49f9824842d3ee4af7d7d7ed54972e2bff86ccc2
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx-mpx.c"
57 #include "features/i386/i386-avx-avx512.c"
58 #include "features/i386/i386-avx-mpx-avx512-pku.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70 #include <algorithm>
71
72 /* Register names. */
73
74 static const char *i386_register_names[] =
75 {
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87 };
88
89 static const char *i386_zmm_names[] =
90 {
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93 };
94
95 static const char *i386_zmmh_names[] =
96 {
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99 };
100
101 static const char *i386_k_names[] =
102 {
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105 };
106
107 static const char *i386_ymm_names[] =
108 {
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111 };
112
113 static const char *i386_ymmh_names[] =
114 {
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117 };
118
119 static const char *i386_mpx_names[] =
120 {
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122 };
123
124 static const char* i386_pkeys_names[] =
125 {
126 "pkru"
127 };
128
129 /* Register names for MPX pseudo-registers. */
130
131 static const char *i386_bnd_names[] =
132 {
133 "bnd0", "bnd1", "bnd2", "bnd3"
134 };
135
136 /* Register names for MMX pseudo-registers. */
137
138 static const char *i386_mmx_names[] =
139 {
140 "mm0", "mm1", "mm2", "mm3",
141 "mm4", "mm5", "mm6", "mm7"
142 };
143
144 /* Register names for byte pseudo-registers. */
145
146 static const char *i386_byte_names[] =
147 {
148 "al", "cl", "dl", "bl",
149 "ah", "ch", "dh", "bh"
150 };
151
152 /* Register names for word pseudo-registers. */
153
154 static const char *i386_word_names[] =
155 {
156 "ax", "cx", "dx", "bx",
157 "", "bp", "si", "di"
158 };
159
160 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
161 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
162 we have 16 upper ZMM regs that have to be handled differently. */
163
164 const int num_lower_zmm_regs = 16;
165
166 /* MMX register? */
167
168 static int
169 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int mm0_regnum = tdep->mm0_regnum;
173
174 if (mm0_regnum < 0)
175 return 0;
176
177 regnum -= mm0_regnum;
178 return regnum >= 0 && regnum < tdep->num_mmx_regs;
179 }
180
181 /* Byte register? */
182
183 int
184 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187
188 regnum -= tdep->al_regnum;
189 return regnum >= 0 && regnum < tdep->num_byte_regs;
190 }
191
192 /* Word register? */
193
194 int
195 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
196 {
197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
198
199 regnum -= tdep->ax_regnum;
200 return regnum >= 0 && regnum < tdep->num_word_regs;
201 }
202
203 /* Dword register? */
204
205 int
206 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int eax_regnum = tdep->eax_regnum;
210
211 if (eax_regnum < 0)
212 return 0;
213
214 regnum -= eax_regnum;
215 return regnum >= 0 && regnum < tdep->num_dword_regs;
216 }
217
218 /* AVX512 register? */
219
220 int
221 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int zmm0h_regnum = tdep->zmm0h_regnum;
225
226 if (zmm0h_regnum < 0)
227 return 0;
228
229 regnum -= zmm0h_regnum;
230 return regnum >= 0 && regnum < tdep->num_zmm_regs;
231 }
232
233 int
234 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237 int zmm0_regnum = tdep->zmm0_regnum;
238
239 if (zmm0_regnum < 0)
240 return 0;
241
242 regnum -= zmm0_regnum;
243 return regnum >= 0 && regnum < tdep->num_zmm_regs;
244 }
245
246 int
247 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int k0_regnum = tdep->k0_regnum;
251
252 if (k0_regnum < 0)
253 return 0;
254
255 regnum -= k0_regnum;
256 return regnum >= 0 && regnum < I387_NUM_K_REGS;
257 }
258
259 static int
260 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263 int ymm0h_regnum = tdep->ymm0h_regnum;
264
265 if (ymm0h_regnum < 0)
266 return 0;
267
268 regnum -= ymm0h_regnum;
269 return regnum >= 0 && regnum < tdep->num_ymm_regs;
270 }
271
272 /* AVX register? */
273
274 int
275 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
276 {
277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
278 int ymm0_regnum = tdep->ymm0_regnum;
279
280 if (ymm0_regnum < 0)
281 return 0;
282
283 regnum -= ymm0_regnum;
284 return regnum >= 0 && regnum < tdep->num_ymm_regs;
285 }
286
287 static int
288 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
289 {
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 int ymm16h_regnum = tdep->ymm16h_regnum;
292
293 if (ymm16h_regnum < 0)
294 return 0;
295
296 regnum -= ymm16h_regnum;
297 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
298 }
299
300 int
301 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
302 {
303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
304 int ymm16_regnum = tdep->ymm16_regnum;
305
306 if (ymm16_regnum < 0)
307 return 0;
308
