* README-vms: Delete.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "command.h"
27 #include "dummy-frame.h"
28 #include "dwarf2-frame.h"
29 #include "doublest.h"
30 #include "floatformat.h"
31 #include "frame.h"
32 #include "frame-base.h"
33 #include "frame-unwind.h"
34 #include "inferior.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "objfiles.h"
38 #include "osabi.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "regset.h"
42 #include "symfile.h"
43 #include "symtab.h"
44 #include "target.h"
45 #include "value.h"
46 #include "dis-asm.h"
47
48 #include "gdb_assert.h"
49 #include "gdb_string.h"
50
51 #include "i386-tdep.h"
52 #include "i387-tdep.h"
53
54 /* Register names. */
55
56 static char *i386_register_names[] =
57 {
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69 };
70
71 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
72
73 /* Register names for MMX pseudo-registers. */
74
75 static char *i386_mmx_names[] =
76 {
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79 };
80
81 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
82
83 static int
84 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
85 {
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
92 }
93
94 /* SSE register? */
95
96 static int
97 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
98 {
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101 #define I387_ST0_REGNUM tdep->st0_regnum
102 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109 #undef I387_ST0_REGNUM
110 #undef I387_NUM_XMM_REGS
111 }
112
113 static int
114 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
115 {
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118 #define I387_ST0_REGNUM tdep->st0_regnum
119 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126 #undef I387_ST0_REGNUM
127 #undef I387_NUM_XMM_REGS
128 }
129
130 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134 /* FP register? */
135
136 int
137 i386_fp_regnum_p (int regnum)
138 {
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
143 }
144
145 int
146 i386_fpc_regnum_p (int regnum)
147 {
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
152 }
153
154 /* Return the name of register REGNUM. */
155
156 const char *
157 i386_register_name (int regnum)
158 {
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
161
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
164
165 return NULL;
166 }
167
168 /* Convert a dbx register number REG to the appropriate register
169 number used by GDB. */
170
171 static int
172 i386_dbx_reg_to_regnum (int reg)
173 {
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
177 if (reg >= 0 && reg <= 7)
178 {
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
190 return reg - 12 + I387_ST0_REGNUM;
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
195 return reg - 21 + I387_XMM0_REGNUM;
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
200 return reg - 29 + I387_MM0_REGNUM;
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205 }
206
207 /* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
209
210 static int
211 i386_svr4_reg_to_regnum (int reg)
212 {
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
220 /* General-purpose registers. */
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
226 return reg - 11 + I387_ST0_REGNUM;
227 }
228 else if (reg >= 21)
229 {
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
232 }
233
234 /* This will hopefully provoke a warning. */
235 return NUM_REGS + NUM_PSEUDO_REGS;
236 }
237
238 #undef I387_ST0_REGNUM
239 #undef I387_MM0_REGNUM
240 #undef I387_NUM_XMM_REGS
241 \f
242
243 /* This is the variable that is set with "set disassembly-flavor", and
244 its legitimate values. */
245 static const char att_flavor[] = "att";
246 static const char intel_flavor[] = "intel";
247 static const char *valid_flavors[] =
248 {
249 att_flavor,
250 intel_flavor,
251 NULL
252 };
253 static const char *disassembly_flavor = att_flavor;
254 \f
255
256 /* Use the program counter to determine the contents and size of a
257 breakpoint instruction. Return a pointer to a string of bytes that
258 encode a breakpoint instruction, store the length of the string in
259 *LEN and optionally adjust *PC to point to the correct memory
260 location for inserting the breakpoint.
261
262 On the i386 we have a single breakpoint that fits in a single byte
263 and can be inserted anywhere.
264
265 This function is 64-bit safe. */
266
267 static const gdb_byte *
268 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
269 {
270 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
271
272 *len = sizeof (break_insn);
273 return break_insn;
274 }
275 \f
276 #ifdef I386_REGNO_TO_SYMMETRY
277 #error "The Sequent Symmetry is no longer supported."
278 #endif
279
280 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281 and %esp "belong" to the calling function. Therefore these
282 registers should be saved if they're going to be modified. */
283
284 /* The maximum number of saved registers. This should include all
285 registers mentioned above, and %eip. */
286 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
287
288 struct i386_frame_cache
289 {
290 /* Base address. */
291 CORE_ADDR base;
292 LONGEST sp_offset;
293 CORE_ADDR pc;
294
295 /* Saved registers. */
296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
297 CORE_ADDR saved_sp;
298 int pc_in_eax;
299
300 /* Stack space reserved for local variables. */
301 long locals;
302 };
303
304 /* Allocate and initialize a frame cache. */
305
306 static struct i386_frame_cache *
307 i386_alloc_frame_cache (void)
308 {
309 struct i386_frame_cache *cache;
310 int i;
311
312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314 /* Base address. */
315 cache->base = 0;
316 cache->sp_offset = -4;
317 cache->pc = 0;
318
319 /* Saved registers. We initialize these to -1 since zero is a valid
320 offset (that's where %ebp is supposed to be stored). */
321 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322 cache->saved_regs[i] = -1;
323 cache->saved_sp = 0;
324 cache->pc_in_eax = 0;
325
326 /* Frameless until proven otherwise. */
327 cache->locals = -1;
328
329 return cache;
330 }
331
332 /* If the instruction at PC is a jump, return the address of its
333 target. Otherwise, return PC. */
334
335 static CORE_ADDR
336 i386_follow_jump (CORE_ADDR pc)
337 {
338 gdb_byte op;
339 long delta = 0;
340 int data16 = 0;
341
342 op = read_memory_unsigned_integer (pc, 1);
343 if (op == 0x66)
344 {
345 data16 = 1;
346 op = read_memory_unsigned_integer (pc + 1, 1);
347 }
348
349 switch (op)
350 {
351 case 0xe9:
352 /* Relative jump: if data16 == 0, disp32, else disp16. */
353 if (data16)
354 {
355 delta = read_memory_integer (pc + 2, 2);
356
357 /* Include the size of the jmp instruction (including the
358 0x66 prefix). */
359 delta += 4;
360 }
361 else
362 {
363 delta = read_memory_integer (pc + 1, 4);
364
365 /* Include the size of the jmp instruction. */
366 delta += 5;
367 }
368 break;
369 case 0xeb:
370 /* Relative jump, disp8 (ignore data16). */
371 delta = read_memory_integer (pc + data16 + 1, 1);
372
373 delta += data16 + 2;
374 break;
375 }
376
377 return pc + delta;
378 }
379
380 /* Check whether PC points at a prologue for a function returning a
381 structure or union. If so, it updates CACHE and returns the
382 address of the first instruction after the code sequence that
383 removes the "hidden" argument from the stack or CURRENT_PC,
384 whichever is smaller. Otherwise, return PC. */
385
386 static CORE_ADDR
387 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388 struct i386_frame_cache *cache)
389 {
390 /* Functions that return a structure or union start with:
391
392 popl %eax 0x58
393 xchgl %eax, (%esp) 0x87 0x04 0x24
394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
395
396 (the System V compiler puts out the second `xchg' instruction,
397 and the assembler doesn't try to optimize it, so the 'sib' form
398 gets generated). This sequence is used to get the address of the
399 return buffer for a function that returns a structure. */
400 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
401 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402 gdb_byte buf[4];
403 gdb_byte op;
404
405 if (current_pc <= pc)
406 return pc;
407
408 op = read_memory_unsigned_integer (pc, 1);
409
410 if (op != 0x58) /* popl %eax */
411 return pc;
412
413 read_memory (pc + 1, buf, 4);
414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415 return pc;
416
417 if (current_pc == pc)
418 {
419 cache->sp_offset += 4;
420 return current_pc;
421 }
422
423 if (current_pc == pc + 1)
424 {
425 cache->pc_in_eax = 1;
