
4484 case 0xb6:
4485 case 0xb7:
4486 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4487 ? ((opcode & 0x7) | ir.rex_b)
4488 : ((opcode & 0x7) & 0x3));
4489 break;
4490
4491 case 0xb8: /* mov R, Iv */
4492 case 0xb9:
4493 case 0xba:
4494 case 0xbb:
4495 case 0xbc:
4496 case 0xbd:
4497 case 0xbe:
4498 case 0xbf:
4499 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4500 break;
4501
4502 case 0x91: /* xchg R, EAX */
4503 case 0x92:
4504 case 0x93:
4505 case 0x94:
4506 case 0x95:
4507 case 0x96:
4508 case 0x97:
4509 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4510 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4511 break;
4512
4513 case 0x86: /* xchg Ev, Gv */
4514 case 0x87:
4515 if ((opcode & 1) == 0)
4516 ir.ot = OT_BYTE;
4517 else
4518 ir.ot = ir.dflag + OT_WORD;
4519 if (i386_record_modrm (&ir))
4520 return -1;
4521 if (ir.mod == 3)
4522 {
4523 ir.rm |= ir.rex_b;
4524 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4525 ir.rm &= 0x3;
4526 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4527 }
4528 else
4529 {
4530 if (i386_record_lea_modrm (&ir))
4531 return -1;
4532 }
4533 ir.reg |= rex_r;
4534 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4535 ir.reg &= 0x3;
4536 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4537 break;
4538
4539 case 0xc4: /* les Gv */
4540 case 0xc5: /* lds Gv */
4541 if (ir.regmap[X86_RECORD_R8_REGNUM])
4542 {
4543 ir.addr -= 1;
4544 goto no_support;
4545 }
4546 case 0x0fb2: /* lss Gv */
4547 case 0x0fb4: /* lfs Gv */
4548 case 0x0fb5: /* lgs Gv */
4549 if (i386_record_modrm (&ir))
4550 return -1;
4551 if (ir.mod == 3)
4552 {
4553 if (opcode > 0xff)
4554 ir.addr -= 3;
4555 else
4556 ir.addr -= 2;
4557 opcode = opcode << 8 | ir.modrm;
4558 goto no_support;
4559 }
4560 switch (opcode)
4561 {
4562 case 0xc4: /* les Gv */
4563 regnum = X86_RECORD_ES_REGNUM;
4564 break;
4565 case 0xc5: /* lds Gv */
4566 regnum = X86_RECORD_DS_REGNUM;
4567 break;
4568 case 0x0fb2: /* lss Gv */
4569 regnum = X86_RECORD_SS_REGNUM;
4570 break;
4571 case 0x0fb4: /* lfs Gv */
4572 regnum = X86_RECORD_FS_REGNUM;
4573 break;
4574 case 0x0fb5: /* lgs Gv */
4575 regnum = X86_RECORD_GS_REGNUM;
4576 break;
4577 }
4578 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4579 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4580 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4581 break;
4582
4583 case 0xc0: /* shifts */
4584 case 0xc1:
4585 case 0xd0:
4586 case 0xd1:
4587 case 0xd2:
4588 case 0xd3:
4589 if ((opcode & 1) == 0)
4590 ir.ot = OT_BYTE;
4591 else
4592 ir.ot = ir.dflag + OT_WORD;
4593 if (i386_record_modrm (&ir))
4594 return -1;
4595 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4596 {
4597 if (i386_record_lea_modrm (&ir))
4598 return -1;
4599 }
4600 else
4601 {
4602 ir.rm |= ir.rex_b;
4603 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4604 ir.rm &= 0x3;
4605 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4606 }
4607 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4608 break;
4609
4610 case 0x0fa4:
4611 case 0x0fa5:
4612 case 0x0fac:
4613 case 0x0fad:
4614 if (i386_record_modrm (&ir))
4615 return -1;
4616 if (ir.mod == 3)
4617 {
4618 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4619 return -1;
4620 }
4621 else
4622 {
4623 if (i386_record_lea_modrm (&ir))
4624 return -1;
4625 }
4626 break;
4627
4628 case 0xd8: /* Floats. */
4629 case 0xd9:
4630 case 0xda:
4631 case 0xdb:
4632 case 0xdc:
4633 case 0xdd:
4634 case 0xde:
4635 case 0xdf:
4636 if (i386_record_modrm (&ir))
4637 return -1;
4638 ir.reg |= ((opcode & 7) << 3);
4639 if (ir.mod != 3)
4640 {
4641 /* Memory. */
4642 uint64_t addr64;
4643
4644 if (i386_record_lea_modrm_addr (&ir, &addr64))
4645 return -1;
4646 switch (ir.reg)
4647 {
4648 case 0x02:
4649 case 0x12:
4650 case 0x22:
4651 case 0x32:
4652 /* For fcom, ficom nothing to do. */
4653 break;
4654 case 0x03:
4655 case 0x13:
4656 case 0x23:
4657 case 0x33:
4658 /* For fcomp, ficomp pop FPU stack, store all. */
4659 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4660 return -1;
4661 break;
4662 case 0x00:
4663 case 0x01:
4664 case 0x04:
4665 case 0x05:
4666 case 0x06:
4667 case 0x07:
4668 case 0x10:
4669 case 0x11:
4670 case 0x14:
4671 case 0x15:
4672 case 0x16:
4673 case 0x17:
4674 case 0x20:
4675 case 0x21:
4676 case 0x24:
4677 case 0x25:
4678 case 0x26:
4679 case 0x27:
4680 case 0x30:
4681 case 0x31:
4682 case 0x34:
4683 case 0x35:
4684 case 0x36:
4685 case 0x37:
4686 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4687 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4688 of code, always affects st(0) register. */
4689 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4690 return -1;
4691 break;
4692 case 0x08:
4693 case 0x0a:
4694 case 0x0b:
4695 case 0x18:
4696 case 0x19:
4697 case 0x1a:
4698 case 0x1b:
4699 case 0x1d:
4700 case 0x28:
4701 case 0x29:
4702 case 0x2a:
4703 case 0x2b:
4704 case 0x38:
4705 case 0x39:
4706 case 0x3a:
4707 case 0x3b:
4708 case 0x3c:
4709 case 0x3d:
4710 switch (ir.reg & 7)
4711 {
4712 case 0:
4713 /* Handling fld, fild. */
4714 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4715 return -1;
4716 break;
4717 case 1:
4718 switch (ir.reg >> 4)
4719 {
4720 case 0:
4721 if (record_arch_list_add_mem (addr64, 4))
4722 return -1;
4723 break;
4724 case 2:
4725 if (record_arch_list_add_mem (addr64, 8))
4726 return -1;
4727 break;
4728 case 3:
4729 break;
4730 default:
4731 if (record_arch_list_add_mem (addr64, 2))
4732 return -1;
4733 break;
4734 }
4735 break;
4736 default:
4737 switch (ir.reg >> 4)
4738 {
4739 case 0:
4740 if (record_arch_list_add_mem (addr64, 4))
4741 return -1;
4742 if (3 == (ir.reg & 7))
4743 {
4744 /* For fstp m32fp. */
4745 if (i386_record_floats (gdbarch, &ir,
4746 I386_SAVE_FPU_REGS))
4747 return -1;
4748 }
4749 break;
4750 case 1:
4751 if (record_arch_list_add_mem (addr64, 4))
4752 return -1;
4753 if ((3 == (ir.reg & 7))
4754 || (5 == (ir.reg & 7))
4755 || (7 == (ir.reg & 7)))
4756 {
4757 /* For fstp insn. */
4758 if (i386_record_floats (gdbarch, &ir,
4759 I386_SAVE_FPU_REGS))
4760 return -1;
4761 }
4762 break;
4763 case 2:
4764 if (record_arch_list_add_mem (addr64, 8))
4765 return -1;
4766 if (3 == (ir.reg & 7))
4767 {
4768 /* For fstp m64fp. */
4769 if (i386_record_floats (gdbarch, &ir,
4770 I386_SAVE_FPU_REGS))
4771 return -1;
4772 }
4773 break;
4774 case 3:
4775 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4776 {
4777 /* For fistp, fbld, fild, fbstp. */
4778 if (i386_record_floats (gdbarch, &ir,
4779 I386_SAVE_FPU_REGS))
4780 return -1;
4781 }
4782 /* Fall through */
4783 default:
4784 if (record_arch_list_add_mem (addr64, 2))
4785 return -1;
4786 break;
4787 }
4788 break;
4789 }
4790 break;
4791 case 0x0c:
4792 /* Insn fldenv. */
4793 if (i386_record_floats (gdbarch, &ir,
4794 I386_SAVE_FPU_ENV_REG_STACK))
4795 return -1;
4796 break;
4797 case 0x0d:
4798 /* Insn fldcw. */
4799 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4800 return -1;
4801 break;
4802 case 0x2c:
4803 /* Insn frstor. */
4804 if (i386_record_floats (gdbarch, &ir,
4805 I386_SAVE_FPU_ENV_REG_STACK))
4806 return -1;
4807 break;
4808 case 0x0e:
4809 if (ir.dflag)
4810 {
4811 if (record_arch_list_add_mem (addr64, 28))
4812 return -1;
4813 }
4814 else
4815 {
4816 if (record_arch_list_add_mem (addr64, 14))
4817 return -1;
4818 }
4819 break;
4820 case 0x0f:
4821 case 0x2f:
4822 if (record_arch_list_add_mem (addr64, 2))
4823 return -1;
4824 /* Insn fstp, fbstp. */
4825 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4826 return -1;
4827 break;
4828 case 0x1f:
4829 case 0x3e:
4830 if (record_arch_list_add_mem (addr64, 10))
4831 return -1;
4832 break;
4833 case 0x2e:
4834 if (ir.dflag)
4835 {
4836 if (record_arch_list_add_mem (addr64, 28))
4837 return -1;
4838 addr64 += 28;
4839 }
4840 else
4841 {
4842 if (record_arch_list_add_mem (addr64, 14))
4843 return -1;
4844 addr64 += 14;
4845 }
4846 if (record_arch_list_add_mem (addr64, 80))
4847 return -1;
4848 /* Insn fsave. */
4849 if (i386_record_floats (gdbarch, &ir,
4850 I386_SAVE_FPU_ENV_REG_STACK))
4851 return -1;
4852 break;
4853 case 0x3f:
4854 if (record_arch_list_add_mem (addr64, 8))
4855 return -1;
4856 /* Insn fistp. */
4857 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4858 return -1;
4859 break;
4860 default:
4861 ir.addr -= 2;
4862 opcode = opcode << 8 | ir.modrm;
4863 goto no_support;
4864 break;
4865 }
4866 }
4867 /* Opcode is an extension of modR/M byte. */
4868 else
4869 {
4870 switch (opcode)
4871 {
4872 case 0xd8:
4873 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4874 return -1;
4875 break;
4876 case 0xd9:
4877 if (0x0c == (ir.modrm >> 4))
4878 {
4879 if ((ir.modrm & 0x0f) <= 7)
4880 {
4881 if (i386_record_floats (gdbarch, &ir,
4882 I386_SAVE_FPU_REGS))
4883 return -1;
4884 }
4885 else
4886 {
4887 if (i386_record_floats (gdbarch, &ir,
4888 I387_ST0_REGNUM (tdep)))
4889 return -1;
4890 /* If only st(0) is changing, then we have already
4891 recorded. */
4892 if ((ir.modrm & 0x0f) - 0x08)
4893 {
4894 if (i386_record_floats (gdbarch, &ir,
4895 I387_ST0_REGNUM (tdep) +
