gdb/
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46 #include "disasm.h"
47 #include "remote.h"
48 #include "exceptions.h"
49 #include "gdb_assert.h"
50 #include "gdb_string.h"
51
52 #include "i386-tdep.h"
53 #include "i387-tdep.h"
54 #include "i386-xstate.h"
55
56 #include "record.h"
57 #include <stdint.h>
58
59 #include "features/i386/i386.c"
60 #include "features/i386/i386-avx.c"
61 #include "features/i386/i386-mmx.c"
62
63 /* Register names. */
64
65 static const char *i386_register_names[] =
66 {
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78 };
79
80 static const char *i386_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 };
85
86 static const char *i386_ymmh_names[] =
87 {
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90 };
91
92 /* Register names for MMX pseudo-registers. */
93
94 static const char *i386_mmx_names[] =
95 {
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98 };
99
100 /* Register names for byte pseudo-registers. */
101
102 static const char *i386_byte_names[] =
103 {
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106 };
107
108 /* Register names for word pseudo-registers. */
109
110 static const char *i386_word_names[] =
111 {
112 "ax", "cx", "dx", "bx",
113 "", "bp", "si", "di"
114 };
115
116 /* MMX register? */
117
118 static int
119 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
120 {
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
123
124 if (mm0_regnum < 0)
125 return 0;
126
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129 }
130
131 /* Byte register? */
132
133 int
134 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140 }
141
142 /* Word register? */
143
144 int
145 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151 }
152
153 /* Dword register? */
154
155 int
156 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
166 }
167
168 static int
169 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179 }
180
181 /* AVX register? */
182
183 int
184 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194 }
195
196 /* SSE register? */
197
198 int
199 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
200 {
201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
203
204 if (num_xmm_regs == 0)
205 return 0;
206
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
209 }
210
211 static int
212 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 if (I387_NUM_XMM_REGS (tdep) == 0)
217 return 0;
218
219 return (regnum == I387_MXCSR_REGNUM (tdep));
220 }
221
222 /* FP register? */
223
224 int
225 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
226 {
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
230 return 0;
231
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
234 }
235
236 int
237 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
238 {
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
242 return 0;
243
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
246 }
247
248 /* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251 static const char *
252 i386_register_name (struct gdbarch *gdbarch, int regnum)
253 {
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259 }
260
261 /* Return the name of register REGNUM. */
262
263 const char *
264 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265 {
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
277 }
278
279 /* Convert a dbx register number REG to the appropriate register
280 number used by GDB. */
281
282 static int
283 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
290 if (reg >= 0 && reg <= 7)
291 {
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
303 return reg - 12 + I387_ST0_REGNUM (tdep);
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
319 return reg - 29 + I387_MM0_REGNUM (tdep);
320 }
321
322 /* This will hopefully provoke a warning. */
323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
324 }
325
326 /* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
328
329 static int
330 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
341 /* General-purpose registers. */
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
347 return reg - 11 + I387_ST0_REGNUM (tdep);
348 }
349 else if (reg >= 21 && reg <= 36)
350 {
351 /* The SSE and MMX registers have the same numbers as with dbx. */
352 return i386_dbx_reg_to_regnum (gdbarch, reg);
353 }
354
355 switch (reg)
356 {
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
368 /* This will hopefully provoke a warning. */
369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
370 }
371
372 \f
373
374 /* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
376 static const char att_flavor[] = "att";
377 static const char intel_flavor[] = "intel";
378 static const char *valid_flavors[] =
379 {
380 att_flavor,
381 intel_flavor,
382 NULL
383 };
384 static const char *disassembly_flavor = att_flavor;
385 \f
386
387 /* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
392
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
395
396 This function is 64-bit safe. */
397
398 static const gdb_byte *
399 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
400 {
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
403 *len = sizeof (break_insn);
404 return break_insn;
405 }
406 \f
407 /* Displaced instruction handling. */
408
409 /* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415 static gdb_byte *
416 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417 {
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443 }
444
445 static int
446 i386_absolute_jmp_p (const gdb_byte *insn)
447 {
448 /* jmp far (absolute address in operand). */
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
454 /* jump near, absolute indirect (/4). */
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
458 /* jump far, absolute indirect (/5). */
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464 }
465
466 static int
467 i386_absolute_call_p (const gdb_byte *insn)
468 {
469 /* call far, absolute. */
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
475 /* Call near, absolute indirect (/2). */
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
479 /* Call far, absolute indirect (/3). */
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485 }
486
487 static int
488 i386_ret_p (const gdb_byte *insn)
489 {
490 switch (insn[0])
491 {
492 case 0xc2: /* ret near, pop N bytes. */
493 case 0xc3: /* ret near */
494 case 0xca: /* ret far, pop N bytes. */
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502 }
503
504 static int
505 i386_call_p (const gdb_byte *insn)
506 {
507 if (i386_absolute_call_p (insn))
508 return 1;
509
510 /* call near, relative. */
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515 }
516
517 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
519
520 static int
521 i386_syscall_p (const gdb_byte *insn, int *lengthp)
522 {
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530 }
531
532 /* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535 struct displaced_step_closure *
536 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539 {
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567 }
568
569 /* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
571
572 void
573 i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577 {
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
594 "displaced: fixup (%s, %s), "
595 "insn = 0x%02x 0x%02x ...\n",
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
627 int insn_len;
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
701 }
702 }
703
704 static void
705 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706 {
707 target_write_memory (*to, buf, len);
708 *to += len;
709 }
710
711 static void
712 i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714 {
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
739 push_buf[0] = 0x68; /* pushq $... */
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
750 store_signed_integer (insn + 1, 4, byte_order, newrel);
751
752 if (debug_displaced)
753 fprintf_unfiltered (gdb_stdlog,
754 "Adjusted insn rel32=%s at %s to"
755 " rel32=%s at %s\n",
756 hex_string (rel32), paddress (gdbarch, oldloc),
757 hex_string (newrel), paddress (gdbarch, *to));
758
759 /* Write the adjusted jump into its displaced location. */
760 append_insns (to, 5, insn);
761 return;
762 }
763
764 /* Adjust jumps with 32-bit relative addresses. Calls are already
765 handled above. */
766 if (insn[0] == 0xe9)
767 offset = 1;
768 /* Adjust conditional jumps. */
769 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
770 offset = 2;
771
772 if (offset)
773 {
774 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
775 newrel = (oldloc - *to) + rel32;
776 store_signed_integer (insn + offset, 4, byte_order, newrel);
777 if (debug_displaced)
778 fprintf_unfiltered (gdb_stdlog,
779 "Adjusted insn rel32=%s at %s to"
780 " rel32=%s at %s\n",
781 hex_string (rel32), paddress (gdbarch, oldloc),
782 hex_string (newrel), paddress (gdbarch, *to));
783 }
784
785 /* Write the adjusted instructions into their displaced
786 location. */
787 append_insns (to, insn_length, buf);
788 }
789
790 \f
791 #ifdef I386_REGNO_TO_SYMMETRY
792 #error "The Sequent Symmetry is no longer supported."
793 #endif
794
795 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
796 and %esp "belong" to the calling function. Therefore these
797 registers should be saved if they're going to be modified. */
798
799 /* The maximum number of saved registers. This should include all
800 registers mentioned above, and %eip. */
801 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
802
803 struct i386_frame_cache
804 {
805 /* Base address. */
806 CORE_ADDR base;
807 int base_p;
808 LONGEST sp_offset;
809 CORE_ADDR pc;
810
811 /* Saved registers. */
812 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
813 CORE_ADDR saved_sp;
814 int saved_sp_reg;
815 int pc_in_eax;
816
817 /* Stack space reserved for local variables. */
818 long locals;
819 };
820
821 /* Allocate and initialize a frame cache. */
822
823 static struct i386_frame_cache *
824 i386_alloc_frame_cache (void)
825 {
826 struct i386_frame_cache *cache;
827 int i;
828
829 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
830
831 /* Base address. */
832 cache->base_p = 0;
833 cache->base = 0;
834 cache->sp_offset = -4;
835 cache->pc = 0;
836
837 /* Saved registers. We initialize these to -1 since zero is a valid
838 offset (that's where %ebp is supposed to be stored). */
839 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
840 cache->saved_regs[i] = -1;
841 cache->saved_sp = 0;
842 cache->saved_sp_reg = -1;
843 cache->pc_in_eax = 0;
844
845 /* Frameless until proven otherwise. */
846 cache->locals = -1;
847
848 return cache;
849 }
850
851 /* If the instruction at PC is a jump, return the address of its
852 target. Otherwise, return PC. */
853
854 static CORE_ADDR
855 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
856 {
857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
858 gdb_byte op;
859 long delta = 0;
860 int data16 = 0;
861
862 if (target_read_memory (pc, &op, 1))
863 return pc;
864
865 if (op == 0x66)
866 {
867 data16 = 1;
868 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
869 }
870
871 switch (op)
872 {
873 case 0xe9:
874 /* Relative jump: if data16 == 0, disp32, else disp16. */
875 if (data16)
876 {
877 delta = read_memory_integer (pc + 2, 2, byte_order);
878
879 /* Include the size of the jmp instruction (including the
880 0x66 prefix). */
881 delta += 4;
882 }
883 else
884 {
885 delta = read_memory_integer (pc + 1, 4, byte_order);
886
887 /* Include the size of the jmp instruction. */
888 delta += 5;
889 }
890 break;
891 case 0xeb:
892 /* Relative jump, disp8 (ignore data16). */
893 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
894
895 delta += data16 + 2;
896 break;
897 }
898
899 return pc + delta;
900 }
901
902 /* Check whether PC points at a prologue for a function returning a
903 structure or union. If so, it updates CACHE and returns the
904 address of the first instruction after the code sequence that
905 removes the "hidden" argument from the stack or CURRENT_PC,
906 whichever is smaller. Otherwise, return PC. */
907
908 static CORE_ADDR
909 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
910 struct i386_frame_cache *cache)
911 {
912 /* Functions that return a structure or union start with:
913
914 popl %eax 0x58
915 xchgl %eax, (%esp) 0x87 0x04 0x24
916 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
917
918 (the System V compiler puts out the second `xchg' instruction,
919 and the assembler doesn't try to optimize it, so the 'sib' form
920 gets generated). This sequence is used to get the address of the
921 return buffer for a function that returns a structure. */
922 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
923 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
924 gdb_byte buf[4];
925 gdb_byte op;
926
927 if (current_pc <= pc)
928 return pc;
929
930 if (target_read_memory (pc, &op, 1))
931 return pc;
932
933 if (op != 0x58) /* popl %eax */
934 return pc;
935
936 if (target_read_memory (pc + 1, buf, 4))
937 return pc;
938
939 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
940 return pc;
941
942 if (current_pc == pc)
943 {
944 cache->sp_offset += 4;
945 return current_pc;
946 }
947
948 if (current_pc == pc + 1)
949 {
950 cache->pc_in_eax = 1;
951 return current_pc;
952 }
953
954 if (buf[1] == proto1[1])
955 return pc + 4;
956 else
957 return pc + 5;
958 }
959
960 static CORE_ADDR
961 i386_skip_probe (CORE_ADDR pc)
962 {
963 /* A function may start with
964
965 pushl constant
966 call _probe
967 addl $4, %esp
968
969 followed by
970
971 pushl %ebp
972
973 etc. */
974 gdb_byte buf[8];
975 gdb_byte op;
976
977 if (target_read_memory (pc, &op, 1))
978 return pc;
979
980 if (op == 0x68 || op == 0x6a)
981 {
982 int delta;
983
984 /* Skip past the `pushl' instruction; it has either a one-byte or a
985 four-byte operand, depending on the opcode. */
986 if (op == 0x68)
987 delta = 5;
988 else
989 delta = 2;
990
991 /* Read the following 8 bytes, which should be `call _probe' (6
992 bytes) followed by `addl $4,%esp' (2 bytes). */
993 read_memory (pc + delta, buf, sizeof (buf));
994 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
995 pc += delta + sizeof (buf);
996 }
997
998 return pc;
999 }
1000
1001 /* GCC 4.1 and later, can put code in the prologue to realign the
1002 stack pointer. Check whether PC points to such code, and update
1003 CACHE accordingly. Return the first instruction after the code
1004 sequence or CURRENT_PC, whichever is smaller. If we don't
1005 recognize the code, return PC. */
1006
1007 static CORE_ADDR
1008 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1009 struct i386_frame_cache *cache)
1010 {
1011 /* There are 2 code sequences to re-align stack before the frame
1012 gets set up:
1013
1014 1. Use a caller-saved saved register:
1015
1016 leal 4(%esp), %reg
1017 andl $-XXX, %esp
1018 pushl -4(%reg)
1019
1020 2. Use a callee-saved saved register:
1021
1022 pushl %reg
1023 leal 8(%esp), %reg
1024 andl $-XXX, %esp
1025 pushl -4(%reg)
1026
1027 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1028
1029 0x83 0xe4 0xf0 andl $-16, %esp
1030 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1031 */
1032
1033 gdb_byte buf[14];
1034 int reg;
1035 int offset, offset_and;
1036 static int regnums[8] = {
1037 I386_EAX_REGNUM, /* %eax */
1038 I386_ECX_REGNUM, /* %ecx */
1039 I386_EDX_REGNUM, /* %edx */
1040 I386_EBX_REGNUM, /* %ebx */
1041 I386_ESP_REGNUM, /* %esp */
1042 I386_EBP_REGNUM, /* %ebp */
1043 I386_ESI_REGNUM, /* %esi */
1044 I386_EDI_REGNUM /* %edi */
1045 };
1046
1047 if (target_read_memory (pc, buf, sizeof buf))
1048 return pc;
1049
1050 /* Check caller-saved saved register. The first instruction has
1051 to be "leal 4(%esp), %reg". */
1052 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1053 {
1054 /* MOD must be binary 10 and R/M must be binary 100. */
1055 if ((buf[1] & 0xc7) != 0x44)
1056 return pc;
1057
1058 /* REG has register number. */
1059 reg = (buf[1] >> 3) & 7;
1060 offset = 4;
1061 }
1062 else
1063 {
1064 /* Check callee-saved saved register. The first instruction
1065 has to be "pushl %reg". */
1066 if ((buf[0] & 0xf8) != 0x50)
1067 return pc;
1068
1069 /* Get register. */
1070 reg = buf[0] & 0x7;
1071
1072 /* The next instruction has to be "leal 8(%esp), %reg". */
1073 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1074 return pc;
1075
1076 /* MOD must be binary 10 and R/M must be binary 100. */
1077 if ((buf[2] & 0xc7) != 0x44)
1078 return pc;
1079
1080 /* REG has register number. Registers in pushl and leal have to
1081 be the same. */
1082 if (reg != ((buf[2] >> 3) & 7))
1083 return pc;
1084
1085 offset = 5;
1086 }
1087
1088 /* Rigister can't be %esp nor %ebp. */
1089 if (reg == 4 || reg == 5)
1090 return pc;
1091
1092 /* The next instruction has to be "andl $-XXX, %esp". */
1093 if (buf[offset + 1] != 0xe4
1094 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1095 return pc;
1096
1097 offset_and = offset;
1098 offset += buf[offset] == 0x81 ? 6 : 3;
1099
1100 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1101 0xfc. REG must be binary 110 and MOD must be binary 01. */
1102 if (buf[offset] != 0xff
1103 || buf[offset + 2] != 0xfc
1104 || (buf[offset + 1] & 0xf8) != 0x70)
1105 return pc;
1106
1107 /* R/M has register. Registers in leal and pushl have to be the
1108 same. */
1109 if (reg != (buf[offset + 1] & 7))
1110 return pc;
1111
1112 if (current_pc > pc + offset_and)
1113 cache->saved_sp_reg = regnums[reg];
1114
1115 return min (pc + offset + 3, current_pc);
1116 }
1117
1118 /* Maximum instruction length we need to handle. */
1119 #define I386_MAX_MATCHED_INSN_LEN 6
1120
1121 /* Instruction description. */
1122 struct i386_insn
1123 {
1124 size_t len;
1125 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1126 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1127 };
1128
1129 /* Return whether instruction at PC matches PATTERN. */
1130
1131 static int
1132 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1133 {
1134 gdb_byte op;
1135
1136 if (target_read_memory (pc, &op, 1))
1137 return 0;
1138
1139 if ((op & pattern.mask[0]) == pattern.insn[0])
1140 {
1141 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1142 int insn_matched = 1;
1143 size_t i;
1144
1145 gdb_assert (pattern.len > 1);
1146 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1147
1148 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1149 return 0;
1150
1151 for (i = 1; i < pattern.len; i++)
1152 {
1153 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1154 insn_matched = 0;
1155 }
1156 return insn_matched;
1157 }
1158 return 0;
1159 }
1160
1161 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1162 the first instruction description that matches. Otherwise, return
1163 NULL. */
1164
1165 static struct i386_insn *
1166 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1167 {
1168 struct i386_insn *pattern;
1169
1170 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1171 {
1172 if (i386_match_pattern (pc, *pattern))
1173 return pattern;
1174 }
1175
1176 return NULL;
1177 }
1178
1179 /* Return whether PC points inside a sequence of instructions that
1180 matches INSN_PATTERNS. */
1181
1182 static int
1183 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1184 {
1185 CORE_ADDR current_pc;
1186 int ix, i;
1187 gdb_byte op;
1188 struct i386_insn *insn;
1189
1190 insn = i386_match_insn (pc, insn_patterns);
1191 if (insn == NULL)
1192 return 0;
1193
1194 current_pc = pc;
1195 ix = insn - insn_patterns;
1196 for (i = ix - 1; i >= 0; i--)
1197 {
1198 current_pc -= insn_patterns[i].len;
1199
1200 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1201 return 0;
1202 }
1203
1204 current_pc = pc + insn->len;
1205 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1206 {
1207 if (!i386_match_pattern (current_pc, *insn))
1208 return 0;
1209
1210 current_pc += insn->len;
1211 }
1212
1213 return 1;
1214 }
1215
1216 /* Some special instructions that might be migrated by GCC into the
1217 part of the prologue that sets up the new stack frame. Because the
1218 stack frame hasn't been setup yet, no registers have been saved
1219 yet, and only the scratch registers %eax, %ecx and %edx can be
1220 touched. */
1221
1222 struct i386_insn i386_frame_setup_skip_insns[] =
1223 {
1224 /* Check for `movb imm8, r' and `movl imm32, r'.
1225
1226 ??? Should we handle 16-bit operand-sizes here? */
1227
1228 /* `movb imm8, %al' and `movb imm8, %ah' */
1229 /* `movb imm8, %cl' and `movb imm8, %ch' */
1230 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1231 /* `movb imm8, %dl' and `movb imm8, %dh' */
1232 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1233 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1234 { 5, { 0xb8 }, { 0xfe } },
1235 /* `movl imm32, %edx' */
1236 { 5, { 0xba }, { 0xff } },
1237
1238 /* Check for `mov imm32, r32'. Note that there is an alternative
1239 encoding for `mov m32, %eax'.
1240
1241 ??? Should we handle SIB adressing here?
1242 ??? Should we handle 16-bit operand-sizes here? */
1243
1244 /* `movl m32, %eax' */
1245 { 5, { 0xa1 }, { 0xff } },
1246 /* `movl m32, %eax' and `mov; m32, %ecx' */
1247 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1248 /* `movl m32, %edx' */
1249 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1250
1251 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1252 Because of the symmetry, there are actually two ways to encode
1253 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1254 opcode bytes 0x31 and 0x33 for `xorl'. */
1255
1256 /* `subl %eax, %eax' */
1257 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1258 /* `subl %ecx, %ecx' */
1259 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1260 /* `subl %edx, %edx' */
1261 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1262 /* `xorl %eax, %eax' */
1263 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1264 /* `xorl %ecx, %ecx' */
1265 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1266 /* `xorl %edx, %edx' */
1267 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1268 { 0 }
1269 };
1270
1271
1272 /* Check whether PC points to a no-op instruction. */
1273 static CORE_ADDR
1274 i386_skip_noop (CORE_ADDR pc)
1275 {
1276 gdb_byte op;
1277 int check = 1;
1278
1279 if (target_read_memory (pc, &op, 1))
1280 return pc;
1281
1282 while (check)
1283 {
1284 check = 0;
1285 /* Ignore `nop' instruction. */
1286 if (op == 0x90)
1287 {
1288 pc += 1;
1289 if (target_read_memory (pc, &op, 1))
1290 return pc;
1291 check = 1;
1292 }
1293 /* Ignore no-op instruction `mov %edi, %edi'.
1294 Microsoft system dlls often start with
1295 a `mov %edi,%edi' instruction.
1296 The 5 bytes before the function start are
1297 filled with `nop' instructions.
1298 This pattern can be used for hot-patching:
1299 The `mov %edi, %edi' instruction can be replaced by a
1300 near jump to the location of the 5 `nop' instructions
1301 which can be replaced by a 32-bit jump to anywhere
1302 in the 32-bit address space. */
1303
1304 else if (op == 0x8b)
1305 {
1306 if (target_read_memory (pc + 1, &op, 1))
1307 return pc;
1308
1309 if (op == 0xff)
1310 {
1311 pc += 2;
1312 if (target_read_memory (pc, &op, 1))
1313 return pc;
1314
1315 check = 1;
1316 }
1317 }
1318 }
1319 return pc;
1320 }
1321
1322 /* Check whether PC points at a code that sets up a new stack frame.
1323 If so, it updates CACHE and returns the address of the first
1324 instruction after the sequence that sets up the frame or LIMIT,
1325 whichever is smaller. If we don't recognize the code, return PC. */
1326
1327 static CORE_ADDR
1328 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1329 CORE_ADDR pc, CORE_ADDR limit,
1330 struct i386_frame_cache *cache)
1331 {
1332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1333 struct i386_insn *insn;
1334 gdb_byte op;
1335 int skip = 0;
1336
1337 if (limit <= pc)
1338 return limit;
1339
1340 if (target_read_memory (pc, &op, 1))
1341 return pc;
1342
1343 if (op == 0x55) /* pushl %ebp */
1344 {
1345 /* Take into account that we've executed the `pushl %ebp' that
1346 starts this instruction sequence. */
1347 cache->saved_regs[I386_EBP_REGNUM] = 0;
1348 cache->sp_offset += 4;
1349 pc++;
1350
1351 /* If that's all, return now. */
1352 if (limit <= pc)
1353 return limit;
1354
1355 /* Check for some special instructions that might be migrated by
1356 GCC into the prologue and skip them. At this point in the
1357 prologue, code should only touch the scratch registers %eax,
1358 %ecx and %edx, so while the number of posibilities is sheer,
1359 it is limited.
1360
1361 Make sure we only skip these instructions if we later see the
1362 `movl %esp, %ebp' that actually sets up the frame. */
1363 while (pc + skip < limit)
1364 {
1365 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1366 if (insn == NULL)
1367 break;
1368
1369 skip += insn->len;
1370 }
1371
1372 /* If that's all, return now. */
1373 if (limit <= pc + skip)
1374 return limit;
1375
1376 if (target_read_memory (pc + skip, &op, 1))
1377 return pc + skip;
1378
1379 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1380 switch (op)
1381 {
1382 case 0x8b:
1383 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1384 != 0xec)
1385 return pc;
1386 break;
1387 case 0x89:
1388 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1389 != 0xe5)
1390 return pc;
1391 break;
1392 default:
1393 return pc;
1394 }
1395
1396 /* OK, we actually have a frame. We just don't know how large
1397 it is yet. Set its size to zero. We'll adjust it if
1398 necessary. We also now commit to skipping the special
1399 instructions mentioned before. */
1400 cache->locals = 0;
1401 pc += (skip + 2);
1402
1403 /* If that's all, return now. */
1404 if (limit <= pc)
1405 return limit;
1406
1407 /* Check for stack adjustment
1408
1409 subl $XXX, %esp
1410
1411 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1412 reg, so we don't have to worry about a data16 prefix. */
1413 if (target_read_memory (pc, &op, 1))
1414 return pc;
1415 if (op == 0x83)
1416 {
1417 /* `subl' with 8-bit immediate. */
1418 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1419 /* Some instruction starting with 0x83 other than `subl'. */
1420 return pc;
1421
1422 /* `subl' with signed 8-bit immediate (though it wouldn't
1423 make sense to be negative). */
1424 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1425 return pc + 3;
1426 }
1427 else if (op == 0x81)
1428 {
1429 /* Maybe it is `subl' with a 32-bit immediate. */
1430 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1431 /* Some instruction starting with 0x81 other than `subl'. */
1432 return pc;
1433
1434 /* It is `subl' with a 32-bit immediate. */
1435 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1436 return pc + 6;
1437 }
1438 else
1439 {
1440 /* Some instruction other than `subl'. */
1441 return pc;
1442 }
1443 }
1444 else if (op == 0xc8) /* enter */
1445 {
1446 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1447 return pc + 4;
1448 }
1449
1450 return pc;
1451 }
1452
1453 /* Check whether PC points at code that saves registers on the stack.
1454 If so, it updates CACHE and returns the address of the first
1455 instruction after the register saves or CURRENT_PC, whichever is
1456 smaller. Otherwise, return PC. */
1457
1458 static CORE_ADDR
1459 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1460 struct i386_frame_cache *cache)
1461 {
1462 CORE_ADDR offset = 0;
1463 gdb_byte op;
1464 int i;
1465
1466 if (cache->locals > 0)
1467 offset -= cache->locals;
1468 for (i = 0; i < 8 && pc < current_pc; i++)
1469 {
1470 if (target_read_memory (pc, &op, 1))
1471 return pc;
1472 if (op < 0x50 || op > 0x57)
1473 break;
1474
1475 offset -= 4;
1476 cache->saved_regs[op - 0x50] = offset;
1477 cache->sp_offset += 4;
1478 pc++;
1479 }
1480
1481 return pc;
1482 }
1483
1484 /* Do a full analysis of the prologue at PC and update CACHE
1485 accordingly. Bail out early if CURRENT_PC is reached. Return the
1486 address where the analysis stopped.