426 return current_pc;
427 }
428
429 if (buf[1] == proto1[1])
430 return pc + 4;
431 else
432 return pc + 5;
433 }
434
435 static CORE_ADDR
436 i386_skip_probe (CORE_ADDR pc)
437 {
438 /* A function may start with
439
440 pushl constant
441 call _probe
442 addl $4, %esp
443
444 followed by
445
446 pushl %ebp
447
448 etc. */
449 gdb_byte buf[8];
450 gdb_byte op;
451
452 op = read_memory_unsigned_integer (pc, 1);
453
454 if (op == 0x68 || op == 0x6a)
455 {
456 int delta;
457
458 /* Skip past the `pushl' instruction; it has either a one-byte or a
459 four-byte operand, depending on the opcode. */
460 if (op == 0x68)
461 delta = 5;
462 else
463 delta = 2;
464
465 /* Read the following 8 bytes, which should be `call _probe' (6
466 bytes) followed by `addl $4,%esp' (2 bytes). */
467 read_memory (pc + delta, buf, sizeof (buf));
468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
469 pc += delta + sizeof (buf);
470 }
471
472 return pc;
473 }
474
475 /* Maximum instruction length we need to handle. */
476 #define I386_MAX_INSN_LEN 6
477
478 /* Instruction description. */
479 struct i386_insn
480 {
481 size_t len;
482 gdb_byte insn[I386_MAX_INSN_LEN];
483 gdb_byte mask[I386_MAX_INSN_LEN];
484 };
485
486 /* Search for the instruction at PC in the list SKIP_INSNS. Return
487 the first instruction description that matches. Otherwise, return
488 NULL. */
489
490 static struct i386_insn *
491 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
492 {
493 struct i386_insn *insn;
494 gdb_byte op;
495
496 op = read_memory_unsigned_integer (pc, 1);
497
498 for (insn = skip_insns; insn->len > 0; insn++)
499 {
500 if ((op & insn->mask[0]) == insn->insn[0])
501 {
502 gdb_byte buf[I386_MAX_INSN_LEN - 1];
503 int insn_matched = 1;
504 size_t i;
505
506 gdb_assert (insn->len > 1);
507 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
508
509 read_memory (pc + 1, buf, insn->len - 1);
510 for (i = 1; i < insn->len; i++)
511 {
512 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
513 insn_matched = 0;
514 }
515
516 if (insn_matched)
517 return insn;
518 }
519 }
520
521 return NULL;
522 }
523
524 /* Some special instructions that might be migrated by GCC into the
525 part of the prologue that sets up the new stack frame. Because the
526 stack frame hasn't been setup yet, no registers have been saved
527 yet, and only the scratch registers %eax, %ecx and %edx can be
528 touched. */
529
530 struct i386_insn i386_frame_setup_skip_insns[] =
531 {
532 /* Check for `movb imm8, r' and `movl imm32, r'.
533
534 ??? Should we handle 16-bit operand-sizes here? */
535
536 /* `movb imm8, %al' and `movb imm8, %ah' */
537 /* `movb imm8, %cl' and `movb imm8, %ch' */
538 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
539 /* `movb imm8, %dl' and `movb imm8, %dh' */
540 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
541 /* `movl imm32, %eax' and `movl imm32, %ecx' */
542 { 5, { 0xb8 }, { 0xfe } },
543 /* `movl imm32, %edx' */
544 { 5, { 0xba }, { 0xff } },
545
546 /* Check for `mov imm32, r32'. Note that there is an alternative
547 encoding for `mov m32, %eax'.
548
549 ??? Should we handle SIB adressing here?
550 ??? Should we handle 16-bit operand-sizes here? */
551
552 /* `movl m32, %eax' */
553 { 5, { 0xa1 }, { 0xff } },
554 /* `movl m32, %eax' and `mov; m32, %ecx' */
555 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
556 /* `movl m32, %edx' */
557 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
558
559 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
560 Because of the symmetry, there are actually two ways to encode
561 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
562 opcode bytes 0x31 and 0x33 for `xorl'. */
563
564 /* `subl %eax, %eax' */
565 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
566 /* `subl %ecx, %ecx' */
567 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
568 /* `subl %edx, %edx' */
569 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
570 /* `xorl %eax, %eax' */
571 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
572 /* `xorl %ecx, %ecx' */
573 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
574 /* `xorl %edx, %edx' */
575 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
576 { 0 }
577 };
578
579 /* Check whether PC points at a code that sets up a new stack frame.
580 If so, it updates CACHE and returns the address of the first
581 instruction after the sequence that sets up the frame or LIMIT,
582 whichever is smaller. If we don't recognize the code, return PC. */
583
584 static CORE_ADDR
585 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
586 struct i386_frame_cache *cache)
587 {
588 struct i386_insn *insn;
589 gdb_byte op;
590 int skip = 0;
591
592 if (limit <= pc)
593 return limit;
594
595 op = read_memory_unsigned_integer (pc, 1);
596
597 if (op == 0x55) /* pushl %ebp */
598 {
599 /* Take into account that we've executed the `pushl %ebp' that
600 starts this instruction sequence. */
601 cache->saved_regs[I386_EBP_REGNUM] = 0;
602 cache->sp_offset += 4;
603 pc++;
604
605 /* If that's all, return now. */
606 if (limit <= pc)
607 return limit;
608
609 /* Check for some special instructions that might be migrated by
610 GCC into the prologue and skip them. At this point in the
611 prologue, code should only touch the scratch registers %eax,
612 %ecx and %edx, so while the number of posibilities is sheer,
613 it is limited.
614
615 Make sure we only skip these instructions if we later see the
616 `movl %esp, %ebp' that actually sets up the frame. */
617 while (pc + skip < limit)
618 {
619 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
620 if (insn == NULL)
621 break;
622
623 skip += insn->len;
624 }
625
626 /* If that's all, return now. */
627 if (limit <= pc + skip)
628 return limit;
629
630 op = read_memory_unsigned_integer (pc + skip, 1);
631
632 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
633 switch (op)
634 {
635 case 0x8b:
636 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
637 return pc;
638 break;
639 case 0x89:
640 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
641 return pc;
642 break;
643 default:
644 return pc;
645 }
646
647 /* OK, we actually have a frame. We just don't know how large
648 it is yet. Set its size to zero. We'll adjust it if
649 necessary. We also now commit to skipping the special
650 instructions mentioned before. */
651 cache->locals = 0;
652 pc += (skip + 2);
653
654 /* If that's all, return now. */
655 if (limit <= pc)
656 return limit;
657
658 /* Check for stack adjustment
659
660 subl $XXX, %esp
661
662 NOTE: You can't subtract a 16-bit immediate from a 32-bit
663 reg, so we don't have to worry about a data16 prefix. */
664 op = read_memory_unsigned_integer (pc, 1);
665 if (op == 0x83)
666 {
667 /* `subl' with 8-bit immediate. */
668 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
669 /* Some instruction starting with 0x83 other than `subl'. */
670 return pc;
671
672 /* `subl' with signed 8-bit immediate (though it wouldn't
673 make sense to be negative). */
674 cache->locals = read_memory_integer (pc + 2, 1);
675 return pc + 3;
676 }
677 else if (op == 0x81)
678 {
679 /* Maybe it is `subl' with a 32-bit immediate. */
680 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
681 /* Some instruction starting with 0x81 other than `subl'. */
682 return pc;
683
684 /* It is `subl' with a 32-bit immediate. */
685 cache->locals = read_memory_integer (pc + 2, 4);
686 return pc + 6;
687 }
688 else
689 {
690 /* Some instruction other than `subl'. */
691 return pc;
692 }
693 }
694 else if (op == 0xc8) /* enter */
695 {
696 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
697 return pc + 4;
698 }
699
700 return pc;
701 }
702
703 /* Check whether PC points at code that saves registers on the stack.
704 If so, it updates CACHE and returns the address of the first
705 instruction after the register saves or CURRENT_PC, whichever is
706 smaller. Otherwise, return PC. */
707
708 static CORE_ADDR
709 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
710 struct i386_frame_cache *cache)
711 {
712 CORE_ADDR offset = 0;
713 gdb_byte op;
714 int i;
715
716 if (cache->locals > 0)
717 offset -= cache->locals;
718 for (i = 0; i < 8 && pc < current_pc; i++)
719 {
720 op = read_memory_unsigned_integer (pc, 1);
721 if (op < 0x50 || op > 0x57)
722 break;
723
724 offset -= 4;
725 cache->saved_regs[op - 0x50] = offset;
726 cache->sp_offset += 4;
727 pc++;
728 }
729
730 return pc;
731 }
732
733 /* Do a full analysis of the prologue at PC and update CACHE
734 accordingly. Bail out early if CURRENT_PC is reached. Return the
735 address where the analysis stopped.