4896 ((ir.modrm & 0x0f) - 0x08)))
4897 return -1;
4898 }
4899 }
4900 }
4901 else
4902 {
4903 switch (ir.modrm)
4904 {
4905 case 0xe0:
4906 case 0xe1:
4907 case 0xf0:
4908 case 0xf5:
4909 case 0xf8:
4910 case 0xfa:
4911 case 0xfc:
4912 case 0xfe:
4913 case 0xff:
4914 if (i386_record_floats (gdbarch, &ir,
4915 I387_ST0_REGNUM (tdep)))
4916 return -1;
4917 break;
4918 case 0xf1:
4919 case 0xf2:
4920 case 0xf3:
4921 case 0xf4:
4922 case 0xf6:
4923 case 0xf7:
4924 case 0xe8:
4925 case 0xe9:
4926 case 0xea:
4927 case 0xeb:
4928 case 0xec:
4929 case 0xed:
4930 case 0xee:
4931 case 0xf9:
4932 case 0xfb:
4933 if (i386_record_floats (gdbarch, &ir,
4934 I386_SAVE_FPU_REGS))
4935 return -1;
4936 break;
4937 case 0xfd:
4938 if (i386_record_floats (gdbarch, &ir,
4939 I387_ST0_REGNUM (tdep)))
4940 return -1;
4941 if (i386_record_floats (gdbarch, &ir,
4942 I387_ST0_REGNUM (tdep) + 1))
4943 return -1;
4944 break;
4945 }
4946 }
4947 break;
4948 case 0xda:
4949 if (0xe9 == ir.modrm)
4950 {
4951 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4952 return -1;
4953 }
4954 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4955 {
4956 if (i386_record_floats (gdbarch, &ir,
4957 I387_ST0_REGNUM (tdep)))
4958 return -1;
4959 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4960 {
4961 if (i386_record_floats (gdbarch, &ir,
4962 I387_ST0_REGNUM (tdep) +
4963 (ir.modrm & 0x0f)))
4964 return -1;
4965 }
4966 else if ((ir.modrm & 0x0f) - 0x08)
4967 {
4968 if (i386_record_floats (gdbarch, &ir,
4969 I387_ST0_REGNUM (tdep) +
4970 ((ir.modrm & 0x0f) - 0x08)))
4971 return -1;
4972 }
4973 }
4974 break;
4975 case 0xdb:
4976 if (0xe3 == ir.modrm)
4977 {
4978 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
4979 return -1;
4980 }
4981 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4982 {
4983 if (i386_record_floats (gdbarch, &ir,
4984 I387_ST0_REGNUM (tdep)))
4985 return -1;
4986 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4987 {
4988 if (i386_record_floats (gdbarch, &ir,
4989 I387_ST0_REGNUM (tdep) +
4990 (ir.modrm & 0x0f)))
4991 return -1;
4992 }
4993 else if ((ir.modrm & 0x0f) - 0x08)
4994 {
4995 if (i386_record_floats (gdbarch, &ir,
4996 I387_ST0_REGNUM (tdep) +
4997 ((ir.modrm & 0x0f) - 0x08)))
4998 return -1;
4999 }
5000 }
5001 break;
5002 case 0xdc:
5003 if ((0x0c == ir.modrm >> 4)
5004 || (0x0d == ir.modrm >> 4)
5005 || (0x0f == ir.modrm >> 4))
5006 {
5007 if ((ir.modrm & 0x0f) <= 7)
5008 {
5009 if (i386_record_floats (gdbarch, &ir,
5010 I387_ST0_REGNUM (tdep) +
5011 (ir.modrm & 0x0f)))
5012 return -1;
5013 }
5014 else
5015 {
5016 if (i386_record_floats (gdbarch, &ir,
5017 I387_ST0_REGNUM (tdep) +
5018 ((ir.modrm & 0x0f) - 0x08)))
5019 return -1;
5020 }
5021 }
5022 break;
5023 case 0xdd:
5024 if (0x0c == ir.modrm >> 4)
5025 {
5026 if (i386_record_floats (gdbarch, &ir,
5027 I387_FTAG_REGNUM (tdep)))
5028 return -1;
5029 }
5030 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5031 {
5032 if ((ir.modrm & 0x0f) <= 7)
5033 {
5034 if (i386_record_floats (gdbarch, &ir,
5035 I387_ST0_REGNUM (tdep) +
5036 (ir.modrm & 0x0f)))
5037 return -1;
5038 }
5039 else
5040 {
5041 if (i386_record_floats (gdbarch, &ir,
5042 I386_SAVE_FPU_REGS))
5043 return -1;
5044 }
5045 }
5046 break;
5047 case 0xde:
5048 if ((0x0c == ir.modrm >> 4)
5049 || (0x0e == ir.modrm >> 4)
5050 || (0x0f == ir.modrm >> 4)
5051 || (0xd9 == ir.modrm))
5052 {
5053 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5054 return -1;
5055 }
5056 break;
5057 case 0xdf:
5058 if (0xe0 == ir.modrm)
5059 {
5060 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5061 return -1;
5062 }
5063 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5064 {
5065 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5066 return -1;
5067 }
5068 break;
5069 }
5070 }
5071 break;
5072 /* string ops */
5073 case 0xa4: /* movsS */
5074 case 0xa5:
5075 case 0xaa: /* stosS */
5076 case 0xab:
5077 case 0x6c: /* insS */
5078 case 0x6d:
5079 regcache_raw_read_unsigned (ir.regcache,
5080 ir.regmap[X86_RECORD_RECX_REGNUM],
5081 &addr);
5082 if (addr)
5083 {
5084 ULONGEST es, ds;
5085
5086 if ((opcode & 1) == 0)
5087 ir.ot = OT_BYTE;
5088 else
5089 ir.ot = ir.dflag + OT_WORD;
5090 regcache_raw_read_unsigned (ir.regcache,
5091 ir.regmap[X86_RECORD_REDI_REGNUM],
5092 &addr);
5093
5094 regcache_raw_read_unsigned (ir.regcache,
5095 ir.regmap[X86_RECORD_ES_REGNUM],
5096 &es);
5097 regcache_raw_read_unsigned (ir.regcache,
5098 ir.regmap[X86_RECORD_DS_REGNUM],
5099 &ds);
5100 if (ir.aflag && (es != ds))
5101 {
5102 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5103 if (record_memory_query)
5104 {
5105 int q;
5106
5107 target_terminal_ours ();
5108 q = yquery (_("\
5109 Process record ignores the memory change of instruction at address %s\n\
5110 because it can't get the value of the segment register.\n\
5111 Do you want to stop the program?"),
5112 paddress (gdbarch, ir.orig_addr));
5113 target_terminal_inferior ();
5114 if (q)
5115 return -1;
5116 }
5117 }
5118 else
5119 {
5120 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5121 return -1;
5122 }
5123
5124 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5125 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5126 if (opcode == 0xa4 || opcode == 0xa5)
5127 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5128 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5129 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5130 }
5131 break;
5132
5133 case 0xa6: /* cmpsS */
5134 case 0xa7:
5135 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5136 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5137 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5138 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5139 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5140 break;
5141
5142 case 0xac: /* lodsS */
5143 case 0xad:
5144 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5145 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5146 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5147 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5148 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5149 break;
5150
5151 case 0xae: /* scasS */
5152 case 0xaf:
5153 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5154 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5155 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5156 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5157 break;
5158
5159 case 0x6e: /* outsS */
5160 case 0x6f:
5161 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5162 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5163 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5164 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5165 break;
5166
5167 case 0xe4: /* port I/O */
5168 case 0xe5:
5169 case 0xec:
5170 case 0xed:
5171 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5172 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5173 break;
5174
5175 case 0xe6:
5176 case 0xe7:
5177 case 0xee:
5178 case 0xef:
5179 break;
5180
5181 /* control */
5182 case 0xc2: /* ret im */
5183 case 0xc3: /* ret */
5184 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5185 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5186 break;
5187
5188 case 0xca: /* lret im */
5189 case 0xcb: /* lret */
5190 case 0xcf: /* iret */
5191 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5192 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5193 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5194 break;
5195
5196 case 0xe8: /* call im */
5197 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5198 ir.dflag = 2;
5199 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5200 return -1;
5201 break;
5202
5203 case 0x9a: /* lcall im */
5204 if (ir.regmap[X86_RECORD_R8_REGNUM])
5205 {
5206 ir.addr -= 1;
5207 goto no_support;
5208 }
5209 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5210 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5211 return -1;
5212 break;
5213
5214 case 0xe9: /* jmp im */
5215 case 0xea: /* ljmp im */
5216 case 0xeb: /* jmp Jb */
5217 case 0x70: /* jcc Jb */
5218 case 0x71:
5219 case 0x72:
5220 case 0x73:
5221 case 0x74:
5222 case 0x75:
5223 case 0x76:
5224 case 0x77:
5225 case 0x78:
5226 case 0x79:
5227 case 0x7a:
5228 case 0x7b:
5229 case 0x7c:
5230 case 0x7d:
5231 case 0x7e:
5232 case 0x7f:
5233 case 0x0f80: /* jcc Jv */
5234 case 0x0f81:
5235 case 0x0f82:
5236 case 0x0f83:
5237 case 0x0f84:
5238 case 0x0f85:
5239 case 0x0f86:
5240 case 0x0f87:
5241 case 0x0f88:
5242 case 0x0f89:
5243 case 0x0f8a:
5244 case 0x0f8b:
5245 case 0x0f8c:
5246 case 0x0f8d:
5247 case 0x0f8e:
5248 case 0x0f8f:
5249 break;
5250
5251 case 0x0f90: /* setcc Gv */
5252 case 0x0f91:
5253 case 0x0f92:
5254 case 0x0f93:
5255 case 0x0f94:
5256 case 0x0f95:
5257 case 0x0f96:
5258 case 0x0f97:
5259 case 0x0f98:
5260 case 0x0f99:
5261 case 0x0f9a:
5262 case 0x0f9b:
5263 case 0x0f9c:
5264 case 0x0f9d:
5265 case 0x0f9e:
5266 case 0x0f9f:
5267 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5268 ir.ot = OT_BYTE;
5269 if (i386_record_modrm (&ir))