1487
1488 We handle these cases:
1489
1490 The startup sequence can be at the start of the function, or the
1491 function can start with a branch to startup code at the end.
1492
1493 %ebp can be set up with either the 'enter' instruction, or "pushl
1494 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1495 once used in the System V compiler).
1496
1497 Local space is allocated just below the saved %ebp by either the
1498 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1499 16-bit unsigned argument for space to allocate, and the 'addl'
1500 instruction could have either a signed byte, or 32-bit immediate.
1501
1502 Next, the registers used by this function are pushed. With the
1503 System V compiler they will always be in the order: %edi, %esi,
1504 %ebx (and sometimes a harmless bug causes it to also save but not
1505 restore %eax); however, the code below is willing to see the pushes
1506 in any order, and will handle up to 8 of them.
1507
1508 If the setup sequence is at the end of the function, then the next
1509 instruction will be a branch back to the start. */
1510
1511 static CORE_ADDR
1512 i386_analyze_prologue (struct gdbarch *gdbarch,
1513 CORE_ADDR pc, CORE_ADDR current_pc,
1514 struct i386_frame_cache *cache)
1515 {
1516 pc = i386_skip_noop (pc);
1517 pc = i386_follow_jump (gdbarch, pc);
1518 pc = i386_analyze_struct_return (pc, current_pc, cache);
1519 pc = i386_skip_probe (pc);
1520 pc = i386_analyze_stack_align (pc, current_pc, cache);
1521 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1522 return i386_analyze_register_saves (pc, current_pc, cache);
1523 }
1524
1525 /* Return PC of first real instruction. */
1526
1527 static CORE_ADDR
1528 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1529 {
1530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1531
1532 static gdb_byte pic_pat[6] =
1533 {
1534 0xe8, 0, 0, 0, 0, /* call 0x0 */
1535 0x5b, /* popl %ebx */
1536 };
1537 struct i386_frame_cache cache;
1538 CORE_ADDR pc;
1539 gdb_byte op;
1540 int i;
1541
1542 cache.locals = -1;
1543 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1544 if (cache.locals < 0)
1545 return start_pc;
1546
1547 /* Found valid frame setup. */
1548
1549 /* The native cc on SVR4 in -K PIC mode inserts the following code
1550 to get the address of the global offset table (GOT) into register
1551 %ebx:
1552
1553 call 0x0
1554 popl %ebx
1555 movl %ebx,x(%ebp) (optional)
1556 addl y,%ebx
1557
1558 This code is with the rest of the prologue (at the end of the
1559 function), so we have to skip it to get to the first real
1560 instruction at the start of the function. */
1561
1562 for (i = 0; i < 6; i++)
1563 {
1564 if (target_read_memory (pc + i, &op, 1))
1565 return pc;
1566
1567 if (pic_pat[i] != op)
1568 break;
1569 }
1570 if (i == 6)
1571 {
1572 int delta = 6;
1573
1574 if (target_read_memory (pc + delta, &op, 1))
1575 return pc;
1576
1577 if (op == 0x89) /* movl %ebx, x(%ebp) */
1578 {
1579 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1580
1581 if (op == 0x5d) /* One byte offset from %ebp. */
1582 delta += 3;
1583 else if (op == 0x9d) /* Four byte offset from %ebp. */
1584 delta += 6;
1585 else /* Unexpected instruction. */
1586 delta = 0;
1587
1588 if (target_read_memory (pc + delta, &op, 1))
1589 return pc;
1590 }
1591
1592 /* addl y,%ebx */
1593 if (delta > 0 && op == 0x81
1594 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1595 == 0xc3)
1596 {
1597 pc += delta + 6;
1598 }
1599 }
1600
1601 /* If the function starts with a branch (to startup code at the end)
1602 the last instruction should bring us back to the first
1603 instruction of the real code. */
1604 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1605 pc = i386_follow_jump (gdbarch, pc);
1606
1607 return pc;
1608 }
1609
1610 /* Check that the code pointed to by PC corresponds to a call to
1611 __main, skip it if so. Return PC otherwise. */
1612
1613 CORE_ADDR
1614 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1615 {
1616 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1617 gdb_byte op;
1618
1619 if (target_read_memory (pc, &op, 1))
1620 return pc;
1621 if (op == 0xe8)
1622 {
1623 gdb_byte buf[4];
1624
1625 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1626 {
1627 /* Make sure address is computed correctly as a 32bit
1628 integer even if CORE_ADDR is 64 bit wide. */
1629 struct minimal_symbol *s;
1630 CORE_ADDR call_dest;
1631
1632 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1633 call_dest = call_dest & 0xffffffffU;
1634 s = lookup_minimal_symbol_by_pc (call_dest);
1635 if (s != NULL
1636 && SYMBOL_LINKAGE_NAME (s) != NULL
1637 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1638 pc += 5;
1639 }
1640 }
1641
1642 return pc;
1643 }
1644
1645 /* This function is 64-bit safe. */
1646
1647 static CORE_ADDR
1648 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1649 {
1650 gdb_byte buf[8];
1651
1652 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1653 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1654 }
1655 \f
1656
1657 /* Normal frames. */
1658
1659 static void
1660 i386_frame_cache_1 (struct frame_info *this_frame,
1661 struct i386_frame_cache *cache)
1662 {
1663 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1664 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1665 gdb_byte buf[4];
1666 int i;
1667
1668 cache->pc = get_frame_func (this_frame);
1669
1670 /* In principle, for normal frames, %ebp holds the frame pointer,
1671 which holds the base address for the current stack frame.
1672 However, for functions that don't need it, the frame pointer is
1673 optional. For these "frameless" functions the frame pointer is
1674 actually the frame pointer of the calling frame. Signal
1675 trampolines are just a special case of a "frameless" function.
1676 They (usually) share their frame pointer with the frame that was
1677 in progress when the signal occurred. */
1678
1679 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1680 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1681 if (cache->base == 0)
1682 return;
1683
1684 /* For normal frames, %eip is stored at 4(%ebp). */
1685 cache->saved_regs[I386_EIP_REGNUM] = 4;
1686
1687 if (cache->pc != 0)
1688 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1689 cache);
1690
1691 if (cache->locals < 0)
1692 {
1693 /* We didn't find a valid frame, which means that CACHE->base
1694 currently holds the frame pointer for our calling frame. If
1695 we're at the start of a function, or somewhere half-way its
1696 prologue, the function's frame probably hasn't been fully
1697 setup yet. Try to reconstruct the base address for the stack
1698 frame by looking at the stack pointer. For truly "frameless"
1699 functions this might work too. */
1700
1701 if (cache->saved_sp_reg != -1)
1702 {
1703 /* Saved stack pointer has been saved. */
1704 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1705 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1706
1707 /* We're halfway aligning the stack. */
1708 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1709 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1710
1711 /* This will be added back below. */
1712 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1713 }
1714 else if (cache->pc != 0
1715 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1716 {
1717 /* We're in a known function, but did not find a frame
1718 setup. Assume that the function does not use %ebp.
1719 Alternatively, we may have jumped to an invalid
1720 address; in that case there is definitely no new
1721 frame in %ebp. */
1722 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1723 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1724 + cache->sp_offset;
1725 }
1726 else
1727 /* We're in an unknown function. We could not find the start
1728 of the function to analyze the prologue; our best option is
1729 to assume a typical frame layout with the caller's %ebp
1730 saved. */
1731 cache->saved_regs[I386_EBP_REGNUM] = 0;
1732 }
1733
1734 if (cache->saved_sp_reg != -1)
1735 {
1736 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1737 register may be unavailable). */
1738 if (cache->saved_sp == 0
1739 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1740 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1741 }
1742 /* Now that we have the base address for the stack frame we can
1743 calculate the value of %esp in the calling frame. */
1744 else if (cache->saved_sp == 0)
1745 cache->saved_sp = cache->base + 8;
1746
1747 /* Adjust all the saved registers such that they contain addresses
1748 instead of offsets. */
1749 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1750 if (cache->saved_regs[i] != -1)
1751 cache->saved_regs[i] += cache->base;
1752
1753 cache->base_p = 1;
1754 }
1755
1756 static struct i386_frame_cache *
1757 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1758 {
1759 volatile struct gdb_exception ex;
1760 struct i386_frame_cache *cache;
1761
1762 if (*this_cache)
1763 return *this_cache;
1764
1765 cache = i386_alloc_frame_cache ();
1766 *this_cache = cache;
1767
1768 TRY_CATCH (ex, RETURN_MASK_ERROR)
1769 {
1770 i386_frame_cache_1 (this_frame, cache);
1771 }
1772 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1773 throw_exception (ex);
1774
1775 return cache;
1776 }
1777
1778 static void
1779 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1780 struct frame_id *this_id)
1781 {
1782 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1783
1784 /* This marks the outermost frame. */
1785 if (cache->base == 0)
1786 return;
1787
1788 /* See the end of i386_push_dummy_call. */
1789 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1790 }
1791
1792 static enum unwind_stop_reason
1793 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1794 void **this_cache)
1795 {
1796 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1797
1798 if (!cache->base_p)
1799 return UNWIND_UNAVAILABLE;
1800
1801 /* This marks the outermost frame. */
1802 if (cache->base == 0)
1803 return UNWIND_OUTERMOST;
1804
1805 return UNWIND_NO_REASON;
1806 }
1807
1808 static struct value *
1809 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1810 int regnum)
1811 {
1812 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1813
1814 gdb_assert (regnum >= 0);
1815
1816 /* The System V ABI says that:
1817
1818 "The flags register contains the system flags, such as the
1819 direction flag and the carry flag. The direction flag must be
1820 set to the forward (that is, zero) direction before entry and
1821 upon exit from a function. Other user flags have no specified
1822 role in the standard calling sequence and are not preserved."
1823
1824 To guarantee the "upon exit" part of that statement we fake a
1825 saved flags register that has its direction flag cleared.
1826
1827 Note that GCC doesn't seem to rely on the fact that the direction
1828 flag is cleared after a function return; it always explicitly
1829 clears the flag before operations where it matters.
1830
1831 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1832 right thing to do. The way we fake the flags register here makes
1833 it impossible to change it. */
1834
1835 if (regnum == I386_EFLAGS_REGNUM)
1836 {
1837 ULONGEST val;
1838
1839 val = get_frame_register_unsigned (this_frame, regnum);
1840 val &= ~(1 << 10);
1841 return frame_unwind_got_constant (this_frame, regnum, val);
1842 }
1843
1844 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1845 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1846
1847 if (regnum == I386_ESP_REGNUM
1848 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1849 {
1850 /* If the SP has been saved, but we don't know where, then this
1851 means that SAVED_SP_REG register was found unavailable back
1852 when we built the cache. */
1853 if (cache->saved_sp == 0)
1854 return frame_unwind_got_register (this_frame, regnum,
1855 cache->saved_sp_reg);
1856 else
1857 return frame_unwind_got_constant (this_frame, regnum,
1858 cache->saved_sp);
1859 }
1860
1861 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1862 return frame_unwind_got_memory (this_frame, regnum,
1863 cache->saved_regs[regnum]);
1864
1865 return frame_unwind_got_register (this_frame, regnum, regnum);
1866 }
1867
1868 static const struct frame_unwind i386_frame_unwind =
1869 {
1870 NORMAL_FRAME,
1871 i386_frame_unwind_stop_reason,
1872 i386_frame_this_id,
1873 i386_frame_prev_register,
1874 NULL,
1875 default_frame_sniffer
1876 };
1877
1878 /* Normal frames, but in a function epilogue. */
1879
1880 /* The epilogue is defined here as the 'ret' instruction, which will
1881 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1882 the function's stack frame. */
1883
1884 static int
1885 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1886 {
1887 gdb_byte insn;
1888 struct symtab *symtab;
1889
1890 symtab = find_pc_symtab (pc);
1891 if (symtab && symtab->epilogue_unwind_valid)
1892 return 0;
1893
1894 if (target_read_memory (pc, &insn, 1))
1895 return 0; /* Can't read memory at pc. */
1896
1897 if (insn != 0xc3) /* 'ret' instruction. */
1898 return 0;
1899
1900 return 1;
1901 }
1902
1903 static int
1904 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1905 struct frame_info *this_frame,
1906 void **this_prologue_cache)
1907 {
1908 if (frame_relative_level (this_frame) == 0)
1909 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1910 get_frame_pc (this_frame));
1911 else
1912 return 0;
1913 }
1914
1915 static struct i386_frame_cache *
1916 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1917 {
1918 volatile struct gdb_exception ex;
1919 struct i386_frame_cache *cache;
1920 CORE_ADDR sp;
1921
1922 if (*this_cache)
1923 return *this_cache;
1924
1925 cache = i386_alloc_frame_cache ();
1926 *this_cache = cache;
1927
1928 TRY_CATCH (ex, RETURN_MASK_ERROR)
1929 {
1930 cache->pc = get_frame_func (this_frame);
1931
1932 /* At this point the stack looks as if we just entered the
1933 function, with the return address at the top of the
1934 stack. */
1935 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1936 cache->base = sp + cache->sp_offset;
1937 cache->saved_sp = cache->base + 8;
1938 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1939
1940 cache->base_p = 1;
1941 }
1942 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1943 throw_exception (ex);
1944
1945 return cache;
1946 }
1947
1948 static enum unwind_stop_reason
1949 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1950 void **this_cache)
1951 {
1952 struct i386_frame_cache *cache =
1953 i386_epilogue_frame_cache (this_frame, this_cache);
1954
1955 if (!cache->base_p)
1956 return UNWIND_UNAVAILABLE;
1957
1958 return UNWIND_NO_REASON;
1959 }
1960
1961 static void
1962 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1963 void **this_cache,
1964 struct frame_id *this_id)
1965 {
1966 struct i386_frame_cache *cache =
1967 i386_epilogue_frame_cache (this_frame, this_cache);
1968
1969 if (!cache->base_p)
1970 return;
1971
1972 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1973 }
1974
1975 static struct value *
1976 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
1977 void **this_cache, int regnum)
1978 {
1979 /* Make sure we've initialized the cache. */
1980 i386_epilogue_frame_cache (this_frame, this_cache);
1981
1982 return i386_frame_prev_register (this_frame, this_cache, regnum);
1983 }
1984
1985 static const struct frame_unwind i386_epilogue_frame_unwind =
1986 {
1987 NORMAL_FRAME,
1988 i386_epilogue_frame_unwind_stop_reason,
1989 i386_epilogue_frame_this_id,
1990 i386_epilogue_frame_prev_register,
1991 NULL,
1992 i386_epilogue_frame_sniffer
1993 };
1994 \f
1995
1996 /* Stack-based trampolines. */
1997
1998 /* These trampolines are used on cross x86 targets, when taking the
1999 address of a nested function. When executing these trampolines,
2000 no stack frame is set up, so we are in a similar situation as in
2001 epilogues and i386_epilogue_frame_this_id can be re-used. */
2002
2003 /* Static chain passed in register. */
2004
2005 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2006 {
2007 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2008 { 5, { 0xb8 }, { 0xfe } },
2009
2010 /* `jmp imm32' */
2011 { 5, { 0xe9 }, { 0xff } },
2012
2013 {0}
2014 };
2015
2016 /* Static chain passed on stack (when regparm=3). */
2017
2018 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2019 {
2020 /* `push imm32' */
2021 { 5, { 0x68 }, { 0xff } },
2022
2023 /* `jmp imm32' */
2024 { 5, { 0xe9 }, { 0xff } },
2025
2026 {0}
2027 };
2028
2029 /* Return whether PC points inside a stack trampoline. */
2030
2031 static int
2032 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2033 {
2034 gdb_byte insn;
2035 char *name;
2036
2037 /* A stack trampoline is detected if no name is associated
2038 to the current pc and if it points inside a trampoline
2039 sequence. */
2040
2041 find_pc_partial_function (pc, &name, NULL, NULL);
2042 if (name)
2043 return 0;
2044
2045 if (target_read_memory (pc, &insn, 1))
2046 return 0;
2047
2048 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2049 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2050 return 0;
2051
2052 return 1;
2053 }
2054
2055 static int
2056 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2057 struct frame_info *this_frame,
2058 void **this_cache)
2059 {
2060 if (frame_relative_level (this_frame) == 0)
2061 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2062 get_frame_pc (this_frame));
2063 else
2064 return 0;
2065 }
2066
2067 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2068 {
2069 NORMAL_FRAME,
2070 i386_epilogue_frame_unwind_stop_reason,
2071 i386_epilogue_frame_this_id,
2072 i386_epilogue_frame_prev_register,
2073 NULL,
2074 i386_stack_tramp_frame_sniffer
2075 };
2076 \f
2077
2078 /* Signal trampolines. */
2079
2080 static struct i386_frame_cache *
2081 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2082 {
2083 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2084 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2085 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2086 volatile struct gdb_exception ex;
2087 struct i386_frame_cache *cache;
2088 CORE_ADDR addr;
2089 gdb_byte buf[4];
2090
2091 if (*this_cache)
2092 return *this_cache;
2093
2094 cache = i386_alloc_frame_cache ();
2095
2096 TRY_CATCH (ex, RETURN_MASK_ERROR)
2097 {
2098 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2099 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2100
2101 addr = tdep->sigcontext_addr (this_frame);
2102 if (tdep->sc_reg_offset)
2103 {
2104 int i;
2105
2106 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2107
2108 for (i = 0; i < tdep->sc_num_regs; i++)
2109 if (tdep->sc_reg_offset[i] != -1)
2110 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2111 }
2112 else
2113 {
2114 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2115 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2116 }
2117
2118 cache->base_p = 1;
2119 }
2120 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2121 throw_exception (ex);
2122
2123 *this_cache = cache;
2124 return cache;
2125 }
2126
2127 static enum unwind_stop_reason
2128 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2129 void **this_cache)
2130 {
2131 struct i386_frame_cache *cache =
2132 i386_sigtramp_frame_cache (this_frame, this_cache);
2133
2134 if (!cache->base_p)
2135 return UNWIND_UNAVAILABLE;
2136
2137 return UNWIND_NO_REASON;
2138 }
2139
2140 static void
2141 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2142 struct frame_id *this_id)
2143 {
2144 struct i386_frame_cache *cache =
2145 i386_sigtramp_frame_cache (this_frame, this_cache);
2146
2147 if (!cache->base_p)
2148 return;
2149
2150 /* See the end of i386_push_dummy_call. */
2151 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2152 }
2153
2154 static struct value *
2155 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2156 void **this_cache, int regnum)
2157 {
2158 /* Make sure we've initialized the cache. */
2159 i386_sigtramp_frame_cache (this_frame, this_cache);
2160
2161 return i386_frame_prev_register (this_frame, this_cache, regnum);
2162 }
2163
2164 static int
2165 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2166 struct frame_info *this_frame,
2167 void **this_prologue_cache)
2168 {
2169 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2170
2171 /* We shouldn't even bother if we don't have a sigcontext_addr
2172 handler. */
2173 if (tdep->sigcontext_addr == NULL)
2174 return 0;
2175
2176 if (tdep->sigtramp_p != NULL)
2177 {
2178 if (tdep->sigtramp_p (this_frame))
2179 return 1;
2180 }
2181
2182 if (tdep->sigtramp_start != 0)
2183 {
2184 CORE_ADDR pc = get_frame_pc (this_frame);
2185
2186 gdb_assert (tdep->sigtramp_end != 0);
2187 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2188 return 1;
2189 }
2190
2191 return 0;
2192 }
2193
2194 static const struct frame_unwind i386_sigtramp_frame_unwind =
2195 {
2196 SIGTRAMP_FRAME,
2197 i386_sigtramp_frame_unwind_stop_reason,
2198 i386_sigtramp_frame_this_id,
2199 i386_sigtramp_frame_prev_register,
2200 NULL,
2201 i386_sigtramp_frame_sniffer
2202 };
2203 \f
2204
2205 static CORE_ADDR
2206 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2207 {
2208 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2209
2210 return cache->base;
2211 }
2212
2213 static const struct frame_base i386_frame_base =
2214 {
2215 &i386_frame_unwind,
2216 i386_frame_base_address,
2217 i386_frame_base_address,
2218 i386_frame_base_address
2219 };
2220
2221 static struct frame_id
2222 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2223 {
2224 CORE_ADDR fp;
2225
2226 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2227
2228 /* See the end of i386_push_dummy_call. */
2229 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2230 }
2231 \f
2232
2233 /* Figure out where the longjmp will land. Slurp the args out of the
2234 stack. We expect the first arg to be a pointer to the jmp_buf
2235 structure from which we extract the address that we will land at.
2236 This address is copied into PC. This routine returns non-zero on
2237 success. */
2238
2239 static int
2240 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2241 {
2242 gdb_byte buf[4];
2243 CORE_ADDR sp, jb_addr;
2244 struct gdbarch *gdbarch = get_frame_arch (frame);
2245 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2246 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2247
2248 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2249 longjmp will land. */
2250 if (jb_pc_offset == -1)
2251 return 0;
2252
2253 get_frame_register (frame, I386_ESP_REGNUM, buf);
2254 sp = extract_unsigned_integer (buf, 4, byte_order);
2255 if (target_read_memory (sp + 4, buf, 4))
2256 return 0;
2257
2258 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2259 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2260 return 0;
2261
2262 *pc = extract_unsigned_integer (buf, 4, byte_order);
2263 return 1;
2264 }
2265 \f
2266
2267 /* Check whether TYPE must be 16-byte-aligned when passed as a
2268 function argument. 16-byte vectors, _Decimal128 and structures or
2269 unions containing such types must be 16-byte-aligned; other
2270 arguments are 4-byte-aligned. */
2271
2272 static int
2273 i386_16_byte_align_p (struct type *type)
2274 {
2275 type = check_typedef (type);
2276 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2277 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2278 && TYPE_LENGTH (type) == 16)
2279 return 1;
2280 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2281 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2282 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2283 || TYPE_CODE (type) == TYPE_CODE_UNION)
2284 {
2285 int i;
2286 for (i = 0; i < TYPE_NFIELDS (type); i++)
2287 {
2288 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2289 return 1;
2290 }
2291 }
2292 return 0;
2293 }
2294
2295 static CORE_ADDR
2296 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2297 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2298 struct value **args, CORE_ADDR sp, int struct_return,
2299 CORE_ADDR struct_addr)
2300 {
2301 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2302 gdb_byte buf[4];
2303 int i;
2304 int write_pass;
2305 int args_space = 0;
2306
2307 /* Determine the total space required for arguments and struct
2308 return address in a first pass (allowing for 16-byte-aligned
2309 arguments), then push arguments in a second pass. */
2310
2311 for (write_pass = 0; write_pass < 2; write_pass++)
2312 {
2313 int args_space_used = 0;
2314 int have_16_byte_aligned_arg = 0;
2315
2316 if (struct_return)
2317 {
2318 if (write_pass)
2319 {
2320 /* Push value address. */
2321 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2322 write_memory (sp, buf, 4);
2323 args_space_used += 4;
2324 }
2325 else
2326 args_space += 4;
2327 }
2328
2329 for (i = 0; i < nargs; i++)
2330 {
2331 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2332
2333 if (write_pass)
2334 {
2335 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2336 args_space_used = align_up (args_space_used, 16);
2337
2338 write_memory (sp + args_space_used,
2339 value_contents_all (args[i]), len);
2340 /* The System V ABI says that:
2341
2342 "An argument's size is increased, if necessary, to make it a
2343 multiple of [32-bit] words. This may require tail padding,
2344 depending on the size of the argument."