736
737 We handle these cases:
738
739 The startup sequence can be at the start of the function, or the
740 function can start with a branch to startup code at the end.
741
742 %ebp can be set up with either the 'enter' instruction, or "pushl
743 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
744 once used in the System V compiler).
745
746 Local space is allocated just below the saved %ebp by either the
747 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
748 16-bit unsigned argument for space to allocate, and the 'addl'
749 instruction could have either a signed byte, or 32-bit immediate.
750
751 Next, the registers used by this function are pushed. With the
752 System V compiler they will always be in the order: %edi, %esi,
753 %ebx (and sometimes a harmless bug causes it to also save but not
754 restore %eax); however, the code below is willing to see the pushes
755 in any order, and will handle up to 8 of them.
756
757 If the setup sequence is at the end of the function, then the next
758 instruction will be a branch back to the start. */
759
760 static CORE_ADDR
761 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
762 struct i386_frame_cache *cache)
763 {
764 pc = i386_follow_jump (pc);
765 pc = i386_analyze_struct_return (pc, current_pc, cache);
766 pc = i386_skip_probe (pc);
767 pc = i386_analyze_frame_setup (pc, current_pc, cache);
768 return i386_analyze_register_saves (pc, current_pc, cache);
769 }
770
771 /* Return PC of first real instruction. */
772
773 static CORE_ADDR
774 i386_skip_prologue (CORE_ADDR start_pc)
775 {
776 static gdb_byte pic_pat[6] =
777 {
778 0xe8, 0, 0, 0, 0, /* call 0x0 */
779 0x5b, /* popl %ebx */
780 };
781 struct i386_frame_cache cache;
782 CORE_ADDR pc;
783 gdb_byte op;
784 int i;
785
786 cache.locals = -1;
787 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
788 if (cache.locals < 0)
789 return start_pc;
790
791 /* Found valid frame setup. */
792
793 /* The native cc on SVR4 in -K PIC mode inserts the following code
794 to get the address of the global offset table (GOT) into register
795 %ebx:
796
797 call 0x0
798 popl %ebx
799 movl %ebx,x(%ebp) (optional)
800 addl y,%ebx
801
802 This code is with the rest of the prologue (at the end of the
803 function), so we have to skip it to get to the first real
804 instruction at the start of the function. */
805
806 for (i = 0; i < 6; i++)
807 {
808 op = read_memory_unsigned_integer (pc + i, 1);
809 if (pic_pat[i] != op)
810 break;
811 }
812 if (i == 6)
813 {
814 int delta = 6;
815
816 op = read_memory_unsigned_integer (pc + delta, 1);
817
818 if (op == 0x89) /* movl %ebx, x(%ebp) */
819 {
820 op = read_memory_unsigned_integer (pc + delta + 1, 1);
821
822 if (op == 0x5d) /* One byte offset from %ebp. */
823 delta += 3;
824 else if (op == 0x9d) /* Four byte offset from %ebp. */
825 delta += 6;
826 else /* Unexpected instruction. */
827 delta = 0;
828
829 op = read_memory_unsigned_integer (pc + delta, 1);
830 }
831
832 /* addl y,%ebx */
833 if (delta > 0 && op == 0x81
834 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
835 {
836 pc += delta + 6;
837 }
838 }
839
840 /* If the function starts with a branch (to startup code at the end)
841 the last instruction should bring us back to the first
842 instruction of the real code. */
843 if (i386_follow_jump (start_pc) != start_pc)
844 pc = i386_follow_jump (pc);
845
846 return pc;
847 }
848
849 /* This function is 64-bit safe. */
850
851 static CORE_ADDR
852 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
853 {
854 gdb_byte buf[8];
855
856 frame_unwind_register (next_frame, PC_REGNUM, buf);
857 return extract_typed_address (buf, builtin_type_void_func_ptr);
858 }
859 \f
860
861 /* Normal frames. */
862
863 static struct i386_frame_cache *
864 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
865 {
866 struct i386_frame_cache *cache;
867 gdb_byte buf[4];
868 int i;
869
870 if (*this_cache)
871 return *this_cache;
872
873 cache = i386_alloc_frame_cache ();
874 *this_cache = cache;
875
876 /* In principle, for normal frames, %ebp holds the frame pointer,
877 which holds the base address for the current stack frame.
878 However, for functions that don't need it, the frame pointer is
879 optional. For these "frameless" functions the frame pointer is
880 actually the frame pointer of the calling frame. Signal
881 trampolines are just a special case of a "frameless" function.
882 They (usually) share their frame pointer with the frame that was
883 in progress when the signal occurred. */
884
885 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
886 cache->base = extract_unsigned_integer (buf, 4);
887 if (cache->base == 0)
888 return cache;
889
890 /* For normal frames, %eip is stored at 4(%ebp). */
891 cache->saved_regs[I386_EIP_REGNUM] = 4;
892
893 cache->pc = frame_func_unwind (next_frame);
894 if (cache->pc != 0)
895 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
896
897 if (cache->locals < 0)
898 {
899 /* We didn't find a valid frame, which means that CACHE->base
900 currently holds the frame pointer for our calling frame. If
901 we're at the start of a function, or somewhere half-way its
902 prologue, the function's frame probably hasn't been fully
903 setup yet. Try to reconstruct the base address for the stack
904 frame by looking at the stack pointer. For truly "frameless"
905 functions this might work too. */
906
907 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
908 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
909 }
910
911 /* Now that we have the base address for the stack frame we can
912 calculate the value of %esp in the calling frame. */
913 cache->saved_sp = cache->base + 8;
914
915 /* Adjust all the saved registers such that they contain addresses
916 instead of offsets. */
917 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
918 if (cache->saved_regs[i] != -1)
919 cache->saved_regs[i] += cache->base;
920
921 return cache;
922 }
923
924 static void
925 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
926 struct frame_id *this_id)
927 {
928 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
929
930 /* This marks the outermost frame. */
931 if (cache->base == 0)
932 return;
933
934 /* See the end of i386_push_dummy_call. */
935 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
936 }
937
938 static void
939 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
940 int regnum, int *optimizedp,
941 enum lval_type *lvalp, CORE_ADDR *addrp,
942 int *realnump, gdb_byte *valuep)
943 {
944 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
945
946 gdb_assert (regnum >= 0);
947
948 /* The System V ABI says that:
949
950 "The flags register contains the system flags, such as the
951 direction flag and the carry flag. The direction flag must be
952 set to the forward (that is, zero) direction before entry and
953 upon exit from a function. Other user flags have no specified
954 role in the standard calling sequence and are not preserved."
955
956 To guarantee the "upon exit" part of that statement we fake a
957 saved flags register that has its direction flag cleared.
958
959 Note that GCC doesn't seem to rely on the fact that the direction
960 flag is cleared after a function return; it always explicitly
961 clears the flag before operations where it matters.