5270 return -1;
5271 if (ir.mod == 3)
5272 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5273 : (ir.rm & 0x3));
5274 else
5275 {
5276 if (i386_record_lea_modrm (&ir))
5277 return -1;
5278 }
5279 break;
5280
5281 case 0x0f40: /* cmov Gv, Ev */
5282 case 0x0f41:
5283 case 0x0f42:
5284 case 0x0f43:
5285 case 0x0f44:
5286 case 0x0f45:
5287 case 0x0f46:
5288 case 0x0f47:
5289 case 0x0f48:
5290 case 0x0f49:
5291 case 0x0f4a:
5292 case 0x0f4b:
5293 case 0x0f4c:
5294 case 0x0f4d:
5295 case 0x0f4e:
5296 case 0x0f4f:
5297 if (i386_record_modrm (&ir))
5298 return -1;
5299 ir.reg |= rex_r;
5300 if (ir.dflag == OT_BYTE)
5301 ir.reg &= 0x3;
5302 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5303 break;
5304
5305 /* flags */
5306 case 0x9c: /* pushf */
5307 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5308 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5309 ir.dflag = 2;
5310 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5311 return -1;
5312 break;
5313
5314 case 0x9d: /* popf */
5315 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5316 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5317 break;
5318
5319 case 0x9e: /* sahf */
5320 if (ir.regmap[X86_RECORD_R8_REGNUM])
5321 {
5322 ir.addr -= 1;
5323 goto no_support;
5324 }
5325 case 0xf5: /* cmc */
5326 case 0xf8: /* clc */
5327 case 0xf9: /* stc */
5328 case 0xfc: /* cld */
5329 case 0xfd: /* std */
5330 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5331 break;
5332
5333 case 0x9f: /* lahf */
5334 if (ir.regmap[X86_RECORD_R8_REGNUM])
5335 {
5336 ir.addr -= 1;
5337 goto no_support;
5338 }
5339 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5340 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5341 break;
5342
5343 /* bit operations */
5344 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5345 ir.ot = ir.dflag + OT_WORD;
5346 if (i386_record_modrm (&ir))
5347 return -1;
5348 if (ir.reg < 4)
5349 {
5350 ir.addr -= 2;
5351 opcode = opcode << 8 | ir.modrm;
5352 goto no_support;
5353 }
5354 if (ir.reg != 4)
5355 {
5356 if (ir.mod == 3)
5357 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5358 else
5359 {
5360 if (i386_record_lea_modrm (&ir))
5361 return -1;
5362 }
5363 }
5364 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5365 break;
5366
5367 case 0x0fa3: /* bt Gv, Ev */
5368 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5369 break;
5370
5371 case 0x0fab: /* bts */
5372 case 0x0fb3: /* btr */
5373 case 0x0fbb: /* btc */
5374 ir.ot = ir.dflag + OT_WORD;
5375 if (i386_record_modrm (&ir))
5376 return -1;
5377 if (ir.mod == 3)
5378 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5379 else
5380 {
5381 uint64_t addr64;
5382 if (i386_record_lea_modrm_addr (&ir, &addr64))
5383 return -1;
5384 regcache_raw_read_unsigned (ir.regcache,
5385 ir.regmap[ir.reg | rex_r],
5386 &addr);
5387 switch (ir.dflag)
5388 {
5389 case 0:
5390 addr64 += ((int16_t) addr >> 4) << 4;
5391 break;
5392 case 1:
5393 addr64 += ((int32_t) addr >> 5) << 5;
5394 break;
5395 case 2:
5396 addr64 += ((int64_t) addr >> 6) << 6;
5397 break;
5398 }
5399 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
5400 return -1;
5401 if (i386_record_lea_modrm (&ir))
5402 return -1;
5403 }
5404 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5405 break;
5406
5407 case 0x0fbc: /* bsf */
5408 case 0x0fbd: /* bsr */
5409 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5410 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5411 break;
5412
5413 /* bcd */
5414 case 0x27: /* daa */
5415 case 0x2f: /* das */
5416 case 0x37: /* aaa */
5417 case 0x3f: /* aas */
5418 case 0xd4: /* aam */
5419 case 0xd5: /* aad */
5420 if (ir.regmap[X86_RECORD_R8_REGNUM])
5421 {
5422 ir.addr -= 1;
5423 goto no_support;
5424 }
5425 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5426 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5427 break;
5428
5429 /* misc */
5430 case 0x90: /* nop */
5431 if (prefixes & PREFIX_LOCK)
5432 {
5433 ir.addr -= 1;
5434 goto no_support;
5435 }
5436 break;
5437
5438 case 0x9b: /* fwait */
5439 if (target_read_memory (ir.addr, &opcode8, 1))
5440 {
5441 if (record_debug)
5442 printf_unfiltered (_("Process record: error reading memory at "
5443 "addr 0x%s len = 1.\n"),
5444 paddress (gdbarch, ir.addr));
5445 return -1;
5446 }
5447 opcode = (uint32_t) opcode8;
5448 ir.addr++;
5449 goto reswitch;
5450 break;
5451
5452 /* XXX */
5453 case 0xcc: /* int3 */
5454 printf_unfiltered (_("Process record does not support instruction "
5455 "int3.\n"));
5456 ir.addr -= 1;
5457 goto no_support;
5458 break;
5459
5460 /* XXX */
5461 case 0xcd: /* int */
5462 {
5463 int ret;
5464 uint8_t interrupt;
5465 if (target_read_memory (ir.addr, &interrupt, 1))
5466 {
5467 if (record_debug)
5468 printf_unfiltered (_("Process record: error reading memory "
5469 "at addr %s len = 1.\n"),
5470 paddress (gdbarch, ir.addr));
5471 return -1;
5472 }
5473 ir.addr++;
5474 if (interrupt != 0x80
5475 || tdep->i386_intx80_record == NULL)
5476 {
5477 printf_unfiltered (_("Process record does not support "
5478 "instruction int 0x%02x.\n"),
5479 interrupt);
5480 ir.addr -= 2;
5481 goto no_support;
5482 }
5483 ret = tdep->i386_intx80_record (ir.regcache);
5484 if (ret)
5485 return ret;
5486 }
5487 break;
5488
5489 /* XXX */
5490 case 0xce: /* into */
5491 printf_unfiltered (_("Process record does not support "
5492 "instruction into.\n"));
5493 ir.addr -= 1;
5494 goto no_support;
5495 break;
5496
5497 case 0xfa: /* cli */
5498 case 0xfb: /* sti */
5499 break;
5500
5501 case 0x62: /* bound */
5502 printf_unfiltered (_("Process record does not support "
5503 "instruction bound.\n"));
5504 ir.addr -= 1;
5505 goto no_support;
5506 break;
5507
5508 case 0x0fc8: /* bswap reg */
5509 case 0x0fc9:
5510 case 0x0fca:
5511 case 0x0fcb:
5512 case 0x0fcc:
5513 case 0x0fcd:
5514 case 0x0fce:
5515 case 0x0fcf:
5516 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5517 break;
5518
5519 case 0xd6: /* salc */
5520 if (ir.regmap[X86_RECORD_R8_REGNUM])
5521 {
5522 ir.addr -= 1;
5523 goto no_support;
5524 }
5525 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5526 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5527 break;
5528
5529 case 0xe0: /* loopnz */
5530 case 0xe1: /* loopz */
5531 case 0xe2: /* loop */
5532 case 0xe3: /* jecxz */
5533 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5534 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5535 break;
5536
5537 case 0x0f30: /* wrmsr */
5538 printf_unfiltered (_("Process record does not support "
5539 "instruction wrmsr.\n"));
5540 ir.addr -= 2;
5541 goto no_support;
5542 break;
5543
5544 case 0x0f32: /* rdmsr */
5545 printf_unfiltered (_("Process record does not support "
5546 "instruction rdmsr.\n"));
5547 ir.addr -= 2;
5548 goto no_support;
5549 break;
5550
5551 case 0x0f31: /* rdtsc */
5552 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5553 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5554 break;
5555
5556 case 0x0f34: /* sysenter */
5557 {
5558 int ret;
5559 if (ir.regmap[X86_RECORD_R8_REGNUM])
5560 {
5561 ir.addr -= 2;
5562 goto no_support;
5563 }
5564 if (tdep->i386_sysenter_record == NULL)
5565 {
5566 printf_unfiltered (_("Process record does not support "
5567 "instruction sysenter.\n"));
5568 ir.addr -= 2;
5569 goto no_support;
5570 }
5571 ret = tdep->i386_sysenter_record (ir.regcache);
5572 if (ret)
5573 return ret;
5574 }
5575 break;
5576
5577 case 0x0f35: /* sysexit */
5578 printf_unfiltered (_("Process record does not support "
5579 "instruction sysexit.\n"));
5580 ir.addr -= 2;
5581 goto no_support;
5582 break;
5583
5584 case 0x0f05: /* syscall */
5585 {
5586 int ret;
5587 if (tdep->i386_syscall_record == NULL)
5588 {
5589 printf_unfiltered (_("Process record does not support "
5590 "instruction syscall.\n"));
5591 ir.addr -= 2;
5592 goto no_support;
5593 }
5594 ret = tdep->i386_syscall_record (ir.regcache);
5595 if (ret)
5596 return ret;
5597 }
5598 break;
5599
5600 case 0x0f07: /* sysret */
5601 printf_unfiltered (_("Process record does not support "
5602 "instruction sysret.\n"));
5603 ir.addr -= 2;
5604 goto no_support;
5605 break;
5606
5607 case 0x0fa2: /* cpuid */
5608 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5609 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5610 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5611 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5612 break;
5613
5614 case 0xf4: /* hlt */
5615 printf_unfiltered (_("Process record does not support "
5616 "instruction hlt.\n"));
5617 ir.addr -= 1;
5618 goto no_support;
5619 break;
5620
5621 case 0x0f00:
5622 if (i386_record_modrm (&ir))
5623 return -1;
5624 switch (ir.reg)
5625 {
5626 case 0: /* sldt */
5627 case 1: /* str */
5628 if (ir.mod == 3)
5629 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5630 else
5631 {
5632 ir.ot = OT_WORD;
5633 if (i386_record_lea_modrm (&ir))
5634 return -1;
5635 }
5636 break;
5637 case 2: /* lldt */
5638 case 3: /* ltr */
5639 break;
5640 case 4: /* verr */
5641 case 5: /* verw */
5642 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5643 break;