2345
2346 This makes sure the stack stays word-aligned. */
2347 args_space_used += align_up (len, 4);
2348 }
2349 else
2350 {
2351 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2352 {
2353 args_space = align_up (args_space, 16);
2354 have_16_byte_aligned_arg = 1;
2355 }
2356 args_space += align_up (len, 4);
2357 }
2358 }
2359
2360 if (!write_pass)
2361 {
2362 if (have_16_byte_aligned_arg)
2363 args_space = align_up (args_space, 16);
2364 sp -= args_space;
2365 }
2366 }
2367
2368 /* Store return address. */
2369 sp -= 4;
2370 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2371 write_memory (sp, buf, 4);
2372
2373 /* Finally, update the stack pointer... */
2374 store_unsigned_integer (buf, 4, byte_order, sp);
2375 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2376
2377 /* ...and fake a frame pointer. */
2378 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2379
2380 /* MarkK wrote: This "+ 8" is all over the place:
2381 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2382 i386_dummy_id). It's there, since all frame unwinders for
2383 a given target have to agree (within a certain margin) on the
2384 definition of the stack address of a frame. Otherwise frame id
2385 comparison might not work correctly. Since DWARF2/GCC uses the
2386 stack address *before* the function call as a frame's CFA. On
2387 the i386, when %ebp is used as a frame pointer, the offset
2388 between the contents %ebp and the CFA as defined by GCC. */
2389 return sp + 8;
2390 }
2391
2392 /* These registers are used for returning integers (and on some
2393 targets also for returning `struct' and `union' values when their
2394 size and alignment match an integer type). */
2395 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2396 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2397
2398 /* Read, for architecture GDBARCH, a function return value of TYPE
2399 from REGCACHE, and copy that into VALBUF. */
2400
2401 static void
2402 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2403 struct regcache *regcache, gdb_byte *valbuf)
2404 {
2405 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2406 int len = TYPE_LENGTH (type);
2407 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2408
2409 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2410 {
2411 if (tdep->st0_regnum < 0)
2412 {
2413 warning (_("Cannot find floating-point return value."));
2414 memset (valbuf, 0, len);
2415 return;
2416 }
2417
2418 /* Floating-point return values can be found in %st(0). Convert
2419 its contents to the desired type. This is probably not
2420 exactly how it would happen on the target itself, but it is
2421 the best we can do. */
2422 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2423 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2424 }
2425 else
2426 {
2427 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2428 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2429
2430 if (len <= low_size)
2431 {
2432 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2433 memcpy (valbuf, buf, len);
2434 }
2435 else if (len <= (low_size + high_size))
2436 {
2437 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2438 memcpy (valbuf, buf, low_size);
2439 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2440 memcpy (valbuf + low_size, buf, len - low_size);
2441 }
2442 else
2443 internal_error (__FILE__, __LINE__,
2444 _("Cannot extract return value of %d bytes long."),
2445 len);
2446 }
2447 }
2448
2449 /* Write, for architecture GDBARCH, a function return value of TYPE
2450 from VALBUF into REGCACHE. */
2451
2452 static void
2453 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2454 struct regcache *regcache, const gdb_byte *valbuf)
2455 {
2456 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2457 int len = TYPE_LENGTH (type);
2458
2459 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2460 {
2461 ULONGEST fstat;
2462 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2463
2464 if (tdep->st0_regnum < 0)
2465 {
2466 warning (_("Cannot set floating-point return value."));
2467 return;
2468 }
2469
2470 /* Returning floating-point values is a bit tricky. Apart from
2471 storing the return value in %st(0), we have to simulate the
2472 state of the FPU at function return point. */
2473
2474 /* Convert the value found in VALBUF to the extended
2475 floating-point format used by the FPU. This is probably
2476 not exactly how it would happen on the target itself, but
2477 it is the best we can do. */
2478 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2479 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2480
2481 /* Set the top of the floating-point register stack to 7. The
2482 actual value doesn't really matter, but 7 is what a normal
2483 function return would end up with if the program started out
2484 with a freshly initialized FPU. */
2485 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2486 fstat |= (7 << 11);
2487 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2488
2489 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2490 the floating-point register stack to 7, the appropriate value
2491 for the tag word is 0x3fff. */
2492 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2493 }
2494 else
2495 {
2496 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2497 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2498
2499 if (len <= low_size)
2500 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2501 else if (len <= (low_size + high_size))
2502 {
2503 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2504 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2505 len - low_size, valbuf + low_size);
2506 }
2507 else
2508 internal_error (__FILE__, __LINE__,
2509 _("Cannot store return value of %d bytes long."), len);
2510 }
2511 }
2512 \f
2513
2514 /* This is the variable that is set with "set struct-convention", and
2515 its legitimate values. */
2516 static const char default_struct_convention[] = "default";
2517 static const char pcc_struct_convention[] = "pcc";
2518 static const char reg_struct_convention[] = "reg";
2519 static const char *valid_conventions[] =
2520 {
2521 default_struct_convention,
2522 pcc_struct_convention,
2523 reg_struct_convention,
2524 NULL
2525 };
2526 static const char *struct_convention = default_struct_convention;
2527
2528 /* Return non-zero if TYPE, which is assumed to be a structure,
2529 a union type, or an array type, should be returned in registers
2530 for architecture GDBARCH. */
2531
2532 static int
2533 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2534 {
2535 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2536 enum type_code code = TYPE_CODE (type);
2537 int len = TYPE_LENGTH (type);
2538
2539 gdb_assert (code == TYPE_CODE_STRUCT
2540 || code == TYPE_CODE_UNION
2541 || code == TYPE_CODE_ARRAY);
2542
2543 if (struct_convention == pcc_struct_convention
2544 || (struct_convention == default_struct_convention
2545 && tdep->struct_return == pcc_struct_return))
2546 return 0;
2547
2548 /* Structures consisting of a single `float', `double' or 'long
2549 double' member are returned in %st(0). */
2550 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2551 {
2552 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2553 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2554 return (len == 4 || len == 8 || len == 12);
2555 }
2556
2557 return (len == 1 || len == 2 || len == 4 || len == 8);
2558 }
2559
2560 /* Determine, for architecture GDBARCH, how a return value of TYPE
2561 should be returned. If it is supposed to be returned in registers,
2562 and READBUF is non-zero, read the appropriate value from REGCACHE,
2563 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2564 from WRITEBUF into REGCACHE. */
2565
2566 static enum return_value_convention
2567 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2568 struct type *type, struct regcache *regcache,
2569 gdb_byte *readbuf, const gdb_byte *writebuf)
2570 {
2571 enum type_code code = TYPE_CODE (type);
2572
2573 if (((code == TYPE_CODE_STRUCT
2574 || code == TYPE_CODE_UNION
2575 || code == TYPE_CODE_ARRAY)
2576 && !i386_reg_struct_return_p (gdbarch, type))
2577 /* 128-bit decimal float uses the struct return convention. */
2578 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2579 {
2580 /* The System V ABI says that:
2581
2582 "A function that returns a structure or union also sets %eax
2583 to the value of the original address of the caller's area
2584 before it returns. Thus when the caller receives control
2585 again, the address of the returned object resides in register
2586 %eax and can be used to access the object."
2587
2588 So the ABI guarantees that we can always find the return
2589 value just after the function has returned. */
2590
2591 /* Note that the ABI doesn't mention functions returning arrays,
2592 which is something possible in certain languages such as Ada.
2593 In this case, the value is returned as if it was wrapped in
2594 a record, so the convention applied to records also applies
2595 to arrays. */
2596
2597 if (readbuf)
2598 {
2599 ULONGEST addr;
2600
2601 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2602 read_memory (addr, readbuf, TYPE_LENGTH (type));
2603 }
2604
2605 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2606 }
2607
2608 /* This special case is for structures consisting of a single
2609 `float', `double' or 'long double' member. These structures are
2610 returned in %st(0). For these structures, we call ourselves
2611 recursively, changing TYPE into the type of the first member of
2612 the structure. Since that should work for all structures that
2613 have only one member, we don't bother to check the member's type
2614 here. */
2615 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2616 {
2617 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2618 return i386_return_value (gdbarch, func_type, type, regcache,
2619 readbuf, writebuf);
2620 }
2621
2622 if (readbuf)
2623 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2624 if (writebuf)
2625 i386_store_return_value (gdbarch, type, regcache, writebuf);
2626
2627 return RETURN_VALUE_REGISTER_CONVENTION;
2628 }
2629 \f
2630
2631 struct type *
2632 i387_ext_type (struct gdbarch *gdbarch)
2633 {
2634 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2635
2636 if (!tdep->i387_ext_type)
2637 {
2638 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2639 gdb_assert (tdep->i387_ext_type != NULL);
2640 }
2641
2642 return tdep->i387_ext_type;
2643 }
2644
2645 /* Construct vector type for pseudo YMM registers. We can't use
2646 tdesc_find_type since YMM isn't described in target description. */
2647
2648 static struct type *
2649 i386_ymm_type (struct gdbarch *gdbarch)
2650 {
2651 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2652
2653 if (!tdep->i386_ymm_type)
2654 {
2655 const struct builtin_type *bt = builtin_type (gdbarch);
2656
2657 /* The type we're building is this: */
2658 #if 0
2659 union __gdb_builtin_type_vec256i
2660 {
2661 int128_t uint128[2];
2662 int64_t v2_int64[4];
2663 int32_t v4_int32[8];
2664 int16_t v8_int16[16];
2665 int8_t v16_int8[32];
2666 double v2_double[4];
2667 float v4_float[8];
2668 };
2669 #endif
2670
2671 struct type *t;
2672
2673 t = arch_composite_type (gdbarch,
2674 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2675 append_composite_type_field (t, "v8_float",
2676 init_vector_type (bt->builtin_float, 8));
2677 append_composite_type_field (t, "v4_double",
2678 init_vector_type (bt->builtin_double, 4));
2679 append_composite_type_field (t, "v32_int8",
2680 init_vector_type (bt->builtin_int8, 32));
2681 append_composite_type_field (t, "v16_int16",
2682 init_vector_type (bt->builtin_int16, 16));
2683 append_composite_type_field (t, "v8_int32",
2684 init_vector_type (bt->builtin_int32, 8));
2685 append_composite_type_field (t, "v4_int64",
2686 init_vector_type (bt->builtin_int64, 4));
2687 append_composite_type_field (t, "v2_int128",
2688 init_vector_type (bt->builtin_int128, 2));
2689
2690 TYPE_VECTOR (t) = 1;
2691 TYPE_NAME (t) = "builtin_type_vec256i";
2692 tdep->i386_ymm_type = t;
2693 }
2694
2695 return tdep->i386_ymm_type;
2696 }
2697
2698 /* Construct vector type for MMX registers. */
2699 static struct type *
2700 i386_mmx_type (struct gdbarch *gdbarch)
2701 {
2702 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2703
2704 if (!tdep->i386_mmx_type)
2705 {
2706 const struct builtin_type *bt = builtin_type (gdbarch);
2707
2708 /* The type we're building is this: */
2709 #if 0
2710 union __gdb_builtin_type_vec64i
2711 {
2712 int64_t uint64;
2713 int32_t v2_int32[2];
2714 int16_t v4_int16[4];
2715 int8_t v8_int8[8];
2716 };
2717 #endif
2718
2719 struct type *t;
2720
2721 t = arch_composite_type (gdbarch,
2722 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2723
2724 append_composite_type_field (t, "uint64", bt->builtin_int64);
2725 append_composite_type_field (t, "v2_int32",
2726 init_vector_type (bt->builtin_int32, 2));
2727 append_composite_type_field (t, "v4_int16",
2728 init_vector_type (bt->builtin_int16, 4));
2729 append_composite_type_field (t, "v8_int8",
2730 init_vector_type (bt->builtin_int8, 8));
2731
2732 TYPE_VECTOR (t) = 1;
2733 TYPE_NAME (t) = "builtin_type_vec64i";
2734 tdep->i386_mmx_type = t;
2735 }
2736
2737 return tdep->i386_mmx_type;
2738 }
2739
2740 /* Return the GDB type object for the "standard" data type of data in
2741 register REGNUM. */
2742
2743 static struct type *
2744 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2745 {
2746 if (i386_mmx_regnum_p (gdbarch, regnum))
2747 return i386_mmx_type (gdbarch);
2748 else if (i386_ymm_regnum_p (gdbarch, regnum))
2749 return i386_ymm_type (gdbarch);
2750 else
2751 {
2752 const struct builtin_type *bt = builtin_type (gdbarch);
2753 if (i386_byte_regnum_p (gdbarch, regnum))
2754 return bt->builtin_int8;
2755 else if (i386_word_regnum_p (gdbarch, regnum))
2756 return bt->builtin_int16;
2757 else if (i386_dword_regnum_p (gdbarch, regnum))
2758 return bt->builtin_int32;
2759 }
2760
2761 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2762 }
2763
2764 /* Map a cooked register onto a raw register or memory. For the i386,
2765 the MMX registers need to be mapped onto floating point registers. */
2766
2767 static int
2768 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2769 {
2770 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2771 int mmxreg, fpreg;
2772 ULONGEST fstat;
2773 int tos;
2774
2775 mmxreg = regnum - tdep->mm0_regnum;
2776 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2777 tos = (fstat >> 11) & 0x7;
2778 fpreg = (mmxreg + tos) % 8;
2779
2780 return (I387_ST0_REGNUM (tdep) + fpreg);
2781 }
2782
2783 enum register_status
2784 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2785 int regnum, gdb_byte *buf)
2786 {
2787 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2788 enum register_status status;
2789
2790 if (i386_mmx_regnum_p (gdbarch, regnum))
2791 {
2792 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2793
2794 /* Extract (always little endian). */
2795 status = regcache_raw_read (regcache, fpnum, raw_buf);
2796 if (status != REG_VALID)
2797 return status;
2798 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2799 }
2800 else
2801 {
2802 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2803
2804 if (i386_ymm_regnum_p (gdbarch, regnum))
2805 {
2806 regnum -= tdep->ymm0_regnum;
2807
2808 /* Extract (always little endian). Read lower 128bits. */
2809 status = regcache_raw_read (regcache,
2810 I387_XMM0_REGNUM (tdep) + regnum,
2811 raw_buf);
2812 if (status != REG_VALID)
2813 return status;
2814 memcpy (buf, raw_buf, 16);
2815 /* Read upper 128bits. */
2816 status = regcache_raw_read (regcache,
2817 tdep->ymm0h_regnum + regnum,
2818 raw_buf);
2819 if (status != REG_VALID)
2820 return status;
2821 memcpy (buf + 16, raw_buf, 16);
2822 }
2823 else if (i386_word_regnum_p (gdbarch, regnum))
2824 {
2825 int gpnum = regnum - tdep->ax_regnum;
2826
2827 /* Extract (always little endian). */
2828 status = regcache_raw_read (regcache, gpnum, raw_buf);
2829 if (status != REG_VALID)
2830 return status;
2831 memcpy (buf, raw_buf, 2);
2832 }
2833 else if (i386_byte_regnum_p (gdbarch, regnum))
2834 {
2835 /* Check byte pseudo registers last since this function will
2836 be called from amd64_pseudo_register_read, which handles
2837 byte pseudo registers differently. */
2838 int gpnum = regnum - tdep->al_regnum;
2839
2840 /* Extract (always little endian). We read both lower and
2841 upper registers. */
2842 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2843 if (status != REG_VALID)
2844 return status;
2845 if (gpnum >= 4)
2846 memcpy (buf, raw_buf + 1, 1);
2847 else
2848 memcpy (buf, raw_buf, 1);
2849 }
2850 else
2851 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2852 }
2853
2854 return REG_VALID;
2855 }
2856
2857 void
2858 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2859 int regnum, const gdb_byte *buf)
2860 {
2861 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2862
2863 if (i386_mmx_regnum_p (gdbarch, regnum))
2864 {
2865 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2866
2867 /* Read ... */
2868 regcache_raw_read (regcache, fpnum, raw_buf);
2869 /* ... Modify ... (always little endian). */
2870 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2871 /* ... Write. */
2872 regcache_raw_write (regcache, fpnum, raw_buf);
2873 }
2874 else
2875 {
2876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2877
2878 if (i386_ymm_regnum_p (gdbarch, regnum))
2879 {
2880 regnum -= tdep->ymm0_regnum;
2881
2882 /* ... Write lower 128bits. */
2883 regcache_raw_write (regcache,
2884 I387_XMM0_REGNUM (tdep) + regnum,
2885 buf);
2886 /* ... Write upper 128bits. */
2887 regcache_raw_write (regcache,
2888 tdep->ymm0h_regnum + regnum,
2889 buf + 16);
2890 }
2891 else if (i386_word_regnum_p (gdbarch, regnum))
2892 {
2893 int gpnum = regnum - tdep->ax_regnum;
2894
2895 /* Read ... */
2896 regcache_raw_read (regcache, gpnum, raw_buf);
2897 /* ... Modify ... (always little endian). */
2898 memcpy (raw_buf, buf, 2);
2899 /* ... Write. */
2900 regcache_raw_write (regcache, gpnum, raw_buf);
2901 }
2902 else if (i386_byte_regnum_p (gdbarch, regnum))
2903 {
2904 /* Check byte pseudo registers last since this function will
2905 be called from amd64_pseudo_register_read, which handles
2906 byte pseudo registers differently. */
2907 int gpnum = regnum - tdep->al_regnum;
2908
2909 /* Read ... We read both lower and upper registers. */
2910 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2911 /* ... Modify ... (always little endian). */
2912 if (gpnum >= 4)
2913 memcpy (raw_buf + 1, buf, 1);
2914 else
2915 memcpy (raw_buf, buf, 1);
2916 /* ... Write. */
2917 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2918 }
2919 else
2920 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2921 }
2922 }
2923 \f
2924
2925 /* Return the register number of the register allocated by GCC after
2926 REGNUM, or -1 if there is no such register. */
2927
2928 static int
2929 i386_next_regnum (int regnum)
2930 {
2931 /* GCC allocates the registers in the order:
2932
2933 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2934
2935 Since storing a variable in %esp doesn't make any sense we return
2936 -1 for %ebp and for %esp itself. */
2937 static int next_regnum[] =
2938 {
2939 I386_EDX_REGNUM, /* Slot for %eax. */
2940 I386_EBX_REGNUM, /* Slot for %ecx. */
2941 I386_ECX_REGNUM, /* Slot for %edx. */
2942 I386_ESI_REGNUM, /* Slot for %ebx. */
2943 -1, -1, /* Slots for %esp and %ebp. */
2944 I386_EDI_REGNUM, /* Slot for %esi. */
2945 I386_EBP_REGNUM /* Slot for %edi. */
2946 };
2947
2948 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2949 return next_regnum[regnum];
2950
2951 return -1;
2952 }
2953
2954 /* Return nonzero if a value of type TYPE stored in register REGNUM
2955 needs any special handling. */
2956
2957 static int
2958 i386_convert_register_p (struct gdbarch *gdbarch,
2959 int regnum, struct type *type)
2960 {
2961 int len = TYPE_LENGTH (type);
2962
2963 /* Values may be spread across multiple registers. Most debugging
2964 formats aren't expressive enough to specify the locations, so
2965 some heuristics is involved. Right now we only handle types that
2966 have a length that is a multiple of the word size, since GCC
2967 doesn't seem to put any other types into registers. */
2968 if (len > 4 && len % 4 == 0)
2969 {
2970 int last_regnum = regnum;
2971
2972 while (len > 4)
2973 {
2974 last_regnum = i386_next_regnum (last_regnum);
2975 len -= 4;
2976 }
2977
2978 if (last_regnum != -1)
2979 return 1;
2980 }
2981
2982 return i387_convert_register_p (gdbarch, regnum, type);
2983 }
2984
2985 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2986 return its contents in TO. */
2987
2988 static int
2989 i386_register_to_value (struct frame_info *frame, int regnum,
2990 struct type *type, gdb_byte *to,
2991 int *optimizedp, int *unavailablep)
2992 {
2993 struct gdbarch *gdbarch = get_frame_arch (frame);
2994 int len = TYPE_LENGTH (type);
2995
2996 if (i386_fp_regnum_p (gdbarch, regnum))
2997 return i387_register_to_value (frame, regnum, type, to,
2998 optimizedp, unavailablep);
2999
3000 /* Read a value spread across multiple registers. */
3001
3002 gdb_assert (len > 4 && len % 4 == 0);
3003
3004 while (len > 0)
3005 {
3006 gdb_assert (regnum != -1);
3007 gdb_assert (register_size (gdbarch, regnum) == 4);
3008
3009 if (!get_frame_register_bytes (frame, regnum, 0,
3010 register_size (gdbarch, regnum),
3011 to, optimizedp, unavailablep))
3012 return 0;
3013
3014 regnum = i386_next_regnum (regnum);
3015 len -= 4;
3016 to += 4;
3017 }
3018
3019 *optimizedp = *unavailablep = 0;
3020 return 1;
3021 }
3022
3023 /* Write the contents FROM of a value of type TYPE into register
3024 REGNUM in frame FRAME. */
3025
3026 static void
3027 i386_value_to_register (struct frame_info *frame, int regnum,
3028 struct type *type, const gdb_byte *from)
3029 {
3030 int len = TYPE_LENGTH (type);
3031
3032 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3033 {
3034 i387_value_to_register (frame, regnum, type, from);
3035 return;
3036 }
3037
3038 /* Write a value spread across multiple registers. */
3039
3040 gdb_assert (len > 4 && len % 4 == 0);
3041
3042 while (len > 0)
3043 {
3044 gdb_assert (regnum != -1);
3045 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3046
3047 put_frame_register (frame, regnum, from);
3048 regnum = i386_next_regnum (regnum);
3049 len -= 4;
3050 from += 4;
3051 }
3052 }
3053 \f
3054 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3055 in the general-purpose register set REGSET to register cache
3056 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3057
3058 void
3059 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3060 int regnum, const void *gregs, size_t len)
3061 {
3062 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3063 const gdb_byte *regs = gregs;
3064 int i;
3065
3066 gdb_assert (len == tdep->sizeof_gregset);
3067
3068 for (i = 0; i < tdep->gregset_num_regs; i++)
3069 {
3070 if ((regnum == i || regnum == -1)
3071 && tdep->gregset_reg_offset[i] != -1)
3072 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3073 }
3074 }
3075
3076 /* Collect register REGNUM from the register cache REGCACHE and store