962
963 FIXME: kettenis/20030316: I'm not quite sure whether this is the
964 right thing to do. The way we fake the flags register here makes
965 it impossible to change it. */
966
967 if (regnum == I386_EFLAGS_REGNUM)
968 {
969 *optimizedp = 0;
970 *lvalp = not_lval;
971 *addrp = 0;
972 *realnump = -1;
973 if (valuep)
974 {
975 ULONGEST val;
976
977 /* Clear the direction flag. */
978 val = frame_unwind_register_unsigned (next_frame,
979 I386_EFLAGS_REGNUM);
980 val &= ~(1 << 10);
981 store_unsigned_integer (valuep, 4, val);
982 }
983
984 return;
985 }
986
987 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
988 {
989 *optimizedp = 0;
990 *lvalp = lval_register;
991 *addrp = 0;
992 *realnump = I386_EAX_REGNUM;
993 if (valuep)
994 frame_unwind_register (next_frame, (*realnump), valuep);
995 return;
996 }
997
998 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
999 {
1000 *optimizedp = 0;
1001 *lvalp = not_lval;
1002 *addrp = 0;
1003 *realnump = -1;
1004 if (valuep)
1005 {
1006 /* Store the value. */
1007 store_unsigned_integer (valuep, 4, cache->saved_sp);
1008 }
1009 return;
1010 }
1011
1012 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1013 {
1014 *optimizedp = 0;
1015 *lvalp = lval_memory;
1016 *addrp = cache->saved_regs[regnum];
1017 *realnump = -1;
1018 if (valuep)
1019 {
1020 /* Read the value in from memory. */
1021 read_memory (*addrp, valuep,
1022 register_size (current_gdbarch, regnum));
1023 }
1024 return;
1025 }
1026
1027 *optimizedp = 0;
1028 *lvalp = lval_register;
1029 *addrp = 0;
1030 *realnump = regnum;
1031 if (valuep)
1032 frame_unwind_register (next_frame, (*realnump), valuep);
1033 }
1034
1035 static const struct frame_unwind i386_frame_unwind =
1036 {
1037 NORMAL_FRAME,
1038 i386_frame_this_id,
1039 i386_frame_prev_register
1040 };
1041
1042 static const struct frame_unwind *
1043 i386_frame_sniffer (struct frame_info *next_frame)
1044 {
1045 return &i386_frame_unwind;
1046 }
1047 \f
1048
1049 /* Signal trampolines. */
1050
1051 static struct i386_frame_cache *
1052 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1053 {
1054 struct i386_frame_cache *cache;
1055 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1056 CORE_ADDR addr;
1057 gdb_byte buf[4];
1058
1059 if (*this_cache)
1060 return *this_cache;
1061
1062 cache = i386_alloc_frame_cache ();
1063
1064 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1065 cache->base = extract_unsigned_integer (buf, 4) - 4;
1066
1067 addr = tdep->sigcontext_addr (next_frame);
1068 if (tdep->sc_reg_offset)
1069 {
1070 int i;
1071
1072 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1073
1074 for (i = 0; i < tdep->sc_num_regs; i++)
1075 if (tdep->sc_reg_offset[i] != -1)
1076 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1077 }
1078 else
1079 {
1080 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1081 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1082 }
1083
1084 *this_cache = cache;
1085 return cache;
1086 }
1087
1088 static void
1089 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1090 struct frame_id *this_id)
1091 {
1092 struct i386_frame_cache *cache =
1093 i386_sigtramp_frame_cache (next_frame, this_cache);
1094
1095 /* See the end of i386_push_dummy_call. */
1096 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1097 }
1098
1099 static void
1100 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1101 void **this_cache,
1102 int regnum, int *optimizedp,
1103 enum lval_type *lvalp, CORE_ADDR *addrp,
1104 int *realnump, gdb_byte *valuep)
1105 {
1106 /* Make sure we've initialized the cache. */
1107 i386_sigtramp_frame_cache (next_frame, this_cache);
1108
1109 i386_frame_prev_register (next_frame, this_cache, regnum,
1110 optimizedp, lvalp, addrp, realnump, valuep);
1111 }
1112
1113 static const struct frame_unwind i386_sigtramp_frame_unwind =
1114 {
1115 SIGTRAMP_FRAME,
1116 i386_sigtramp_frame_this_id,
1117 i386_sigtramp_frame_prev_register
1118 };
1119
1120 static const struct frame_unwind *
1121 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1122 {
1123 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1124
1125 /* We shouldn't even bother if we don't have a sigcontext_addr
1126 handler. */
1127 if (tdep->sigcontext_addr == NULL)
1128 return NULL;
1129
1130 if (tdep->sigtramp_p != NULL)
1131 {
1132 if (tdep->sigtramp_p (next_frame))
1133 return &i386_sigtramp_frame_unwind;
1134 }
1135
1136 if (tdep->sigtramp_start != 0)
1137 {
1138 CORE_ADDR pc = frame_pc_unwind (next_frame);
1139
1140 gdb_assert (tdep->sigtramp_end != 0);
1141 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1142 return &i386_sigtramp_frame_unwind;
1143 }
1144
1145 return NULL;
1146 }
1147 \f
1148
1149 static CORE_ADDR
1150 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1151 {
1152 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1153
1154 return cache->base;
1155 }
1156
1157 static const struct frame_base i386_frame_base =
1158 {
1159 &i386_frame_unwind,
1160 i386_frame_base_address,
1161 i386_frame_base_address,
1162 i386_frame_base_address
1163 };
1164
1165 static struct frame_id
1166 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1167 {
1168 gdb_byte buf[4];
1169 CORE_ADDR fp;
1170
1171 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1172 fp = extract_unsigned_integer (buf, 4);
1173
1174 /* See the end of i386_push_dummy_call. */
1175 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1176 }
1177 \f
1178
1179 /* Figure out where the longjmp will land. Slurp the args out of the
1180 stack. We expect the first arg to be a pointer to the jmp_buf
1181 structure from which we extract the address that we will land at.
1182 This address is copied into PC. This routine returns non-zero on
1183 success.
1184
1185 This function is 64-bit safe. */
1186
1187 static int
1188 i386_get_longjmp_target (CORE_ADDR *pc)
1189 {
1190 gdb_byte buf[8];
1191 CORE_ADDR sp, jb_addr;
1192 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
1193 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1194
1195 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1196 longjmp will land. */
1197 if (jb_pc_offset == -1)
1198 return 0;
1199
1200 /* Don't use I386_ESP_REGNUM here, since this function is also used
1201 for AMD64. */
1202 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1203 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1204 if (target_read_memory (sp + len, buf, len))
1205 return 0;
1206
1207 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1208 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1209 return 0;
1210
1211 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1212 return 1;
1213 }
1214 \f
1215
1216 static CORE_ADDR
1217 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1218 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1219 struct value **args, CORE_ADDR sp, int struct_return,
1220 CORE_ADDR struct_addr)
1221 {
1222 gdb_byte buf[4];
1223 int i;
1224
1225 /* Push arguments in reverse order. */
1226 for (i = nargs - 1; i >= 0; i--)
1227 {
1228 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1229
1230 /* The System V ABI says that:
1231
1232 "An argument's size is increased, if necessary, to make it a
1233 multiple of [32-bit] words. This may require tail padding,
1234 depending on the size of the argument."