5644 default:
5645 ir.addr -= 3;
5646 opcode = opcode << 8 | ir.modrm;
5647 goto no_support;
5648 break;
5649 }
5650 break;
5651
5652 case 0x0f01:
5653 if (i386_record_modrm (&ir))
5654 return -1;
5655 switch (ir.reg)
5656 {
5657 case 0: /* sgdt */
5658 {
5659 uint64_t addr64;
5660
5661 if (ir.mod == 3)
5662 {
5663 ir.addr -= 3;
5664 opcode = opcode << 8 | ir.modrm;
5665 goto no_support;
5666 }
5667 if (ir.override >= 0)
5668 {
5669 if (record_memory_query)
5670 {
5671 int q;
5672
5673 target_terminal_ours ();
5674 q = yquery (_("\
5675 Process record ignores the memory change of instruction at address %s\n\
5676 because it can't get the value of the segment register.\n\
5677 Do you want to stop the program?"),
5678 paddress (gdbarch, ir.orig_addr));
5679 target_terminal_inferior ();
5680 if (q)
5681 return -1;
5682 }
5683 }
5684 else
5685 {
5686 if (i386_record_lea_modrm_addr (&ir, &addr64))
5687 return -1;
5688 if (record_arch_list_add_mem (addr64, 2))
5689 return -1;
5690 addr64 += 2;
5691 if (ir.regmap[X86_RECORD_R8_REGNUM])
5692 {
5693 if (record_arch_list_add_mem (addr64, 8))
5694 return -1;
5695 }
5696 else
5697 {
5698 if (record_arch_list_add_mem (addr64, 4))
5699 return -1;
5700 }
5701 }
5702 }
5703 break;
5704 case 1:
5705 if (ir.mod == 3)
5706 {
5707 switch (ir.rm)
5708 {
5709 case 0: /* monitor */
5710 break;
5711 case 1: /* mwait */
5712 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5713 break;
5714 default:
5715 ir.addr -= 3;
5716 opcode = opcode << 8 | ir.modrm;
5717 goto no_support;
5718 break;
5719 }
5720 }
5721 else
5722 {
5723 /* sidt */
5724 if (ir.override >= 0)
5725 {
5726 if (record_memory_query)
5727 {
5728 int q;
5729
5730 target_terminal_ours ();
5731 q = yquery (_("\
5732 Process record ignores the memory change of instruction at address %s\n\
5733 because it can't get the value of the segment register.\n\
5734 Do you want to stop the program?"),
5735 paddress (gdbarch, ir.orig_addr));
5736 target_terminal_inferior ();
5737 if (q)
5738 return -1;
5739 }
5740 }
5741 else
5742 {
5743 uint64_t addr64;
5744
5745 if (i386_record_lea_modrm_addr (&ir, &addr64))
5746 return -1;
5747 if (record_arch_list_add_mem (addr64, 2))
5748 return -1;
5749 addr64 += 2;
5750 if (ir.regmap[X86_RECORD_R8_REGNUM])
5751 {
5752 if (record_arch_list_add_mem (addr64, 8))
5753 return -1;
5754 }
5755 else
5756 {
5757 if (record_arch_list_add_mem (addr64, 4))
5758 return -1;
5759 }
5760 }
5761 }
5762 break;
5763 case 2: /* lgdt */
5764 if (ir.mod == 3)
5765 {
5766 /* xgetbv */
5767 if (ir.rm == 0)
5768 {
5769 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5770 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5771 break;
5772 }
5773 /* xsetbv */
5774 else if (ir.rm == 1)
5775 break;
5776 }
5777 case 3: /* lidt */
5778 if (ir.mod == 3)
5779 {
5780 ir.addr -= 3;
5781 opcode = opcode << 8 | ir.modrm;
5782 goto no_support;
5783 }
5784 break;
5785 case 4: /* smsw */
5786 if (ir.mod == 3)
5787 {
5788 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
5789 return -1;
5790 }
5791 else
5792 {
5793 ir.ot = OT_WORD;
5794 if (i386_record_lea_modrm (&ir))
5795 return -1;
5796 }
5797 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5798 break;
5799 case 6: /* lmsw */
5800 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5801 break;
5802 case 7: /* invlpg */
5803 if (ir.mod == 3)
5804 {
5805 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5806 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5807 else
5808 {
5809 ir.addr -= 3;
5810 opcode = opcode << 8 | ir.modrm;
5811 goto no_support;
5812 }
5813 }
5814 else
5815 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5816 break;
5817 default:
5818 ir.addr -= 3;
5819 opcode = opcode << 8 | ir.modrm;
5820 goto no_support;
5821 break;
5822 }
5823 break;
5824
5825 case 0x0f08: /* invd */
5826 case 0x0f09: /* wbinvd */
5827 break;
5828
5829 case 0x63: /* arpl */
5830 if (i386_record_modrm (&ir))
5831 return -1;
5832 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5833 {
5834 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5835 ? (ir.reg | rex_r) : ir.rm);
5836 }
5837 else
5838 {
5839 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5840 if (i386_record_lea_modrm (&ir))
5841 return -1;
5842 }
5843 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5844 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5845 break;
5846
5847 case 0x0f02: /* lar */
5848 case 0x0f03: /* lsl */
5849 if (i386_record_modrm (&ir))
5850 return -1;
5851 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5852 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5853 break;
5854
5855 case 0x0f18:
5856 if (i386_record_modrm (&ir))
5857 return -1;
5858 if (ir.mod == 3 && ir.reg == 3)
5859 {
5860 ir.addr -= 3;
5861 opcode = opcode << 8 | ir.modrm;
5862 goto no_support;
5863 }
5864 break;
5865
5866 case 0x0f19:
5867 case 0x0f1a:
5868 case 0x0f1b:
5869 case 0x0f1c:
5870 case 0x0f1d:
5871 case 0x0f1e:
5872 case 0x0f1f:
5873 /* nop (multi byte) */
5874 break;
5875
5876 case 0x0f20: /* mov reg, crN */
5877 case 0x0f22: /* mov crN, reg */
5878 if (i386_record_modrm (&ir))
5879 return -1;
5880 if ((ir.modrm & 0xc0) != 0xc0)
5881 {
5882 ir.addr -= 3;
5883 opcode = opcode << 8 | ir.modrm;
5884 goto no_support;
5885 }
5886 switch (ir.reg)
5887 {
5888 case 0:
5889 case 2:
5890 case 3:
5891 case 4:
5892 case 8:
5893 if (opcode & 2)
5894 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5895 else
5896 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5897 break;
5898 default:
5899 ir.addr -= 3;
5900 opcode = opcode << 8 | ir.modrm;
5901 goto no_support;
5902 break;
5903 }
5904 break;
5905
5906 case 0x0f21: /* mov reg, drN */
5907 case 0x0f23: /* mov drN, reg */
5908 if (i386_record_modrm (&ir))
5909 return -1;
5910 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5911 || ir.reg == 5 || ir.reg >= 8)
5912 {
5913 ir.addr -= 3;
5914 opcode = opcode << 8 | ir.modrm;
5915 goto no_support;
5916 }
5917 if (opcode & 2)
5918 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5919 else
5920 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5921 break;
5922
5923 case 0x0f06: /* clts */
5924 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5925 break;
5926
5927 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
5928
5929 case 0x0f0d: /* 3DNow! prefetch */
5930 break;
5931
5932 case 0x0f0e: /* 3DNow! femms */
5933 case 0x0f77: /* emms */
5934 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
5935 goto no_support;
5936 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
5937 break;
5938
5939 case 0x0f0f: /* 3DNow! data */
5940 if (i386_record_modrm (&ir))
5941 return -1;
5942 if (target_read_memory (ir.addr, &opcode8, 1))
5943 {
5944 printf_unfiltered (_("Process record: error reading memory at "
5945 "addr %s len = 1.\n"),
5946 paddress (gdbarch, ir.addr));
5947 return -1;
5948 }
5949 ir.addr++;
5950 switch (opcode8)
5951 {
5952 case 0x0c: /* 3DNow! pi2fw */
5953 case 0x0d: /* 3DNow! pi2fd */
5954 case 0x1c: /* 3DNow! pf2iw */
5955 case 0x1d: /* 3DNow! pf2id */
5956 case 0x8a: /* 3DNow! pfnacc */
5957 case 0x8e: /* 3DNow! pfpnacc */
5958 case 0x90: /* 3DNow! pfcmpge */
5959 case 0x94: /* 3DNow! pfmin */
5960 case 0x96: /* 3DNow! pfrcp */
5961 case 0x97: /* 3DNow! pfrsqrt */
5962 case 0x9a: /* 3DNow! pfsub */
5963 case 0x9e: /* 3DNow! pfadd */
5964 case 0xa0: /* 3DNow! pfcmpgt */
5965 case 0xa4: /* 3DNow! pfmax */
5966 case 0xa6: /* 3DNow! pfrcpit1 */
5967 case 0xa7: /* 3DNow! pfrsqit1 */
5968 case 0xaa: /* 3DNow! pfsubr */
5969 case 0xae: /* 3DNow! pfacc */
5970 case 0xb0: /* 3DNow! pfcmpeq */
5971 case 0xb4: /* 3DNow! pfmul */
5972 case 0xb6: /* 3DNow! pfrcpit2 */
5973 case 0xb7: /* 3DNow! pmulhrw */
5974 case 0xbb: /* 3DNow! pswapd */
5975 case 0xbf: /* 3DNow! pavgusb */
5976 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
5977 goto no_support_3dnow_data;
5978 record_arch_list_add_reg (ir.regcache, ir.reg);
5979 break;
5980
5981 default:
5982 no_support_3dnow_data:
5983 opcode = (opcode << 8) | opcode8;
5984 goto no_support;
5985 break;
5986 }
5987 break;
5988
5989 case 0x0faa: /* rsm */
5990 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5991 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5992 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5993 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5994 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5995 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5996 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5997 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5998 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5999 break;
6000
6001 case 0x0fae:
6002 if (i386_record_modrm (&ir))
6003 return -1;
6004 switch(ir.reg)
6005 {
6006 case 0: /* fxsave */
6007 {
6008 uint64_t tmpu64;
6009
6010 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6011 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6012 return -1;
6013 if (record_arch_list_add_mem (tmpu64, 512))
6014 return -1;
6015 }
6016 break;
6017
6018 case 1: /* fxrstor */