3077 it in the buffer specified by GREGS and LEN as described by the
3078 general-purpose register set REGSET. If REGNUM is -1, do this for
3079 all registers in REGSET. */
3080
3081 void
3082 i386_collect_gregset (const struct regset *regset,
3083 const struct regcache *regcache,
3084 int regnum, void *gregs, size_t len)
3085 {
3086 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3087 gdb_byte *regs = gregs;
3088 int i;
3089
3090 gdb_assert (len == tdep->sizeof_gregset);
3091
3092 for (i = 0; i < tdep->gregset_num_regs; i++)
3093 {
3094 if ((regnum == i || regnum == -1)
3095 && tdep->gregset_reg_offset[i] != -1)
3096 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3097 }
3098 }
3099
3100 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3101 in the floating-point register set REGSET to register cache
3102 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3103
3104 static void
3105 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3106 int regnum, const void *fpregs, size_t len)
3107 {
3108 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3109
3110 if (len == I387_SIZEOF_FXSAVE)
3111 {
3112 i387_supply_fxsave (regcache, regnum, fpregs);
3113 return;
3114 }
3115
3116 gdb_assert (len == tdep->sizeof_fpregset);
3117 i387_supply_fsave (regcache, regnum, fpregs);
3118 }
3119
3120 /* Collect register REGNUM from the register cache REGCACHE and store
3121 it in the buffer specified by FPREGS and LEN as described by the
3122 floating-point register set REGSET. If REGNUM is -1, do this for
3123 all registers in REGSET. */
3124
3125 static void
3126 i386_collect_fpregset (const struct regset *regset,
3127 const struct regcache *regcache,
3128 int regnum, void *fpregs, size_t len)
3129 {
3130 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3131
3132 if (len == I387_SIZEOF_FXSAVE)
3133 {
3134 i387_collect_fxsave (regcache, regnum, fpregs);
3135 return;
3136 }
3137
3138 gdb_assert (len == tdep->sizeof_fpregset);
3139 i387_collect_fsave (regcache, regnum, fpregs);
3140 }
3141
3142 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3143
3144 static void
3145 i386_supply_xstateregset (const struct regset *regset,
3146 struct regcache *regcache, int regnum,
3147 const void *xstateregs, size_t len)
3148 {
3149 i387_supply_xsave (regcache, regnum, xstateregs);
3150 }
3151
3152 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3153
3154 static void
3155 i386_collect_xstateregset (const struct regset *regset,
3156 const struct regcache *regcache,
3157 int regnum, void *xstateregs, size_t len)
3158 {
3159 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3160 }
3161
3162 /* Return the appropriate register set for the core section identified
3163 by SECT_NAME and SECT_SIZE. */
3164
3165 const struct regset *
3166 i386_regset_from_core_section (struct gdbarch *gdbarch,
3167 const char *sect_name, size_t sect_size)
3168 {
3169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3170
3171 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3172 {
3173 if (tdep->gregset == NULL)
3174 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3175 i386_collect_gregset);
3176 return tdep->gregset;
3177 }
3178
3179 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3180 || (strcmp (sect_name, ".reg-xfp") == 0
3181 && sect_size == I387_SIZEOF_FXSAVE))
3182 {
3183 if (tdep->fpregset == NULL)
3184 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3185 i386_collect_fpregset);
3186 return tdep->fpregset;
3187 }
3188
3189 if (strcmp (sect_name, ".reg-xstate") == 0)
3190 {
3191 if (tdep->xstateregset == NULL)
3192 tdep->xstateregset = regset_alloc (gdbarch,
3193 i386_supply_xstateregset,
3194 i386_collect_xstateregset);
3195
3196 return tdep->xstateregset;
3197 }
3198
3199 return NULL;
3200 }
3201 \f
3202
3203 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3204
3205 CORE_ADDR
3206 i386_pe_skip_trampoline_code (struct frame_info *frame,
3207 CORE_ADDR pc, char *name)
3208 {
3209 struct gdbarch *gdbarch = get_frame_arch (frame);
3210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3211
3212 /* jmp *(dest) */
3213 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3214 {
3215 unsigned long indirect =
3216 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3217 struct minimal_symbol *indsym =
3218 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3219 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3220
3221 if (symname)
3222 {
3223 if (strncmp (symname, "__imp_", 6) == 0
3224 || strncmp (symname, "_imp_", 5) == 0)
3225 return name ? 1 :
3226 read_memory_unsigned_integer (indirect, 4, byte_order);
3227 }
3228 }
3229 return 0; /* Not a trampoline. */
3230 }
3231 \f
3232
3233 /* Return whether the THIS_FRAME corresponds to a sigtramp
3234 routine. */
3235
3236 int
3237 i386_sigtramp_p (struct frame_info *this_frame)
3238 {
3239 CORE_ADDR pc = get_frame_pc (this_frame);
3240 char *name;
3241
3242 find_pc_partial_function (pc, &name, NULL, NULL);
3243 return (name && strcmp ("_sigtramp", name) == 0);
3244 }
3245 \f
3246
3247 /* We have two flavours of disassembly. The machinery on this page
3248 deals with switching between those. */
3249
3250 static int
3251 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3252 {
3253 gdb_assert (disassembly_flavor == att_flavor
3254 || disassembly_flavor == intel_flavor);
3255
3256 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3257 constified, cast to prevent a compiler warning. */
3258 info->disassembler_options = (char *) disassembly_flavor;
3259
3260 return print_insn_i386 (pc, info);
3261 }
3262 \f
3263
3264 /* There are a few i386 architecture variants that differ only
3265 slightly from the generic i386 target. For now, we don't give them
3266 their own source file, but include them here. As a consequence,
3267 they'll always be included. */
3268
3269 /* System V Release 4 (SVR4). */
3270
3271 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3272 routine. */
3273
3274 static int
3275 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3276 {
3277 CORE_ADDR pc = get_frame_pc (this_frame);
3278 char *name;
3279
3280 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3281 currently unknown. */
3282 find_pc_partial_function (pc, &name, NULL, NULL);
3283 return (name && (strcmp ("_sigreturn", name) == 0
3284 || strcmp ("_sigacthandler", name) == 0
3285 || strcmp ("sigvechandler", name) == 0));
3286 }
3287
3288 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3289 address of the associated sigcontext (ucontext) structure. */
3290
3291 static CORE_ADDR
3292 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3293 {
3294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3296 gdb_byte buf[4];
3297 CORE_ADDR sp;
3298
3299 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3300 sp = extract_unsigned_integer (buf, 4, byte_order);
3301
3302 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3303 }
3304 \f
3305
3306 /* Generic ELF. */
3307
3308 void
3309 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3310 {
3311 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3312 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3313 }
3314
3315 /* System V Release 4 (SVR4). */
3316
3317 void
3318 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3319 {
3320 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3321
3322 /* System V Release 4 uses ELF. */
3323 i386_elf_init_abi (info, gdbarch);
3324
3325 /* System V Release 4 has shared libraries. */
3326 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3327
3328 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3329 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3330 tdep->sc_pc_offset = 36 + 14 * 4;
3331 tdep->sc_sp_offset = 36 + 17 * 4;
3332
3333 tdep->jb_pc_offset = 20;
3334 }
3335
3336 /* DJGPP. */
3337
3338 static void
3339 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3340 {
3341 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3342
3343 /* DJGPP doesn't have any special frames for signal handlers. */
3344 tdep->sigtramp_p = NULL;
3345
3346 tdep->jb_pc_offset = 36;
3347
3348 /* DJGPP does not support the SSE registers. */
3349 if (! tdesc_has_registers (info.target_desc))
3350 tdep->tdesc = tdesc_i386_mmx;
3351
3352 /* Native compiler is GCC, which uses the SVR4 register numbering
3353 even in COFF and STABS. See the comment in i386_gdbarch_init,
3354 before the calls to set_gdbarch_stab_reg_to_regnum and
3355 set_gdbarch_sdb_reg_to_regnum. */
3356 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3357 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3358
3359 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3360 }
3361 \f
3362
3363 /* i386 register groups. In addition to the normal groups, add "mmx"
3364 and "sse". */
3365
3366 static struct reggroup *i386_sse_reggroup;
3367 static struct reggroup *i386_mmx_reggroup;
3368
3369 static void
3370 i386_init_reggroups (void)
3371 {
3372 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3373 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3374 }
3375
3376 static void
3377 i386_add_reggroups (struct gdbarch *gdbarch)
3378 {
3379 reggroup_add (gdbarch, i386_sse_reggroup);
3380 reggroup_add (gdbarch, i386_mmx_reggroup);
3381 reggroup_add (gdbarch, general_reggroup);
3382 reggroup_add (gdbarch, float_reggroup);
3383 reggroup_add (gdbarch, all_reggroup);
3384 reggroup_add (gdbarch, save_reggroup);
3385 reggroup_add (gdbarch, restore_reggroup);
3386 reggroup_add (gdbarch, vector_reggroup);
3387 reggroup_add (gdbarch, system_reggroup);
3388 }
3389
3390 int
3391 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3392 struct reggroup *group)
3393 {
3394 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3395 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3396 ymm_regnum_p, ymmh_regnum_p;
3397
3398 /* Don't include pseudo registers, except for MMX, in any register
3399 groups. */
3400 if (i386_byte_regnum_p (gdbarch, regnum))
3401 return 0;
3402
3403 if (i386_word_regnum_p (gdbarch, regnum))
3404 return 0;
3405
3406 if (i386_dword_regnum_p (gdbarch, regnum))
3407 return 0;
3408
3409 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3410 if (group == i386_mmx_reggroup)
3411 return mmx_regnum_p;
3412
3413 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3414 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3415 if (group == i386_sse_reggroup)
3416 return xmm_regnum_p || mxcsr_regnum_p;
3417
3418 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3419 if (group == vector_reggroup)
3420 return (mmx_regnum_p
3421 || ymm_regnum_p
3422 || mxcsr_regnum_p
3423 || (xmm_regnum_p
3424 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3425 == I386_XSTATE_SSE_MASK)));
3426
3427 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3428 || i386_fpc_regnum_p (gdbarch, regnum));
3429 if (group == float_reggroup)
3430 return fp_regnum_p;
3431
3432 /* For "info reg all", don't include upper YMM registers nor XMM
3433 registers when AVX is supported. */
3434 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3435 if (group == all_reggroup
3436 && ((xmm_regnum_p
3437 && (tdep->xcr0 & I386_XSTATE_AVX))
3438 || ymmh_regnum_p))
3439 return 0;
3440
3441 if (group == general_reggroup)
3442 return (!fp_regnum_p
3443 && !mmx_regnum_p
3444 && !mxcsr_regnum_p
3445 && !xmm_regnum_p
3446 && !ymm_regnum_p
3447 && !ymmh_regnum_p);
3448
3449 return default_register_reggroup_p (gdbarch, regnum, group);
3450 }
3451 \f
3452
3453 /* Get the ARGIth function argument for the current function. */
3454
3455 static CORE_ADDR
3456 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3457 struct type *type)
3458 {
3459 struct gdbarch *gdbarch = get_frame_arch (frame);
3460 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3461 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3462 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3463 }
3464
3465 static void
3466 i386_skip_permanent_breakpoint (struct regcache *regcache)
3467 {
3468 CORE_ADDR current_pc = regcache_read_pc (regcache);
3469
3470 /* On i386, breakpoint is exactly 1 byte long, so we just
3471 adjust the PC in the regcache. */
3472 current_pc += 1;
3473 regcache_write_pc (regcache, current_pc);
3474 }
3475
3476
3477 #define PREFIX_REPZ 0x01
3478 #define PREFIX_REPNZ 0x02
3479 #define PREFIX_LOCK 0x04
3480 #define PREFIX_DATA 0x08
3481 #define PREFIX_ADDR 0x10
3482
3483 /* operand size */
3484 enum
3485 {
3486 OT_BYTE = 0,
3487 OT_WORD,
3488 OT_LONG,
3489 OT_QUAD,
3490 OT_DQUAD,
3491 };
3492
3493 /* i386 arith/logic operations */
3494 enum
3495 {
3496 OP_ADDL,
3497 OP_ORL,
3498 OP_ADCL,
3499 OP_SBBL,
3500 OP_ANDL,
3501 OP_SUBL,
3502 OP_XORL,
3503 OP_CMPL,
3504 };
3505
3506 struct i386_record_s
3507 {
3508 struct gdbarch *gdbarch;
3509 struct regcache *regcache;
3510 CORE_ADDR orig_addr;
3511 CORE_ADDR addr;
3512 int aflag;
3513 int dflag;
3514 int override;
3515 uint8_t modrm;
3516 uint8_t mod, reg, rm;
3517 int ot;
3518 uint8_t rex_x;
3519 uint8_t rex_b;
3520 int rip_offset;
3521 int popl_esp_hack;
3522 const int *regmap;
3523 };
3524
3525 /* Parse "modrm" part in current memory address that irp->addr point to
3526 Return -1 if something wrong. */
3527
3528 static int
3529 i386_record_modrm (struct i386_record_s *irp)
3530 {
3531 struct gdbarch *gdbarch = irp->gdbarch;
3532
3533 if (target_read_memory (irp->addr, &irp->modrm, 1))
3534 {
3535 if (record_debug)
3536 printf_unfiltered (_("Process record: error reading memory at "
3537 "addr %s len = 1.\n"),
3538 paddress (gdbarch, irp->addr));
3539 return -1;
3540 }
3541 irp->addr++;
3542 irp->mod = (irp->modrm >> 6) & 3;
3543 irp->reg = (irp->modrm >> 3) & 7;
3544 irp->rm = irp->modrm & 7;
3545
3546 return 0;
3547 }
3548
3549 /* Get the memory address that current instruction write to and set it to
3550 the argument "addr".
3551 Return -1 if something wrong. */
3552
3553 static int
3554 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3555 {
3556 struct gdbarch *gdbarch = irp->gdbarch;
3557 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3558 gdb_byte buf[4];
3559 ULONGEST offset64;
3560
3561 *addr = 0;
3562 if (irp->aflag)
3563 {
3564 /* 32 bits */
3565 int havesib = 0;
3566 uint8_t scale = 0;
3567 uint8_t byte;
3568 uint8_t index = 0;
3569 uint8_t base = irp->rm;
3570
3571 if (base == 4)
3572 {
3573 havesib = 1;
3574 if (target_read_memory (irp->addr, &byte, 1))
3575 {
3576 if (record_debug)
3577 printf_unfiltered (_("Process record: error reading memory "
3578 "at addr %s len = 1.\n"),
3579 paddress (gdbarch, irp->addr));
3580 return -1;
3581 }
3582 irp->addr++;
3583 scale = (byte >> 6) & 3;
3584 index = ((byte >> 3) & 7) | irp->rex_x;
3585 base = (byte & 7);
3586 }
3587 base |= irp->rex_b;
3588
3589 switch (irp->mod)
3590 {
3591 case 0:
3592 if ((base & 7) == 5)
3593 {
3594 base = 0xff;
3595 if (target_read_memory (irp->addr, buf, 4))
3596 {
3597 if (record_debug)
3598 printf_unfiltered (_("Process record: error reading "
3599 "memory at addr %s len = 4.\n"),
3600 paddress (gdbarch, irp->addr));
3601 return -1;
3602 }
3603 irp->addr += 4;
3604 *addr = extract_signed_integer (buf, 4, byte_order);
3605 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3606 *addr += irp->addr + irp->rip_offset;
3607 }
3608 break;
3609 case 1:
3610 if (target_read_memory (irp->addr, buf, 1))
3611 {
3612 if (record_debug)
3613 printf_unfiltered (_("Process record: error reading memory "
3614 "at addr %s len = 1.\n"),
3615 paddress (gdbarch, irp->addr));
3616 return -1;
3617 }
3618 irp->addr++;
3619 *addr = (int8_t) buf[0];
3620 break;
3621 case 2:
3622 if (target_read_memory (irp->addr, buf, 4))
3623 {
3624 if (record_debug)
3625 printf_unfiltered (_("Process record: error reading memory "
3626 "at addr %s len = 4.\n"),
3627 paddress (gdbarch, irp->addr));
3628 return -1;
3629 }
3630 *addr = extract_signed_integer (buf, 4, byte_order);
3631 irp->addr += 4;
3632 break;
3633 }
3634
3635 offset64 = 0;
3636 if (base != 0xff)
3637 {
3638 if (base == 4 && irp->popl_esp_hack)
3639 *addr += irp->popl_esp_hack;
3640 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3641 &offset64);
3642 }
3643 if (irp->aflag == 2)
3644 {
3645 *addr += offset64;
3646 }
3647 else
3648 *addr = (uint32_t) (offset64 + *addr);
3649
3650 if (havesib && (index != 4 || scale != 0))
3651 {
3652 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3653 &offset64);
3654 if (irp->aflag == 2)
3655 *addr += offset64 << scale;
3656 else
3657 *addr = (uint32_t) (*addr + (offset64 << scale));
3658 }
3659 }
3660 else
3661 {
3662 /* 16 bits */
3663 switch (irp->mod)
3664 {
3665 case 0:
3666 if (irp->rm == 6)
3667 {
3668 if (target_read_memory (irp->addr, buf, 2))
3669 {
3670 if (record_debug)
3671 printf_unfiltered (_("Process record: error reading "
3672 "memory at addr %s len = 2.\n"),
3673 paddress (gdbarch, irp->addr));
3674 return -1;
3675 }
3676 irp->addr += 2;
3677 *addr = extract_signed_integer (buf, 2, byte_order);
3678 irp->rm = 0;
3679 goto no_rm;
3680 }
3681 break;
3682 case 1:
3683 if (target_read_memory (irp->addr, buf, 1))
3684 {
3685 if (record_debug)
3686 printf_unfiltered (_("Process record: error reading memory "
3687 "at addr %s len = 1.\n"),
3688 paddress (gdbarch, irp->addr));
3689 return -1;
3690 }
3691 irp->addr++;
3692 *addr = (int8_t) buf[0];
3693 break;
3694 case 2:
3695 if (target_read_memory (irp->addr, buf, 2))
3696 {
3697 if (record_debug)
3698 printf_unfiltered (_("Process record: error reading memory "
3699 "at addr %s len = 2.\n"),
3700 paddress (gdbarch, irp->addr));
3701 return -1;
3702 }
3703 irp->addr += 2;
3704 *addr = extract_signed_integer (buf, 2, byte_order);
3705 break;
3706 }
3707
3708 switch (irp->rm)
3709 {
3710 case 0:
3711 regcache_raw_read_unsigned (irp->regcache,
3712 irp->regmap[X86_RECORD_REBX_REGNUM],
3713 &offset64);
3714 *addr = (uint32_t) (*addr + offset64);
3715 regcache_raw_read_unsigned (irp->regcache,
3716 irp->regmap[X86_RECORD_RESI_REGNUM],
3717 &offset64);
3718 *addr = (uint32_t) (*addr + offset64);
3719 break;
3720 case 1:
3721 regcache_raw_read_unsigned (irp->regcache,
3722 irp->regmap[X86_RECORD_REBX_REGNUM],
3723 &offset64);
3724 *addr = (uint32_t) (*addr + offset64);
3725 regcache_raw_read_unsigned (irp->regcache,
3726 irp->regmap[X86_RECORD_REDI_REGNUM],
3727 &offset64);
3728 *addr = (uint32_t) (*addr + offset64);
3729 break;
3730 case 2:
3731 regcache_raw_read_unsigned (irp->regcache,
3732 irp->regmap[X86_RECORD_REBP_REGNUM],
3733 &offset64);
3734 *addr = (uint32_t) (*addr + offset64);
3735 regcache_raw_read_unsigned (irp->regcache,
3736 irp->regmap[X86_RECORD_RESI_REGNUM],
3737 &offset64);
3738 *addr = (uint32_t) (*addr + offset64);
3739 break;
3740 case 3:
3741 regcache_raw_read_unsigned (irp->regcache,
3742 irp->regmap[X86_RECORD_REBP_REGNUM],
3743 &offset64);
3744 *addr = (uint32_t) (*addr + offset64);
3745 regcache_raw_read_unsigned (irp->regcache,
3746 irp->regmap[X86_RECORD_REDI_REGNUM],
3747 &offset64);
3748 *addr = (uint32_t) (*addr + offset64);
3749 break;
3750 case 4:
3751 regcache_raw_read_unsigned (irp->regcache,
3752 irp->regmap[X86_RECORD_RESI_REGNUM],
3753 &offset64);
3754 *addr = (uint32_t) (*addr + offset64);
3755 break;
3756 case 5:
3757 regcache_raw_read_unsigned (irp->regcache,
3758 irp->regmap[X86_RECORD_REDI_REGNUM],
3759 &offset64);
3760 *addr = (uint32_t) (*addr + offset64);
3761 break;
3762 case 6:
3763 regcache_raw_read_unsigned (irp->regcache,
3764 irp->regmap[X86_RECORD_REBP_REGNUM],
3765 &offset64);
3766 *addr = (uint32_t) (*addr + offset64);
3767 break;
3768 case 7:
3769 regcache_raw_read_unsigned (irp->regcache,
3770 irp->regmap[X86_RECORD_REBX_REGNUM],
3771 &offset64);
3772 *addr = (uint32_t) (*addr + offset64);
3773 break;
3774 }
3775 *addr &= 0xffff;
3776 }
3777
3778 no_rm:
3779 return 0;
3780 }
3781
3782 /* Record the value of the memory that willbe changed in current instruction
3783 to "record_arch_list".
3784 Return -1 if something wrong. */
3785
3786 static int
3787 i386_record_lea_modrm (struct i386_record_s *irp)
3788 {
3789 struct gdbarch *gdbarch = irp->gdbarch;
3790 uint64_t addr;
3791
3792 if (irp->override >= 0)
3793 {
3794 if (record_memory_query)
3795 {
3796 int q;
3797
3798 target_terminal_ours ();
3799 q = yquery (_("\
3800 Process record ignores the memory change of instruction at address %s\n\
3801 because it can't get the value of the segment register.\n\
3802 Do you want to stop the program?"),
3803 paddress (gdbarch, irp->orig_addr));
3804 target_terminal_inferior ();
3805 if (q)
3806 return -1;
3807 }
3808
3809 return 0;
3810 }
3811
3812 if (i386_record_lea_modrm_addr (irp, &addr))
3813 return -1;
3814
3815 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3816 return -1;
3817
3818 return 0;
3819 }
3820
3821 /* Record the push operation to "record_arch_list".
3822 Return -1 if something wrong. */
3823
3824 static int
3825 i386_record_push (struct i386_record_s *irp, int size)
3826 {
3827 ULONGEST addr;
3828
3829 if (record_arch_list_add_reg (irp->regcache,
3830 irp->regmap[X86_RECORD_RESP_REGNUM]))
3831 return -1;
3832 regcache_raw_read_unsigned (irp->regcache,
3833 irp->regmap[X86_RECORD_RESP_REGNUM],
3834 &addr);
3835 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
3836 return -1;
3837
3838 return 0;
3839 }
3840
3841
3842 /* Defines contents to record. */
3843 #define I386_SAVE_FPU_REGS 0xfffd
3844 #define I386_SAVE_FPU_ENV 0xfffe
3845 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3846
3847 /* Record the value of floating point registers which will be changed
3848 by the current instruction to "record_arch_list". Return -1 if
3849 something is wrong. */
3850
3851 static int i386_record_floats (struct gdbarch *gdbarch,
3852 struct i386_record_s *ir,
3853 uint32_t iregnum)
3854 {
3855 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3856 int i;
3857
3858 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3859 happen. Currently we store st0-st7 registers, but we need not store all
3860 registers all the time, in future we use ftag register and record only
3861 those who are not marked as an empty. */
3862
3863 if (I386_SAVE_FPU_REGS == iregnum)
3864 {
3865 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3866 {
3867 if (record_arch_list_add_reg (ir->regcache, i))
3868 return -1;
3869 }
3870 }
3871 else if (I386_SAVE_FPU_ENV == iregnum)
3872 {
3873 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3874 {
3875 if (record_arch_list_add_reg (ir->regcache, i))
3876 return -1;
3877 }
3878 }
3879 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3880 {
3881 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3882 {
3883 if (record_arch_list_add_reg (ir->regcache, i))
3884 return -1;
3885 }
3886 }
3887 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3888 (iregnum <= I387_FOP_REGNUM (tdep)))
3889 {
3890 if (record_arch_list_add_reg (ir->regcache,iregnum))
3891 return -1;
3892 }
3893 else
3894 {
3895 /* Parameter error. */
3896 return -1;
3897 }
3898 if(I386_SAVE_FPU_ENV != iregnum)
3899 {
3900 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3901 {
3902 if (record_arch_list_add_reg (ir->regcache, i))
3903 return -1;
3904 }
3905 }
3906 return 0;
3907 }
3908
3909 /* Parse the current instruction and record the values of the registers and
3910 memory that will be changed in current instruction to "record_arch_list".
