3c12c7003f1138a83bc1c4c0484ea996ada02dd5
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "objfiles.h"
29 #include "target.h"
30 #include "floatformat.h"
31 #include "symfile.h"
32 #include "symtab.h"
33 #include "gdbcmd.h"
34 #include "command.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "doublest.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40
41 #include "i386-tdep.h"
42 #include "i387-tdep.h"
43
44 /* Names of the registers. The first 10 registers match the register
45 numbering scheme used by GCC for stabs and DWARF. */
46 static char *i386_register_names[] =
47 {
48 "eax", "ecx", "edx", "ebx",
49 "esp", "ebp", "esi", "edi",
50 "eip", "eflags", "cs", "ss",
51 "ds", "es", "fs", "gs",
52 "st0", "st1", "st2", "st3",
53 "st4", "st5", "st6", "st7",
54 "fctrl", "fstat", "ftag", "fiseg",
55 "fioff", "foseg", "fooff", "fop",
56 "xmm0", "xmm1", "xmm2", "xmm3",
57 "xmm4", "xmm5", "xmm6", "xmm7",
58 "mxcsr"
59 };
60
61 /* MMX registers. */
62
63 static char *i386_mmx_names[] =
64 {
65 "mm0", "mm1", "mm2", "mm3",
66 "mm4", "mm5", "mm6", "mm7"
67 };
68 static const int mmx_num_regs = (sizeof (i386_mmx_names)
69 / sizeof (i386_mmx_names[0]));
70 #define MM0_REGNUM (NUM_REGS)
71
72 static int
73 i386_mmx_regnum_p (int reg)
74 {
75 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
76 }
77
78 /* FP register? */
79
80 int
81 i386_fp_regnum_p (int regnum)
82 {
83 return (regnum < NUM_REGS
84 && (FP0_REGNUM && FP0_REGNUM <= (regnum) && (regnum) < FPC_REGNUM));
85 }
86
87 int
88 i386_fpc_regnum_p (int regnum)
89 {
90 return (regnum < NUM_REGS
91 && (FPC_REGNUM <= (regnum) && (regnum) < XMM0_REGNUM));
92 }
93
94 /* SSE register? */
95
96 int
97 i386_sse_regnum_p (int regnum)
98 {
99 return (regnum < NUM_REGS
100 && (XMM0_REGNUM <= (regnum) && (regnum) < MXCSR_REGNUM));
101 }
102
103 int
104 i386_mxcsr_regnum_p (int regnum)
105 {
106 return (regnum < NUM_REGS
107 && (regnum == MXCSR_REGNUM));
108 }
109
110 /* Return the name of register REG. */
111
112 const char *
113 i386_register_name (int reg)
114 {
115 if (reg < 0)
116 return NULL;
117 if (i386_mmx_regnum_p (reg))
118 return i386_mmx_names[reg - MM0_REGNUM];
119 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
120 return NULL;
121
122 return i386_register_names[reg];
123 }
124
125 /* Convert stabs register number REG to the appropriate register
126 number used by GDB. */
127
128 static int
129 i386_stab_reg_to_regnum (int reg)
130 {
131 /* This implements what GCC calls the "default" register map. */
132 if (reg >= 0 && reg <= 7)
133 {
134 /* General registers. */
135 return reg;
136 }
137 else if (reg >= 12 && reg <= 19)
138 {
139 /* Floating-point registers. */
140 return reg - 12 + FP0_REGNUM;
141 }
142 else if (reg >= 21 && reg <= 28)
143 {
144 /* SSE registers. */
145 return reg - 21 + XMM0_REGNUM;
146 }
147 else if (reg >= 29 && reg <= 36)
148 {
149 /* MMX registers. */
150 return reg - 29 + MM0_REGNUM;
151 }
152
153 /* This will hopefully provoke a warning. */
154 return NUM_REGS + NUM_PSEUDO_REGS;
155 }
156
157 /* Convert DWARF register number REG to the appropriate register
158 number used by GDB. */
159
160 static int
161 i386_dwarf_reg_to_regnum (int reg)
162 {
163 /* The DWARF register numbering includes %eip and %eflags, and
164 numbers the floating point registers differently. */
165 if (reg >= 0 && reg <= 9)
166 {
167 /* General registers. */
168 return reg;
169 }
170 else if (reg >= 11 && reg <= 18)
171 {
172 /* Floating-point registers. */
173 return reg - 11 + FP0_REGNUM;
174 }
175 else if (reg >= 21)
176 {
177 /* The SSE and MMX registers have identical numbers as in stabs. */
178 return i386_stab_reg_to_regnum (reg);
179 }
180
181 /* This will hopefully provoke a warning. */
182 return NUM_REGS + NUM_PSEUDO_REGS;
183 }
184 \f
185
186 /* This is the variable that is set with "set disassembly-flavor", and
187 its legitimate values. */
188 static const char att_flavor[] = "att";
189 static const char intel_flavor[] = "intel";
190 static const char *valid_flavors[] =
191 {
192 att_flavor,
193 intel_flavor,
194 NULL
195 };
196 static const char *disassembly_flavor = att_flavor;
197
198 /* Stdio style buffering was used to minimize calls to ptrace, but
199 this buffering did not take into account that the code section
200 being accessed may not be an even number of buffers long (even if
201 the buffer is only sizeof(int) long). In cases where the code
202 section size happened to be a non-integral number of buffers long,
203 attempting to read the last buffer would fail. Simply using
204 target_read_memory and ignoring errors, rather than read_memory, is
205 not the correct solution, since legitimate access errors would then
206 be totally ignored. To properly handle this situation and continue
207 to use buffering would require that this code be able to determine
208 the minimum code section size granularity (not the alignment of the
209 section itself, since the actual failing case that pointed out this
210 problem had a section alignment of 4 but was not a multiple of 4
211 bytes long), on a target by target basis, and then adjust it's
212 buffer size accordingly. This is messy, but potentially feasible.