6019 {
6020 int i;
6021
6022 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6023
6024 for (i = I387_MM0_REGNUM (tdep);
6025 i386_mmx_regnum_p (gdbarch, i); i++)
6026 record_arch_list_add_reg (ir.regcache, i);
6027
6028 for (i = I387_XMM0_REGNUM (tdep);
6029 i386_xmm_regnum_p (gdbarch, i); i++)
6030 record_arch_list_add_reg (ir.regcache, i);
6031
6032 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6033 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6034
6035 for (i = I387_ST0_REGNUM (tdep);
6036 i386_fp_regnum_p (gdbarch, i); i++)
6037 record_arch_list_add_reg (ir.regcache, i);
6038
6039 for (i = I387_FCTRL_REGNUM (tdep);
6040 i386_fpc_regnum_p (gdbarch, i); i++)
6041 record_arch_list_add_reg (ir.regcache, i);
6042 }
6043 break;
6044
6045 case 2: /* ldmxcsr */
6046 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6047 goto no_support;
6048 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6049 break;
6050
6051 case 3: /* stmxcsr */
6052 ir.ot = OT_LONG;
6053 if (i386_record_lea_modrm (&ir))
6054 return -1;
6055 break;
6056
6057 case 5: /* lfence */
6058 case 6: /* mfence */
6059 case 7: /* sfence clflush */
6060 break;
6061
6062 default:
6063 opcode = (opcode << 8) | ir.modrm;
6064 goto no_support;
6065 break;
6066 }
6067 break;
6068
6069 case 0x0fc3: /* movnti */
6070 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6071 if (i386_record_modrm (&ir))
6072 return -1;
6073 if (ir.mod == 3)
6074 goto no_support;
6075 ir.reg |= rex_r;
6076 if (i386_record_lea_modrm (&ir))
6077 return -1;
6078 break;
6079
6080 /* Add prefix to opcode. */
6081 case 0x0f10:
6082 case 0x0f11:
6083 case 0x0f12:
6084 case 0x0f13:
6085 case 0x0f14:
6086 case 0x0f15:
6087 case 0x0f16:
6088 case 0x0f17:
6089 case 0x0f28:
6090 case 0x0f29:
6091 case 0x0f2a:
6092 case 0x0f2b:
6093 case 0x0f2c:
6094 case 0x0f2d:
6095 case 0x0f2e:
6096 case 0x0f2f:
6097 case 0x0f38:
6098 case 0x0f39:
6099 case 0x0f3a:
6100 case 0x0f50:
6101 case 0x0f51:
6102 case 0x0f52:
6103 case 0x0f53:
6104 case 0x0f54:
6105 case 0x0f55:
6106 case 0x0f56:
6107 case 0x0f57:
6108 case 0x0f58:
6109 case 0x0f59:
6110 case 0x0f5a:
6111 case 0x0f5b:
6112 case 0x0f5c:
6113 case 0x0f5d:
6114 case 0x0f5e:
6115 case 0x0f5f:
6116 case 0x0f60:
6117 case 0x0f61:
6118 case 0x0f62:
6119 case 0x0f63:
6120 case 0x0f64:
6121 case 0x0f65:
6122 case 0x0f66:
6123 case 0x0f67:
6124 case 0x0f68:
6125 case 0x0f69:
6126 case 0x0f6a:
6127 case 0x0f6b:
6128 case 0x0f6c:
6129 case 0x0f6d:
6130 case 0x0f6e:
6131 case 0x0f6f:
6132 case 0x0f70:
6133 case 0x0f71:
6134 case 0x0f72:
6135 case 0x0f73:
6136 case 0x0f74:
6137 case 0x0f75:
6138 case 0x0f76:
6139 case 0x0f7c:
6140 case 0x0f7d:
6141 case 0x0f7e:
6142 case 0x0f7f:
6143 case 0x0fb8:
6144 case 0x0fc2:
6145 case 0x0fc4:
6146 case 0x0fc5:
6147 case 0x0fc6:
6148 case 0x0fd0:
6149 case 0x0fd1:
6150 case 0x0fd2:
6151 case 0x0fd3:
6152 case 0x0fd4:
6153 case 0x0fd5:
6154 case 0x0fd6:
6155 case 0x0fd7:
6156 case 0x0fd8:
6157 case 0x0fd9:
6158 case 0x0fda:
6159 case 0x0fdb:
6160 case 0x0fdc:
6161 case 0x0fdd:
6162 case 0x0fde:
6163 case 0x0fdf:
6164 case 0x0fe0:
6165 case 0x0fe1:
6166 case 0x0fe2:
6167 case 0x0fe3:
6168 case 0x0fe4:
6169 case 0x0fe5:
6170 case 0x0fe6:
6171 case 0x0fe7:
6172 case 0x0fe8:
6173 case 0x0fe9:
6174 case 0x0fea:
6175 case 0x0feb:
6176 case 0x0fec:
6177 case 0x0fed:
6178 case 0x0fee:
6179 case 0x0fef:
6180 case 0x0ff0:
6181 case 0x0ff1:
6182 case 0x0ff2:
6183 case 0x0ff3:
6184 case 0x0ff4:
6185 case 0x0ff5:
6186 case 0x0ff6:
6187 case 0x0ff7:
6188 case 0x0ff8:
6189 case 0x0ff9:
6190 case 0x0ffa:
6191 case 0x0ffb:
6192 case 0x0ffc:
6193 case 0x0ffd:
6194 case 0x0ffe:
6195 switch (prefixes)
6196 {
6197 case PREFIX_REPNZ:
6198 opcode |= 0xf20000;
6199 break;
6200 case PREFIX_DATA:
6201 opcode |= 0x660000;
6202 break;
6203 case PREFIX_REPZ:
6204 opcode |= 0xf30000;
6205 break;
6206 }
6207 reswitch_prefix_add:
6208 switch (opcode)
6209 {
6210 case 0x0f38:
6211 case 0x660f38:
6212 case 0xf20f38:
6213 case 0x0f3a:
6214 case 0x660f3a:
6215 if (target_read_memory (ir.addr, &opcode8, 1))
6216 {
6217 printf_unfiltered (_("Process record: error reading memory at "
6218 "addr %s len = 1.\n"),
6219 paddress (gdbarch, ir.addr));
6220 return -1;
6221 }
6222 ir.addr++;
6223 opcode = (uint32_t) opcode8 | opcode << 8;
6224 goto reswitch_prefix_add;
6225 break;
6226
6227 case 0x0f10: /* movups */
6228 case 0x660f10: /* movupd */
6229 case 0xf30f10: /* movss */
6230 case 0xf20f10: /* movsd */
6231 case 0x0f12: /* movlps */
6232 case 0x660f12: /* movlpd */
6233 case 0xf30f12: /* movsldup */
6234 case 0xf20f12: /* movddup */
6235 case 0x0f14: /* unpcklps */
6236 case 0x660f14: /* unpcklpd */
6237 case 0x0f15: /* unpckhps */
6238 case 0x660f15: /* unpckhpd */
6239 case 0x0f16: /* movhps */
6240 case 0x660f16: /* movhpd */
6241 case 0xf30f16: /* movshdup */
6242 case 0x0f28: /* movaps */
6243 case 0x660f28: /* movapd */
6244 case 0x0f2a: /* cvtpi2ps */
6245 case 0x660f2a: /* cvtpi2pd */
6246 case 0xf30f2a: /* cvtsi2ss */
6247 case 0xf20f2a: /* cvtsi2sd */
6248 case 0x0f2c: /* cvttps2pi */
6249 case 0x660f2c: /* cvttpd2pi */
6250 case 0x0f2d: /* cvtps2pi */
6251 case 0x660f2d: /* cvtpd2pi */
6252 case 0x660f3800: /* pshufb */
6253 case 0x660f3801: /* phaddw */
6254 case 0x660f3802: /* phaddd */
6255 case 0x660f3803: /* phaddsw */
6256 case 0x660f3804: /* pmaddubsw */
6257 case 0x660f3805: /* phsubw */
6258 case 0x660f3806: /* phsubd */
6259 case 0x660f3807: /* phsubsw */
6260 case 0x660f3808: /* psignb */
6261 case 0x660f3809: /* psignw */
6262 case 0x660f380a: /* psignd */
6263 case 0x660f380b: /* pmulhrsw */
6264 case 0x660f3810: /* pblendvb */
6265 case 0x660f3814: /* blendvps */
6266 case 0x660f3815: /* blendvpd */
6267 case 0x660f381c: /* pabsb */
6268 case 0x660f381d: /* pabsw */
6269 case 0x660f381e: /* pabsd */
6270 case 0x660f3820: /* pmovsxbw */
6271 case 0x660f3821: /* pmovsxbd */
6272 case 0x660f3822: /* pmovsxbq */
6273 case 0x660f3823: /* pmovsxwd */
6274 case 0x660f3824: /* pmovsxwq */
6275 case 0x660f3825: /* pmovsxdq */
6276 case 0x660f3828: /* pmuldq */
6277 case 0x660f3829: /* pcmpeqq */
6278 case 0x660f382a: /* movntdqa */
6279 case 0x660f3a08: /* roundps */
6280 case 0x660f3a09: /* roundpd */
6281 case 0x660f3a0a: /* roundss */
6282 case 0x660f3a0b: /* roundsd */
6283 case 0x660f3a0c: /* blendps */
6284 case 0x660f3a0d: /* blendpd */
6285 case 0x660f3a0e: /* pblendw */
6286 case 0x660f3a0f: /* palignr */
6287 case 0x660f3a20: /* pinsrb */
6288 case 0x660f3a21: /* insertps */
6289 case 0x660f3a22: /* pinsrd pinsrq */
6290 case 0x660f3a40: /* dpps */
6291 case 0x660f3a41: /* dppd */
6292 case 0x660f3a42: /* mpsadbw */
6293 case 0x660f3a60: /* pcmpestrm */
6294 case 0x660f3a61: /* pcmpestri */
6295 case 0x660f3a62: /* pcmpistrm */
6296 case 0x660f3a63: /* pcmpistri */
6297 case 0x0f51: /* sqrtps */
6298 case 0x660f51: /* sqrtpd */
6299 case 0xf20f51: /* sqrtsd */
6300 case 0xf30f51: /* sqrtss */
6301 case 0x0f52: /* rsqrtps */
6302 case 0xf30f52: /* rsqrtss */
6303 case 0x0f53: /* rcpps */
6304 case 0xf30f53: /* rcpss */
6305 case 0x0f54: /* andps */
6306 case 0x660f54: /* andpd */
6307 case 0x0f55: /* andnps */
6308 case 0x660f55: /* andnpd */
6309 case 0x0f56: /* orps */
6310 case 0x660f56: /* orpd */
6311 case 0x0f57: /* xorps */
6312 case 0x660f57: /* xorpd */
6313 case 0x0f58: /* addps */
6314 case 0x660f58: /* addpd */
6315 case 0xf20f58: /* addsd */
6316 case 0xf30f58: /* addss */
6317 case 0x0f59: /* mulps */
6318 case 0x660f59: /* mulpd */
6319 case 0xf20f59: /* mulsd */
6320 case 0xf30f59: /* mulss */
6321 case 0x0f5a: /* cvtps2pd */
6322 case 0x660f5a: /* cvtpd2ps */
6323 case 0xf20f5a: /* cvtsd2ss */
6324 case 0xf30f5a: /* cvtss2sd */
6325 case 0x0f5b: /* cvtdq2ps */
6326 case 0x660f5b: /* cvtps2dq */
6327 case 0xf30f5b: /* cvttps2dq */
6328 case 0x0f5c: /* subps */
6329 case 0x660f5c: /* subpd */
6330 case 0xf20f5c: /* subsd */
6331 case 0xf30f5c: /* subss */
6332 case 0x0f5d: /* minps */
6333 case 0x660f5d: /* minpd */
6334 case 0xf20f5d: /* minsd */
6335 case 0xf30f5d: /* minss */
6336 case 0x0f5e: /* divps */
6337 case 0x660f5e: /* divpd */
6338 case 0xf20f5e: /* divsd */
6339 case 0xf30f5e: /* divss */
6340 case 0x0f5f: /* maxps */
6341 case 0x660f5f: /* maxpd */
6342 case 0xf20f5f: /* maxsd */
6343 case 0xf30f5f: /* maxss */
6344 case 0x660f60: /* punpcklbw */
6345 case 0x660f61: /* punpcklwd */
6346 case 0x660f62: /* punpckldq */
6347 case 0x660f63: /* packsswb */
6348 case 0x660f64: /* pcmpgtb */
6349 case 0x660f65: /* pcmpgtw */
6350 case 0x660f66: /* pcmpgtd */
6351 case 0x660f67: /* packuswb */
6352 case 0x660f68: /* punpckhbw */
6353 case 0x660f69: /* punpckhwd */
6354 case 0x660f6a: /* punpckhdq */
6355 case 0x660f6b: /* packssdw */
6356 case 0x660f6c: /* punpcklqdq */
6357 case 0x660f6d: /* punpckhqdq */
6358 case 0x660f6e: /* movd */
6359 case 0x660f6f: /* movdqa */
6360 case 0xf30f6f: /* movdqu */
6361 case 0x660f70: /* pshufd */
6362 case 0xf20f70: /* pshuflw */
6363 case 0xf30f70: /* pshufhw */
6364 case 0x660f74: /* pcmpeqb */
6365 case 0x660f75: /* pcmpeqw */