1235
1236 This makes sure the stack says word-aligned. */
1237 sp -= (len + 3) & ~3;
1238 write_memory (sp, value_contents_all (args[i]), len);
1239 }
1240
1241 /* Push value address. */
1242 if (struct_return)
1243 {
1244 sp -= 4;
1245 store_unsigned_integer (buf, 4, struct_addr);
1246 write_memory (sp, buf, 4);
1247 }
1248
1249 /* Store return address. */
1250 sp -= 4;
1251 store_unsigned_integer (buf, 4, bp_addr);
1252 write_memory (sp, buf, 4);
1253
1254 /* Finally, update the stack pointer... */
1255 store_unsigned_integer (buf, 4, sp);
1256 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1257
1258 /* ...and fake a frame pointer. */
1259 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1260
1261 /* MarkK wrote: This "+ 8" is all over the place:
1262 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1263 i386_unwind_dummy_id). It's there, since all frame unwinders for
1264 a given target have to agree (within a certain margin) on the
1265 definition of the stack address of a frame. Otherwise
1266 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1267 stack address *before* the function call as a frame's CFA. On
1268 the i386, when %ebp is used as a frame pointer, the offset
1269 between the contents %ebp and the CFA as defined by GCC. */
1270 return sp + 8;
1271 }
1272
1273 /* These registers are used for returning integers (and on some
1274 targets also for returning `struct' and `union' values when their
1275 size and alignment match an integer type). */
1276 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1277 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1278
1279 /* Read, for architecture GDBARCH, a function return value of TYPE
1280 from REGCACHE, and copy that into VALBUF. */
1281
1282 static void
1283 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1284 struct regcache *regcache, gdb_byte *valbuf)
1285 {
1286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1287 int len = TYPE_LENGTH (type);
1288 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1289
1290 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1291 {
1292 if (tdep->st0_regnum < 0)
1293 {
1294 warning (_("Cannot find floating-point return value."));
1295 memset (valbuf, 0, len);
1296 return;
1297 }
1298
1299 /* Floating-point return values can be found in %st(0). Convert
1300 its contents to the desired type. This is probably not
1301 exactly how it would happen on the target itself, but it is
1302 the best we can do. */
1303 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1304 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1305 }
1306 else
1307 {
1308 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1309 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1310
1311 if (len <= low_size)
1312 {
1313 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1314 memcpy (valbuf, buf, len);
1315 }
1316 else if (len <= (low_size + high_size))
1317 {
1318 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1319 memcpy (valbuf, buf, low_size);
1320 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1321 memcpy (valbuf + low_size, buf, len - low_size);
1322 }
1323 else
1324 internal_error (__FILE__, __LINE__,
1325 _("Cannot extract return value of %d bytes long."), len);
1326 }
1327 }
1328
1329 /* Write, for architecture GDBARCH, a function return value of TYPE
1330 from VALBUF into REGCACHE. */
1331
1332 static void
1333 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1334 struct regcache *regcache, const gdb_byte *valbuf)
1335 {
1336 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1337 int len = TYPE_LENGTH (type);
1338
1339 /* Define I387_ST0_REGNUM such that we use the proper definitions
1340 for the architecture. */
1341 #define I387_ST0_REGNUM I386_ST0_REGNUM
1342
1343 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1344 {
1345 ULONGEST fstat;
1346 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1347
1348 if (tdep->st0_regnum < 0)
1349 {
1350 warning (_("Cannot set floating-point return value."));
1351 return;
1352 }
1353
1354 /* Returning floating-point values is a bit tricky. Apart from
1355 storing the return value in %st(0), we have to simulate the
1356 state of the FPU at function return point. */
1357
1358 /* Convert the value found in VALBUF to the extended
1359 floating-point format used by the FPU. This is probably
1360 not exactly how it would happen on the target itself, but
1361 it is the best we can do. */
1362 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1363 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1364
1365 /* Set the top of the floating-point register stack to 7. The
1366 actual value doesn't really matter, but 7 is what a normal
1367 function return would end up with if the program started out
1368 with a freshly initialized FPU. */
1369 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1370 fstat |= (7 << 11);
1371 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1372
1373 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1374 the floating-point register stack to 7, the appropriate value
1375 for the tag word is 0x3fff. */
1376 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1377 }
1378 else
1379 {
1380 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1381 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1382
1383 if (len <= low_size)
1384 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1385 else if (len <= (low_size + high_size))
1386 {
1387 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1388 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1389 len - low_size, valbuf + low_size);
1390 }
1391 else
1392 internal_error (__FILE__, __LINE__,
1393 _("Cannot store return value of %d bytes long."), len);
1394 }
1395
1396 #undef I387_ST0_REGNUM
1397 }
1398 \f
1399
1400 /* This is the variable that is set with "set struct-convention", and
1401 its legitimate values. */
1402 static const char default_struct_convention[] = "default";
1403 static const char pcc_struct_convention[] = "pcc";
1404 static const char reg_struct_convention[] = "reg";
1405 static const char *valid_conventions[] =
1406 {
1407 default_struct_convention,
1408 pcc_struct_convention,
1409 reg_struct_convention,
1410 NULL
1411 };
1412 static const char *struct_convention = default_struct_convention;
1413
1414 /* Return non-zero if TYPE, which is assumed to be a structure or
1415 union type, should be returned in registers for architecture
1416 GDBARCH. */
1417
1418 static int
1419 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1420 {
1421 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1422 enum type_code code = TYPE_CODE (type);
1423 int len = TYPE_LENGTH (type);
1424
1425 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1426
1427 if (struct_convention == pcc_struct_convention
1428 || (struct_convention == default_struct_convention
1429 && tdep->struct_return == pcc_struct_return))
1430 return 0;
1431
1432 /* Structures consisting of a single `float', `double' or 'long
1433 double' member are returned in %st(0). */
1434 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1435 {
1436 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1437 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1438 return (len == 4 || len == 8 || len == 12);
1439 }
1440
1441 return (len == 1 || len == 2 || len == 4 || len == 8);
1442 }
1443
1444 /* Determine, for architecture GDBARCH, how a return value of TYPE
1445 should be returned. If it is supposed to be returned in registers,
1446 and READBUF is non-zero, read the appropriate value from REGCACHE,
1447 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1448 from WRITEBUF into REGCACHE. */
1449
1450 static enum return_value_convention
1451 i386_return_value (struct gdbarch *gdbarch, struct type *type,
1452 struct regcache *regcache, gdb_byte *readbuf,
1453 const gdb_byte *writebuf)
1454 {
1455 enum type_code code = TYPE_CODE (type);
1456
1457 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1458 && !i386_reg_struct_return_p (gdbarch, type))
1459 {
1460 /* The System V ABI says that:
1461
1462 "A function that returns a structure or union also sets %eax
1463 to the value of the original address of the caller's area
1464 before it returns. Thus when the caller receives control
1465 again, the address of the returned object resides in register
1466 %eax and can be used to access the object."
1467
1468 So the ABI guarantees that we can always find the return
1469 value just after the function has returned. */
1470
1471 if (readbuf)
1472 {
1473 ULONGEST addr;
1474
1475 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1476 read_memory (addr, readbuf, TYPE_LENGTH (type));
1477 }
1478
1479 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1480 }
1481
1482 /* This special case is for structures consisting of a single
1483 `float', `double' or 'long double' member. These structures are
1484 returned in %st(0). For these structures, we call ourselves
1485 recursively, changing TYPE into the type of the first member of
1486 the structure. Since that should work for all structures that
1487 have only one member, we don't bother to check the member's type
1488 here. */
1489 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1490 {
1491 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1492 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1493 }
1494
1495 if (readbuf)
1496 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1497 if (writebuf)
1498 i386_store_return_value (gdbarch, type, regcache, writebuf);
1499
1500 return RETURN_VALUE_REGISTER_CONVENTION;
1501 }
1502 \f
1503
1504 /* Types for the MMX and SSE registers. */
1505 static struct type *i386_mmx_type;
1506 static struct type *i386_sse_type;
1507
1508 /* Construct the type for MMX registers. */
1509 static struct type *
1510 i386_build_mmx_type (void)
1511 {
1512 /* The type we're building is this: */
1513 #if 0
1514 union __gdb_builtin_type_vec64i
1515 {