213 It probably needs the bfd library's help and support. For now, the
214 buffer size is set to 1. (FIXME -fnf) */
215
216 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
217 static CORE_ADDR codestream_next_addr;
218 static CORE_ADDR codestream_addr;
219 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
220 static int codestream_off;
221 static int codestream_cnt;
222
223 #define codestream_tell() (codestream_addr + codestream_off)
224 #define codestream_peek() \
225 (codestream_cnt == 0 ? \
226 codestream_fill(1) : codestream_buf[codestream_off])
227 #define codestream_get() \
228 (codestream_cnt-- == 0 ? \
229 codestream_fill(0) : codestream_buf[codestream_off++])
230
231 static unsigned char
232 codestream_fill (int peek_flag)
233 {
234 codestream_addr = codestream_next_addr;
235 codestream_next_addr += CODESTREAM_BUFSIZ;
236 codestream_off = 0;
237 codestream_cnt = CODESTREAM_BUFSIZ;
238 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
239
240 if (peek_flag)
241 return (codestream_peek ());
242 else
243 return (codestream_get ());
244 }
245
246 static void
247 codestream_seek (CORE_ADDR place)
248 {
249 codestream_next_addr = place / CODESTREAM_BUFSIZ;
250 codestream_next_addr *= CODESTREAM_BUFSIZ;
251 codestream_cnt = 0;
252 codestream_fill (1);
253 while (codestream_tell () != place)
254 codestream_get ();
255 }
256
257 static void
258 codestream_read (unsigned char *buf, int count)
259 {
260 unsigned char *p;
261 int i;
262 p = buf;
263 for (i = 0; i < count; i++)
264 *p++ = codestream_get ();
265 }
266 \f
267
268 /* If the next instruction is a jump, move to its target. */
269
270 static void
271 i386_follow_jump (void)
272 {
273 unsigned char buf[4];
274 long delta;
275
276 int data16;
277 CORE_ADDR pos;
278
279 pos = codestream_tell ();
280
281 data16 = 0;
282 if (codestream_peek () == 0x66)
283 {
284 codestream_get ();
285 data16 = 1;
286 }
287
288 switch (codestream_get ())
289 {
290 case 0xe9:
291 /* Relative jump: if data16 == 0, disp32, else disp16. */
292 if (data16)
293 {
294 codestream_read (buf, 2);
295 delta = extract_signed_integer (buf, 2);
296
297 /* Include the size of the jmp instruction (including the
298 0x66 prefix). */
299 pos += delta + 4;
300 }
301 else
302 {
303 codestream_read (buf, 4);
304 delta = extract_signed_integer (buf, 4);
305
306 pos += delta + 5;
307 }
308 break;
309 case 0xeb:
310 /* Relative jump, disp8 (ignore data16). */
311 codestream_read (buf, 1);
312 /* Sign-extend it. */
313 delta = extract_signed_integer (buf, 1);
314
315 pos += delta + 2;
316 break;
317 }
318 codestream_seek (pos);
319 }
320
321 /* Find & return the amount a local space allocated, and advance the
322 codestream to the first register push (if any).
323
324 If the entry sequence doesn't make sense, return -1, and leave
325 codestream pointer at a random spot. */
326
327 static long
328 i386_get_frame_setup (CORE_ADDR pc)
329 {
330 unsigned char op;
331
332 codestream_seek (pc);
333
334 i386_follow_jump ();
335
336 op = codestream_get ();
337
338 if (op == 0x58) /* popl %eax */
339 {
340 /* This function must start with
341
342 popl %eax 0x58
343 xchgl %eax, (%esp) 0x87 0x04 0x24
344 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
345
346 (the System V compiler puts out the second `xchg'
347 instruction, and the assembler doesn't try to optimize it, so
348 the 'sib' form gets generated). This sequence is used to get
349 the address of the return buffer for a function that returns
350 a structure. */
351 int pos;
352 unsigned char buf[4];
353 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
354 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
355
356 pos = codestream_tell ();
357 codestream_read (buf, 4);
358 if (memcmp (buf, proto1, 3) == 0)
359 pos += 3;
360 else if (memcmp (buf, proto2, 4) == 0)
361 pos += 4;
362
363 codestream_seek (pos);
364 op = codestream_get (); /* Update next opcode. */
365 }
366
367 if (op == 0x68 || op == 0x6a)
368 {
369 /* This function may start with
370
371 pushl constant
372 call _probe
373 addl $4, %esp
374
375 followed by
376
377 pushl %ebp
378
379 etc. */
380 int pos;
381 unsigned char buf[8];
382
383 /* Skip past the `pushl' instruction; it has either a one-byte
384 or a four-byte operand, depending on the opcode. */
385 pos = codestream_tell ();
386 if (op == 0x68)
387 pos += 4;
388 else
389 pos += 1;
390 codestream_seek (pos);
391
392 /* Read the following 8 bytes, which should be "call _probe" (6
393 bytes) followed by "addl $4,%esp" (2 bytes). */
394 codestream_read (buf, sizeof (buf));
395 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
396 pos += sizeof (buf);
397 codestream_seek (pos);
398 op = codestream_get (); /* Update next opcode. */
399 }
400
401 if (op == 0x55) /* pushl %ebp */
402 {
403 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
404 switch (codestream_get ())
405 {
406 case 0x8b:
407 if (codestream_get () != 0xec)
408 return -1;
409 break;
410 case 0x89:
411 if (codestream_get () != 0xe5)
412 return -1;
413 break;
414 default:
415 return -1;
416 }
417 /* Check for stack adjustment
418
419 subl $XXX, %esp
420
421 NOTE: You can't subtract a 16 bit immediate from a 32 bit
422 reg, so we don't have to worry about a data16 prefix. */
423 op = codestream_peek ();
424 if (op == 0x83)
425 {
426 /* `subl' with 8 bit immediate. */
427 codestream_get ();
428 if (codestream_get () != 0xec)
429 /* Some instruction starting with 0x83 other than `subl'. */
430 {
431 codestream_seek (codestream_tell () - 2);
432 return 0;
433 }
434 /* `subl' with signed byte immediate (though it wouldn't
435 make sense to be negative). */
436 return (codestream_get ());
437 }
438 else if (op == 0x81)
439 {
440 char buf[4];
441 /* Maybe it is `subl' with a 32 bit immedediate. */
442 codestream_get ();
443 if (codestream_get () != 0xec)
444 /* Some instruction starting with 0x81 other than `subl'. */
445 {
446 codestream_seek (codestream_tell () - 2);
447 return 0;
448 }
449 /* It is `subl' with a 32 bit immediate. */
450 codestream_read ((unsigned char *) buf, 4);
451 return extract_signed_integer (buf, 4);
452 }
453 else
454 {
455 return 0;
456 }
457 }
458 else if (op == 0xc8)
459 {
460 char buf[2];
461 /* `enter' with 16 bit unsigned immediate. */
462 codestream_read ((unsigned char *) buf, 2);
463 codestream_get (); /* Flush final byte of enter instruction. */
464 return extract_unsigned_integer (buf, 2);
465 }
466 return (-1);