6366 case 0x660f76: /* pcmpeqd */
6367 case 0x660f7c: /* haddpd */
6368 case 0xf20f7c: /* haddps */
6369 case 0x660f7d: /* hsubpd */
6370 case 0xf20f7d: /* hsubps */
6371 case 0xf30f7e: /* movq */
6372 case 0x0fc2: /* cmpps */
6373 case 0x660fc2: /* cmppd */
6374 case 0xf20fc2: /* cmpsd */
6375 case 0xf30fc2: /* cmpss */
6376 case 0x660fc4: /* pinsrw */
6377 case 0x0fc6: /* shufps */
6378 case 0x660fc6: /* shufpd */
6379 case 0x660fd0: /* addsubpd */
6380 case 0xf20fd0: /* addsubps */
6381 case 0x660fd1: /* psrlw */
6382 case 0x660fd2: /* psrld */
6383 case 0x660fd3: /* psrlq */
6384 case 0x660fd4: /* paddq */
6385 case 0x660fd5: /* pmullw */
6386 case 0xf30fd6: /* movq2dq */
6387 case 0x660fd8: /* psubusb */
6388 case 0x660fd9: /* psubusw */
6389 case 0x660fda: /* pminub */
6390 case 0x660fdb: /* pand */
6391 case 0x660fdc: /* paddusb */
6392 case 0x660fdd: /* paddusw */
6393 case 0x660fde: /* pmaxub */
6394 case 0x660fdf: /* pandn */
6395 case 0x660fe0: /* pavgb */
6396 case 0x660fe1: /* psraw */
6397 case 0x660fe2: /* psrad */
6398 case 0x660fe3: /* pavgw */
6399 case 0x660fe4: /* pmulhuw */
6400 case 0x660fe5: /* pmulhw */
6401 case 0x660fe6: /* cvttpd2dq */
6402 case 0xf20fe6: /* cvtpd2dq */
6403 case 0xf30fe6: /* cvtdq2pd */
6404 case 0x660fe8: /* psubsb */
6405 case 0x660fe9: /* psubsw */
6406 case 0x660fea: /* pminsw */
6407 case 0x660feb: /* por */
6408 case 0x660fec: /* paddsb */
6409 case 0x660fed: /* paddsw */
6410 case 0x660fee: /* pmaxsw */
6411 case 0x660fef: /* pxor */
6412 case 0xf20ff0: /* lddqu */
6413 case 0x660ff1: /* psllw */
6414 case 0x660ff2: /* pslld */
6415 case 0x660ff3: /* psllq */
6416 case 0x660ff4: /* pmuludq */
6417 case 0x660ff5: /* pmaddwd */
6418 case 0x660ff6: /* psadbw */
6419 case 0x660ff8: /* psubb */
6420 case 0x660ff9: /* psubw */
6421 case 0x660ffa: /* psubd */
6422 case 0x660ffb: /* psubq */
6423 case 0x660ffc: /* paddb */
6424 case 0x660ffd: /* paddw */
6425 case 0x660ffe: /* paddd */
6426 if (i386_record_modrm (&ir))
6427 return -1;
6428 ir.reg |= rex_r;
6429 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
6430 goto no_support;
6431 record_arch_list_add_reg (ir.regcache,
6432 I387_XMM0_REGNUM (tdep) + ir.reg);
6433 if ((opcode & 0xfffffffc) == 0x660f3a60)
6434 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6435 break;
6436
6437 case 0x0f11: /* movups */
6438 case 0x660f11: /* movupd */
6439 case 0xf30f11: /* movss */
6440 case 0xf20f11: /* movsd */
6441 case 0x0f13: /* movlps */
6442 case 0x660f13: /* movlpd */
6443 case 0x0f17: /* movhps */
6444 case 0x660f17: /* movhpd */
6445 case 0x0f29: /* movaps */
6446 case 0x660f29: /* movapd */
6447 case 0x660f3a14: /* pextrb */
6448 case 0x660f3a15: /* pextrw */
6449 case 0x660f3a16: /* pextrd pextrq */
6450 case 0x660f3a17: /* extractps */
6451 case 0x660f7f: /* movdqa */
6452 case 0xf30f7f: /* movdqu */
6453 if (i386_record_modrm (&ir))
6454 return -1;
6455 if (ir.mod == 3)
6456 {
6457 if (opcode == 0x0f13 || opcode == 0x660f13
6458 || opcode == 0x0f17 || opcode == 0x660f17)
6459 goto no_support;
6460 ir.rm |= ir.rex_b;
6461 if (!i386_xmm_regnum_p (gdbarch,
6462 I387_XMM0_REGNUM (tdep) + ir.rm))
6463 goto no_support;
6464 record_arch_list_add_reg (ir.regcache,
6465 I387_XMM0_REGNUM (tdep) + ir.rm);
6466 }
6467 else
6468 {
6469 switch (opcode)
6470 {
6471 case 0x660f3a14:
6472 ir.ot = OT_BYTE;
6473 break;
6474 case 0x660f3a15:
6475 ir.ot = OT_WORD;
6476 break;
6477 case 0x660f3a16:
6478 ir.ot = OT_LONG;
6479 break;
6480 case 0x660f3a17:
6481 ir.ot = OT_QUAD;
6482 break;
6483 default:
6484 ir.ot = OT_DQUAD;
6485 break;
6486 }
6487 if (i386_record_lea_modrm (&ir))
6488 return -1;
6489 }
6490 break;
6491
6492 case 0x0f2b: /* movntps */
6493 case 0x660f2b: /* movntpd */
6494 case 0x0fe7: /* movntq */
6495 case 0x660fe7: /* movntdq */
6496 if (ir.mod == 3)
6497 goto no_support;
6498 if (opcode == 0x0fe7)
6499 ir.ot = OT_QUAD;
6500 else
6501 ir.ot = OT_DQUAD;
6502 if (i386_record_lea_modrm (&ir))
6503 return -1;
6504 break;
6505
6506 case 0xf30f2c: /* cvttss2si */
6507 case 0xf20f2c: /* cvttsd2si */
6508 case 0xf30f2d: /* cvtss2si */
6509 case 0xf20f2d: /* cvtsd2si */
6510 case 0xf20f38f0: /* crc32 */
6511 case 0xf20f38f1: /* crc32 */
6512 case 0x0f50: /* movmskps */
6513 case 0x660f50: /* movmskpd */
6514 case 0x0fc5: /* pextrw */
6515 case 0x660fc5: /* pextrw */
6516 case 0x0fd7: /* pmovmskb */
6517 case 0x660fd7: /* pmovmskb */
6518 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6519 break;
6520
6521 case 0x0f3800: /* pshufb */
6522 case 0x0f3801: /* phaddw */
6523 case 0x0f3802: /* phaddd */
6524 case 0x0f3803: /* phaddsw */
6525 case 0x0f3804: /* pmaddubsw */
6526 case 0x0f3805: /* phsubw */
6527 case 0x0f3806: /* phsubd */
6528 case 0x0f3807: /* phsubsw */
6529 case 0x0f3808: /* psignb */
6530 case 0x0f3809: /* psignw */
6531 case 0x0f380a: /* psignd */
6532 case 0x0f380b: /* pmulhrsw */
6533 case 0x0f381c: /* pabsb */
6534 case 0x0f381d: /* pabsw */
6535 case 0x0f381e: /* pabsd */
6536 case 0x0f382b: /* packusdw */
6537 case 0x0f3830: /* pmovzxbw */
6538 case 0x0f3831: /* pmovzxbd */
6539 case 0x0f3832: /* pmovzxbq */
6540 case 0x0f3833: /* pmovzxwd */
6541 case 0x0f3834: /* pmovzxwq */
6542 case 0x0f3835: /* pmovzxdq */
6543 case 0x0f3837: /* pcmpgtq */
6544 case 0x0f3838: /* pminsb */
6545 case 0x0f3839: /* pminsd */
6546 case 0x0f383a: /* pminuw */
6547 case 0x0f383b: /* pminud */
6548 case 0x0f383c: /* pmaxsb */
6549 case 0x0f383d: /* pmaxsd */
6550 case 0x0f383e: /* pmaxuw */
6551 case 0x0f383f: /* pmaxud */
6552 case 0x0f3840: /* pmulld */
6553 case 0x0f3841: /* phminposuw */
6554 case 0x0f3a0f: /* palignr */
6555 case 0x0f60: /* punpcklbw */
6556 case 0x0f61: /* punpcklwd */
6557 case 0x0f62: /* punpckldq */
6558 case 0x0f63: /* packsswb */
6559 case 0x0f64: /* pcmpgtb */
6560 case 0x0f65: /* pcmpgtw */
6561 case 0x0f66: /* pcmpgtd */
6562 case 0x0f67: /* packuswb */
6563 case 0x0f68: /* punpckhbw */
6564 case 0x0f69: /* punpckhwd */
6565 case 0x0f6a: /* punpckhdq */
6566 case 0x0f6b: /* packssdw */
6567 case 0x0f6e: /* movd */
6568 case 0x0f6f: /* movq */
6569 case 0x0f70: /* pshufw */
6570 case 0x0f74: /* pcmpeqb */
6571 case 0x0f75: /* pcmpeqw */
6572 case 0x0f76: /* pcmpeqd */
6573 case 0x0fc4: /* pinsrw */
6574 case 0x0fd1: /* psrlw */
6575 case 0x0fd2: /* psrld */
6576 case 0x0fd3: /* psrlq */
6577 case 0x0fd4: /* paddq */
6578 case 0x0fd5: /* pmullw */
6579 case 0xf20fd6: /* movdq2q */
6580 case 0x0fd8: /* psubusb */
6581 case 0x0fd9: /* psubusw */
6582 case 0x0fda: /* pminub */
6583 case 0x0fdb: /* pand */
6584 case 0x0fdc: /* paddusb */
6585 case 0x0fdd: /* paddusw */
6586 case 0x0fde: /* pmaxub */
6587 case 0x0fdf: /* pandn */
6588 case 0x0fe0: /* pavgb */
6589 case 0x0fe1: /* psraw */
6590 case 0x0fe2: /* psrad */
6591 case 0x0fe3: /* pavgw */
6592 case 0x0fe4: /* pmulhuw */
6593 case 0x0fe5: /* pmulhw */
6594 case 0x0fe8: /* psubsb */
6595 case 0x0fe9: /* psubsw */
6596 case 0x0fea: /* pminsw */
6597 case 0x0feb: /* por */
6598 case 0x0fec: /* paddsb */
6599 case 0x0fed: /* paddsw */
6600 case 0x0fee: /* pmaxsw */
6601 case 0x0fef: /* pxor */
6602 case 0x0ff1: /* psllw */
6603 case 0x0ff2: /* pslld */
6604 case 0x0ff3: /* psllq */
6605 case 0x0ff4: /* pmuludq */
6606 case 0x0ff5: /* pmaddwd */
6607 case 0x0ff6: /* psadbw */
6608 case 0x0ff8: /* psubb */
6609 case 0x0ff9: /* psubw */
6610 case 0x0ffa: /* psubd */
6611 case 0x0ffb: /* psubq */
6612 case 0x0ffc: /* paddb */
6613 case 0x0ffd: /* paddw */
6614 case 0x0ffe: /* paddd */
6615 if (i386_record_modrm (&ir))
6616 return -1;
6617 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6618 goto no_support;
6619 record_arch_list_add_reg (ir.regcache,
6620 I387_MM0_REGNUM (tdep) + ir.reg);
6621 break;
6622
6623 case 0x0f71: /* psllw */
6624 case 0x0f72: /* pslld */
6625 case 0x0f73: /* psllq */
6626 if (i386_record_modrm (&ir))
6627 return -1;
6628 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6629 goto no_support;
6630 record_arch_list_add_reg (ir.regcache,
6631 I387_MM0_REGNUM (tdep) + ir.rm);
6632 break;
6633
6634 case 0x660f71: /* psllw */
6635 case 0x660f72: /* pslld */
6636 case 0x660f73: /* psllq */
6637 if (i386_record_modrm (&ir))
6638 return -1;
6639 ir.rm |= ir.rex_b;
6640 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6641 goto no_support;
6642 record_arch_list_add_reg (ir.regcache,
6643 I387_XMM0_REGNUM (tdep) + ir.rm);
6644 break;
6645
6646 case 0x0f7e: /* movd */
6647 case 0x660f7e: /* movd */
6648 if (i386_record_modrm (&ir))
6649 return -1;
6650 if (ir.mod == 3)
6651 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6652 else
6653 {
6654 if (ir.dflag == 2)
6655 ir.ot = OT_QUAD;
6656 else
6657 ir.ot = OT_LONG;
6658 if (i386_record_lea_modrm (&ir))
6659 return -1;
6660 }
6661 break;
6662
6663 case 0x0f7f: /* movq */
6664 if (i386_record_modrm (&ir))
6665 return -1;
6666 if (ir.mod == 3)
6667 {
6668 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6669 goto no_support;
6670 record_arch_list_add_reg (ir.regcache,
6671 I387_MM0_REGNUM (tdep) + ir.rm);
6672 }
6673 else
6674 {
6675 ir.ot = OT_QUAD;