1516 int64_t uint64;
1517 int32_t v2_int32[2];
1518 int16_t v4_int16[4];
1519 int8_t v8_int8[8];
1520 };
1521 #endif
1522
1523 if (! i386_mmx_type)
1524 {
1525 struct type *t;
1526
1527 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1528 append_composite_type_field (t, "uint64", builtin_type_int64);
1529 append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
1530 append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
1531 append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
1532
1533 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1534 TYPE_NAME (t) = "builtin_type_vec64i";
1535
1536 i386_mmx_type = t;
1537 }
1538
1539 return i386_mmx_type;
1540 }
1541
1542 /* Construct the type for SSE registers. */
1543 static struct type *
1544 i386_build_sse_type (void)
1545 {
1546 if (! i386_sse_type)
1547 {
1548 struct type *t;
1549
1550 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1551 append_composite_type_field (t, "v4_float", builtin_type_v4_float);
1552 append_composite_type_field (t, "v2_double", builtin_type_v2_double);
1553 append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
1554 append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
1555 append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
1556 append_composite_type_field (t, "v2_int64", builtin_type_v2_int64);
1557 append_composite_type_field (t, "uint128", builtin_type_int128);
1558
1559 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1560 TYPE_NAME (t) = "builtin_type_vec128i";
1561
1562 i386_sse_type = t;
1563 }
1564
1565 return i386_sse_type;
1566 }
1567
1568 /* Return the GDB type object for the "standard" data type of data in
1569 register REGNUM. Perhaps %esi and %edi should go here, but
1570 potentially they could be used for things other than address. */
1571
1572 static struct type *
1573 i386_register_type (struct gdbarch *gdbarch, int regnum)
1574 {
1575 if (regnum == I386_EIP_REGNUM)
1576 return builtin_type_void_func_ptr;
1577
1578 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1579 return builtin_type_void_data_ptr;
1580
1581 if (i386_fp_regnum_p (regnum))
1582 return builtin_type_i387_ext;
1583
1584 if (i386_sse_regnum_p (gdbarch, regnum))
1585 return i386_build_sse_type ();
1586
1587 if (i386_mmx_regnum_p (gdbarch, regnum))
1588 return i386_build_mmx_type ();
1589
1590 return builtin_type_int;
1591 }
1592
1593 /* Map a cooked register onto a raw register or memory. For the i386,
1594 the MMX registers need to be mapped onto floating point registers. */
1595
1596 static int
1597 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1598 {
1599 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1600 int mmxreg, fpreg;
1601 ULONGEST fstat;
1602 int tos;
1603
1604 /* Define I387_ST0_REGNUM such that we use the proper definitions
1605 for REGCACHE's architecture. */
1606 #define I387_ST0_REGNUM tdep->st0_regnum
1607
1608 mmxreg = regnum - tdep->mm0_regnum;
1609 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1610 tos = (fstat >> 11) & 0x7;
1611 fpreg = (mmxreg + tos) % 8;
1612
1613 return (I387_ST0_REGNUM + fpreg);
1614
1615 #undef I387_ST0_REGNUM
1616 }
1617
1618 static void
1619 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1620 int regnum, gdb_byte *buf)
1621 {
1622 if (i386_mmx_regnum_p (gdbarch, regnum))
1623 {
1624 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1625 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1626
1627 /* Extract (always little endian). */
1628 regcache_raw_read (regcache, fpnum, mmx_buf);
1629 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1630 }
1631 else
1632 regcache_raw_read (regcache, regnum, buf);
1633 }
1634
1635 static void
1636 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1637 int regnum, const gdb_byte *buf)
1638 {
1639 if (i386_mmx_regnum_p (gdbarch, regnum))
1640 {
1641 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1642 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1643
1644 /* Read ... */
1645 regcache_raw_read (regcache, fpnum, mmx_buf);
1646 /* ... Modify ... (always little endian). */
1647 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1648 /* ... Write. */
1649 regcache_raw_write (regcache, fpnum, mmx_buf);
1650 }
1651 else
1652 regcache_raw_write (regcache, regnum, buf);
1653 }
1654 \f
1655
1656 /* Return the register number of the register allocated by GCC after
1657 REGNUM, or -1 if there is no such register. */
1658
1659 static int
1660 i386_next_regnum (int regnum)
1661 {
1662 /* GCC allocates the registers in the order:
1663
1664 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1665
1666 Since storing a variable in %esp doesn't make any sense we return
1667 -1 for %ebp and for %esp itself. */
1668 static int next_regnum[] =
1669 {
1670 I386_EDX_REGNUM, /* Slot for %eax. */
1671 I386_EBX_REGNUM, /* Slot for %ecx. */
1672 I386_ECX_REGNUM, /* Slot for %edx. */
1673 I386_ESI_REGNUM, /* Slot for %ebx. */
1674 -1, -1, /* Slots for %esp and %ebp. */
1675 I386_EDI_REGNUM, /* Slot for %esi. */
1676 I386_EBP_REGNUM /* Slot for %edi. */
1677 };
1678
1679 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1680 return next_regnum[regnum];
1681
1682 return -1;
1683 }
1684
1685 /* Return nonzero if a value of type TYPE stored in register REGNUM
1686 needs any special handling. */
1687
1688 static int
1689 i386_convert_register_p (int regnum, struct type *type)
1690 {
1691 int len = TYPE_LENGTH (type);
1692
1693 /* Values may be spread across multiple registers. Most debugging
1694 formats aren't expressive enough to specify the locations, so
1695 some heuristics is involved. Right now we only handle types that
1696 have a length that is a multiple of the word size, since GCC
1697 doesn't seem to put any other types into registers. */
1698 if (len > 4 && len % 4 == 0)
1699 {
1700 int last_regnum = regnum;
1701
1702 while (len > 4)
1703 {
1704 last_regnum = i386_next_regnum (last_regnum);
1705 len -= 4;
1706 }
1707
1708 if (last_regnum != -1)
1709 return 1;
1710 }
1711
1712 return i386_fp_regnum_p (regnum);
1713 }
1714
1715 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1716 return its contents in TO. */
1717
1718 static void
1719 i386_register_to_value (struct frame_info *frame, int regnum,
1720 struct type *type, gdb_byte *to)
1721 {
1722 int len = TYPE_LENGTH (type);
1723
1724 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1725 available in FRAME (i.e. if it wasn't saved)? */
1726
1727 if (i386_fp_regnum_p (regnum))
1728 {
1729 i387_register_to_value (frame, regnum, type, to);
1730 return;
1731 }
1732
1733 /* Read a value spread across multiple registers. */
1734
1735 gdb_assert (len > 4 && len % 4 == 0);
1736
1737 while (len > 0)
1738 {
1739 gdb_assert (regnum != -1);
1740 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1741
1742 get_frame_register (frame, regnum, to);
1743 regnum = i386_next_regnum (regnum);
1744 len -= 4;
1745 to += 4;
1746 }
1747 }
1748
1749 /* Write the contents FROM of a value of type TYPE into register
1750 REGNUM in frame FRAME. */
1751
1752 static void
1753 i386_value_to_register (struct frame_info *frame, int regnum,
1754 struct type *type, const gdb_byte *from)
1755 {
1756 int len = TYPE_LENGTH (type);
1757
1758 if (i386_fp_regnum_p (regnum))
1759 {
1760 i387_value_to_register (frame, regnum, type, from);
1761 return;
1762 }
1763
1764 /* Write a value spread across multiple registers. */
1765
1766 gdb_assert (len > 4 && len % 4 == 0);
1767
1768 while (len > 0)
1769 {
1770 gdb_assert (regnum != -1);
1771 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1772
1773 put_frame_register (frame, regnum, from);
1774 regnum = i386_next_regnum (regnum);
1775 len -= 4;
1776 from += 4;
1777 }
1778 }
1779 \f
1780 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1781 in the general-purpose register set REGSET to register cache
1782 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1783
1784 void
1785 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1786 int regnum, const void *gregs, size_t len)
1787 {
1788 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1789 const gdb_byte *regs = gregs;
1790 int i;
1791
1792 gdb_assert (len == tdep->sizeof_gregset);
1793
1794 for (i = 0; i < tdep->gregset_num_regs; i++)
1795 {
1796 if ((regnum == i || regnum == -1)
1797 && tdep->gregset_reg_offset[i] != -1)
1798 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1799 }
1800 }
1801
1802 /* Collect register REGNUM from the register cache REGCACHE and store
1803 it in the buffer specified by GREGS and LEN as described by the
1804 general-purpose register set REGSET. If REGNUM is -1, do this for
1805 all registers in REGSET. */
1806
1807 void
1808 i386_collect_gregset (const struct regset *regset,
1809 const struct regcache *regcache,
1810 int regnum, void *gregs, size_t len)
1811 {
1812 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1813 gdb_byte *regs = gregs;
1814 int i;
1815
1816 gdb_assert (len == tdep->sizeof_gregset);
1817
1818 for (i = 0; i < tdep->gregset_num_regs; i++)
1819 {
1820 if ((regnum == i || regnum == -1)
1821 && tdep->gregset_reg_offset[i] != -1)
1822 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1823 }
1824 }
1825
1826 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1827 in the floating-point register set REGSET to register cache
1828 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1829
1830 static void
1831 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1832 int regnum, const void *fpregs, size_t len)
1833 {
1834 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1835
1836 if (len == I387_SIZEOF_FXSAVE)
1837 {
1838 i387_supply_fxsave (regcache, regnum, fpregs);
1839 return;
1840 }
1841
1842 gdb_assert (len == tdep->sizeof_fpregset);
1843 i387_supply_fsave (regcache, regnum, fpregs);
1844 }
1845
1846 /* Collect register REGNUM from the register cache REGCACHE and store
1847 it in the buffer specified by FPREGS and LEN as described by the