467 }
468
469 /* Signal trampolines don't have a meaningful frame. The frame
470 pointer value we use is actually the frame pointer of the calling
471 frame -- that is, the frame which was in progress when the signal
472 trampoline was entered. GDB mostly treats this frame pointer value
473 as a magic cookie. We detect the case of a signal trampoline by
474 looking at the SIGNAL_HANDLER_CALLER field, which is set based on
475 PC_IN_SIGTRAMP.
476
477 When a signal trampoline is invoked from a frameless function, we
478 essentially have two frameless functions in a row. In this case,
479 we use the same magic cookie for three frames in a row. We detect
480 this case by seeing whether the next frame has
481 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
482 current frame is actually frameless. In this case, we need to get
483 the PC by looking at the SP register value stored in the signal
484 context.
485
486 This should work in most cases except in horrible situations where
487 a signal occurs just as we enter a function but before the frame
488 has been set up. Incidentally, that's just what happens when we
489 call a function from GDB with a signal pending (there's a test in
490 the testsuite that makes this happen). Therefore we pretend that
491 we have a frameless function if we're stopped at the start of a
492 function. */
493
494 /* Return non-zero if we're dealing with a frameless signal, that is,
495 a signal trampoline invoked from a frameless function. */
496
497 int
498 i386_frameless_signal_p (struct frame_info *frame)
499 {
500 return (frame->next && frame->next->signal_handler_caller
501 && (frameless_look_for_prologue (frame)
502 || frame->pc == get_pc_function_start (frame->pc)));
503 }
504
505 /* Return the chain-pointer for FRAME. In the case of the i386, the
506 frame's nominal address is the address of a 4-byte word containing
507 the calling frame's address. */
508
509 static CORE_ADDR
510 i386_frame_chain (struct frame_info *frame)
511 {
512 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
513 return frame->frame;
514
515 if (frame->signal_handler_caller
516 || i386_frameless_signal_p (frame))
517 return frame->frame;
518
519 if (! inside_entry_file (frame->pc))
520 return read_memory_unsigned_integer (frame->frame, 4);
521
522 return 0;
523 }
524
525 /* Determine whether the function invocation represented by FRAME does
526 not have a from on the stack associated with it. If it does not,
527 return non-zero, otherwise return zero. */
528
529 static int
530 i386_frameless_function_invocation (struct frame_info *frame)
531 {
532 if (frame->signal_handler_caller)
533 return 0;
534
535 return frameless_look_for_prologue (frame);
536 }
537
538 /* Assuming FRAME is for a sigtramp routine, return the saved program
539 counter. */
540
541 static CORE_ADDR
542 i386_sigtramp_saved_pc (struct frame_info *frame)
543 {
544 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
545 CORE_ADDR addr;
546
547 addr = tdep->sigcontext_addr (frame);
548 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
549 }
550
551 /* Assuming FRAME is for a sigtramp routine, return the saved stack
552 pointer. */
553
554 static CORE_ADDR
555 i386_sigtramp_saved_sp (struct frame_info *frame)
556 {
557 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
558 CORE_ADDR addr;
559
560 addr = tdep->sigcontext_addr (frame);
561 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
562 }
563
564 /* Return the saved program counter for FRAME. */
565
566 static CORE_ADDR
567 i386_frame_saved_pc (struct frame_info *frame)
568 {
569 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
570 {
571 ULONGEST pc;
572
573 frame_unwind_unsigned_register (frame, PC_REGNUM, &pc);
574 return pc;
575 }
576
577 if (frame->signal_handler_caller)
578 return i386_sigtramp_saved_pc (frame);
579
580 if (i386_frameless_signal_p (frame))
581 {
582 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
583 return read_memory_unsigned_integer (sp, 4);
584 }
585
586 return read_memory_unsigned_integer (frame->frame + 4, 4);
587 }
588
589 /* Immediately after a function call, return the saved pc. */
590
591 static CORE_ADDR
592 i386_saved_pc_after_call (struct frame_info *frame)
593 {
594 if (frame->signal_handler_caller)
595 return i386_sigtramp_saved_pc (frame);
596
597 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
598 }
599
600 /* Return number of args passed to a frame.