6676 if (i386_record_lea_modrm (&ir))
6677 return -1;
6678 }
6679 break;
6680
6681 case 0xf30fb8: /* popcnt */
6682 if (i386_record_modrm (&ir))
6683 return -1;
6684 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6685 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6686 break;
6687
6688 case 0x660fd6: /* movq */
6689 if (i386_record_modrm (&ir))
6690 return -1;
6691 if (ir.mod == 3)
6692 {
6693 ir.rm |= ir.rex_b;
6694 if (!i386_xmm_regnum_p (gdbarch,
6695 I387_XMM0_REGNUM (tdep) + ir.rm))
6696 goto no_support;
6697 record_arch_list_add_reg (ir.regcache,
6698 I387_XMM0_REGNUM (tdep) + ir.rm);
6699 }
6700 else
6701 {
6702 ir.ot = OT_QUAD;
6703 if (i386_record_lea_modrm (&ir))
6704 return -1;
6705 }
6706 break;
6707
6708 case 0x660f3817: /* ptest */
6709 case 0x0f2e: /* ucomiss */
6710 case 0x660f2e: /* ucomisd */
6711 case 0x0f2f: /* comiss */
6712 case 0x660f2f: /* comisd */
6713 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6714 break;
6715
6716 case 0x0ff7: /* maskmovq */
6717 regcache_raw_read_unsigned (ir.regcache,
6718 ir.regmap[X86_RECORD_REDI_REGNUM],
6719 &addr);
6720 if (record_arch_list_add_mem (addr, 64))
6721 return -1;
6722 break;
6723
6724 case 0x660ff7: /* maskmovdqu */
6725 regcache_raw_read_unsigned (ir.regcache,
6726 ir.regmap[X86_RECORD_REDI_REGNUM],
6727 &addr);
6728 if (record_arch_list_add_mem (addr, 128))
6729 return -1;
6730 break;
6731
6732 default:
6733 goto no_support;
6734 break;
6735 }
6736 break;
6737
6738 default:
6739 goto no_support;
6740 break;
6741 }
6742
6743 /* In the future, maybe still need to deal with need_dasm. */
6744 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
6745 if (record_arch_list_add_end ())
6746 return -1;
6747
6748 return 0;
6749
6750 no_support:
6751 printf_unfiltered (_("Process record does not support instruction 0x%02x "
6752 "at address %s.\n"),
6753 (unsigned int) (opcode),
6754 paddress (gdbarch, ir.orig_addr));
6755 return -1;
6756 }
6757
6758 static const int i386_record_regmap[] =
6759 {
6760 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6761 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6762 0, 0, 0, 0, 0, 0, 0, 0,
6763 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6764 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6765 };
6766
6767 /* Check that the given address appears suitable for a fast
6768 tracepoint, which on x86 means that we need an instruction of at
6769 least 5 bytes, so that we can overwrite it with a 4-byte-offset
6770 jump and not have to worry about program jumps to an address in the
6771 middle of the tracepoint jump. Returns 1 if OK, and writes a size
6772 of instruction to replace, and 0 if not, plus an explanatory
6773 string. */
6774
6775 static int
6776 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6777 CORE_ADDR addr, int *isize, char **msg)
6778 {
6779 int len, jumplen;
6780 static struct ui_file *gdb_null = NULL;
6781
6782 /* This is based on the target agent using a 4-byte relative jump.
6783 Alternate future possibilities include 8-byte offset for x86-84,
6784 or 3-byte jumps if the program has trampoline space close by. */
6785 jumplen = 5;
6786
6787 /* Dummy file descriptor for the disassembler. */
6788 if (!gdb_null)
6789 gdb_null = ui_file_new ();
6790
6791 /* Check for fit. */
6792 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6793 if (len < jumplen)
6794 {
6795 /* Return a bit of target-specific detail to add to the caller's
6796 generic failure message. */
6797 if (msg)
6798 *msg = xstrprintf (_("; instruction is only %d bytes long, "
6799 "need at least %d bytes for the jump"),
6800 len, jumplen);
6801 return 0;
6802 }
6803
6804 if (isize)
6805 *isize = len;
6806 if (msg)
6807 *msg = NULL;
6808 return 1;
6809 }
6810
6811 static int
6812 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6813 struct tdesc_arch_data *tdesc_data)
6814 {
6815 const struct target_desc *tdesc = tdep->tdesc;
6816 const struct tdesc_feature *feature_core;
6817 const struct tdesc_feature *feature_sse, *feature_avx;
6818 int i, num_regs, valid_p;
6819
6820 if (! tdesc_has_registers (tdesc))
6821 return 0;
6822
6823 /* Get core registers. */
6824 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
6825 if (feature_core == NULL)
6826 return 0;
6827
6828 /* Get SSE registers. */
6829 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
6830
6831 /* Try AVX registers. */
6832 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6833
6834 valid_p = 1;
6835
6836 /* The XCR0 bits. */
6837 if (feature_avx)
6838 {
6839 /* AVX register description requires SSE register description. */
6840 if (!feature_sse)
6841 return 0;
6842
6843 tdep->xcr0 = I386_XSTATE_AVX_MASK;
6844
6845 /* It may have been set by OSABI initialization function. */
6846 if (tdep->num_ymm_regs == 0)
6847 {
6848 tdep->ymmh_register_names = i386_ymmh_names;
6849 tdep->num_ymm_regs = 8;
6850 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
6851 }
6852
6853 for (i = 0; i < tdep->num_ymm_regs; i++)
6854 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
6855 tdep->ymm0h_regnum + i,
6856 tdep->ymmh_register_names[i]);
6857 }
6858 else if (feature_sse)
6859 tdep->xcr0 = I386_XSTATE_SSE_MASK;
6860 else
6861 {
6862 tdep->xcr0 = I386_XSTATE_X87_MASK;
6863 tdep->num_xmm_regs = 0;
6864 }
6865
6866 num_regs = tdep->num_core_regs;
6867 for (i = 0; i < num_regs; i++)
6868 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
6869 tdep->register_names[i]);
6870
6871 if (feature_sse)
6872 {
6873 /* Need to include %mxcsr, so add one. */
6874 num_regs += tdep->num_xmm_regs + 1;
6875 for (; i < num_regs; i++)
6876 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
6877 tdep->register_names[i]);
6878 }
6879
6880 return valid_p;
6881 }
6882
6883 \f
6884 static struct gdbarch *
6885 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6886 {
6887 struct gdbarch_tdep *tdep;
6888 struct gdbarch *gdbarch;
6889 struct tdesc_arch_data *tdesc_data;
6890 const struct target_desc *tdesc;
6891 int mm0_regnum;
6892 int ymm0_regnum;
6893
6894 /* If there is already a candidate, use it. */
6895 arches = gdbarch_list_lookup_by_info (arches, &info);
6896 if (arches != NULL)
6897 return arches->gdbarch;
6898
6899 /* Allocate space for the new architecture. */
6900 tdep = XCALLOC (1, struct gdbarch_tdep);
6901 gdbarch = gdbarch_alloc (&info, tdep);
6902
6903 /* General-purpose registers. */
6904 tdep->gregset = NULL;
6905 tdep->gregset_reg_offset = NULL;
6906 tdep->gregset_num_regs = I386_NUM_GREGS;
6907 tdep->sizeof_gregset = 0;
6908
6909 /* Floating-point registers. */
6910 tdep->fpregset = NULL;
6911 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
6912
6913 tdep->xstateregset = NULL;
6914
6915 /* The default settings include the FPU registers, the MMX registers
6916 and the SSE registers. This can be overridden for a specific ABI
6917 by adjusting the members `st0_regnum', `mm0_regnum' and
6918 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
6919 will show up in the output of "info all-registers". */
6920
6921 tdep->st0_regnum = I386_ST0_REGNUM;
6922
6923 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
6924 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
6925
6926 tdep->jb_pc_offset = -1;
6927 tdep->struct_return = pcc_struct_return;
6928 tdep->sigtramp_start = 0;
6929 tdep->sigtramp_end = 0;
6930 tdep->sigtramp_p = i386_sigtramp_p;
6931 tdep->sigcontext_addr = NULL;
6932 tdep->sc_reg_offset = NULL;
6933 tdep->sc_pc_offset = -1;
6934 tdep->sc_sp_offset = -1;
6935
6936 tdep->xsave_xcr0_offset = -1;
6937
6938 tdep->record_regmap = i386_record_regmap;
6939
6940 /* The format used for `long double' on almost all i386 targets is
6941 the i387 extended floating-point format. In fact, of all targets
6942 in the GCC 2.95 tree, only OSF/1 does it different, and insists
6943 on having a `long double' that's not `long' at all. */
6944 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
6945
6946 /* Although the i387 extended floating-point has only 80 significant
6947 bits, a `long double' actually takes up 96, probably to enforce
6948 alignment. */
6949 set_gdbarch_long_double_bit (gdbarch, 96);
6950
6951 /* Register numbers of various important registers. */
6952 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
6953 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
6954 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
6955 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
6956
6957 /* NOTE: kettenis/20040418: GCC does have two possible register
6958 numbering schemes on the i386: dbx and SVR4. These schemes
6959 differ in how they number %ebp, %esp, %eflags, and the
6960 floating-point registers, and are implemented by the arrays
6961 dbx_register_map[] and svr4_dbx_register_map in
6962 gcc/config/i386.c. GCC also defines a third numbering scheme in
6963 gcc/config/i386.c, which it designates as the "default" register
6964 map used in 64bit mode. This last register numbering scheme is
6965 implemented in dbx64_register_map, and is used for AMD64; see
6966 amd64-tdep.c.