3911 Return -1 if something wrong. */
3912
3913 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3914 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3915
3916 int
3917 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3918 CORE_ADDR input_addr)
3919 {
3920 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3921 int prefixes = 0;
3922 int regnum = 0;
3923 uint32_t opcode;
3924 uint8_t opcode8;
3925 ULONGEST addr;
3926 gdb_byte buf[MAX_REGISTER_SIZE];
3927 struct i386_record_s ir;
3928 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3929 int rex = 0;
3930 uint8_t rex_w = -1;
3931 uint8_t rex_r = 0;
3932
3933 memset (&ir, 0, sizeof (struct i386_record_s));
3934 ir.regcache = regcache;
3935 ir.addr = input_addr;
3936 ir.orig_addr = input_addr;
3937 ir.aflag = 1;
3938 ir.dflag = 1;
3939 ir.override = -1;
3940 ir.popl_esp_hack = 0;
3941 ir.regmap = tdep->record_regmap;
3942 ir.gdbarch = gdbarch;
3943
3944 if (record_debug > 1)
3945 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3946 "addr = %s\n",
3947 paddress (gdbarch, ir.addr));
3948
3949 /* prefixes */
3950 while (1)
3951 {
3952 if (target_read_memory (ir.addr, &opcode8, 1))
3953 {
3954 if (record_debug)
3955 printf_unfiltered (_("Process record: error reading memory at "
3956 "addr %s len = 1.\n"),
3957 paddress (gdbarch, ir.addr));
3958 return -1;
3959 }
3960 ir.addr++;
3961 switch (opcode8) /* Instruction prefixes */
3962 {
3963 case REPE_PREFIX_OPCODE:
3964 prefixes |= PREFIX_REPZ;
3965 break;
3966 case REPNE_PREFIX_OPCODE:
3967 prefixes |= PREFIX_REPNZ;
3968 break;
3969 case LOCK_PREFIX_OPCODE:
3970 prefixes |= PREFIX_LOCK;
3971 break;
3972 case CS_PREFIX_OPCODE:
3973 ir.override = X86_RECORD_CS_REGNUM;
3974 break;
3975 case SS_PREFIX_OPCODE:
3976 ir.override = X86_RECORD_SS_REGNUM;
3977 break;
3978 case DS_PREFIX_OPCODE:
3979 ir.override = X86_RECORD_DS_REGNUM;
3980 break;
3981 case ES_PREFIX_OPCODE:
3982 ir.override = X86_RECORD_ES_REGNUM;
3983 break;
3984 case FS_PREFIX_OPCODE:
3985 ir.override = X86_RECORD_FS_REGNUM;
3986 break;
3987 case GS_PREFIX_OPCODE:
3988 ir.override = X86_RECORD_GS_REGNUM;
3989 break;
3990 case DATA_PREFIX_OPCODE:
3991 prefixes |= PREFIX_DATA;
3992 break;
3993 case ADDR_PREFIX_OPCODE:
3994 prefixes |= PREFIX_ADDR;
3995 break;
3996 case 0x40: /* i386 inc %eax */
3997 case 0x41: /* i386 inc %ecx */
3998 case 0x42: /* i386 inc %edx */
3999 case 0x43: /* i386 inc %ebx */
4000 case 0x44: /* i386 inc %esp */
4001 case 0x45: /* i386 inc %ebp */
4002 case 0x46: /* i386 inc %esi */
4003 case 0x47: /* i386 inc %edi */
4004 case 0x48: /* i386 dec %eax */
4005 case 0x49: /* i386 dec %ecx */
4006 case 0x4a: /* i386 dec %edx */
4007 case 0x4b: /* i386 dec %ebx */
4008 case 0x4c: /* i386 dec %esp */
4009 case 0x4d: /* i386 dec %ebp */
4010 case 0x4e: /* i386 dec %esi */
4011 case 0x4f: /* i386 dec %edi */
4012 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4013 {
4014 /* REX */
4015 rex = 1;
4016 rex_w = (opcode8 >> 3) & 1;
4017 rex_r = (opcode8 & 0x4) << 1;
4018 ir.rex_x = (opcode8 & 0x2) << 2;
4019 ir.rex_b = (opcode8 & 0x1) << 3;
4020 }
4021 else /* 32 bit target */
4022 goto out_prefixes;
4023 break;
4024 default:
4025 goto out_prefixes;
4026 break;
4027 }
4028 }
4029 out_prefixes:
4030 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4031 {
4032 ir.dflag = 2;
4033 }
4034 else
4035 {
4036 if (prefixes & PREFIX_DATA)
4037 ir.dflag ^= 1;
4038 }
4039 if (prefixes & PREFIX_ADDR)
4040 ir.aflag ^= 1;
4041 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4042 ir.aflag = 2;
4043
4044 /* Now check op code. */
4045 opcode = (uint32_t) opcode8;
4046 reswitch:
4047 switch (opcode)
4048 {
4049 case 0x0f:
4050 if (target_read_memory (ir.addr, &opcode8, 1))
4051 {
4052 if (record_debug)
4053 printf_unfiltered (_("Process record: error reading memory at "
4054 "addr %s len = 1.\n"),
4055 paddress (gdbarch, ir.addr));
4056 return -1;
4057 }
4058 ir.addr++;
4059 opcode = (uint32_t) opcode8 | 0x0f00;
4060 goto reswitch;
4061 break;
4062
4063 case 0x00: /* arith & logic */
4064 case 0x01:
4065 case 0x02:
4066 case 0x03:
4067 case 0x04:
4068 case 0x05:
4069 case 0x08:
4070 case 0x09:
4071 case 0x0a:
4072 case 0x0b:
4073 case 0x0c:
4074 case 0x0d:
4075 case 0x10:
4076 case 0x11:
4077 case 0x12:
4078 case 0x13:
4079 case 0x14:
4080 case 0x15:
4081 case 0x18:
4082 case 0x19:
4083 case 0x1a:
4084 case 0x1b:
4085 case 0x1c:
4086 case 0x1d:
4087 case 0x20:
4088 case 0x21:
4089 case 0x22:
4090 case 0x23:
4091 case 0x24:
4092 case 0x25:
4093 case 0x28:
4094 case 0x29:
4095 case 0x2a:
4096 case 0x2b:
4097 case 0x2c:
4098 case 0x2d:
4099 case 0x30:
4100 case 0x31:
4101 case 0x32:
4102 case 0x33:
4103 case 0x34:
4104 case 0x35:
4105 case 0x38:
4106 case 0x39:
4107 case 0x3a:
4108 case 0x3b:
4109 case 0x3c:
4110 case 0x3d:
4111 if (((opcode >> 3) & 7) != OP_CMPL)
4112 {
4113 if ((opcode & 1) == 0)
4114 ir.ot = OT_BYTE;
4115 else
4116 ir.ot = ir.dflag + OT_WORD;
4117
4118 switch ((opcode >> 1) & 3)
4119 {
4120 case 0: /* OP Ev, Gv */
4121 if (i386_record_modrm (&ir))
4122 return -1;
4123 if (ir.mod != 3)
4124 {
4125 if (i386_record_lea_modrm (&ir))
4126 return -1;
4127 }
4128 else
4129 {
4130 ir.rm |= ir.rex_b;
4131 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4132 ir.rm &= 0x3;
4133 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4134 }
4135 break;
4136 case 1: /* OP Gv, Ev */
4137 if (i386_record_modrm (&ir))
4138 return -1;
4139 ir.reg |= rex_r;
4140 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4141 ir.reg &= 0x3;
4142 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4143 break;
4144 case 2: /* OP A, Iv */
4145 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4146 break;
4147 }
4148 }
4149 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4150 break;
4151
4152 case 0x80: /* GRP1 */
4153 case 0x81:
4154 case 0x82:
4155 case 0x83:
4156 if (i386_record_modrm (&ir))
4157 return -1;
4158
4159 if (ir.reg != OP_CMPL)
4160 {
4161 if ((opcode & 1) == 0)
4162 ir.ot = OT_BYTE;
4163 else
4164 ir.ot = ir.dflag + OT_WORD;
4165
4166 if (ir.mod != 3)
4167 {
4168 if (opcode == 0x83)
4169 ir.rip_offset = 1;
4170 else
4171 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4172 if (i386_record_lea_modrm (&ir))
4173 return -1;
4174 }
4175 else
4176 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4177 }
4178 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4179 break;
4180
4181 case 0x40: /* inc */
4182 case 0x41:
4183 case 0x42:
4184 case 0x43:
4185 case 0x44:
4186 case 0x45:
4187 case 0x46:
4188 case 0x47:
4189
4190 case 0x48: /* dec */
4191 case 0x49:
4192 case 0x4a:
4193 case 0x4b:
4194 case 0x4c:
4195 case 0x4d:
4196 case 0x4e:
4197 case 0x4f:
4198
4199 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4200 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4201 break;
4202
4203 case 0xf6: /* GRP3 */
4204 case 0xf7:
4205 if ((opcode & 1) == 0)
4206 ir.ot = OT_BYTE;
4207 else
4208 ir.ot = ir.dflag + OT_WORD;
4209 if (i386_record_modrm (&ir))
4210 return -1;
4211
4212 if (ir.mod != 3 && ir.reg == 0)
4213 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4214
4215 switch (ir.reg)
4216 {
4217 case 0: /* test */
4218 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4219 break;
4220 case 2: /* not */
4221 case 3: /* neg */
4222 if (ir.mod != 3)
4223 {
4224 if (i386_record_lea_modrm (&ir))
4225 return -1;
4226 }
4227 else
4228 {
4229 ir.rm |= ir.rex_b;
4230 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4231 ir.rm &= 0x3;
4232 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4233 }
4234 if (ir.reg == 3) /* neg */
4235 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4236 break;
4237 case 4: /* mul */
4238 case 5: /* imul */
4239 case 6: /* div */
4240 case 7: /* idiv */
4241 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4242 if (ir.ot != OT_BYTE)
4243 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4244 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4245 break;
4246 default:
4247 ir.addr -= 2;
4248 opcode = opcode << 8 | ir.modrm;
4249 goto no_support;
4250 break;
4251 }
4252 break;
4253
4254 case 0xfe: /* GRP4 */
4255 case 0xff: /* GRP5 */
4256 if (i386_record_modrm (&ir))
4257 return -1;
4258 if (ir.reg >= 2 && opcode == 0xfe)
4259 {
4260 ir.addr -= 2;
4261 opcode = opcode << 8 | ir.modrm;
4262 goto no_support;
4263 }
4264 switch (ir.reg)
4265 {
4266 case 0: /* inc */
4267 case 1: /* dec */
4268 if ((opcode & 1) == 0)
4269 ir.ot = OT_BYTE;
4270 else
4271 ir.ot = ir.dflag + OT_WORD;
4272 if (ir.mod != 3)
4273 {
4274 if (i386_record_lea_modrm (&ir))
4275 return -1;
4276 }
4277 else
4278 {
4279 ir.rm |= ir.rex_b;
4280 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4281 ir.rm &= 0x3;
4282 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4283 }
4284 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4285 break;
4286 case 2: /* call */
4287 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4288 ir.dflag = 2;
4289 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4290 return -1;
4291 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4292 break;
4293 case 3: /* lcall */
4294 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4295 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4296 return -1;
4297 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4298 break;
4299 case 4: /* jmp */
4300 case 5: /* ljmp */
4301 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4302 break;
4303 case 6: /* push */
4304 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4305 ir.dflag = 2;
4306 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4307 return -1;
4308 break;
4309 default:
4310 ir.addr -= 2;
4311 opcode = opcode << 8 | ir.modrm;
4312 goto no_support;
4313 break;
4314 }
4315 break;
4316
4317 case 0x84: /* test */
4318 case 0x85:
4319 case 0xa8:
4320 case 0xa9:
4321 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4322 break;
4323
4324 case 0x98: /* CWDE/CBW */
4325 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4326 break;
4327
4328 case 0x99: /* CDQ/CWD */
4329 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4330 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4331 break;
4332
4333 case 0x0faf: /* imul */
4334 case 0x69:
4335 case 0x6b:
4336 ir.ot = ir.dflag + OT_WORD;
4337 if (i386_record_modrm (&ir))
4338 return -1;
4339 if (opcode == 0x69)
4340 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4341 else if (opcode == 0x6b)
4342 ir.rip_offset = 1;
4343 ir.reg |= rex_r;
4344 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4345 ir.reg &= 0x3;
4346 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4347 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4348 break;
4349
4350 case 0x0fc0: /* xadd */
4351 case 0x0fc1:
4352 if ((opcode & 1) == 0)
4353 ir.ot = OT_BYTE;
4354 else
4355 ir.ot = ir.dflag + OT_WORD;
4356 if (i386_record_modrm (&ir))
4357 return -1;
4358 ir.reg |= rex_r;
4359 if (ir.mod == 3)
4360 {
4361 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4362 ir.reg &= 0x3;
4363 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4364 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4365 ir.rm &= 0x3;
4366 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4367 }
4368 else
4369 {
4370 if (i386_record_lea_modrm (&ir))
4371 return -1;
4372 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4373 ir.reg &= 0x3;
4374 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4375 }
4376 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4377 break;
4378
4379 case 0x0fb0: /* cmpxchg */
4380 case 0x0fb1:
4381 if ((opcode & 1) == 0)
4382 ir.ot = OT_BYTE;
4383 else
4384 ir.ot = ir.dflag + OT_WORD;
4385 if (i386_record_modrm (&ir))
4386 return -1;
4387 if (ir.mod == 3)
4388 {
4389 ir.reg |= rex_r;
4390 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4391 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4392 ir.reg &= 0x3;
4393 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4394 }
4395 else
4396 {
4397 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4398 if (i386_record_lea_modrm (&ir))
4399 return -1;
4400 }
4401 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4402 break;
4403
4404 case 0x0fc7: /* cmpxchg8b */
4405 if (i386_record_modrm (&ir))
4406 return -1;
4407 if (ir.mod == 3)
4408 {
4409 ir.addr -= 2;
4410 opcode = opcode << 8 | ir.modrm;
4411 goto no_support;
4412 }
4413 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4414 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4415 if (i386_record_lea_modrm (&ir))
4416 return -1;
4417 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4418 break;
4419
4420 case 0x50: /* push */
4421 case 0x51:
4422 case 0x52:
4423 case 0x53:
4424 case 0x54:
4425 case 0x55:
4426 case 0x56:
4427 case 0x57:
4428 case 0x68:
4429 case 0x6a:
4430 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4431 ir.dflag = 2;
4432 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4433 return -1;
4434 break;
4435
4436 case 0x06: /* push es */
4437 case 0x0e: /* push cs */
4438 case 0x16: /* push ss */
4439 case 0x1e: /* push ds */
4440 if (ir.regmap[X86_RECORD_R8_REGNUM])
4441 {
4442 ir.addr -= 1;
4443 goto no_support;
4444 }
4445 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4446 return -1;
4447 break;
4448
4449 case 0x0fa0: /* push fs */
4450 case 0x0fa8: /* push gs */
4451 if (ir.regmap[X86_RECORD_R8_REGNUM])
4452 {
4453 ir.addr -= 2;
4454 goto no_support;
4455 }
4456 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4457 return -1;
4458 break;
4459
4460 case 0x60: /* pusha */
4461 if (ir.regmap[X86_RECORD_R8_REGNUM])
4462 {
4463 ir.addr -= 1;
4464 goto no_support;
4465 }
4466 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4467 return -1;
4468 break;
4469
4470 case 0x58: /* pop */
4471 case 0x59:
4472 case 0x5a:
4473 case 0x5b:
4474 case 0x5c:
4475 case 0x5d:
4476 case 0x5e:
4477 case 0x5f:
4478 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4479 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4480 break;
4481
4482 case 0x61: /* popa */
4483 if (ir.regmap[X86_RECORD_R8_REGNUM])
4484 {
4485 ir.addr -= 1;
4486 goto no_support;
4487 }
4488 for (regnum = X86_RECORD_REAX_REGNUM;
4489 regnum <= X86_RECORD_REDI_REGNUM;
4490 regnum++)
4491 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4492 break;
4493
4494 case 0x8f: /* pop */
4495 if (ir.regmap[X86_RECORD_R8_REGNUM])
4496 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4497 else
4498 ir.ot = ir.dflag + OT_WORD;
4499 if (i386_record_modrm (&ir))
4500 return -1;
4501 if (ir.mod == 3)
4502 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4503 else
4504 {
4505 ir.popl_esp_hack = 1 << ir.ot;
4506 if (i386_record_lea_modrm (&ir))
4507 return -1;
4508 }
4509 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4510 break;
4511
4512 case 0xc8: /* enter */
4513 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4514 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4515 ir.dflag = 2;
4516 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4517 return -1;
4518 break;
4519
4520 case 0xc9: /* leave */
4521 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4522 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4523 break;
4524
4525 case 0x07: /* pop es */
4526 if (ir.regmap[X86_RECORD_R8_REGNUM])
4527 {
4528 ir.addr -= 1;
4529 goto no_support;
4530 }
4531 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4532 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4533 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4534 break;
4535
4536 case 0x17: /* pop ss */
4537 if (ir.regmap[X86_RECORD_R8_REGNUM])
4538 {
4539 ir.addr -= 1;
4540 goto no_support;
4541 }
4542 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4543 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4544 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4545 break;
4546
4547 case 0x1f: /* pop ds */
4548 if (ir.regmap[X86_RECORD_R8_REGNUM])
4549 {
4550 ir.addr -= 1;
4551 goto no_support;
4552 }
4553 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4554 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4555 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4556 break;
4557
4558 case 0x0fa1: /* pop fs */
4559 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4560 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4561 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4562 break;
4563
4564 case 0x0fa9: /* pop gs */
4565 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4566 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4567 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4568 break;
4569
4570 case 0x88: /* mov */
4571 case 0x89:
4572 case 0xc6:
4573 case 0xc7:
4574 if ((opcode & 1) == 0)
4575 ir.ot = OT_BYTE;
4576 else
4577 ir.ot = ir.dflag + OT_WORD;
4578
4579 if (i386_record_modrm (&ir))
4580 return -1;
4581
4582 if (ir.mod != 3)
4583 {
4584 if (opcode == 0xc6 || opcode == 0xc7)
4585 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4586 if (i386_record_lea_modrm (&ir))
4587 return -1;
4588 }
4589 else
4590 {
4591 if (opcode == 0xc6 || opcode == 0xc7)
4592 ir.rm |= ir.rex_b;
4593 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4594 ir.rm &= 0x3;
4595 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4596 }
4597 break;
4598
4599 case 0x8a: /* mov */
4600 case 0x8b:
4601 if ((opcode & 1) == 0)
4602 ir.ot = OT_BYTE;
4603 else
4604 ir.ot = ir.dflag + OT_WORD;
4605 if (i386_record_modrm (&ir))
4606 return -1;
4607 ir.reg |= rex_r;
4608 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4609 ir.reg &= 0x3;
4610 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4611 break;
4612
4613 case 0x8c: /* mov seg */
4614 if (i386_record_modrm (&ir))
4615 return -1;
4616 if (ir.reg > 5)
4617 {
4618 ir.addr -= 2;
4619 opcode = opcode << 8 | ir.modrm;
4620 goto no_support;
4621 }
4622
4623 if (ir.mod == 3)
4624 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4625 else
4626 {
4627 ir.ot = OT_WORD;
4628 if (i386_record_lea_modrm (&ir))
4629 return -1;
4630 }
4631 break;
4632
4633 case 0x8e: /* mov seg */
4634 if (i386_record_modrm (&ir))
4635 return -1;
4636 switch (ir.reg)
4637 {
4638 case 0:
4639 regnum = X86_RECORD_ES_REGNUM;
4640 break;
4641 case 2:
4642 regnum = X86_RECORD_SS_REGNUM;
4643 break;
4644 case 3:
4645 regnum = X86_RECORD_DS_REGNUM;
4646 break;
4647 case 4:
4648 regnum = X86_RECORD_FS_REGNUM;
4649 break;
4650 case 5:
4651 regnum = X86_RECORD_GS_REGNUM;
4652 break;
4653 default:
4654 ir.addr -= 2;
4655 opcode = opcode << 8 | ir.modrm;
4656 goto no_support;
4657 break;
4658 }
4659 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4660 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4661 break;
4662
4663 case 0x0fb6: /* movzbS */
4664 case 0x0fb7: /* movzwS */
4665 case 0x0fbe: /* movsbS */
4666 case 0x0fbf: /* movswS */
4667 if (i386_record_modrm (&ir))
4668 return -1;
4669 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4670 break;
4671
4672 case 0x8d: /* lea */
4673 if (i386_record_modrm (&ir))
4674 return -1;
4675 if (ir.mod == 3)
4676 {
4677 ir.addr -= 2;
4678 opcode = opcode << 8 | ir.modrm;
4679 goto no_support;
4680 }
4681 ir.ot = ir.dflag;
4682 ir.reg |= rex_r;
4683 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4684 ir.reg &= 0x3;
4685 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4686 break;
4687
4688 case 0xa0: /* mov EAX */
4689 case 0xa1:
4690
4691 case 0xd7: /* xlat */
4692 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4693 break;
4694
4695 case 0xa2: /* mov EAX */
4696 case 0xa3:
4697 if (ir.override >= 0)
4698 {
4699 if (record_memory_query)
4700 {
4701 int q;
4702
4703 target_terminal_ours ();
4704 q = yquery (_("\
4705 Process record ignores the memory change of instruction at address %s\n\
4706 because it can't get the value of the segment register.\n\
4707 Do you want to stop the program?"),
4708 paddress (gdbarch, ir.orig_addr));
4709 target_terminal_inferior ();
4710 if (q)
4711 return -1;
4712 }
4713 }
4714 else
4715 {
4716 if ((opcode & 1) == 0)
4717 ir.ot = OT_BYTE;
4718 else
4719 ir.ot = ir.dflag + OT_WORD;
4720 if (ir.aflag == 2)
4721 {
4722 if (target_read_memory (ir.addr, buf, 8))
4723 {
4724 if (record_debug)
4725 printf_unfiltered (_("Process record: error reading "
4726 "memory at addr 0x%s len = 8.\n"),
4727 paddress (gdbarch, ir.addr));
4728 return -1;
4729 }
4730 ir.addr += 8;
4731 addr = extract_unsigned_integer (buf, 8, byte_order);
4732 }
4733 else if (ir.aflag)
4734 {
4735 if (target_read_memory (ir.addr, buf, 4))
4736 {
4737 if (record_debug)
4738 printf_unfiltered (_("Process record: error reading "
4739 "memory at addr 0x%s len = 4.\n"),
4740 paddress (gdbarch, ir.addr));
4741 return -1;
4742 }
4743 ir.addr += 4;
4744 addr = extract_unsigned_integer (buf, 4, byte_order);
4745 }
4746 else
4747 {
4748 if (target_read_memory (ir.addr, buf, 2))
4749 {
4750 if (record_debug)
4751 printf_unfiltered (_("Process record: error reading "
4752 "memory at addr 0x%s len = 2.\n"),
4753 paddress (gdbarch, ir.addr));
4754 return -1;
4755 }
4756 ir.addr += 2;
4757 addr = extract_unsigned_integer (buf, 2, byte_order);
4758 }
4759 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4760 return -1;
4761 }
4762 break;
4763
4764 case 0xb0: /* mov R, Ib */
4765 case 0xb1:
4766 case 0xb2:
4767 case 0xb3:
4768 case 0xb4:
4769 case 0xb5:
4770 case 0xb6:
4771 case 0xb7:
4772 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4773 ? ((opcode & 0x7) | ir.rex_b)
4774 : ((opcode & 0x7) & 0x3));
4775 break;
4776
4777 case 0xb8: /* mov R, Iv */
4778 case 0xb9:
4779 case 0xba:
4780 case 0xbb:
4781 case 0xbc:
4782 case 0xbd:
4783 case 0xbe:
4784 case 0xbf:
4785 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4786 break;
4787
4788 case 0x91: /* xchg R, EAX */
4789 case 0x92:
4790 case 0x93:
4791 case 0x94:
4792 case 0x95:
4793 case 0x96:
4794 case 0x97:
4795 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4796 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4797 break;
4798
4799 case 0x86: /* xchg Ev, Gv */
4800 case 0x87:
4801 if ((opcode & 1) == 0)
4802 ir.ot = OT_BYTE;
4803 else
4804 ir.ot = ir.dflag + OT_WORD;
4805 if (i386_record_modrm (&ir))
4806 return -1;
4807 if (ir.mod == 3)
4808 {
4809 ir.rm |= ir.rex_b;
4810 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4811 ir.rm &= 0x3;
4812 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4813 }
4814 else
4815 {
4816 if (i386_record_lea_modrm (&ir))
4817 return -1;
4818 }
4819 ir.reg |= rex_r;
4820 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4821 ir.reg &= 0x3;
4822 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4823 break;
4824
4825 case 0xc4: /* les Gv */
4826 case 0xc5: /* lds Gv */
4827 if (ir.regmap[X86_RECORD_R8_REGNUM])
4828 {
4829 ir.addr -= 1;
4830 goto no_support;
4831 }
4832 /* FALLTHROUGH */
4833 case 0x0fb2: /* lss Gv */
4834 case 0x0fb4: /* lfs Gv */
4835 case 0x0fb5: /* lgs Gv */
4836 if (i386_record_modrm (&ir))
4837 return -1;
4838 if (ir.mod == 3)
4839 {
4840 if (opcode > 0xff)
4841 ir.addr -= 3;
4842 else
4843 ir.addr -= 2;
4844 opcode = opcode << 8 | ir.modrm;
4845 goto no_support;
4846 }
4847 switch (opcode)
4848 {
4849 case 0xc4: /* les Gv */
4850 regnum = X86_RECORD_ES_REGNUM;
4851 break;
4852 case 0xc5: /* lds Gv */
4853 regnum = X86_RECORD_DS_REGNUM;
4854 break;
4855 case 0x0fb2: /* lss Gv */
4856 regnum = X86_RECORD_SS_REGNUM;
4857 break;
4858 case 0x0fb4: /* lfs Gv */
4859 regnum = X86_RECORD_FS_REGNUM;
4860 break;
4861 case 0x0fb5: /* lgs Gv */
4862 regnum = X86_RECORD_GS_REGNUM;
4863 break;
4864 }