601 Can return -1, meaning no way to tell. */
602
603 static int
604 i386_frame_num_args (struct frame_info *fi)
605 {
606 #if 1
607 return -1;
608 #else
609 /* This loses because not only might the compiler not be popping the
610 args right after the function call, it might be popping args from
611 both this call and a previous one, and we would say there are
612 more args than there really are. */
613
614 int retpc;
615 unsigned char op;
616 struct frame_info *pfi;
617
618 /* On the i386, the instruction following the call could be:
619 popl %ecx - one arg
620 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
621 anything else - zero args. */
622
623 int frameless;
624
625 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
626 if (frameless)
627 /* In the absence of a frame pointer, GDB doesn't get correct
628 values for nameless arguments. Return -1, so it doesn't print
629 any nameless arguments. */
630 return -1;
631
632 pfi = get_prev_frame (fi);
633 if (pfi == 0)
634 {
635 /* NOTE: This can happen if we are looking at the frame for
636 main, because FRAME_CHAIN_VALID won't let us go into start.
637 If we have debugging symbols, that's not really a big deal;
638 it just means it will only show as many arguments to main as
639 are declared. */
640 return -1;
641 }
642 else
643 {
644 retpc = pfi->pc;
645 op = read_memory_integer (retpc, 1);
646 if (op == 0x59) /* pop %ecx */
647 return 1;
648 else if (op == 0x83)
649 {
650 op = read_memory_integer (retpc + 1, 1);
651 if (op == 0xc4)
652 /* addl $<signed imm 8 bits>, %esp */
653 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
654 else
655 return 0;
656 }
657 else if (op == 0x81) /* `add' with 32 bit immediate. */
658 {
659 op = read_memory_integer (retpc + 1, 1);
660 if (op == 0xc4)
661 /* addl $<imm 32>, %esp */
662 return read_memory_integer (retpc + 2, 4) / 4;
663 else
664 return 0;
665 }
666 else
667 {
668 return 0;
669 }
670 }
671 #endif
672 }
673
674 /* Parse the first few instructions the function to see what registers
675 were stored.
676
677 We handle these cases:
678
679 The startup sequence can be at the start of the function, or the
680 function can start with a branch to startup code at the end.
681
682 %ebp can be set up with either the 'enter' instruction, or "pushl
683 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
684 once used in the System V compiler).
685
686 Local space is allocated just below the saved %ebp by either the
687 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
688 bit unsigned argument for space to allocate, and the 'addl'
689 instruction could have either a signed byte, or 32 bit immediate.
690
691 Next, the registers used by this function are pushed. With the
692 System V compiler they will always be in the order: %edi, %esi,
693 %ebx (and sometimes a harmless bug causes it to also save but not
694 restore %eax); however, the code below is willing to see the pushes
695 in any order, and will handle up to 8 of them.
696
697 If the setup sequence is at the end of the function, then the next
698 instruction will be a branch back to the start. */
699
700 static void
701 i386_frame_init_saved_regs (struct frame_info *fip)
702 {
703 long locals = -1;
704 unsigned char op;
705 CORE_ADDR addr;
706 CORE_ADDR pc;
707 int i;
708
709 if (fip->saved_regs)
710 return;
711
712 frame_saved_regs_zalloc (fip);
713
714 pc = get_pc_function_start (fip->pc);
715 if (pc != 0)
716 locals = i386_get_frame_setup (pc);
717
718 if (locals >= 0)
719 {
720 addr = fip->frame - 4 - locals;
721 for (i = 0; i < 8; i++)
722 {
723 op = codestream_get ();
724 if (op < 0x50 || op > 0x57)
725 break;
726 #ifdef I386_REGNO_TO_SYMMETRY
727 /* Dynix uses different internal numbering. Ick. */
728 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
729 #else
730 fip->saved_regs[op - 0x50] = addr;
731 #endif
732 addr -= 4;
733 }
734 }
735
736 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
737 fip->saved_regs[FP_REGNUM] = fip->frame;
738 }
739
740 /* Return PC of first real instruction. */
741
742 static CORE_ADDR
743 i386_skip_prologue (CORE_ADDR pc)
744 {
745 unsigned char op;
746 int i;
747 static unsigned char pic_pat[6] =
748 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
749 0x5b, /* popl %ebx */
750 };
751 CORE_ADDR pos;
752
753 if (i386_get_frame_setup (pc) < 0)
754 return (pc);
755
756 /* Found valid frame setup -- codestream now points to start of push
757 instructions for saving registers. */
758
759 /* Skip over register saves. */
760 for (i = 0; i < 8; i++)
761 {
762 op = codestream_peek ();
763 /* Break if not `pushl' instrunction. */
764 if (op < 0x50 || op > 0x57)
765 break;
766 codestream_get ();
767 }
768
769 /* The native cc on SVR4 in -K PIC mode inserts the following code
770 to get the address of the global offset table (GOT) into register
771 %ebx
772
773 call 0x0
774 popl %ebx
775 movl %ebx,x(%ebp) (optional)
776 addl y,%ebx
777
778 This code is with the rest of the prologue (at the end of the
779 function), so we have to skip it to get to the first real
780 instruction at the start of the function. */
781
782 pos = codestream_tell ();
783 for (i = 0; i < 6; i++)
784 {
785 op = codestream_get ();
786 if (pic_pat[i] != op)
787 break;
788 }
789 if (i == 6)
790 {
791 unsigned char buf[4];
792 long delta = 6;
793
794 op = codestream_get ();
795 if (op == 0x89) /* movl %ebx, x(%ebp) */
796 {
797 op = codestream_get ();
798 if (op == 0x5d) /* One byte offset from %ebp. */
799 {
800 delta += 3;
801 codestream_read (buf, 1);
802 }
803 else if (op == 0x9d) /* Four byte offset from %ebp. */
804 {
805 delta += 6;
806 codestream_read (buf, 4);
807 }
808 else /* Unexpected instruction. */
809 delta = -1;
810 op = codestream_get ();
811 }
812 /* addl y,%ebx */
813 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
814 {
815 pos += delta + 6;
816 }
817 }
818 codestream_seek (pos);
819
820 i386_follow_jump ();
821
822 return (codestream_tell ());
823 }
824
825 /* Use the program counter to determine the contents and size of a
826 breakpoint instruction. Return a pointer to a string of bytes that
827 encode a breakpoint instruction, store the length of the string in
828 *LEN and optionally adjust *PC to point to the correct memory
829 location for inserting the breakpoint.