1848 floating-point register set REGSET. If REGNUM is -1, do this for
1849 all registers in REGSET. */
1850
1851 static void
1852 i386_collect_fpregset (const struct regset *regset,
1853 const struct regcache *regcache,
1854 int regnum, void *fpregs, size_t len)
1855 {
1856 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1857
1858 if (len == I387_SIZEOF_FXSAVE)
1859 {
1860 i387_collect_fxsave (regcache, regnum, fpregs);
1861 return;
1862 }
1863
1864 gdb_assert (len == tdep->sizeof_fpregset);
1865 i387_collect_fsave (regcache, regnum, fpregs);
1866 }
1867
1868 /* Return the appropriate register set for the core section identified
1869 by SECT_NAME and SECT_SIZE. */
1870
1871 const struct regset *
1872 i386_regset_from_core_section (struct gdbarch *gdbarch,
1873 const char *sect_name, size_t sect_size)
1874 {
1875 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1876
1877 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1878 {
1879 if (tdep->gregset == NULL)
1880 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1881 i386_collect_gregset);
1882 return tdep->gregset;
1883 }
1884
1885 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1886 || (strcmp (sect_name, ".reg-xfp") == 0
1887 && sect_size == I387_SIZEOF_FXSAVE))
1888 {
1889 if (tdep->fpregset == NULL)
1890 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1891 i386_collect_fpregset);
1892 return tdep->fpregset;
1893 }
1894
1895 return NULL;
1896 }
1897 \f
1898
1899 #ifdef STATIC_TRANSFORM_NAME
1900 /* SunPRO encodes the static variables. This is not related to C++
1901 mangling, it is done for C too. */
1902
1903 char *
1904 sunpro_static_transform_name (char *name)
1905 {
1906 char *p;
1907 if (IS_STATIC_TRANSFORM_NAME (name))
1908 {
1909 /* For file-local statics there will be a period, a bunch of
1910 junk (the contents of which match a string given in the
1911 N_OPT), a period and the name. For function-local statics
1912 there will be a bunch of junk (which seems to change the
1913 second character from 'A' to 'B'), a period, the name of the
1914 function, and the name. So just skip everything before the
1915 last period. */
1916 p = strrchr (name, '.');
1917 if (p != NULL)
1918 name = p + 1;
1919 }
1920 return name;
1921 }
1922 #endif /* STATIC_TRANSFORM_NAME */
1923 \f
1924
1925 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1926
1927 CORE_ADDR
1928 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1929 {
1930 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1931 {
1932 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1933 struct minimal_symbol *indsym =
1934 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1935 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1936
1937 if (symname)
1938 {
1939 if (strncmp (symname, "__imp_", 6) == 0
1940 || strncmp (symname, "_imp_", 5) == 0)
1941 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1942 }
1943 }
1944 return 0; /* Not a trampoline. */
1945 }
1946 \f
1947
1948 /* Return whether the frame preceding NEXT_FRAME corresponds to a
1949 sigtramp routine. */
1950
1951 static int
1952 i386_sigtramp_p (struct frame_info *next_frame)
1953 {
1954 CORE_ADDR pc = frame_pc_unwind (next_frame);
1955 char *name;
1956
1957 find_pc_partial_function (pc, &name, NULL, NULL);
1958 return (name && strcmp ("_sigtramp", name) == 0);
1959 }
1960 \f
1961
1962 /* We have two flavours of disassembly. The machinery on this page
1963 deals with switching between those. */
1964
1965 static int
1966 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
1967 {
1968 gdb_assert (disassembly_flavor == att_flavor
1969 || disassembly_flavor == intel_flavor);
1970
1971 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1972 constified, cast to prevent a compiler warning. */
1973 info->disassembler_options = (char *) disassembly_flavor;
1974 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1975
1976 return print_insn_i386 (pc, info);
1977 }
1978 \f
1979
1980 /* There are a few i386 architecture variants that differ only
1981 slightly from the generic i386 target. For now, we don't give them
1982 their own source file, but include them here. As a consequence,
1983 they'll always be included. */
1984
1985 /* System V Release 4 (SVR4). */
1986
1987 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
1988 sigtramp routine. */
1989
1990 static int
1991 i386_svr4_sigtramp_p (struct frame_info *next_frame)
1992 {
1993 CORE_ADDR pc = frame_pc_unwind (next_frame);
1994 char *name;
1995
1996 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1997 currently unknown. */
1998 find_pc_partial_function (pc, &name, NULL, NULL);
1999 return (name && (strcmp ("_sigreturn", name) == 0
2000 || strcmp ("_sigacthandler", name) == 0
2001 || strcmp ("sigvechandler", name) == 0));
2002 }
2003
2004 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2005 routine, return the address of the associated sigcontext (ucontext)
2006 structure. */
2007
2008 static CORE_ADDR
2009 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
2010 {
2011 gdb_byte buf[4];
2012 CORE_ADDR sp;
2013
2014 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2015 sp = extract_unsigned_integer (buf, 4);
2016
2017 return read_memory_unsigned_integer (sp + 8, 4);
2018 }
2019 \f
2020
2021 /* Generic ELF. */
2022
2023 void
2024 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2025 {
2026 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2027 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2028 }
2029
2030 /* System V Release 4 (SVR4). */
2031
2032 void
2033 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2034 {
2035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2036
2037 /* System V Release 4 uses ELF. */
2038 i386_elf_init_abi (info, gdbarch);
2039
2040 /* System V Release 4 has shared libraries. */
2041 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2042
2043 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2044 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2045 tdep->sc_pc_offset = 36 + 14 * 4;
2046 tdep->sc_sp_offset = 36 + 17 * 4;
2047
2048 tdep->jb_pc_offset = 20;
2049 }
2050
2051 /* DJGPP. */
2052
2053 static void
2054 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2055 {
2056 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2057
2058 /* DJGPP doesn't have any special frames for signal handlers. */
2059 tdep->sigtramp_p = NULL;
2060
2061 tdep->jb_pc_offset = 36;
2062 }
2063
2064 /* NetWare. */
2065
2066 static void
2067 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2068 {
2069 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2070
2071 tdep->jb_pc_offset = 24;
2072 }
2073 \f
2074
2075 /* i386 register groups. In addition to the normal groups, add "mmx"
2076 and "sse". */
2077
2078 static struct reggroup *i386_sse_reggroup;
2079 static struct reggroup *i386_mmx_reggroup;
2080
2081 static void
2082 i386_init_reggroups (void)
2083 {
2084 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2085 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2086 }
2087
2088 static void
2089 i386_add_reggroups (struct gdbarch *gdbarch)
2090 {
2091 reggroup_add (gdbarch, i386_sse_reggroup);
2092 reggroup_add (gdbarch, i386_mmx_reggroup);
2093 reggroup_add (gdbarch, general_reggroup);
2094 reggroup_add (gdbarch, float_reggroup);
2095 reggroup_add (gdbarch, all_reggroup);
2096 reggroup_add (gdbarch, save_reggroup);
2097 reggroup_add (gdbarch, restore_reggroup);
2098 reggroup_add (gdbarch, vector_reggroup);
2099 reggroup_add (gdbarch, system_reggroup);
2100 }
2101
2102 int
2103 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2104 struct reggroup *group)
2105 {
2106 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2107 || i386_mxcsr_regnum_p (gdbarch, regnum));
2108 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2109 || i386_fpc_regnum_p (regnum));
2110 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2111
2112 if (group == i386_mmx_reggroup)
2113 return mmx_regnum_p;
2114 if (group == i386_sse_reggroup)
2115 return sse_regnum_p;
2116 if (group == vector_reggroup)
2117 return (mmx_regnum_p || sse_regnum_p);
2118 if (group == float_reggroup)
2119 return fp_regnum_p;
2120 if (group == general_reggroup)
2121 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2122
2123 return default_register_reggroup_p (gdbarch, regnum, group);
2124 }
2125 \f
2126
2127 /* Get the ARGIth function argument for the current function. */
2128
2129 static CORE_ADDR
2130 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2131 struct type *type)
2132 {
2133 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2134 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2135 }
2136
2137 \f
2138 static struct gdbarch *
2139 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2140 {
2141 struct gdbarch_tdep *tdep;
2142 struct gdbarch *gdbarch;
2143
2144 /* If there is already a candidate, use it. */
2145 arches = gdbarch_list_lookup_by_info (arches, &info);
2146 if (arches != NULL)
2147 return arches->gdbarch;
2148
2149 /* Allocate space for the new architecture. */
2150 tdep = XMALLOC (struct gdbarch_tdep);
2151 gdbarch = gdbarch_alloc (&info, tdep);
2152
2153 /* General-purpose registers. */
2154 tdep->gregset = NULL;
2155 tdep->gregset_reg_offset = NULL;
2156 tdep->gregset_num_regs = I386_NUM_GREGS;
2157 tdep->sizeof_gregset = 0;
2158
2159 /* Floating-point registers. */
2160 tdep->fpregset = NULL;
2161 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2162
2163 /* The default settings include the FPU registers, the MMX registers
2164 and the SSE registers. This can be overridden for a specific ABI
2165 by adjusting the members `st0_regnum', `mm0_regnum' and
2166 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2167 will show up in the output of "info all-registers". Ideally we
2168 should try to autodetect whether they are available, such that we
2169 can prevent "info all-registers" from displaying registers that
2170 aren't available.