4865 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4866 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4867 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4868 break;
4869
4870 case 0xc0: /* shifts */
4871 case 0xc1:
4872 case 0xd0:
4873 case 0xd1:
4874 case 0xd2:
4875 case 0xd3:
4876 if ((opcode & 1) == 0)
4877 ir.ot = OT_BYTE;
4878 else
4879 ir.ot = ir.dflag + OT_WORD;
4880 if (i386_record_modrm (&ir))
4881 return -1;
4882 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4883 {
4884 if (i386_record_lea_modrm (&ir))
4885 return -1;
4886 }
4887 else
4888 {
4889 ir.rm |= ir.rex_b;
4890 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4891 ir.rm &= 0x3;
4892 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4893 }
4894 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4895 break;
4896
4897 case 0x0fa4:
4898 case 0x0fa5:
4899 case 0x0fac:
4900 case 0x0fad:
4901 if (i386_record_modrm (&ir))
4902 return -1;
4903 if (ir.mod == 3)
4904 {
4905 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4906 return -1;
4907 }
4908 else
4909 {
4910 if (i386_record_lea_modrm (&ir))
4911 return -1;
4912 }
4913 break;
4914
4915 case 0xd8: /* Floats. */
4916 case 0xd9:
4917 case 0xda:
4918 case 0xdb:
4919 case 0xdc:
4920 case 0xdd:
4921 case 0xde:
4922 case 0xdf:
4923 if (i386_record_modrm (&ir))
4924 return -1;
4925 ir.reg |= ((opcode & 7) << 3);
4926 if (ir.mod != 3)
4927 {
4928 /* Memory. */
4929 uint64_t addr64;
4930
4931 if (i386_record_lea_modrm_addr (&ir, &addr64))
4932 return -1;
4933 switch (ir.reg)
4934 {
4935 case 0x02:
4936 case 0x12:
4937 case 0x22:
4938 case 0x32:
4939 /* For fcom, ficom nothing to do. */
4940 break;
4941 case 0x03:
4942 case 0x13:
4943 case 0x23:
4944 case 0x33:
4945 /* For fcomp, ficomp pop FPU stack, store all. */
4946 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4947 return -1;
4948 break;
4949 case 0x00:
4950 case 0x01:
4951 case 0x04:
4952 case 0x05:
4953 case 0x06:
4954 case 0x07:
4955 case 0x10:
4956 case 0x11:
4957 case 0x14:
4958 case 0x15:
4959 case 0x16:
4960 case 0x17:
4961 case 0x20:
4962 case 0x21:
4963 case 0x24:
4964 case 0x25:
4965 case 0x26:
4966 case 0x27:
4967 case 0x30:
4968 case 0x31:
4969 case 0x34:
4970 case 0x35:
4971 case 0x36:
4972 case 0x37:
4973 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4974 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4975 of code, always affects st(0) register. */
4976 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4977 return -1;
4978 break;
4979 case 0x08:
4980 case 0x0a:
4981 case 0x0b:
4982 case 0x18:
4983 case 0x19:
4984 case 0x1a:
4985 case 0x1b:
4986 case 0x1d:
4987 case 0x28:
4988 case 0x29:
4989 case 0x2a:
4990 case 0x2b:
4991 case 0x38:
4992 case 0x39:
4993 case 0x3a:
4994 case 0x3b:
4995 case 0x3c:
4996 case 0x3d:
4997 switch (ir.reg & 7)
4998 {
4999 case 0:
5000 /* Handling fld, fild. */
5001 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5002 return -1;
5003 break;
5004 case 1:
5005 switch (ir.reg >> 4)
5006 {
5007 case 0:
5008 if (record_arch_list_add_mem (addr64, 4))
5009 return -1;
5010 break;
5011 case 2:
5012 if (record_arch_list_add_mem (addr64, 8))
5013 return -1;
5014 break;
5015 case 3:
5016 break;
5017 default:
5018 if (record_arch_list_add_mem (addr64, 2))
5019 return -1;
5020 break;
5021 }
5022 break;
5023 default:
5024 switch (ir.reg >> 4)
5025 {
5026 case 0:
5027 if (record_arch_list_add_mem (addr64, 4))
5028 return -1;
5029 if (3 == (ir.reg & 7))
5030 {
5031 /* For fstp m32fp. */
5032 if (i386_record_floats (gdbarch, &ir,
5033 I386_SAVE_FPU_REGS))
5034 return -1;
5035 }
5036 break;
5037 case 1:
5038 if (record_arch_list_add_mem (addr64, 4))
5039 return -1;
5040 if ((3 == (ir.reg & 7))
5041 || (5 == (ir.reg & 7))
5042 || (7 == (ir.reg & 7)))
5043 {
5044 /* For fstp insn. */
5045 if (i386_record_floats (gdbarch, &ir,
5046 I386_SAVE_FPU_REGS))
5047 return -1;
5048 }
5049 break;
5050 case 2:
5051 if (record_arch_list_add_mem (addr64, 8))
5052 return -1;
5053 if (3 == (ir.reg & 7))
5054 {
5055 /* For fstp m64fp. */
5056 if (i386_record_floats (gdbarch, &ir,
5057 I386_SAVE_FPU_REGS))
5058 return -1;
5059 }
5060 break;
5061 case 3:
5062 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5063 {
5064 /* For fistp, fbld, fild, fbstp. */
5065 if (i386_record_floats (gdbarch, &ir,
5066 I386_SAVE_FPU_REGS))
5067 return -1;
5068 }
5069 /* Fall through */
5070 default:
5071 if (record_arch_list_add_mem (addr64, 2))
5072 return -1;
5073 break;
5074 }
5075 break;
5076 }
5077 break;
5078 case 0x0c:
5079 /* Insn fldenv. */
5080 if (i386_record_floats (gdbarch, &ir,
5081 I386_SAVE_FPU_ENV_REG_STACK))
5082 return -1;
5083 break;
5084 case 0x0d:
5085 /* Insn fldcw. */
5086 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5087 return -1;
5088 break;
5089 case 0x2c:
5090 /* Insn frstor. */
5091 if (i386_record_floats (gdbarch, &ir,
5092 I386_SAVE_FPU_ENV_REG_STACK))
5093 return -1;
5094 break;
5095 case 0x0e:
5096 if (ir.dflag)
5097 {
5098 if (record_arch_list_add_mem (addr64, 28))
5099 return -1;
5100 }
5101 else
5102 {
5103 if (record_arch_list_add_mem (addr64, 14))
5104 return -1;
5105 }
5106 break;
5107 case 0x0f:
5108 case 0x2f:
5109 if (record_arch_list_add_mem (addr64, 2))
5110 return -1;
5111 /* Insn fstp, fbstp. */
5112 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5113 return -1;
5114 break;
5115 case 0x1f:
5116 case 0x3e:
5117 if (record_arch_list_add_mem (addr64, 10))
5118 return -1;
5119 break;
5120 case 0x2e:
5121 if (ir.dflag)
5122 {
5123 if (record_arch_list_add_mem (addr64, 28))
5124 return -1;
5125 addr64 += 28;
5126 }
5127 else
5128 {
5129 if (record_arch_list_add_mem (addr64, 14))
5130 return -1;
5131 addr64 += 14;
5132 }
5133 if (record_arch_list_add_mem (addr64, 80))
5134 return -1;
5135 /* Insn fsave. */
5136 if (i386_record_floats (gdbarch, &ir,
5137 I386_SAVE_FPU_ENV_REG_STACK))
5138 return -1;
5139 break;
5140 case 0x3f:
5141 if (record_arch_list_add_mem (addr64, 8))
5142 return -1;
5143 /* Insn fistp. */
5144 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5145 return -1;
5146 break;
5147 default:
5148 ir.addr -= 2;
5149 opcode = opcode << 8 | ir.modrm;
5150 goto no_support;
5151 break;
5152 }
5153 }
5154 /* Opcode is an extension of modR/M byte. */
5155 else
5156 {
5157 switch (opcode)
5158 {
5159 case 0xd8:
5160 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5161 return -1;
5162 break;
5163 case 0xd9:
5164 if (0x0c == (ir.modrm >> 4))
5165 {
5166 if ((ir.modrm & 0x0f) <= 7)
5167 {
5168 if (i386_record_floats (gdbarch, &ir,
5169 I386_SAVE_FPU_REGS))
5170 return -1;
5171 }
5172 else
5173 {
5174 if (i386_record_floats (gdbarch, &ir,
5175 I387_ST0_REGNUM (tdep)))
5176 return -1;
5177 /* If only st(0) is changing, then we have already
5178 recorded. */
5179 if ((ir.modrm & 0x0f) - 0x08)
5180 {
5181 if (i386_record_floats (gdbarch, &ir,
5182 I387_ST0_REGNUM (tdep) +
5183 ((ir.modrm & 0x0f) - 0x08)))
5184 return -1;
5185 }
5186 }
5187 }
5188 else
5189 {
5190 switch (ir.modrm)
5191 {
5192 case 0xe0:
5193 case 0xe1:
5194 case 0xf0:
5195 case 0xf5:
5196 case 0xf8:
5197 case 0xfa:
5198 case 0xfc:
5199 case 0xfe:
5200 case 0xff:
5201 if (i386_record_floats (gdbarch, &ir,
5202 I387_ST0_REGNUM (tdep)))
5203 return -1;
5204 break;
5205 case 0xf1:
5206 case 0xf2:
5207 case 0xf3:
5208 case 0xf4:
5209 case 0xf6:
5210 case 0xf7:
5211 case 0xe8:
5212 case 0xe9:
5213 case 0xea:
5214 case 0xeb:
5215 case 0xec:
5216 case 0xed:
5217 case 0xee:
5218 case 0xf9:
5219 case 0xfb:
5220 if (i386_record_floats (gdbarch, &ir,
5221 I386_SAVE_FPU_REGS))
5222 return -1;
5223 break;
5224 case 0xfd:
5225 if (i386_record_floats (gdbarch, &ir,
5226 I387_ST0_REGNUM (tdep)))
5227 return -1;
5228 if (i386_record_floats (gdbarch, &ir,
5229 I387_ST0_REGNUM (tdep) + 1))
5230 return -1;
5231 break;
5232 }
5233 }
5234 break;
5235 case 0xda:
5236 if (0xe9 == ir.modrm)
5237 {
5238 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5239 return -1;
5240 }
5241 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5242 {
5243 if (i386_record_floats (gdbarch, &ir,
5244 I387_ST0_REGNUM (tdep)))
5245 return -1;
5246 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5247 {
5248 if (i386_record_floats (gdbarch, &ir,
5249 I387_ST0_REGNUM (tdep) +
5250 (ir.modrm & 0x0f)))
5251 return -1;
5252 }
5253 else if ((ir.modrm & 0x0f) - 0x08)
5254 {
5255 if (i386_record_floats (gdbarch, &ir,
5256 I387_ST0_REGNUM (tdep) +
5257 ((ir.modrm & 0x0f) - 0x08)))
5258 return -1;
5259 }
5260 }
5261 break;
5262 case 0xdb:
5263 if (0xe3 == ir.modrm)
5264 {
5265 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5266 return -1;
5267 }
5268 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5269 {
5270 if (i386_record_floats (gdbarch, &ir,
5271 I387_ST0_REGNUM (tdep)))
5272 return -1;
5273 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5274 {
5275 if (i386_record_floats (gdbarch, &ir,
5276 I387_ST0_REGNUM (tdep) +
5277 (ir.modrm & 0x0f)))
5278 return -1;
5279 }
5280 else if ((ir.modrm & 0x0f) - 0x08)
5281 {
5282 if (i386_record_floats (gdbarch, &ir,
5283 I387_ST0_REGNUM (tdep) +
5284 ((ir.modrm & 0x0f) - 0x08)))
5285 return -1;
5286 }
5287 }
5288 break;
5289 case 0xdc:
5290 if ((0x0c == ir.modrm >> 4)
5291 || (0x0d == ir.modrm >> 4)
5292 || (0x0f == ir.modrm >> 4))
5293 {
5294 if ((ir.modrm & 0x0f) <= 7)
5295 {
5296 if (i386_record_floats (gdbarch, &ir,
5297 I387_ST0_REGNUM (tdep) +
5298 (ir.modrm & 0x0f)))
5299 return -1;
5300 }
5301 else
5302 {
5303 if (i386_record_floats (gdbarch, &ir,
5304 I387_ST0_REGNUM (tdep) +
5305 ((ir.modrm & 0x0f) - 0x08)))
5306 return -1;
5307 }
5308 }
5309 break;
5310 case 0xdd:
5311 if (0x0c == ir.modrm >> 4)
5312 {
5313 if (i386_record_floats (gdbarch, &ir,
5314 I387_FTAG_REGNUM (tdep)))
5315 return -1;
5316 }
5317 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5318 {
5319 if ((ir.modrm & 0x0f) <= 7)
5320 {
5321 if (i386_record_floats (gdbarch, &ir,
5322 I387_ST0_REGNUM (tdep) +
5323 (ir.modrm & 0x0f)))
5324 return -1;
5325 }
5326 else
5327 {
5328 if (i386_record_floats (gdbarch, &ir,
5329 I386_SAVE_FPU_REGS))
5330 return -1;
5331 }
5332 }
5333 break;
5334 case 0xde:
5335 if ((0x0c == ir.modrm >> 4)
5336 || (0x0e == ir.modrm >> 4)
5337 || (0x0f == ir.modrm >> 4)
5338 || (0xd9 == ir.modrm))
5339 {
5340 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5341 return -1;
5342 }
5343 break;
5344 case 0xdf:
5345 if (0xe0 == ir.modrm)
5346 {
5347 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5348 return -1;
5349 }
5350 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5351 {
5352 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5353 return -1;
5354 }
5355 break;
5356 }
5357 }
5358 break;
5359 /* string ops */
5360 case 0xa4: /* movsS */
5361 case 0xa5:
5362 case 0xaa: /* stosS */
5363 case 0xab:
5364 case 0x6c: /* insS */
5365 case 0x6d:
5366 regcache_raw_read_unsigned (ir.regcache,
5367 ir.regmap[X86_RECORD_RECX_REGNUM],
5368 &addr);
5369 if (addr)
5370 {
5371 ULONGEST es, ds;
5372
5373 if ((opcode & 1) == 0)
5374 ir.ot = OT_BYTE;
5375 else
5376 ir.ot = ir.dflag + OT_WORD;
5377 regcache_raw_read_unsigned (ir.regcache,
5378 ir.regmap[X86_RECORD_REDI_REGNUM],
5379 &addr);
5380
5381 regcache_raw_read_unsigned (ir.regcache,
5382 ir.regmap[X86_RECORD_ES_REGNUM],
5383 &es);
5384 regcache_raw_read_unsigned (ir.regcache,
5385 ir.regmap[X86_RECORD_DS_REGNUM],
5386 &ds);
5387 if (ir.aflag && (es != ds))
5388 {
5389 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5390 if (record_memory_query)
5391 {
5392 int q;
5393
5394 target_terminal_ours ();
5395 q = yquery (_("\
5396 Process record ignores the memory change of instruction at address %s\n\
5397 because it can't get the value of the segment register.\n\
5398 Do you want to stop the program?"),
5399 paddress (gdbarch, ir.orig_addr));
5400 target_terminal_inferior ();
5401 if (q)
5402 return -1;
5403 }
5404 }
5405 else
5406 {
5407 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5408 return -1;
5409 }
5410
5411 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5412 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5413 if (opcode == 0xa4 || opcode == 0xa5)
5414 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5415 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5416 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5417 }
5418 break;
5419
5420 case 0xa6: /* cmpsS */
5421 case 0xa7:
5422 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5423 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5424 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5425 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5426 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5427 break;
5428
5429 case 0xac: /* lodsS */
5430 case 0xad:
5431 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5432 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5433 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5434 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5435 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5436 break;
5437
5438 case 0xae: /* scasS */
5439 case 0xaf:
5440 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5441 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5442 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5443 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5444 break;
5445
5446 case 0x6e: /* outsS */
5447 case 0x6f:
5448 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5449 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5450 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5451 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5452 break;
5453
5454 case 0xe4: /* port I/O */
5455 case 0xe5:
5456 case 0xec:
5457 case 0xed:
5458 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5459 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5460 break;
5461
5462 case 0xe6:
5463 case 0xe7:
5464 case 0xee:
5465 case 0xef:
5466 break;
5467
5468 /* control */
5469 case 0xc2: /* ret im */
5470 case 0xc3: /* ret */
5471 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5472 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5473 break;
5474
5475 case 0xca: /* lret im */
5476 case 0xcb: /* lret */
5477 case 0xcf: /* iret */
5478 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5479 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5480 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5481 break;
5482
5483 case 0xe8: /* call im */
5484 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5485 ir.dflag = 2;
5486 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5487 return -1;
5488 break;
5489
5490 case 0x9a: /* lcall im */
5491 if (ir.regmap[X86_RECORD_R8_REGNUM])
5492 {
5493 ir.addr -= 1;
5494 goto no_support;
5495 }
5496 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5497 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5498 return -1;
5499 break;
5500
5501 case 0xe9: /* jmp im */
5502 case 0xea: /* ljmp im */
5503 case 0xeb: /* jmp Jb */
5504 case 0x70: /* jcc Jb */
5505 case 0x71:
5506 case 0x72:
5507 case 0x73:
5508 case 0x74:
5509 case 0x75:
5510 case 0x76:
5511 case 0x77:
5512 case 0x78:
5513 case 0x79:
5514 case 0x7a:
5515 case 0x7b:
5516 case 0x7c:
5517 case 0x7d:
5518 case 0x7e:
5519 case 0x7f:
5520 case 0x0f80: /* jcc Jv */
5521 case 0x0f81:
5522 case 0x0f82:
5523 case 0x0f83:
5524 case 0x0f84:
5525 case 0x0f85:
5526 case 0x0f86:
5527 case 0x0f87:
5528 case 0x0f88:
5529 case 0x0f89:
5530 case 0x0f8a:
5531 case 0x0f8b:
5532 case 0x0f8c:
5533 case 0x0f8d:
5534 case 0x0f8e:
5535 case 0x0f8f:
5536 break;
5537
5538 case 0x0f90: /* setcc Gv */
5539 case 0x0f91:
5540 case 0x0f92:
5541 case 0x0f93:
5542 case 0x0f94:
5543 case 0x0f95:
5544 case 0x0f96:
5545 case 0x0f97:
5546 case 0x0f98:
5547 case 0x0f99:
5548 case 0x0f9a:
5549 case 0x0f9b:
5550 case 0x0f9c:
5551 case 0x0f9d:
5552 case 0x0f9e:
5553 case 0x0f9f:
5554 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5555 ir.ot = OT_BYTE;
5556 if (i386_record_modrm (&ir))
5557 return -1;
5558 if (ir.mod == 3)
5559 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5560 : (ir.rm & 0x3));
5561 else
5562 {
5563 if (i386_record_lea_modrm (&ir))
5564 return -1;
5565 }
5566 break;
5567
5568 case 0x0f40: /* cmov Gv, Ev */
5569 case 0x0f41:
5570 case 0x0f42:
5571 case 0x0f43:
5572 case 0x0f44:
5573 case 0x0f45:
5574 case 0x0f46:
5575 case 0x0f47:
5576 case 0x0f48:
5577 case 0x0f49:
5578 case 0x0f4a:
5579 case 0x0f4b:
5580 case 0x0f4c:
5581 case 0x0f4d:
5582 case 0x0f4e:
5583 case 0x0f4f:
5584 if (i386_record_modrm (&ir))
5585 return -1;
5586 ir.reg |= rex_r;
5587 if (ir.dflag == OT_BYTE)
5588 ir.reg &= 0x3;
5589 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5590 break;
5591
5592 /* flags */
5593 case 0x9c: /* pushf */
5594 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5595 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5596 ir.dflag = 2;
5597 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5598 return -1;
5599 break;
5600
5601 case 0x9d: /* popf */
5602 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5603 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5604 break;
5605
5606 case 0x9e: /* sahf */
5607 if (ir.regmap[X86_RECORD_R8_REGNUM])
5608 {
5609 ir.addr -= 1;
5610 goto no_support;
5611 }
5612 /* FALLTHROUGH */
5613 case 0xf5: /* cmc */
5614 case 0xf8: /* clc */
5615 case 0xf9: /* stc */
5616 case 0xfc: /* cld */
5617 case 0xfd: /* std */
5618 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5619 break;
5620
5621 case 0x9f: /* lahf */
5622 if (ir.regmap[X86_RECORD_R8_REGNUM])
5623 {
5624 ir.addr -= 1;
5625 goto no_support;
5626 }
5627 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5628 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5629 break;
5630
5631 /* bit operations */
5632 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5633 ir.ot = ir.dflag + OT_WORD;
5634 if (i386_record_modrm (&ir))
5635 return -1;
5636 if (ir.reg < 4)
5637 {
5638 ir.addr -= 2;
5639 opcode = opcode << 8 | ir.modrm;
5640 goto no_support;
5641 }
5642 if (ir.reg != 4)
5643 {
5644 if (ir.mod == 3)
5645 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5646 else
5647 {
5648 if (i386_record_lea_modrm (&ir))
5649 return -1;
5650 }
5651 }
5652 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5653 break;
5654
5655 case 0x0fa3: /* bt Gv, Ev */
5656 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5657 break;
5658
5659 case 0x0fab: /* bts */
5660 case 0x0fb3: /* btr */
5661 case 0x0fbb: /* btc */
5662 ir.ot = ir.dflag + OT_WORD;
5663 if (i386_record_modrm (&ir))
5664 return -1;
5665 if (ir.mod == 3)
5666 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5667 else
5668 {
5669 uint64_t addr64;
5670 if (i386_record_lea_modrm_addr (&ir, &addr64))
5671 return -1;
5672 regcache_raw_read_unsigned (ir.regcache,
5673 ir.regmap[ir.reg | rex_r],
5674 &addr);
5675 switch (ir.dflag)
5676 {
5677 case 0:
5678 addr64 += ((int16_t) addr >> 4) << 4;
5679 break;
5680 case 1:
5681 addr64 += ((int32_t) addr >> 5) << 5;
5682 break;
5683 case 2:
5684 addr64 += ((int64_t) addr >> 6) << 6;
5685 break;
5686 }
5687 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
5688 return -1;
5689 if (i386_record_lea_modrm (&ir))
5690 return -1;
5691 }
5692 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5693 break;
5694
5695 case 0x0fbc: /* bsf */
5696 case 0x0fbd: /* bsr */
5697 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5698 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5699 break;
5700
5701 /* bcd */
5702 case 0x27: /* daa */
5703 case 0x2f: /* das */
5704 case 0x37: /* aaa */
5705 case 0x3f: /* aas */
5706 case 0xd4: /* aam */
5707 case 0xd5: /* aad */
5708 if (ir.regmap[X86_RECORD_R8_REGNUM])
5709 {
5710 ir.addr -= 1;
5711 goto no_support;
5712 }
5713 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5714 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5715 break;
5716
5717 /* misc */
5718 case 0x90: /* nop */
5719 if (prefixes & PREFIX_LOCK)
5720 {
5721 ir.addr -= 1;
5722 goto no_support;
5723 }
5724 break;
5725
5726 case 0x9b: /* fwait */
5727 if (target_read_memory (ir.addr, &opcode8, 1))
5728 {
5729 if (record_debug)
5730 printf_unfiltered (_("Process record: error reading memory at "
5731 "addr 0x%s len = 1.\n"),
5732 paddress (gdbarch, ir.addr));
5733 return -1;
5734 }
5735 opcode = (uint32_t) opcode8;
5736 ir.addr++;
5737 goto reswitch;
5738 break;
5739
5740 /* XXX */
5741 case 0xcc: /* int3 */
5742 printf_unfiltered (_("Process record does not support instruction "
5743 "int3.\n"));
5744 ir.addr -= 1;
5745 goto no_support;
5746 break;
5747
5748 /* XXX */
5749 case 0xcd: /* int */
5750 {
5751 int ret;
5752 uint8_t interrupt;
5753 if (target_read_memory (ir.addr, &interrupt, 1))
5754 {
5755 if (record_debug)
5756 printf_unfiltered (_("Process record: error reading memory "
5757 "at addr %s len = 1.\n"),
5758 paddress (gdbarch, ir.addr));
5759 return -1;
5760 }
5761 ir.addr++;
5762 if (interrupt != 0x80
5763 || tdep->i386_intx80_record == NULL)
5764 {
5765 printf_unfiltered (_("Process record does not support "
5766 "instruction int 0x%02x.\n"),
5767 interrupt);
5768 ir.addr -= 2;
5769 goto no_support;
5770 }
5771 ret = tdep->i386_intx80_record (ir.regcache);
5772 if (ret)
5773 return ret;
5774 }
5775 break;
5776
5777 /* XXX */
5778 case 0xce: /* into */
5779 printf_unfiltered (_("Process record does not support "
5780 "instruction into.\n"));
5781 ir.addr -= 1;
5782 goto no_support;
5783 break;
5784
5785 case 0xfa: /* cli */
5786 case 0xfb: /* sti */
5787 break;
5788
5789 case 0x62: /* bound */
5790 printf_unfiltered (_("Process record does not support "
5791 "instruction bound.\n"));
5792 ir.addr -= 1;
5793 goto no_support;
5794 break;
5795
5796 case 0x0fc8: /* bswap reg */
5797 case 0x0fc9:
5798 case 0x0fca:
5799 case 0x0fcb:
5800 case 0x0fcc:
5801 case 0x0fcd:
5802 case 0x0fce:
5803 case 0x0fcf:
5804 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5805 break;
5806
5807 case 0xd6: /* salc */
5808 if (ir.regmap[X86_RECORD_R8_REGNUM])
5809 {
5810 ir.addr -= 1;
5811 goto no_support;
5812 }
5813 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5814 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5815 break;
5816
5817 case 0xe0: /* loopnz */
5818 case 0xe1: /* loopz */
5819 case 0xe2: /* loop */
5820 case 0xe3: /* jecxz */
5821 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5822 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5823 break;
5824
5825 case 0x0f30: /* wrmsr */
5826 printf_unfiltered (_("Process record does not support "
5827 "instruction wrmsr.\n"));
5828 ir.addr -= 2;
5829 goto no_support;
5830 break;
5831
5832 case 0x0f32: /* rdmsr */
5833 printf_unfiltered (_("Process record does not support "
5834 "instruction rdmsr.\n"));
5835 ir.addr -= 2;
5836 goto no_support;
5837 break;
5838
5839 case 0x0f31: /* rdtsc */
5840 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5841 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5842 break;
5843
5844 case 0x0f34: /* sysenter */
5845 {
5846 int ret;
5847 if (ir.regmap[X86_RECORD_R8_REGNUM])
5848 {
5849 ir.addr -= 2;
5850 goto no_support;
5851 }
5852 if (tdep->i386_sysenter_record == NULL)
5853 {
5854 printf_unfiltered (_("Process record does not support "
5855 "instruction sysenter.\n"));
5856 ir.addr -= 2;
5857 goto no_support;
5858 }
5859 ret = tdep->i386_sysenter_record (ir.regcache);
5860 if (ret)
5861 return ret;
5862 }
5863 break;
5864
5865 case 0x0f35: /* sysexit */
5866 printf_unfiltered (_("Process record does not support "
5867 "instruction sysexit.\n"));
5868 ir.addr -= 2;
5869 goto no_support;