830
831 On the i386 we have a single breakpoint that fits in a single byte
832 and can be inserted anywhere. */
833
834 static const unsigned char *
835 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
836 {
837 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
838
839 *len = sizeof (break_insn);
840 return break_insn;
841 }
842
843 /* Push the return address (pointing to the call dummy) onto the stack
844 and return the new value for the stack pointer. */
845
846 static CORE_ADDR
847 i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
848 {
849 char buf[4];
850
851 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
852 write_memory (sp - 4, buf, 4);
853 return sp - 4;
854 }
855
856 static void
857 i386_do_pop_frame (struct frame_info *frame)
858 {
859 CORE_ADDR fp;
860 int regnum;
861 char regbuf[I386_MAX_REGISTER_SIZE];
862
863 fp = FRAME_FP (frame);
864 i386_frame_init_saved_regs (frame);
865
866 for (regnum = 0; regnum < NUM_REGS; regnum++)
867 {
868 CORE_ADDR addr;
869 addr = frame->saved_regs[regnum];
870 if (addr)
871 {
872 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
873 deprecated_write_register_gen (regnum, regbuf);
874 }
875 }
876 write_register (FP_REGNUM, read_memory_integer (fp, 4));
877 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
878 write_register (SP_REGNUM, fp + 8);
879 flush_cached_frames ();
880 }
881
882 static void
883 i386_pop_frame (void)
884 {
885 generic_pop_current_frame (i386_do_pop_frame);
886 }
887 \f
888
889 /* Figure out where the longjmp will land. Slurp the args out of the
890 stack. We expect the first arg to be a pointer to the jmp_buf
891 structure from which we extract the address that we will land at.
892 This address is copied into PC. This routine returns true on
893 success. */
894
895 static int
896 i386_get_longjmp_target (CORE_ADDR *pc)
897 {
898 char buf[4];
899 CORE_ADDR sp, jb_addr;
900 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
901
902 /* If JB_PC_OFFSET is -1, we have no way to find out where the
903 longjmp will land. */
904 if (jb_pc_offset == -1)
905 return 0;
906
907 sp = read_register (SP_REGNUM);
908 if (target_read_memory (sp + 4, buf, 4))
909 return 0;
910
911 jb_addr = extract_address (buf, 4);
912 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
913 return 0;
914
915 *pc = extract_address (buf, 4);
916 return 1;
917 }
918 \f
919
920 static CORE_ADDR
921 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
922 int struct_return, CORE_ADDR struct_addr)
923 {
924 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
925
926 if (struct_return)
927 {
928 char buf[4];
929
930 sp -= 4;
931 store_address (buf, 4, struct_addr);
932 write_memory (sp, buf, 4);
933 }
934
935 return sp;
936 }
937
938 static void
939 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
940 {
941 /* Do nothing. Everything was already done by i386_push_arguments. */
942 }
943
944 /* These registers are used for returning integers (and on some
945 targets also for returning `struct' and `union' values when their
946 size and alignment match an integer type). */
947 #define LOW_RETURN_REGNUM 0 /* %eax */
948 #define HIGH_RETURN_REGNUM 2 /* %edx */
949
950 /* Extract from an array REGBUF containing the (raw) register state, a
951 function return value of TYPE, and copy that, in virtual format,
952 into VALBUF. */
953
954 static void
955 i386_extract_return_value (struct type *type, struct regcache *regcache,
956 void *dst)
957 {
958 bfd_byte *valbuf = dst;
959 int len = TYPE_LENGTH (type);
960 char buf[I386_MAX_REGISTER_SIZE];
961
962 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
963 && TYPE_NFIELDS (type) == 1)
964 {
965 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
966 return;
967 }
968
969 if (TYPE_CODE (type) == TYPE_CODE_FLT)
970 {
971 if (FP0_REGNUM == 0)
972 {
973 warning ("Cannot find floating-point return value.");
974 memset (valbuf, 0, len);
975 return;
976 }
977
978 /* Floating-point return values can be found in %st(0). Convert
979 its contents to the desired type. This is probably not
980 exactly how it would happen on the target itself, but it is
981 the best we can do. */
982 regcache_raw_read (regcache, FP0_REGNUM, buf);
983 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
984 }
985 else
986 {
987 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
988 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
989
990 if (len <= low_size)
991 {
992 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
993 memcpy (valbuf, buf, len);
994 }
995 else if (len <= (low_size + high_size))
996 {
997 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
998 memcpy (valbuf, buf, low_size);
999 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1000 memcpy (valbuf + low_size, buf, len - low_size);
1001 }
1002 else
1003 internal_error (__FILE__, __LINE__,
1004 "Cannot extract return value of %d bytes long.", len);
1005 }
1006 }
1007
1008 /* Write into the appropriate registers a function return value stored
1009 in VALBUF of type TYPE, given in virtual format. */
1010
1011 static void
1012 i386_store_return_value (struct type *type, struct regcache *regcache,
1013 const void *valbuf)
1014 {
1015 int len = TYPE_LENGTH (type);
1016
1017 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1018 && TYPE_NFIELDS (type) == 1)
1019 {
1020 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1021 return;
1022 }
1023
1024 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1025 {
1026 ULONGEST fstat;
1027 char buf[FPU_REG_RAW_SIZE];
1028
1029 if (FP0_REGNUM == 0)
1030 {
1031 warning ("Cannot set floating-point return value.");
1032 return;
1033 }
1034
1035 /* Returning floating-point values is a bit tricky. Apart from
1036 storing the return value in %st(0), we have to simulate the
1037 state of the FPU at function return point. */
1038
1039 /* Convert the value found in VALBUF to the extended
1040 floating-point format used by the FPU. This is probably
1041 not exactly how it would happen on the target itself, but
1042 it is the best we can do. */
1043 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1044 regcache_raw_write (regcache, FP0_REGNUM, buf);
1045
1046 /* Set the top of the floating-point register stack to 7. The
1047 actual value doesn't really matter, but 7 is what a normal
1048 function return would end up with if the program started out
1049 with a freshly initialized FPU. */
1050 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1051 fstat |= (7 << 11);
1052 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