6967
6968 Currently, each GCC i386 target always uses the same register
6969 numbering scheme across all its supported debugging formats
6970 i.e. SDB (COFF), stabs and DWARF 2. This is because
6971 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
6972 DBX_REGISTER_NUMBER macro which is defined by each target's
6973 respective config header in a manner independent of the requested
6974 output debugging format.
6975
6976 This does not match the arrangement below, which presumes that
6977 the SDB and stabs numbering schemes differ from the DWARF and
6978 DWARF 2 ones. The reason for this arrangement is that it is
6979 likely to get the numbering scheme for the target's
6980 default/native debug format right. For targets where GCC is the
6981 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
6982 targets where the native toolchain uses a different numbering
6983 scheme for a particular debug format (stabs-in-ELF on Solaris)
6984 the defaults below will have to be overridden, like
6985 i386_elf_init_abi() does. */
6986
6987 /* Use the dbx register numbering scheme for stabs and COFF. */
6988 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
6989 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
6990
6991 /* Use the SVR4 register numbering scheme for DWARF 2. */
6992 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
6993
6994 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
6995 be in use on any of the supported i386 targets. */
6996
6997 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
6998
6999 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7000
7001 /* Call dummy code. */
7002 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7003
7004 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7005 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7006 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7007
7008 set_gdbarch_return_value (gdbarch, i386_return_value);
7009
7010 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7011
7012 /* Stack grows downward. */
7013 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7014
7015 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7016 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7017 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7018
7019 set_gdbarch_frame_args_skip (gdbarch, 8);
7020
7021 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7022
7023 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7024
7025 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7026
7027 /* Add the i386 register groups. */
7028 i386_add_reggroups (gdbarch);
7029 tdep->register_reggroup_p = i386_register_reggroup_p;
7030
7031 /* Helper for function argument information. */
7032 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7033
7034 /* Hook the function epilogue frame unwinder. This unwinder is
7035 appended to the list first, so that it supercedes the Dwarf
7036 unwinder in function epilogues (where the Dwarf unwinder
7037 currently fails). */
7038 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7039
7040 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7041 to the list before the prologue-based unwinders, so that Dwarf
7042 CFI info will be used if it is available. */
7043 dwarf2_append_unwinders (gdbarch);
7044
7045 frame_base_set_default (gdbarch, &i386_frame_base);
7046
7047 /* Pseudo registers may be changed by amd64_init_abi. */
7048 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7049 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7050
7051 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7052 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7053
7054 /* Override the normal target description method to make the AVX
7055 upper halves anonymous. */
7056 set_gdbarch_register_name (gdbarch, i386_register_name);
7057
7058 /* Even though the default ABI only includes general-purpose registers,
7059 floating-point registers and the SSE registers, we have to leave a
7060 gap for the upper AVX registers. */
7061 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7062
7063 /* Get the x86 target description from INFO. */
7064 tdesc = info.target_desc;
7065 if (! tdesc_has_registers (tdesc))
7066 tdesc = tdesc_i386;
7067 tdep->tdesc = tdesc;
7068
7069 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7070 tdep->register_names = i386_register_names;
7071
7072 /* No upper YMM registers. */
7073 tdep->ymmh_register_names = NULL;
7074 tdep->ymm0h_regnum = -1;
7075
7076 tdep->num_byte_regs = 8;
7077 tdep->num_word_regs = 8;
7078 tdep->num_dword_regs = 0;
7079 tdep->num_mmx_regs = 8;
7080 tdep->num_ymm_regs = 0;
7081
7082 tdesc_data = tdesc_data_alloc ();
7083
7084 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7085
7086 /* Hook in ABI-specific overrides, if they have been registered. */
7087 info.tdep_info = (void *) tdesc_data;
7088 gdbarch_init_osabi (info, gdbarch);
7089
7090 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7091 {
7092 tdesc_data_cleanup (tdesc_data);
7093 xfree (tdep);
7094 gdbarch_free (gdbarch);
7095 return NULL;
7096 }
7097
7098 /* Wire in pseudo registers. Number of pseudo registers may be
7099 changed. */
7100 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7101 + tdep->num_word_regs
7102 + tdep->num_dword_regs
7103 + tdep->num_mmx_regs
7104 + tdep->num_ymm_regs));
7105
7106 /* Target description may be changed. */
7107 tdesc = tdep->tdesc;
7108
7109 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7110
7111 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7112 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7113
7114 /* Make %al the first pseudo-register. */
7115 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7116 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7117
7118 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7119 if (tdep->num_dword_regs)
7120 {
7121 /* Support dword pseudo-register if it hasn't been disabled. */
7122 tdep->eax_regnum = ymm0_regnum;
7123 ymm0_regnum += tdep->num_dword_regs;
7124 }
7125 else
7126 tdep->eax_regnum = -1;
7127
7128 mm0_regnum = ymm0_regnum;
7129 if (tdep->num_ymm_regs)
7130 {
7131 /* Support YMM pseudo-register if it is available. */
7132 tdep->ymm0_regnum = ymm0_regnum;
7133 mm0_regnum += tdep->num_ymm_regs;
7134 }
7135 else
7136 tdep->ymm0_regnum = -1;
7137
7138 if (tdep->num_mmx_regs != 0)
7139 {
7140 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7141 tdep->mm0_regnum = mm0_regnum;
7142 }
7143 else
7144 tdep->mm0_regnum = -1;
7145
7146 /* Hook in the legacy prologue-based unwinders last (fallback). */
7147 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7148 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7149
7150 /* If we have a register mapping, enable the generic core file
7151 support, unless it has already been enabled. */
7152 if (tdep->gregset_reg_offset
7153 && !gdbarch_regset_from_core_section_p (gdbarch))
7154 set_gdbarch_regset_from_core_section (gdbarch,
7155 i386_regset_from_core_section);
7156
7157 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7158 i386_skip_permanent_breakpoint);
7159
7160 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7161 i386_fast_tracepoint_valid_at);
7162
7163 return gdbarch;
7164 }
7165
7166 static enum gdb_osabi
7167 i386_coff_osabi_sniffer (bfd *abfd)
7168 {
7169 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7170 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7171 return GDB_OSABI_GO32;
7172
7173 return GDB_OSABI_UNKNOWN;
7174 }
7175 \f
7176
7177 /* Provide a prototype to silence -Wmissing-prototypes. */
7178 void _initialize_i386_tdep (void);
7179
7180 void
7181 _initialize_i386_tdep (void)
7182 {
7183 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7184
7185 /* Add the variable that controls the disassembly flavor. */
7186 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7187 &disassembly_flavor, _("\
7188 Set the disassembly flavor."), _("\
7189 Show the disassembly flavor."), _("\
7190 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7191 NULL,
7192 NULL, /* FIXME: i18n: */
7193 &setlist, &showlist);
7194
7195 /* Add the variable that controls the convention for returning
7196 structs. */
7197 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7198 &struct_convention, _("\
7199 Set the convention for returning small structs."), _("\
7200 Show the convention for returning small structs."), _("\
7201 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7202 is \"default\"."),
7203 NULL,
7204 NULL, /* FIXME: i18n: */
7205 &setlist, &showlist);
7206
7207 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7208 i386_coff_osabi_sniffer);
7209
7210 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7211 i386_svr4_init_abi);
7212 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7213 i386_go32_init_abi);
7214
7215 /* Initialize the i386-specific register groups. */
7216 i386_init_reggroups ();
7217
7218 /* Initialize the standard target descriptions. */
7219 initialize_tdesc_i386 ();
7220 initialize_tdesc_i386_mmx ();
7221 initialize_tdesc_i386_avx ();
7222
7223 /* Tell remote stub that we support XML target description. */
7224 register_remote_support_xml ("i386");
7225 }
This page took 0.186484 seconds and 4 git commands to generate.