5870 break;
5871
5872 case 0x0f05: /* syscall */
5873 {
5874 int ret;
5875 if (tdep->i386_syscall_record == NULL)
5876 {
5877 printf_unfiltered (_("Process record does not support "
5878 "instruction syscall.\n"));
5879 ir.addr -= 2;
5880 goto no_support;
5881 }
5882 ret = tdep->i386_syscall_record (ir.regcache);
5883 if (ret)
5884 return ret;
5885 }
5886 break;
5887
5888 case 0x0f07: /* sysret */
5889 printf_unfiltered (_("Process record does not support "
5890 "instruction sysret.\n"));
5891 ir.addr -= 2;
5892 goto no_support;
5893 break;
5894
5895 case 0x0fa2: /* cpuid */
5896 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5897 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5898 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5899 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5900 break;
5901
5902 case 0xf4: /* hlt */
5903 printf_unfiltered (_("Process record does not support "
5904 "instruction hlt.\n"));
5905 ir.addr -= 1;
5906 goto no_support;
5907 break;
5908
5909 case 0x0f00:
5910 if (i386_record_modrm (&ir))
5911 return -1;
5912 switch (ir.reg)
5913 {
5914 case 0: /* sldt */
5915 case 1: /* str */
5916 if (ir.mod == 3)
5917 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5918 else
5919 {
5920 ir.ot = OT_WORD;
5921 if (i386_record_lea_modrm (&ir))
5922 return -1;
5923 }
5924 break;
5925 case 2: /* lldt */
5926 case 3: /* ltr */
5927 break;
5928 case 4: /* verr */
5929 case 5: /* verw */
5930 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5931 break;
5932 default:
5933 ir.addr -= 3;
5934 opcode = opcode << 8 | ir.modrm;
5935 goto no_support;
5936 break;
5937 }
5938 break;
5939
5940 case 0x0f01:
5941 if (i386_record_modrm (&ir))
5942 return -1;
5943 switch (ir.reg)
5944 {
5945 case 0: /* sgdt */
5946 {
5947 uint64_t addr64;
5948
5949 if (ir.mod == 3)
5950 {
5951 ir.addr -= 3;
5952 opcode = opcode << 8 | ir.modrm;
5953 goto no_support;
5954 }
5955 if (ir.override >= 0)
5956 {
5957 if (record_memory_query)
5958 {
5959 int q;
5960
5961 target_terminal_ours ();
5962 q = yquery (_("\
5963 Process record ignores the memory change of instruction at address %s\n\
5964 because it can't get the value of the segment register.\n\
5965 Do you want to stop the program?"),
5966 paddress (gdbarch, ir.orig_addr));
5967 target_terminal_inferior ();
5968 if (q)
5969 return -1;
5970 }
5971 }
5972 else
5973 {
5974 if (i386_record_lea_modrm_addr (&ir, &addr64))
5975 return -1;
5976 if (record_arch_list_add_mem (addr64, 2))
5977 return -1;
5978 addr64 += 2;
5979 if (ir.regmap[X86_RECORD_R8_REGNUM])
5980 {
5981 if (record_arch_list_add_mem (addr64, 8))
5982 return -1;
5983 }
5984 else
5985 {
5986 if (record_arch_list_add_mem (addr64, 4))
5987 return -1;
5988 }
5989 }
5990 }
5991 break;
5992 case 1:
5993 if (ir.mod == 3)
5994 {
5995 switch (ir.rm)
5996 {
5997 case 0: /* monitor */
5998 break;
5999 case 1: /* mwait */
6000 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6001 break;
6002 default:
6003 ir.addr -= 3;
6004 opcode = opcode << 8 | ir.modrm;
6005 goto no_support;
6006 break;
6007 }
6008 }
6009 else
6010 {
6011 /* sidt */
6012 if (ir.override >= 0)
6013 {
6014 if (record_memory_query)
6015 {
6016 int q;
6017
6018 target_terminal_ours ();
6019 q = yquery (_("\
6020 Process record ignores the memory change of instruction at address %s\n\
6021 because it can't get the value of the segment register.\n\
6022 Do you want to stop the program?"),
6023 paddress (gdbarch, ir.orig_addr));
6024 target_terminal_inferior ();
6025 if (q)
6026 return -1;
6027 }
6028 }
6029 else
6030 {
6031 uint64_t addr64;
6032
6033 if (i386_record_lea_modrm_addr (&ir, &addr64))
6034 return -1;
6035 if (record_arch_list_add_mem (addr64, 2))
6036 return -1;
6037 addr64 += 2;
6038 if (ir.regmap[X86_RECORD_R8_REGNUM])
6039 {
6040 if (record_arch_list_add_mem (addr64, 8))
6041 return -1;
6042 }
6043 else
6044 {
6045 if (record_arch_list_add_mem (addr64, 4))
6046 return -1;
6047 }
6048 }
6049 }
6050 break;
6051 case 2: /* lgdt */
6052 if (ir.mod == 3)
6053 {
6054 /* xgetbv */
6055 if (ir.rm == 0)
6056 {
6057 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6058 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6059 break;
6060 }
6061 /* xsetbv */
6062 else if (ir.rm == 1)
6063 break;
6064 }
6065 case 3: /* lidt */
6066 if (ir.mod == 3)
6067 {
6068 ir.addr -= 3;
6069 opcode = opcode << 8 | ir.modrm;
6070 goto no_support;
6071 }
6072 break;
6073 case 4: /* smsw */
6074 if (ir.mod == 3)
6075 {
6076 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6077 return -1;
6078 }
6079 else
6080 {
6081 ir.ot = OT_WORD;
6082 if (i386_record_lea_modrm (&ir))
6083 return -1;
6084 }
6085 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6086 break;
6087 case 6: /* lmsw */
6088 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6089 break;
6090 case 7: /* invlpg */
6091 if (ir.mod == 3)
6092 {
6093 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6094 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6095 else
6096 {
6097 ir.addr -= 3;
6098 opcode = opcode << 8 | ir.modrm;
6099 goto no_support;
6100 }
6101 }
6102 else
6103 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6104 break;
6105 default:
6106 ir.addr -= 3;
6107 opcode = opcode << 8 | ir.modrm;
6108 goto no_support;
6109 break;
6110 }
6111 break;
6112
6113 case 0x0f08: /* invd */
6114 case 0x0f09: /* wbinvd */
6115 break;
6116
6117 case 0x63: /* arpl */
6118 if (i386_record_modrm (&ir))
6119 return -1;
6120 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6121 {
6122 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6123 ? (ir.reg | rex_r) : ir.rm);
6124 }
6125 else
6126 {
6127 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6128 if (i386_record_lea_modrm (&ir))
6129 return -1;
6130 }
6131 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6132 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6133 break;
6134
6135 case 0x0f02: /* lar */
6136 case 0x0f03: /* lsl */
6137 if (i386_record_modrm (&ir))
6138 return -1;
6139 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6140 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6141 break;
6142
6143 case 0x0f18:
6144 if (i386_record_modrm (&ir))
6145 return -1;
6146 if (ir.mod == 3 && ir.reg == 3)
6147 {
6148 ir.addr -= 3;
6149 opcode = opcode << 8 | ir.modrm;
6150 goto no_support;
6151 }
6152 break;
6153
6154 case 0x0f19:
6155 case 0x0f1a:
6156 case 0x0f1b:
6157 case 0x0f1c:
6158 case 0x0f1d:
6159 case 0x0f1e:
6160 case 0x0f1f:
6161 /* nop (multi byte) */
6162 break;
6163
6164 case 0x0f20: /* mov reg, crN */
6165 case 0x0f22: /* mov crN, reg */
6166 if (i386_record_modrm (&ir))
6167 return -1;
6168 if ((ir.modrm & 0xc0) != 0xc0)
6169 {
6170 ir.addr -= 3;
6171 opcode = opcode << 8 | ir.modrm;
6172 goto no_support;
6173 }
6174 switch (ir.reg)
6175 {
6176 case 0:
6177 case 2:
6178 case 3:
6179 case 4:
6180 case 8:
6181 if (opcode & 2)
6182 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6183 else
6184 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6185 break;
6186 default:
6187 ir.addr -= 3;
6188 opcode = opcode << 8 | ir.modrm;
6189 goto no_support;
6190 break;
6191 }
6192 break;
6193
6194 case 0x0f21: /* mov reg, drN */
6195 case 0x0f23: /* mov drN, reg */
6196 if (i386_record_modrm (&ir))
6197 return -1;
6198 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6199 || ir.reg == 5 || ir.reg >= 8)
6200 {
6201 ir.addr -= 3;
6202 opcode = opcode << 8 | ir.modrm;
6203 goto no_support;
6204 }
6205 if (opcode & 2)
6206 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6207 else
6208 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6209 break;
6210
6211 case 0x0f06: /* clts */
6212 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6213 break;
6214
6215 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6216
6217 case 0x0f0d: /* 3DNow! prefetch */
6218 break;
6219
6220 case 0x0f0e: /* 3DNow! femms */
6221 case 0x0f77: /* emms */
6222 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6223 goto no_support;
6224 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6225 break;
6226
6227 case 0x0f0f: /* 3DNow! data */
6228 if (i386_record_modrm (&ir))
6229 return -1;
6230 if (target_read_memory (ir.addr, &opcode8, 1))
6231 {
6232 printf_unfiltered (_("Process record: error reading memory at "
6233 "addr %s len = 1.\n"),
6234 paddress (gdbarch, ir.addr));
6235 return -1;
6236 }
6237 ir.addr++;
6238 switch (opcode8)
6239 {
6240 case 0x0c: /* 3DNow! pi2fw */
6241 case 0x0d: /* 3DNow! pi2fd */
6242 case 0x1c: /* 3DNow! pf2iw */
6243 case 0x1d: /* 3DNow! pf2id */
6244 case 0x8a: /* 3DNow! pfnacc */
6245 case 0x8e: /* 3DNow! pfpnacc */
6246 case 0x90: /* 3DNow! pfcmpge */
6247 case 0x94: /* 3DNow! pfmin */
6248 case 0x96: /* 3DNow! pfrcp */
6249 case 0x97: /* 3DNow! pfrsqrt */
6250 case 0x9a: /* 3DNow! pfsub */
6251 case 0x9e: /* 3DNow! pfadd */
6252 case 0xa0: /* 3DNow! pfcmpgt */
6253 case 0xa4: /* 3DNow! pfmax */
6254 case 0xa6: /* 3DNow! pfrcpit1 */
6255 case 0xa7: /* 3DNow! pfrsqit1 */
6256 case 0xaa: /* 3DNow! pfsubr */
6257 case 0xae: /* 3DNow! pfacc */
6258 case 0xb0: /* 3DNow! pfcmpeq */
6259 case 0xb4: /* 3DNow! pfmul */
6260 case 0xb6: /* 3DNow! pfrcpit2 */
6261 case 0xb7: /* 3DNow! pmulhrw */
6262 case 0xbb: /* 3DNow! pswapd */
6263 case 0xbf: /* 3DNow! pavgusb */
6264 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6265 goto no_support_3dnow_data;
6266 record_arch_list_add_reg (ir.regcache, ir.reg);
6267 break;
6268
6269 default:
6270 no_support_3dnow_data:
6271 opcode = (opcode << 8) | opcode8;
6272 goto no_support;
6273 break;
6274 }
6275 break;
6276
6277 case 0x0faa: /* rsm */
6278 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6279 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6280 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6281 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6282 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6283 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6284 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6285 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6286 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6287 break;
6288
6289 case 0x0fae:
6290 if (i386_record_modrm (&ir))
6291 return -1;
6292 switch(ir.reg)
6293 {
6294 case 0: /* fxsave */
6295 {
6296 uint64_t tmpu64;
6297
6298 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6299 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6300 return -1;
6301 if (record_arch_list_add_mem (tmpu64, 512))
6302 return -1;
6303 }
6304 break;
6305
6306 case 1: /* fxrstor */
6307 {
6308 int i;
6309
6310 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6311
6312 for (i = I387_MM0_REGNUM (tdep);
6313 i386_mmx_regnum_p (gdbarch, i); i++)
6314 record_arch_list_add_reg (ir.regcache, i);
6315
6316 for (i = I387_XMM0_REGNUM (tdep);
6317 i386_xmm_regnum_p (gdbarch, i); i++)
6318 record_arch_list_add_reg (ir.regcache, i);
6319
6320 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6321 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6322
6323 for (i = I387_ST0_REGNUM (tdep);
6324 i386_fp_regnum_p (gdbarch, i); i++)
6325 record_arch_list_add_reg (ir.regcache, i);
6326
6327 for (i = I387_FCTRL_REGNUM (tdep);
6328 i386_fpc_regnum_p (gdbarch, i); i++)
6329 record_arch_list_add_reg (ir.regcache, i);
6330 }
6331 break;
6332
6333 case 2: /* ldmxcsr */
6334 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6335 goto no_support;
6336 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6337 break;
6338
6339 case 3: /* stmxcsr */
6340 ir.ot = OT_LONG;
6341 if (i386_record_lea_modrm (&ir))
6342 return -1;
6343 break;
6344
6345 case 5: /* lfence */
6346 case 6: /* mfence */
6347 case 7: /* sfence clflush */
6348 break;
6349
6350 default:
6351 opcode = (opcode << 8) | ir.modrm;
6352 goto no_support;
6353 break;
6354 }
6355 break;
6356
6357 case 0x0fc3: /* movnti */
6358 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6359 if (i386_record_modrm (&ir))
6360 return -1;
6361 if (ir.mod == 3)
6362 goto no_support;
6363 ir.reg |= rex_r;
6364 if (i386_record_lea_modrm (&ir))
6365 return -1;
6366 break;
6367
6368 /* Add prefix to opcode. */
6369 case 0x0f10:
6370 case 0x0f11:
6371 case 0x0f12:
6372 case 0x0f13:
6373 case 0x0f14:
6374 case 0x0f15:
6375 case 0x0f16:
6376 case 0x0f17:
6377 case 0x0f28:
6378 case 0x0f29:
6379 case 0x0f2a:
6380 case 0x0f2b:
6381 case 0x0f2c:
6382 case 0x0f2d:
6383 case 0x0f2e:
6384 case 0x0f2f:
6385 case 0x0f38:
6386 case 0x0f39:
6387 case 0x0f3a:
6388 case 0x0f50:
6389 case 0x0f51:
6390 case 0x0f52:
6391 case 0x0f53:
6392 case 0x0f54:
6393 case 0x0f55:
6394 case 0x0f56:
6395 case 0x0f57:
6396 case 0x0f58:
6397 case 0x0f59:
6398 case 0x0f5a:
6399 case 0x0f5b:
6400 case 0x0f5c:
6401 case 0x0f5d:
6402 case 0x0f5e:
6403 case 0x0f5f:
6404 case 0x0f60:
6405 case 0x0f61:
6406 case 0x0f62:
6407 case 0x0f63:
6408 case 0x0f64:
6409 case 0x0f65:
6410 case 0x0f66:
6411 case 0x0f67:
6412 case 0x0f68:
6413 case 0x0f69:
6414 case 0x0f6a:
6415 case 0x0f6b:
6416 case 0x0f6c:
6417 case 0x0f6d:
6418 case 0x0f6e:
6419 case 0x0f6f:
6420 case 0x0f70:
6421 case 0x0f71:
6422 case 0x0f72:
6423 case 0x0f73:
6424 case 0x0f74:
6425 case 0x0f75:
6426 case 0x0f76:
6427 case 0x0f7c:
6428 case 0x0f7d:
6429 case 0x0f7e:
6430 case 0x0f7f:
6431 case 0x0fb8:
6432 case 0x0fc2:
6433 case 0x0fc4:
6434 case 0x0fc5:
6435 case 0x0fc6:
6436 case 0x0fd0:
6437 case 0x0fd1:
6438 case 0x0fd2:
6439 case 0x0fd3:
6440 case 0x0fd4:
6441 case 0x0fd5:
6442 case 0x0fd6:
6443 case 0x0fd7:
6444 case 0x0fd8:
6445 case 0x0fd9:
6446 case 0x0fda:
6447 case 0x0fdb:
6448 case 0x0fdc:
6449 case 0x0fdd:
6450 case 0x0fde:
6451 case 0x0fdf:
6452 case 0x0fe0:
6453 case 0x0fe1:
6454 case 0x0fe2:
6455 case 0x0fe3:
6456 case 0x0fe4:
6457 case 0x0fe5:
6458 case 0x0fe6:
6459 case 0x0fe7:
6460 case 0x0fe8:
6461 case 0x0fe9:
6462 case 0x0fea:
6463 case 0x0feb:
6464 case 0x0fec:
6465 case 0x0fed:
6466 case 0x0fee:
6467 case 0x0fef:
6468 case 0x0ff0:
6469 case 0x0ff1:
6470 case 0x0ff2:
6471 case 0x0ff3:
6472 case 0x0ff4:
6473 case 0x0ff5:
6474 case 0x0ff6:
6475 case 0x0ff7:
6476 case 0x0ff8:
6477 case 0x0ff9:
6478 case 0x0ffa:
6479 case 0x0ffb:
6480 case 0x0ffc:
6481 case 0x0ffd:
6482 case 0x0ffe:
6483 switch (prefixes)
6484 {
6485 case PREFIX_REPNZ:
6486 opcode |= 0xf20000;
6487 break;
6488 case PREFIX_DATA:
6489 opcode |= 0x660000;
6490 break;
6491 case PREFIX_REPZ:
6492 opcode |= 0xf30000;
6493 break;
6494 }
6495 reswitch_prefix_add:
6496 switch (opcode)
6497 {
6498 case 0x0f38:
6499 case 0x660f38:
6500 case 0xf20f38:
6501 case 0x0f3a:
6502 case 0x660f3a:
6503 if (target_read_memory (ir.addr, &opcode8, 1))
6504 {
6505 printf_unfiltered (_("Process record: error reading memory at "
6506 "addr %s len = 1.\n"),
6507 paddress (gdbarch, ir.addr));
6508 return -1;
6509 }
6510 ir.addr++;
6511 opcode = (uint32_t) opcode8 | opcode << 8;
6512 goto reswitch_prefix_add;
6513 break;
6514
6515 case 0x0f10: /* movups */
6516 case 0x660f10: /* movupd */
6517 case 0xf30f10: /* movss */
6518 case 0xf20f10: /* movsd */
6519 case 0x0f12: /* movlps */
6520 case 0x660f12: /* movlpd */
6521 case 0xf30f12: /* movsldup */
6522 case 0xf20f12: /* movddup */
6523 case 0x0f14: /* unpcklps */
6524 case 0x660f14: /* unpcklpd */
6525 case 0x0f15: /* unpckhps */
6526 case 0x660f15: /* unpckhpd */
6527 case 0x0f16: /* movhps */
6528 case 0x660f16: /* movhpd */
6529 case 0xf30f16: /* movshdup */
6530 case 0x0f28: /* movaps */
6531 case 0x660f28: /* movapd */
6532 case 0x0f2a: /* cvtpi2ps */
6533 case 0x660f2a: /* cvtpi2pd */
6534 case 0xf30f2a: /* cvtsi2ss */
6535 case 0xf20f2a: /* cvtsi2sd */
6536 case 0x0f2c: /* cvttps2pi */
6537 case 0x660f2c: /* cvttpd2pi */
6538 case 0x0f2d: /* cvtps2pi */
6539 case 0x660f2d: /* cvtpd2pi */
6540 case 0x660f3800: /* pshufb */
6541 case 0x660f3801: /* phaddw */
6542 case 0x660f3802: /* phaddd */
6543 case 0x660f3803: /* phaddsw */
6544 case 0x660f3804: /* pmaddubsw */
6545 case 0x660f3805: /* phsubw */
6546 case 0x660f3806: /* phsubd */
6547 case 0x660f3807: /* phsubsw */
6548 case 0x660f3808: /* psignb */
6549 case 0x660f3809: /* psignw */
6550 case 0x660f380a: /* psignd */
6551 case 0x660f380b: /* pmulhrsw */
6552 case 0x660f3810: /* pblendvb */
6553 case 0x660f3814: /* blendvps */
6554 case 0x660f3815: /* blendvpd */
6555 case 0x660f381c: /* pabsb */
6556 case 0x660f381d: /* pabsw */
6557 case 0x660f381e: /* pabsd */
6558 case 0x660f3820: /* pmovsxbw */
6559 case 0x660f3821: /* pmovsxbd */
6560 case 0x660f3822: /* pmovsxbq */
6561 case 0x660f3823: /* pmovsxwd */
6562 case 0x660f3824: /* pmovsxwq */
6563 case 0x660f3825: /* pmovsxdq */
6564 case 0x660f3828: /* pmuldq */
6565 case 0x660f3829: /* pcmpeqq */
6566 case 0x660f382a: /* movntdqa */
6567 case 0x660f3a08: /* roundps */
6568 case 0x660f3a09: /* roundpd */
6569 case 0x660f3a0a: /* roundss */
6570 case 0x660f3a0b: /* roundsd */
6571 case 0x660f3a0c: /* blendps */
6572 case 0x660f3a0d: /* blendpd */
6573 case 0x660f3a0e: /* pblendw */
6574 case 0x660f3a0f: /* palignr */
6575 case 0x660f3a20: /* pinsrb */
6576 case 0x660f3a21: /* insertps */
6577 case 0x660f3a22: /* pinsrd pinsrq */
6578 case 0x660f3a40: /* dpps */
6579 case 0x660f3a41: /* dppd */
6580 case 0x660f3a42: /* mpsadbw */
6581 case 0x660f3a60: /* pcmpestrm */
6582 case 0x660f3a61: /* pcmpestri */
6583 case 0x660f3a62: /* pcmpistrm */
6584 case 0x660f3a63: /* pcmpistri */
6585 case 0x0f51: /* sqrtps */
6586 case 0x660f51: /* sqrtpd */
6587 case 0xf20f51: /* sqrtsd */
6588 case 0xf30f51: /* sqrtss */
6589 case 0x0f52: /* rsqrtps */
6590 case 0xf30f52: /* rsqrtss */
6591 case 0x0f53: /* rcpps */
6592 case 0xf30f53: /* rcpss */
6593 case 0x0f54: /* andps */
6594 case 0x660f54: /* andpd */
6595 case 0x0f55: /* andnps */
6596 case 0x660f55: /* andnpd */
6597 case 0x0f56: /* orps */
6598 case 0x660f56: /* orpd */
6599 case 0x0f57: /* xorps */
6600 case 0x660f57: /* xorpd */
6601 case 0x0f58: /* addps */
6602 case 0x660f58: /* addpd */
6603 case 0xf20f58: /* addsd */
6604 case 0xf30f58: /* addss */
6605 case 0x0f59: /* mulps */
6606 case 0x660f59: /* mulpd */
6607 case 0xf20f59: /* mulsd */
6608 case 0xf30f59: /* mulss */
6609 case 0x0f5a: /* cvtps2pd */
6610 case 0x660f5a: /* cvtpd2ps */
6611 case 0xf20f5a: /* cvtsd2ss */
6612 case 0xf30f5a: /* cvtss2sd */
6613 case 0x0f5b: /* cvtdq2ps */
6614 case 0x660f5b: /* cvtps2dq */
6615 case 0xf30f5b: /* cvttps2dq */
6616 case 0x0f5c: /* subps */
6617 case 0x660f5c: /* subpd */
6618 case 0xf20f5c: /* subsd */
6619 case 0xf30f5c: /* subss */
6620 case 0x0f5d: /* minps */
6621 case 0x660f5d: /* minpd */
6622 case 0xf20f5d: /* minsd */
6623 case 0xf30f5d: /* minss */
6624 case 0x0f5e: /* divps */
6625 case 0x660f5e: /* divpd */
6626 case 0xf20f5e: /* divsd */
6627 case 0xf30f5e: /* divss */
6628 case 0x0f5f: /* maxps */
6629 case 0x660f5f: /* maxpd */
6630 case 0xf20f5f: /* maxsd */
6631 case 0xf30f5f: /* maxss */
6632 case 0x660f60: /* punpcklbw */
6633 case 0x660f61: /* punpcklwd */
6634 case 0x660f62: /* punpckldq */
6635 case 0x660f63: /* packsswb */
6636 case 0x660f64: /* pcmpgtb */
6637 case 0x660f65: /* pcmpgtw */
6638 case 0x660f66: /* pcmpgtd */
6639 case 0x660f67: /* packuswb */
6640 case 0x660f68: /* punpckhbw */
6641 case 0x660f69: /* punpckhwd */
6642 case 0x660f6a: /* punpckhdq */
6643 case 0x660f6b: /* packssdw */
6644 case 0x660f6c: /* punpcklqdq */
6645 case 0x660f6d: /* punpckhqdq */
6646 case 0x660f6e: /* movd */
6647 case 0x660f6f: /* movdqa */
6648 case 0xf30f6f: /* movdqu */
6649 case 0x660f70: /* pshufd */
6650 case 0xf20f70: /* pshuflw */
6651 case 0xf30f70: /* pshufhw */
6652 case 0x660f74: /* pcmpeqb */
6653 case 0x660f75: /* pcmpeqw */
6654 case 0x660f76: /* pcmpeqd */
6655 case 0x660f7c: /* haddpd */
6656 case 0xf20f7c: /* haddps */
6657 case 0x660f7d: /* hsubpd */
6658 case 0xf20f7d: /* hsubps */
6659 case 0xf30f7e: /* movq */
6660 case 0x0fc2: /* cmpps */
6661 case 0x660fc2: /* cmppd */
6662 case 0xf20fc2: /* cmpsd */
6663 case 0xf30fc2: /* cmpss */
6664 case 0x660fc4: /* pinsrw */
6665 case 0x0fc6: /* shufps */
6666 case 0x660fc6: /* shufpd */
6667 case 0x660fd0: /* addsubpd */
6668 case 0xf20fd0: /* addsubps */
6669 case 0x660fd1: /* psrlw */
6670 case 0x660fd2: /* psrld */
6671 case 0x660fd3: /* psrlq */
6672 case 0x660fd4: /* paddq */
6673 case 0x660fd5: /* pmullw */
6674 case 0xf30fd6: /* movq2dq */
6675 case 0x660fd8: /* psubusb */
6676 case 0x660fd9: /* psubusw */
6677 case 0x660fda: /* pminub */
6678 case 0x660fdb: /* pand */
6679 case 0x660fdc: /* paddusb */
6680 case 0x660fdd: /* paddusw */
6681 case 0x660fde: /* pmaxub */
6682 case 0x660fdf: /* pandn */
6683 case 0x660fe0: /* pavgb */
6684 case 0x660fe1: /* psraw */
6685 case 0x660fe2: /* psrad */
6686 case 0x660fe3: /* pavgw */
6687 case 0x660fe4: /* pmulhuw */
6688 case 0x660fe5: /* pmulhw */
6689 case 0x660fe6: /* cvttpd2dq */
6690 case 0xf20fe6: /* cvtpd2dq */
6691 case 0xf30fe6: /* cvtdq2pd */
6692 case 0x660fe8: /* psubsb */
6693 case 0x660fe9: /* psubsw */
6694 case 0x660fea: /* pminsw */
6695 case 0x660feb: /* por */
6696 case 0x660fec: /* paddsb */
6697 case 0x660fed: /* paddsw */
6698 case 0x660fee: /* pmaxsw */
6699 case 0x660fef: /* pxor */
6700 case 0xf20ff0: /* lddqu */
6701 case 0x660ff1: /* psllw */
6702 case 0x660ff2: /* pslld */
6703 case 0x660ff3: /* psllq */
6704 case 0x660ff4: /* pmuludq */
6705 case 0x660ff5: /* pmaddwd */
6706 case 0x660ff6: /* psadbw */
6707 case 0x660ff8: /* psubb */
6708 case 0x660ff9: /* psubw */
6709 case 0x660ffa: /* psubd */
6710 case 0x660ffb: /* psubq */
6711 case 0x660ffc: /* paddb */
6712 case 0x660ffd: /* paddw */
6713 case 0x660ffe: /* paddd */
6714 if (i386_record_modrm (&ir))
6715 return -1;
6716 ir.reg |= rex_r;
6717 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
6718 goto no_support;
6719 record_arch_list_add_reg (ir.regcache,
6720 I387_XMM0_REGNUM (tdep) + ir.reg);
6721 if ((opcode & 0xfffffffc) == 0x660f3a60)
6722 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6723 break;
6724
6725 case 0x0f11: /* movups */
6726 case 0x660f11: /* movupd */
6727 case 0xf30f11: /* movss */
6728 case 0xf20f11: /* movsd */
6729 case 0x0f13: /* movlps */
6730 case 0x660f13: /* movlpd */
6731 case 0x0f17: /* movhps */
6732 case 0x660f17: /* movhpd */
6733 case 0x0f29: /* movaps */
6734 case 0x660f29: /* movapd */
6735 case 0x660f3a14: /* pextrb */
6736 case 0x660f3a15: /* pextrw */
6737 case 0x660f3a16: /* pextrd pextrq */
6738 case 0x660f3a17: /* extractps */
6739 case 0x660f7f: /* movdqa */
6740 case 0xf30f7f: /* movdqu */
6741 if (i386_record_modrm (&ir))
6742 return -1;
6743 if (ir.mod == 3)
6744 {
6745 if (opcode == 0x0f13 || opcode == 0x660f13
6746 || opcode == 0x0f17 || opcode == 0x660f17)
6747 goto no_support;
6748 ir.rm |= ir.rex_b;
6749 if (!i386_xmm_regnum_p (gdbarch,
6750 I387_XMM0_REGNUM (tdep) + ir.rm))
6751 goto no_support;
6752 record_arch_list_add_reg (ir.regcache,
6753 I387_XMM0_REGNUM (tdep) + ir.rm);
6754 }
6755 else
6756 {
6757 switch (opcode)
6758 {
6759 case 0x660f3a14:
6760 ir.ot = OT_BYTE;
6761 break;
6762 case 0x660f3a15:
6763 ir.ot = OT_WORD;
6764 break;
6765 case 0x660f3a16:
6766 ir.ot = OT_LONG;
6767 break;
6768 case 0x660f3a17:
6769 ir.ot = OT_QUAD;
6770 break;
6771 default:
6772 ir.ot = OT_DQUAD;
6773 break;
6774 }
6775 if (i386_record_lea_modrm (&ir))
6776 return -1;
6777 }
6778 break;
6779
6780 case 0x0f2b: /* movntps */
6781 case 0x660f2b: /* movntpd */
6782 case 0x0fe7: /* movntq */
6783 case 0x660fe7: /* movntdq */
6784 if (ir.mod == 3)
6785 goto no_support;
6786 if (opcode == 0x0fe7)
6787 ir.ot = OT_QUAD;