1053
1054 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1055 the floating-point register stack to 7, the appropriate value
1056 for the tag word is 0x3fff. */
1057 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
1058 }
1059 else
1060 {
1061 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1062 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1063
1064 if (len <= low_size)
1065 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1066 else if (len <= (low_size + high_size))
1067 {
1068 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1069 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1070 len - low_size, (char *) valbuf + low_size);
1071 }
1072 else
1073 internal_error (__FILE__, __LINE__,
1074 "Cannot store return value of %d bytes long.", len);
1075 }
1076 }
1077
1078 /* Extract from REGCACHE, which contains the (raw) register state, the
1079 address in which a function should return its structure value, as a
1080 CORE_ADDR. */
1081
1082 static CORE_ADDR
1083 i386_extract_struct_value_address (struct regcache *regcache)
1084 {
1085 ULONGEST addr;
1086
1087 regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
1088 return addr;
1089 }
1090 \f
1091
1092 /* This is the variable that is set with "set struct-convention", and
1093 its legitimate values. */
1094 static const char default_struct_convention[] = "default";
1095 static const char pcc_struct_convention[] = "pcc";
1096 static const char reg_struct_convention[] = "reg";
1097 static const char *valid_conventions[] =
1098 {
1099 default_struct_convention,
1100 pcc_struct_convention,
1101 reg_struct_convention,
1102 NULL
1103 };
1104 static const char *struct_convention = default_struct_convention;
1105
1106 static int
1107 i386_use_struct_convention (int gcc_p, struct type *type)
1108 {
1109 enum struct_return struct_return;
1110
1111 if (struct_convention == default_struct_convention)
1112 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1113 else if (struct_convention == pcc_struct_convention)
1114 struct_return = pcc_struct_return;
1115 else
1116 struct_return = reg_struct_return;
1117
1118 return generic_use_struct_convention (struct_return == reg_struct_return,
1119 type);
1120 }
1121 \f
1122
1123 /* Return the GDB type object for the "standard" data type of data in
1124 register REGNUM. Perhaps %esi and %edi should go here, but
1125 potentially they could be used for things other than address. */
1126
1127 static struct type *
1128 i386_register_virtual_type (int regnum)
1129 {
1130 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1131 return lookup_pointer_type (builtin_type_void);
1132
1133 if (i386_fp_regnum_p (regnum))
1134 return builtin_type_i387_ext;
1135
1136 if (i386_sse_regnum_p (regnum))
1137 return builtin_type_vec128i;
1138
1139 if (i386_mmx_regnum_p (regnum))
1140 return builtin_type_vec64i;
1141
1142 return builtin_type_int;
1143 }
1144
1145 /* Map a cooked register onto a raw register or memory. For the i386,
1146 the MMX registers need to be mapped onto floating point registers. */
1147
1148 static int
1149 mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1150 {
1151 int mmxi;
1152 ULONGEST fstat;
1153 int tos;
1154 int fpi;
1155 mmxi = regnum - MM0_REGNUM;
1156 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1157 tos = (fstat >> 11) & 0x7;
1158 fpi = (mmxi + tos) % 8;
1159 return (FP0_REGNUM + fpi);
1160 }
1161
1162 static void
1163 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1164 int regnum, void *buf)
1165 {
1166 if (i386_mmx_regnum_p (regnum))
1167 {
1168 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1169 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1170 regcache_raw_read (regcache, fpnum, mmx_buf);
1171 /* Extract (always little endian). */
1172 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1173 }
1174 else
1175 regcache_raw_read (regcache, regnum, buf);
1176 }
1177
1178 static void
1179 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1180 int regnum, const void *buf)
1181 {
1182 if (i386_mmx_regnum_p (regnum))
1183 {
1184 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1185 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1186 /* Read ... */
1187 regcache_raw_read (regcache, fpnum, mmx_buf);
1188 /* ... Modify ... (always little endian). */
1189 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1190 /* ... Write. */
1191 regcache_raw_write (regcache, fpnum, mmx_buf);
1192 }
1193 else
1194 regcache_raw_write (regcache, regnum, buf);
1195 }
1196
1197 /* Return true iff register REGNUM's virtual format is different from
1198 its raw format. Note that this definition assumes that the host
1199 supports IEEE 32-bit floats, since it doesn't say that SSE
1200 registers need conversion. Even if we can't find a counterexample,
1201 this is still sloppy. */
1202
1203 static int
1204 i386_register_convertible (int regnum)
1205 {
1206 return i386_fp_regnum_p (regnum);
1207 }
1208
1209 /* Convert data from raw format for register REGNUM in buffer FROM to
1210 virtual format with type TYPE in buffer TO. */
1211
1212 static void
1213 i386_register_convert_to_virtual (int regnum, struct type *type,
1214 char *from, char *to)
1215 {
1216 gdb_assert (i386_fp_regnum_p (regnum));
1217
1218 /* We only support floating-point values. */
1219 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1220 {
1221 warning ("Cannot convert floating-point register value "
1222 "to non-floating-point type.");
1223 memset (to, 0, TYPE_LENGTH (type));
1224 return;
1225 }
1226
1227 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1228 the extended floating-point format used by the FPU. */
1229 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1230 }
1231
1232 /* Convert data from virtual format with type TYPE in buffer FROM to
1233 raw format for register REGNUM in buffer TO. */
1234
1235 static void
1236 i386_register_convert_to_raw (struct type *type, int regnum,
1237 char *from, char *to)
1238 {
1239 gdb_assert (i386_fp_regnum_p (regnum));
1240
1241 /* We only support floating-point values. */
1242 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1243 {
1244 warning ("Cannot convert non-floating-point type "
1245 "to floating-point register value.");
1246 memset (to, 0, TYPE_LENGTH (type));
1247 return;
1248 }
1249
1250 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1251 to the extended floating-point format used by the FPU. */
1252 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1253 }
1254 \f
1255
1256 #ifdef STATIC_TRANSFORM_NAME