2171
2172 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2173 [the SSE registers] always (even when they don't exist) or never
2174 showing them to the user (even when they do exist), I prefer the
2175 former over the latter. */
2176
2177 tdep->st0_regnum = I386_ST0_REGNUM;
2178
2179 /* The MMX registers are implemented as pseudo-registers. Put off
2180 calculating the register number for %mm0 until we know the number
2181 of raw registers. */
2182 tdep->mm0_regnum = 0;
2183
2184 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2185 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2186
2187 tdep->jb_pc_offset = -1;
2188 tdep->struct_return = pcc_struct_return;
2189 tdep->sigtramp_start = 0;
2190 tdep->sigtramp_end = 0;
2191 tdep->sigtramp_p = i386_sigtramp_p;
2192 tdep->sigcontext_addr = NULL;
2193 tdep->sc_reg_offset = NULL;
2194 tdep->sc_pc_offset = -1;
2195 tdep->sc_sp_offset = -1;
2196
2197 /* The format used for `long double' on almost all i386 targets is
2198 the i387 extended floating-point format. In fact, of all targets
2199 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2200 on having a `long double' that's not `long' at all. */
2201 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
2202
2203 /* Although the i387 extended floating-point has only 80 significant
2204 bits, a `long double' actually takes up 96, probably to enforce
2205 alignment. */
2206 set_gdbarch_long_double_bit (gdbarch, 96);
2207
2208 /* The default ABI includes general-purpose registers,
2209 floating-point registers, and the SSE registers. */
2210 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2211 set_gdbarch_register_name (gdbarch, i386_register_name);
2212 set_gdbarch_register_type (gdbarch, i386_register_type);
2213
2214 /* Register numbers of various important registers. */
2215 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2216 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2217 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2218 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2219
2220 /* NOTE: kettenis/20040418: GCC does have two possible register
2221 numbering schemes on the i386: dbx and SVR4. These schemes
2222 differ in how they number %ebp, %esp, %eflags, and the
2223 floating-point registers, and are implemented by the arrays
2224 dbx_register_map[] and svr4_dbx_register_map in
2225 gcc/config/i386.c. GCC also defines a third numbering scheme in
2226 gcc/config/i386.c, which it designates as the "default" register
2227 map used in 64bit mode. This last register numbering scheme is
2228 implemented in dbx64_register_map, and is used for AMD64; see
2229 amd64-tdep.c.
2230
2231 Currently, each GCC i386 target always uses the same register
2232 numbering scheme across all its supported debugging formats
2233 i.e. SDB (COFF), stabs and DWARF 2. This is because
2234 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2235 DBX_REGISTER_NUMBER macro which is defined by each target's
2236 respective config header in a manner independent of the requested
2237 output debugging format.
2238
2239 This does not match the arrangement below, which presumes that
2240 the SDB and stabs numbering schemes differ from the DWARF and
2241 DWARF 2 ones. The reason for this arrangement is that it is
2242 likely to get the numbering scheme for the target's
2243 default/native debug format right. For targets where GCC is the
2244 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2245 targets where the native toolchain uses a different numbering
2246 scheme for a particular debug format (stabs-in-ELF on Solaris)
2247 the defaults below will have to be overridden, like
2248 i386_elf_init_abi() does. */
2249
2250 /* Use the dbx register numbering scheme for stabs and COFF. */
2251 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2252 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2253
2254 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2255 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2256 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2257
2258 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2259 be in use on any of the supported i386 targets. */
2260
2261 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2262
2263 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2264
2265 /* Call dummy code. */
2266 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2267
2268 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2269 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2270 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2271
2272 set_gdbarch_return_value (gdbarch, i386_return_value);
2273
2274 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2275
2276 /* Stack grows downward. */
2277 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2278
2279 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2280 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2281
2282 set_gdbarch_frame_args_skip (gdbarch, 8);
2283
2284 /* Wire in the MMX registers. */
2285 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2286 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2287 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2288
2289 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2290
2291 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2292
2293 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2294
2295 /* Add the i386 register groups. */
2296 i386_add_reggroups (gdbarch);
2297 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2298
2299 /* Helper for function argument information. */
2300 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2301
2302 /* Hook in the DWARF CFI frame unwinder. */
2303 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2304
2305 frame_base_set_default (gdbarch, &i386_frame_base);
2306
2307 /* Hook in ABI-specific overrides, if they have been registered. */
2308 gdbarch_init_osabi (info, gdbarch);
2309
2310 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2311 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2312
2313 /* If we have a register mapping, enable the generic core file
2314 support, unless it has already been enabled. */
2315 if (tdep->gregset_reg_offset
2316 && !gdbarch_regset_from_core_section_p (gdbarch))
2317 set_gdbarch_regset_from_core_section (gdbarch,
2318 i386_regset_from_core_section);
2319
2320 /* Unless support for MMX has been disabled, make %mm0 the first
2321 pseudo-register. */
2322 if (tdep->mm0_regnum == 0)
2323 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2324
2325 return gdbarch;
2326 }
2327
2328 static enum gdb_osabi
2329 i386_coff_osabi_sniffer (bfd *abfd)
2330 {
2331 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2332 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2333 return GDB_OSABI_GO32;
2334
2335 return GDB_OSABI_UNKNOWN;
2336 }
2337
2338 static enum gdb_osabi
2339 i386_nlm_osabi_sniffer (bfd *abfd)
2340 {
2341 return GDB_OSABI_NETWARE;
2342 }
2343 \f
2344
2345 /* Provide a prototype to silence -Wmissing-prototypes. */
2346 void _initialize_i386_tdep (void);
2347
2348 void
2349 _initialize_i386_tdep (void)
2350 {
2351 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2352
2353 /* Add the variable that controls the disassembly flavor. */
2354 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2355 &disassembly_flavor, _("\
2356 Set the disassembly flavor."), _("\
2357 Show the disassembly flavor."), _("\
2358 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2359 NULL,
2360 NULL, /* FIXME: i18n: */
2361 &setlist, &showlist);
2362
2363 /* Add the variable that controls the convention for returning
2364 structs. */
2365 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2366 &struct_convention, _("\
2367 Set the convention for returning small structs."), _("\
2368 Show the convention for returning small structs."), _("\
2369 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2370 is \"default\"."),
2371 NULL,
2372 NULL, /* FIXME: i18n: */
2373 &setlist, &showlist);
2374
2375 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2376 i386_coff_osabi_sniffer);
2377 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2378 i386_nlm_osabi_sniffer);
2379
2380 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2381 i386_svr4_init_abi);
2382 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2383 i386_go32_init_abi);
2384 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
2385 i386_nw_init_abi);
2386
2387 /* Initialize the i386 specific register groups. */
2388 i386_init_reggroups ();
2389 }
This page took 0.082379 seconds and 4 git commands to generate.