6788 else
6789 ir.ot = OT_DQUAD;
6790 if (i386_record_lea_modrm (&ir))
6791 return -1;
6792 break;
6793
6794 case 0xf30f2c: /* cvttss2si */
6795 case 0xf20f2c: /* cvttsd2si */
6796 case 0xf30f2d: /* cvtss2si */
6797 case 0xf20f2d: /* cvtsd2si */
6798 case 0xf20f38f0: /* crc32 */
6799 case 0xf20f38f1: /* crc32 */
6800 case 0x0f50: /* movmskps */
6801 case 0x660f50: /* movmskpd */
6802 case 0x0fc5: /* pextrw */
6803 case 0x660fc5: /* pextrw */
6804 case 0x0fd7: /* pmovmskb */
6805 case 0x660fd7: /* pmovmskb */
6806 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6807 break;
6808
6809 case 0x0f3800: /* pshufb */
6810 case 0x0f3801: /* phaddw */
6811 case 0x0f3802: /* phaddd */
6812 case 0x0f3803: /* phaddsw */
6813 case 0x0f3804: /* pmaddubsw */
6814 case 0x0f3805: /* phsubw */
6815 case 0x0f3806: /* phsubd */
6816 case 0x0f3807: /* phsubsw */
6817 case 0x0f3808: /* psignb */
6818 case 0x0f3809: /* psignw */
6819 case 0x0f380a: /* psignd */
6820 case 0x0f380b: /* pmulhrsw */
6821 case 0x0f381c: /* pabsb */
6822 case 0x0f381d: /* pabsw */
6823 case 0x0f381e: /* pabsd */
6824 case 0x0f382b: /* packusdw */
6825 case 0x0f3830: /* pmovzxbw */
6826 case 0x0f3831: /* pmovzxbd */
6827 case 0x0f3832: /* pmovzxbq */
6828 case 0x0f3833: /* pmovzxwd */
6829 case 0x0f3834: /* pmovzxwq */
6830 case 0x0f3835: /* pmovzxdq */
6831 case 0x0f3837: /* pcmpgtq */
6832 case 0x0f3838: /* pminsb */
6833 case 0x0f3839: /* pminsd */
6834 case 0x0f383a: /* pminuw */
6835 case 0x0f383b: /* pminud */
6836 case 0x0f383c: /* pmaxsb */
6837 case 0x0f383d: /* pmaxsd */
6838 case 0x0f383e: /* pmaxuw */
6839 case 0x0f383f: /* pmaxud */
6840 case 0x0f3840: /* pmulld */
6841 case 0x0f3841: /* phminposuw */
6842 case 0x0f3a0f: /* palignr */
6843 case 0x0f60: /* punpcklbw */
6844 case 0x0f61: /* punpcklwd */
6845 case 0x0f62: /* punpckldq */
6846 case 0x0f63: /* packsswb */
6847 case 0x0f64: /* pcmpgtb */
6848 case 0x0f65: /* pcmpgtw */
6849 case 0x0f66: /* pcmpgtd */
6850 case 0x0f67: /* packuswb */
6851 case 0x0f68: /* punpckhbw */
6852 case 0x0f69: /* punpckhwd */
6853 case 0x0f6a: /* punpckhdq */
6854 case 0x0f6b: /* packssdw */
6855 case 0x0f6e: /* movd */
6856 case 0x0f6f: /* movq */
6857 case 0x0f70: /* pshufw */
6858 case 0x0f74: /* pcmpeqb */
6859 case 0x0f75: /* pcmpeqw */
6860 case 0x0f76: /* pcmpeqd */
6861 case 0x0fc4: /* pinsrw */
6862 case 0x0fd1: /* psrlw */
6863 case 0x0fd2: /* psrld */
6864 case 0x0fd3: /* psrlq */
6865 case 0x0fd4: /* paddq */
6866 case 0x0fd5: /* pmullw */
6867 case 0xf20fd6: /* movdq2q */
6868 case 0x0fd8: /* psubusb */
6869 case 0x0fd9: /* psubusw */
6870 case 0x0fda: /* pminub */
6871 case 0x0fdb: /* pand */
6872 case 0x0fdc: /* paddusb */
6873 case 0x0fdd: /* paddusw */
6874 case 0x0fde: /* pmaxub */
6875 case 0x0fdf: /* pandn */
6876 case 0x0fe0: /* pavgb */
6877 case 0x0fe1: /* psraw */
6878 case 0x0fe2: /* psrad */
6879 case 0x0fe3: /* pavgw */
6880 case 0x0fe4: /* pmulhuw */
6881 case 0x0fe5: /* pmulhw */
6882 case 0x0fe8: /* psubsb */
6883 case 0x0fe9: /* psubsw */
6884 case 0x0fea: /* pminsw */
6885 case 0x0feb: /* por */
6886 case 0x0fec: /* paddsb */
6887 case 0x0fed: /* paddsw */
6888 case 0x0fee: /* pmaxsw */
6889 case 0x0fef: /* pxor */
6890 case 0x0ff1: /* psllw */
6891 case 0x0ff2: /* pslld */
6892 case 0x0ff3: /* psllq */
6893 case 0x0ff4: /* pmuludq */
6894 case 0x0ff5: /* pmaddwd */
6895 case 0x0ff6: /* psadbw */
6896 case 0x0ff8: /* psubb */
6897 case 0x0ff9: /* psubw */
6898 case 0x0ffa: /* psubd */
6899 case 0x0ffb: /* psubq */
6900 case 0x0ffc: /* paddb */
6901 case 0x0ffd: /* paddw */
6902 case 0x0ffe: /* paddd */
6903 if (i386_record_modrm (&ir))
6904 return -1;
6905 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6906 goto no_support;
6907 record_arch_list_add_reg (ir.regcache,
6908 I387_MM0_REGNUM (tdep) + ir.reg);
6909 break;
6910
6911 case 0x0f71: /* psllw */
6912 case 0x0f72: /* pslld */
6913 case 0x0f73: /* psllq */
6914 if (i386_record_modrm (&ir))
6915 return -1;
6916 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6917 goto no_support;
6918 record_arch_list_add_reg (ir.regcache,
6919 I387_MM0_REGNUM (tdep) + ir.rm);
6920 break;
6921
6922 case 0x660f71: /* psllw */
6923 case 0x660f72: /* pslld */
6924 case 0x660f73: /* psllq */
6925 if (i386_record_modrm (&ir))
6926 return -1;
6927 ir.rm |= ir.rex_b;
6928 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6929 goto no_support;
6930 record_arch_list_add_reg (ir.regcache,
6931 I387_XMM0_REGNUM (tdep) + ir.rm);
6932 break;
6933
6934 case 0x0f7e: /* movd */
6935 case 0x660f7e: /* movd */
6936 if (i386_record_modrm (&ir))
6937 return -1;
6938 if (ir.mod == 3)
6939 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6940 else
6941 {
6942 if (ir.dflag == 2)
6943 ir.ot = OT_QUAD;
6944 else
6945 ir.ot = OT_LONG;
6946 if (i386_record_lea_modrm (&ir))
6947 return -1;
6948 }
6949 break;
6950
6951 case 0x0f7f: /* movq */
6952 if (i386_record_modrm (&ir))
6953 return -1;
6954 if (ir.mod == 3)
6955 {
6956 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6957 goto no_support;
6958 record_arch_list_add_reg (ir.regcache,
6959 I387_MM0_REGNUM (tdep) + ir.rm);
6960 }
6961 else
6962 {
6963 ir.ot = OT_QUAD;
6964 if (i386_record_lea_modrm (&ir))
6965 return -1;
6966 }
6967 break;
6968
6969 case 0xf30fb8: /* popcnt */
6970 if (i386_record_modrm (&ir))
6971 return -1;
6972 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6973 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6974 break;
6975
6976 case 0x660fd6: /* movq */
6977 if (i386_record_modrm (&ir))
6978 return -1;
6979 if (ir.mod == 3)
6980 {
6981 ir.rm |= ir.rex_b;
6982 if (!i386_xmm_regnum_p (gdbarch,
6983 I387_XMM0_REGNUM (tdep) + ir.rm))
6984 goto no_support;
6985 record_arch_list_add_reg (ir.regcache,
6986 I387_XMM0_REGNUM (tdep) + ir.rm);
6987 }
6988 else
6989 {
6990 ir.ot = OT_QUAD;
6991 if (i386_record_lea_modrm (&ir))
6992 return -1;
6993 }
6994 break;
6995
6996 case 0x660f3817: /* ptest */
6997 case 0x0f2e: /* ucomiss */
6998 case 0x660f2e: /* ucomisd */
6999 case 0x0f2f: /* comiss */
7000 case 0x660f2f: /* comisd */
7001 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7002 break;
7003
7004 case 0x0ff7: /* maskmovq */
7005 regcache_raw_read_unsigned (ir.regcache,
7006 ir.regmap[X86_RECORD_REDI_REGNUM],
7007 &addr);
7008 if (record_arch_list_add_mem (addr, 64))
7009 return -1;
7010 break;
7011
7012 case 0x660ff7: /* maskmovdqu */
7013 regcache_raw_read_unsigned (ir.regcache,
7014 ir.regmap[X86_RECORD_REDI_REGNUM],
7015 &addr);
7016 if (record_arch_list_add_mem (addr, 128))
7017 return -1;
7018 break;
7019
7020 default:
7021 goto no_support;
7022 break;
7023 }
7024 break;
7025
7026 default:
7027 goto no_support;
7028 break;
7029 }
7030
7031 /* In the future, maybe still need to deal with need_dasm. */
7032 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7033 if (record_arch_list_add_end ())
7034 return -1;
7035
7036 return 0;
7037
7038 no_support:
7039 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7040 "at address %s.\n"),
7041 (unsigned int) (opcode),
7042 paddress (gdbarch, ir.orig_addr));
7043 return -1;
7044 }
7045
7046 static const int i386_record_regmap[] =
7047 {
7048 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7049 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7050 0, 0, 0, 0, 0, 0, 0, 0,
7051 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7052 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7053 };
7054
7055 /* Check that the given address appears suitable for a fast
7056 tracepoint, which on x86 means that we need an instruction of at
7057 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7058 jump and not have to worry about program jumps to an address in the
7059 middle of the tracepoint jump. Returns 1 if OK, and writes a size
7060 of instruction to replace, and 0 if not, plus an explanatory
7061 string. */
7062
7063 static int
7064 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7065 CORE_ADDR addr, int *isize, char **msg)
7066 {
7067 int len, jumplen;
7068 static struct ui_file *gdb_null = NULL;
7069
7070 /* This is based on the target agent using a 4-byte relative jump.
7071 Alternate future possibilities include 8-byte offset for x86-84,
7072 or 3-byte jumps if the program has trampoline space close by. */
7073 jumplen = 5;
7074
7075 /* Dummy file descriptor for the disassembler. */
7076 if (!gdb_null)
7077 gdb_null = ui_file_new ();
7078
7079 /* Check for fit. */
7080 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7081 if (len < jumplen)
7082 {
7083 /* Return a bit of target-specific detail to add to the caller's
7084 generic failure message. */
7085 if (msg)
7086 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7087 "need at least %d bytes for the jump"),
7088 len, jumplen);
7089 return 0;
7090 }
7091
7092 if (isize)
7093 *isize = len;
7094 if (msg)
7095 *msg = NULL;
7096 return 1;
7097 }
7098
7099 static int
7100 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7101 struct tdesc_arch_data *tdesc_data)
7102 {
7103 const struct target_desc *tdesc = tdep->tdesc;
7104 const struct tdesc_feature *feature_core;
7105 const struct tdesc_feature *feature_sse, *feature_avx;
7106 int i, num_regs, valid_p;
7107
7108 if (! tdesc_has_registers (tdesc))
7109 return 0;
7110
7111 /* Get core registers. */
7112 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7113 if (feature_core == NULL)
7114 return 0;
7115
7116 /* Get SSE registers. */
7117 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7118
7119 /* Try AVX registers. */
7120 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7121
7122 valid_p = 1;
7123
7124 /* The XCR0 bits. */
7125 if (feature_avx)
7126 {
7127 /* AVX register description requires SSE register description. */
7128 if (!feature_sse)
7129 return 0;
7130
7131 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7132
7133 /* It may have been set by OSABI initialization function. */
7134 if (tdep->num_ymm_regs == 0)
7135 {
7136 tdep->ymmh_register_names = i386_ymmh_names;
7137 tdep->num_ymm_regs = 8;
7138 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7139 }
7140
7141 for (i = 0; i < tdep->num_ymm_regs; i++)
7142 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7143 tdep->ymm0h_regnum + i,
7144 tdep->ymmh_register_names[i]);
7145 }
7146 else if (feature_sse)
7147 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7148 else
7149 {
7150 tdep->xcr0 = I386_XSTATE_X87_MASK;
7151 tdep->num_xmm_regs = 0;
7152 }
7153
7154 num_regs = tdep->num_core_regs;
7155 for (i = 0; i < num_regs; i++)
7156 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7157 tdep->register_names[i]);
7158
7159 if (feature_sse)
7160 {
7161 /* Need to include %mxcsr, so add one. */
7162 num_regs += tdep->num_xmm_regs + 1;
7163 for (; i < num_regs; i++)
7164 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7165 tdep->register_names[i]);
7166 }
7167
7168 return valid_p;
7169 }
7170
7171 \f
7172 static struct gdbarch *
7173 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7174 {
7175 struct gdbarch_tdep *tdep;
7176 struct gdbarch *gdbarch;
7177 struct tdesc_arch_data *tdesc_data;
7178 const struct target_desc *tdesc;
7179 int mm0_regnum;
7180 int ymm0_regnum;
7181
7182 /* If there is already a candidate, use it. */
7183 arches = gdbarch_list_lookup_by_info (arches, &info);
7184 if (arches != NULL)
7185 return arches->gdbarch;
7186
7187 /* Allocate space for the new architecture. */
7188 tdep = XCALLOC (1, struct gdbarch_tdep);
7189 gdbarch = gdbarch_alloc (&info, tdep);
7190
7191 /* General-purpose registers. */
7192 tdep->gregset = NULL;
7193 tdep->gregset_reg_offset = NULL;
7194 tdep->gregset_num_regs = I386_NUM_GREGS;
7195 tdep->sizeof_gregset = 0;
7196
7197 /* Floating-point registers. */
7198 tdep->fpregset = NULL;
7199 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7200
7201 tdep->xstateregset = NULL;
7202
7203 /* The default settings include the FPU registers, the MMX registers
7204 and the SSE registers. This can be overridden for a specific ABI
7205 by adjusting the members `st0_regnum', `mm0_regnum' and
7206 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7207 will show up in the output of "info all-registers". */
7208
7209 tdep->st0_regnum = I386_ST0_REGNUM;
7210
7211 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7212 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7213
7214 tdep->jb_pc_offset = -1;
7215 tdep->struct_return = pcc_struct_return;
7216 tdep->sigtramp_start = 0;
7217 tdep->sigtramp_end = 0;
7218 tdep->sigtramp_p = i386_sigtramp_p;
7219 tdep->sigcontext_addr = NULL;
7220 tdep->sc_reg_offset = NULL;
7221 tdep->sc_pc_offset = -1;
7222 tdep->sc_sp_offset = -1;
7223
7224 tdep->xsave_xcr0_offset = -1;
7225
7226 tdep->record_regmap = i386_record_regmap;
7227
7228 /* The format used for `long double' on almost all i386 targets is
7229 the i387 extended floating-point format. In fact, of all targets
7230 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7231 on having a `long double' that's not `long' at all. */
7232 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7233
7234 /* Although the i387 extended floating-point has only 80 significant
7235 bits, a `long double' actually takes up 96, probably to enforce
7236 alignment. */
7237 set_gdbarch_long_double_bit (gdbarch, 96);
7238
7239 /* Register numbers of various important registers. */
7240 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7241 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7242 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7243 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7244
7245 /* NOTE: kettenis/20040418: GCC does have two possible register
7246 numbering schemes on the i386: dbx and SVR4. These schemes
7247 differ in how they number %ebp, %esp, %eflags, and the
7248 floating-point registers, and are implemented by the arrays
7249 dbx_register_map[] and svr4_dbx_register_map in
7250 gcc/config/i386.c. GCC also defines a third numbering scheme in
7251 gcc/config/i386.c, which it designates as the "default" register
7252 map used in 64bit mode. This last register numbering scheme is
7253 implemented in dbx64_register_map, and is used for AMD64; see
7254 amd64-tdep.c.
7255
7256 Currently, each GCC i386 target always uses the same register
7257 numbering scheme across all its supported debugging formats
7258 i.e. SDB (COFF), stabs and DWARF 2. This is because
7259 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7260 DBX_REGISTER_NUMBER macro which is defined by each target's
7261 respective config header in a manner independent of the requested
7262 output debugging format.
7263
7264 This does not match the arrangement below, which presumes that
7265 the SDB and stabs numbering schemes differ from the DWARF and
7266 DWARF 2 ones. The reason for this arrangement is that it is
7267 likely to get the numbering scheme for the target's
7268 default/native debug format right. For targets where GCC is the
7269 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7270 targets where the native toolchain uses a different numbering
7271 scheme for a particular debug format (stabs-in-ELF on Solaris)
7272 the defaults below will have to be overridden, like
7273 i386_elf_init_abi() does. */
7274
7275 /* Use the dbx register numbering scheme for stabs and COFF. */
7276 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7277 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7278
7279 /* Use the SVR4 register numbering scheme for DWARF 2. */
7280 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7281
7282 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7283 be in use on any of the supported i386 targets. */
7284
7285 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7286
7287 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7288
7289 /* Call dummy code. */
7290 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7291
7292 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7293 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7294 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7295
7296 set_gdbarch_return_value (gdbarch, i386_return_value);
7297
7298 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7299
7300 /* Stack grows downward. */
7301 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7302
7303 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7304 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7305 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7306
7307 set_gdbarch_frame_args_skip (gdbarch, 8);
7308
7309 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7310
7311 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7312
7313 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7314
7315 /* Add the i386 register groups. */
7316 i386_add_reggroups (gdbarch);
7317 tdep->register_reggroup_p = i386_register_reggroup_p;
7318
7319 /* Helper for function argument information. */
7320 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7321
7322 /* Hook the function epilogue frame unwinder. This unwinder is
7323 appended to the list first, so that it supercedes the DWARF
7324 unwinder in function epilogues (where the DWARF unwinder
7325 currently fails). */
7326 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7327
7328 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7329 to the list before the prologue-based unwinders, so that DWARF
7330 CFI info will be used if it is available. */
7331 dwarf2_append_unwinders (gdbarch);
7332
7333 frame_base_set_default (gdbarch, &i386_frame_base);
7334
7335 /* Pseudo registers may be changed by amd64_init_abi. */
7336 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7337 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7338
7339 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7340 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7341
7342 /* Override the normal target description method to make the AVX
7343 upper halves anonymous. */
7344 set_gdbarch_register_name (gdbarch, i386_register_name);
7345
7346 /* Even though the default ABI only includes general-purpose registers,
7347 floating-point registers and the SSE registers, we have to leave a
7348 gap for the upper AVX registers. */
7349 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7350
7351 /* Get the x86 target description from INFO. */
7352 tdesc = info.target_desc;
7353 if (! tdesc_has_registers (tdesc))
7354 tdesc = tdesc_i386;
7355 tdep->tdesc = tdesc;
7356
7357 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7358 tdep->register_names = i386_register_names;
7359
7360 /* No upper YMM registers. */
7361 tdep->ymmh_register_names = NULL;
7362 tdep->ymm0h_regnum = -1;
7363
7364 tdep->num_byte_regs = 8;
7365 tdep->num_word_regs = 8;
7366 tdep->num_dword_regs = 0;
7367 tdep->num_mmx_regs = 8;
7368 tdep->num_ymm_regs = 0;
7369
7370 tdesc_data = tdesc_data_alloc ();
7371
7372 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7373
7374 /* Hook in ABI-specific overrides, if they have been registered. */
7375 info.tdep_info = (void *) tdesc_data;
7376 gdbarch_init_osabi (info, gdbarch);
7377
7378 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7379 {
7380 tdesc_data_cleanup (tdesc_data);
7381 xfree (tdep);
7382 gdbarch_free (gdbarch);
7383 return NULL;
7384 }
7385
7386 /* Wire in pseudo registers. Number of pseudo registers may be
7387 changed. */
7388 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7389 + tdep->num_word_regs
7390 + tdep->num_dword_regs
7391 + tdep->num_mmx_regs
7392 + tdep->num_ymm_regs));
7393
7394 /* Target description may be changed. */
7395 tdesc = tdep->tdesc;
7396
7397 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7398
7399 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7400 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7401
7402 /* Make %al the first pseudo-register. */
7403 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7404 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7405
7406 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7407 if (tdep->num_dword_regs)
7408 {
7409 /* Support dword pseudo-register if it hasn't been disabled. */
7410 tdep->eax_regnum = ymm0_regnum;
7411 ymm0_regnum += tdep->num_dword_regs;
7412 }
7413 else
7414 tdep->eax_regnum = -1;
7415
7416 mm0_regnum = ymm0_regnum;
7417 if (tdep->num_ymm_regs)
7418 {
7419 /* Support YMM pseudo-register if it is available. */
7420 tdep->ymm0_regnum = ymm0_regnum;
7421 mm0_regnum += tdep->num_ymm_regs;
7422 }
7423 else
7424 tdep->ymm0_regnum = -1;
7425
7426 if (tdep->num_mmx_regs != 0)
7427 {
7428 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7429 tdep->mm0_regnum = mm0_regnum;
7430 }
7431 else
7432 tdep->mm0_regnum = -1;
7433
7434 /* Hook in the legacy prologue-based unwinders last (fallback). */
7435 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7436 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7437 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7438
7439 /* If we have a register mapping, enable the generic core file
7440 support, unless it has already been enabled. */
7441 if (tdep->gregset_reg_offset
7442 && !gdbarch_regset_from_core_section_p (gdbarch))
7443 set_gdbarch_regset_from_core_section (gdbarch,
7444 i386_regset_from_core_section);
7445
7446 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7447 i386_skip_permanent_breakpoint);
7448
7449 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7450 i386_fast_tracepoint_valid_at);
7451
7452 return gdbarch;
7453 }
7454
7455 static enum gdb_osabi
7456 i386_coff_osabi_sniffer (bfd *abfd)
7457 {
7458 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7459 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7460 return GDB_OSABI_GO32;
7461
7462 return GDB_OSABI_UNKNOWN;
7463 }
7464 \f
7465
7466 /* Provide a prototype to silence -Wmissing-prototypes. */
7467 void _initialize_i386_tdep (void);
7468
7469 void
7470 _initialize_i386_tdep (void)
7471 {
7472 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7473
7474 /* Add the variable that controls the disassembly flavor. */
7475 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7476 &disassembly_flavor, _("\
7477 Set the disassembly flavor."), _("\
7478 Show the disassembly flavor."), _("\
7479 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7480 NULL,
7481 NULL, /* FIXME: i18n: */
7482 &setlist, &showlist);
7483
7484 /* Add the variable that controls the convention for returning
7485 structs. */
7486 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7487 &struct_convention, _("\
7488 Set the convention for returning small structs."), _("\
7489 Show the convention for returning small structs."), _("\
7490 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7491 is \"default\"."),
7492 NULL,
7493 NULL, /* FIXME: i18n: */
7494 &setlist, &showlist);
7495
7496 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7497 i386_coff_osabi_sniffer);
7498
7499 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7500 i386_svr4_init_abi);
7501 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7502 i386_go32_init_abi);
7503
7504 /* Initialize the i386-specific register groups. */
7505 i386_init_reggroups ();
7506
7507 /* Initialize the standard target descriptions. */
7508 initialize_tdesc_i386 ();
7509 initialize_tdesc_i386_mmx ();
7510 initialize_tdesc_i386_avx ();
7511
7512 /* Tell remote stub that we support XML target description. */
7513 register_remote_support_xml ("i386");
7514 }
This page took 0.211114 seconds and 4 git commands to generate.