1257 /* SunPRO encodes the static variables. This is not related to C++
1258 mangling, it is done for C too. */
1259
1260 char *
1261 sunpro_static_transform_name (char *name)
1262 {
1263 char *p;
1264 if (IS_STATIC_TRANSFORM_NAME (name))
1265 {
1266 /* For file-local statics there will be a period, a bunch of
1267 junk (the contents of which match a string given in the
1268 N_OPT), a period and the name. For function-local statics
1269 there will be a bunch of junk (which seems to change the
1270 second character from 'A' to 'B'), a period, the name of the
1271 function, and the name. So just skip everything before the
1272 last period. */
1273 p = strrchr (name, '.');
1274 if (p != NULL)
1275 name = p + 1;
1276 }
1277 return name;
1278 }
1279 #endif /* STATIC_TRANSFORM_NAME */
1280 \f
1281
1282 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1283
1284 CORE_ADDR
1285 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1286 {
1287 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1288 {
1289 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1290 struct minimal_symbol *indsym =
1291 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1292 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1293
1294 if (symname)
1295 {
1296 if (strncmp (symname, "__imp_", 6) == 0
1297 || strncmp (symname, "_imp_", 5) == 0)
1298 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1299 }
1300 }
1301 return 0; /* Not a trampoline. */
1302 }
1303 \f
1304
1305 /* Return non-zero if PC and NAME show that we are in a signal
1306 trampoline. */
1307
1308 static int
1309 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1310 {
1311 return (name && strcmp ("_sigtramp", name) == 0);
1312 }
1313 \f
1314
1315 /* We have two flavours of disassembly. The machinery on this page
1316 deals with switching between those. */
1317
1318 static int
1319 i386_print_insn (bfd_vma pc, disassemble_info *info)
1320 {
1321 gdb_assert (disassembly_flavor == att_flavor
1322 || disassembly_flavor == intel_flavor);
1323
1324 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1325 constified, cast to prevent a compiler warning. */
1326 info->disassembler_options = (char *) disassembly_flavor;
1327 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1328
1329 return print_insn_i386 (pc, info);
1330 }
1331 \f
1332
1333 /* There are a few i386 architecture variants that differ only
1334 slightly from the generic i386 target. For now, we don't give them
1335 their own source file, but include them here. As a consequence,
1336 they'll always be included. */
1337
1338 /* System V Release 4 (SVR4). */
1339
1340 static int
1341 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1342 {
1343 return (name && (strcmp ("_sigreturn", name) == 0
1344 || strcmp ("_sigacthandler", name) == 0
1345 || strcmp ("sigvechandler", name) == 0));
1346 }
1347
1348 /* Get address of the pushed ucontext (sigcontext) on the stack for
1349 all three variants of SVR4 sigtramps. */
1350
1351 static CORE_ADDR
1352 i386_svr4_sigcontext_addr (struct frame_info *frame)
1353 {
1354 int sigcontext_offset = -1;
1355 char *name = NULL;
1356
1357 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1358 if (name)
1359 {
1360 if (strcmp (name, "_sigreturn") == 0)
1361 sigcontext_offset = 132;
1362 else if (strcmp (name, "_sigacthandler") == 0)
1363 sigcontext_offset = 80;
1364 else if (strcmp (name, "sigvechandler") == 0)
1365 sigcontext_offset = 120;
1366 }
1367
1368 gdb_assert (sigcontext_offset != -1);
1369
1370 if (frame->next)
1371 return frame->next->frame + sigcontext_offset;
1372 return read_register (SP_REGNUM) + sigcontext_offset;
1373 }
1374 \f
1375
1376 /* DJGPP. */
1377
1378 static int
1379 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1380 {
1381 /* DJGPP doesn't have any special frames for signal handlers. */
1382 return 0;
1383 }
1384 \f
1385
1386 /* Generic ELF. */
1387
1388 void
1389 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1390 {
1391 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1392 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1393 }
1394
1395 /* System V Release 4 (SVR4). */
1396
1397 void
1398 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1399 {
1400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1401
1402 /* System V Release 4 uses ELF. */
1403 i386_elf_init_abi (info, gdbarch);
1404
1405 /* System V Release 4 has shared libraries. */
1406 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1407 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1408
1409 /* FIXME: kettenis/20020511: Why do we override this function here? */
1410 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1411
1412 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1413 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1414 tdep->sc_pc_offset = 14 * 4;
1415 tdep->sc_sp_offset = 7 * 4;
1416
1417 tdep->jb_pc_offset = 20;
1418 }
1419
1420 /* DJGPP. */
1421
1422 static void
1423 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1424 {
1425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1426
1427 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1428
1429 tdep->jb_pc_offset = 36;
1430 }
1431
1432 /* NetWare. */
1433
1434 static void
1435 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1436 {
1437 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1438
1439 /* FIXME: kettenis/20020511: Why do we override this function here? */
1440 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1441
1442 tdep->jb_pc_offset = 24;
1443 }
1444 \f
1445
1446 static struct gdbarch *
1447 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1448 {
1449 struct gdbarch_tdep *tdep;
1450 struct gdbarch *gdbarch;
1451 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1452
1453 /* Try to determine the OS ABI of the object we're loading. */
1454 if (info.abfd != NULL)
1455 osabi = gdbarch_lookup_osabi (info.abfd);
1456
1457 /* Find a candidate among extant architectures. */
1458 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1459 arches != NULL;
1460 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1461 {
1462 /* Make sure the OS ABI selection matches. */
1463 tdep = gdbarch_tdep (arches->gdbarch);
1464 if (tdep && tdep->osabi == osabi)
1465 return arches->gdbarch;
1466 }
1467
1468 /* Allocate space for the new architecture. */
1469 tdep = XMALLOC (struct gdbarch_tdep);
1470 gdbarch = gdbarch_alloc (&info, tdep);
1471
1472 tdep->osabi = osabi;
1473
1474 /* The i386 default settings don't include the SSE registers.
1475 FIXME: kettenis/20020614: They do include the FPU registers for
1476 now, which probably is not quite right. */
1477 tdep->num_xmm_regs = 0;
1478
1479 tdep->jb_pc_offset = -1;
1480 tdep->struct_return = pcc_struct_return;
1481 tdep->sigtramp_start = 0;
1482 tdep->sigtramp_end = 0;
1483 tdep->sigcontext_addr = NULL;
1484 tdep->sc_pc_offset = -1;
1485 tdep->sc_sp_offset = -1;
1486
1487 /* The format used for `long double' on almost all i386 targets is
1488 the i387 extended floating-point format. In fact, of all targets
1489 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1490 on having a `long double' that's not `long' at all. */
1491 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1492
1493 /* Although the i387 extended floating-point has only 80 significant
1494 bits, a `long double' actually takes up 96, probably to enforce
1495 alignment. */
1496 set_gdbarch_long_double_bit (gdbarch, 96);
1497
1498 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1499 tm-symmetry.h currently override this. Sigh. */
1500 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1501
1502 set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
1503 set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
1504 set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
1505 set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
1506 set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
1507
1508 /* Use the "default" register numbering scheme for stabs and COFF. */
1509 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1510 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1511
1512 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1513 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1514 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1515
1516 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1517 be in use on any of the supported i386 targets. */
1518
1519 set_gdbarch_register_name (gdbarch, i386_register_name);
1520 set_gdbarch_register_size (gdbarch, 4);
1521 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1522 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1523 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
1524 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
1525
1526 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1527
1528 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1529
1530 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1531
1532 /* Call dummy code. */
1533 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1534 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1535 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1536 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1537 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1538 set_gdbarch_call_dummy_length (gdbarch, 0);
1539 set_gdbarch_call_dummy_p (gdbarch, 1);
1540 set_gdbarch_call_dummy_words (gdbarch, NULL);
1541 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1542 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1543 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1544
1545 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1546 set_gdbarch_register_convert_to_virtual (gdbarch,
1547 i386_register_convert_to_virtual);
1548 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1549
1550 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
1551
1552 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1553
1554 /* "An argument's size is increased, if necessary, to make it a
1555 multiple of [32-bit] words. This may require tail padding,
1556 depending on the size of the argument" -- from the x86 ABI. */
1557 set_gdbarch_parm_boundary (gdbarch, 32);
1558
1559 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1560 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1561 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1562 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
1563 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1564 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1565 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1566 set_gdbarch_extract_struct_value_address (gdbarch,
1567 i386_extract_struct_value_address);
1568 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1569
1570 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
1571 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1572
1573 /* Stack grows downward. */
1574 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1575
1576 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1577 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1578 set_gdbarch_function_start_offset (gdbarch, 0);
1579
1580 /* The following redefines make backtracing through sigtramp work.
1581 They manufacture a fake sigtramp frame and obtain the saved pc in
1582 sigtramp from the sigcontext structure which is pushed by the
1583 kernel on the user stack, along with a pointer to it. */
1584
1585 set_gdbarch_frame_args_skip (gdbarch, 8);
1586 set_gdbarch_frameless_function_invocation (gdbarch,
1587 i386_frameless_function_invocation);
1588 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
1589 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1590 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1591 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1592 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1593 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
1594 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
1595 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1596
1597 /* Wire in the MMX registers. */
1598 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1599 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1600 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1601
1602 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1603
1604 /* Hook in ABI-specific overrides, if they have been registered. */
1605 gdbarch_init_osabi (info, gdbarch, osabi);
1606
1607 return gdbarch;
1608 }
1609
1610 static enum gdb_osabi
1611 i386_coff_osabi_sniffer (bfd *abfd)
1612 {
1613 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1614 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1615 return GDB_OSABI_GO32;
1616
1617 return GDB_OSABI_UNKNOWN;
1618 }
1619
1620 static enum gdb_osabi
1621 i386_nlm_osabi_sniffer (bfd *abfd)
1622 {
1623 return GDB_OSABI_NETWARE;
1624 }
1625 \f
1626
1627 /* Provide a prototype to silence -Wmissing-prototypes. */
1628 void _initialize_i386_tdep (void);
1629
1630 void
1631 _initialize_i386_tdep (void)
1632 {
1633 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1634
1635 /* Add the variable that controls the disassembly flavor. */
1636 {
1637 struct cmd_list_element *new_cmd;
1638
1639 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1640 valid_flavors,
1641 &disassembly_flavor,
1642 "\
1643 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1644 and the default value is \"att\".",
1645 &setlist);
1646 add_show_from_set (new_cmd, &showlist);
1647 }
1648
1649 /* Add the variable that controls the convention for returning
1650 structs. */
1651 {
1652 struct cmd_list_element *new_cmd;
1653
1654 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1655 valid_conventions,
1656 &struct_convention, "\
1657 Set the convention for returning small structs, valid values \
1658 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1659 &setlist);
1660 add_show_from_set (new_cmd, &showlist);
1661 }
1662
1663 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1664 i386_coff_osabi_sniffer);
1665 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1666 i386_nlm_osabi_sniffer);
1667
1668 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1669 i386_svr4_init_abi);
1670 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1671 i386_go32_init_abi);
1672 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1673 i386_nw_init_abi);
1674 }
This page took 0.063929 seconds and 3 git commands to generate.