309 regnum -= ymm16_regnum;
310 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
311 }
312
313 /* BND register? */
314
315 int
316 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
317 {
318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
319 int bnd0_regnum = tdep->bnd0_regnum;
320
321 if (bnd0_regnum < 0)
322 return 0;
323
324 regnum -= bnd0_regnum;
325 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
326 }
327
328 /* SSE register? */
329
330 int
331 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
335
336 if (num_xmm_regs == 0)
337 return 0;
338
339 regnum -= I387_XMM0_REGNUM (tdep);
340 return regnum >= 0 && regnum < num_xmm_regs;
341 }
342
343 /* XMM_512 register? */
344
345 int
346 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
347 {
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
350
351 if (num_xmm_avx512_regs == 0)
352 return 0;
353
354 regnum -= I387_XMM16_REGNUM (tdep);
355 return regnum >= 0 && regnum < num_xmm_avx512_regs;
356 }
357
358 static int
359 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
360 {
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362
363 if (I387_NUM_XMM_REGS (tdep) == 0)
364 return 0;
365
366 return (regnum == I387_MXCSR_REGNUM (tdep));
367 }
368
369 /* FP register? */
370
371 int
372 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
373 {
374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
375
376 if (I387_ST0_REGNUM (tdep) < 0)
377 return 0;
378
379 return (I387_ST0_REGNUM (tdep) <= regnum
380 && regnum < I387_FCTRL_REGNUM (tdep));
381 }
382
383 int
384 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
385 {
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387
388 if (I387_ST0_REGNUM (tdep) < 0)
389 return 0;
390
391 return (I387_FCTRL_REGNUM (tdep) <= regnum
392 && regnum < I387_XMM0_REGNUM (tdep));
393 }
394
395 /* BNDr (raw) register? */
396
397 static int
398 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
399 {
400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
401
402 if (I387_BND0R_REGNUM (tdep) < 0)
403 return 0;
404
405 regnum -= tdep->bnd0r_regnum;
406 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
407 }
408
409 /* BND control register? */
410
411 static int
412 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415
416 if (I387_BNDCFGU_REGNUM (tdep) < 0)
417 return 0;
418
419 regnum -= I387_BNDCFGU_REGNUM (tdep);
420 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
421 }
422
423 /* PKRU register? */
424
425 bool
426 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
427 {
428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
429 int pkru_regnum = tdep->pkru_regnum;
430
431 if (pkru_regnum < 0)
432 return false;
433
434 regnum -= pkru_regnum;
435 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
436 }
437
438 /* Return the name of register REGNUM, or the empty string if it is
439 an anonymous register. */
440
441 static const char *
442 i386_register_name (struct gdbarch *gdbarch, int regnum)
443 {
444 /* Hide the upper YMM registers. */
445 if (i386_ymmh_regnum_p (gdbarch, regnum))
446 return "";
447
448 /* Hide the upper YMM16-31 registers. */
449 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
450 return "";
451
452 /* Hide the upper ZMM registers. */
453 if (i386_zmmh_regnum_p (gdbarch, regnum))
454 return "";
455
456 return tdesc_register_name (gdbarch, regnum);
457 }
458
459 /* Return the name of register REGNUM. */
460
461 const char *
462 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
463 {
464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465 if (i386_bnd_regnum_p (gdbarch, regnum))
466 return i386_bnd_names[regnum - tdep->bnd0_regnum];
467 if (i386_mmx_regnum_p (gdbarch, regnum))
468 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
469 else if (i386_ymm_regnum_p (gdbarch, regnum))
470 return i386_ymm_names[regnum - tdep->ymm0_regnum];
471 else if (i386_zmm_regnum_p (gdbarch, regnum))
472 return i386_zmm_names[regnum - tdep->zmm0_regnum];
473 else if (i386_byte_regnum_p (gdbarch, regnum))
474 return i386_byte_names[regnum - tdep->al_regnum];
475 else if (i386_word_regnum_p (gdbarch, regnum))
476 return i386_word_names[regnum - tdep->ax_regnum];
477
478 internal_error (__FILE__, __LINE__, _("invalid regnum"));
479 }
480
481 /* Convert a dbx register number REG to the appropriate register
482 number used by GDB. */
483
484 static int
485 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
486 {
487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
488
489 /* This implements what GCC calls the "default" register map
490 (dbx_register_map[]). */
491
492 if (reg >= 0 && reg <= 7)
493 {
494 /* General-purpose registers. The debug info calls %ebp
495 register 4, and %esp register 5. */
496 if (reg == 4)
497 return 5;
498 else if (reg == 5)
499 return 4;
500 else return reg;
501 }
502 else if (reg >= 12 && reg <= 19)
503 {
504 /* Floating-point registers. */
505 return reg - 12 + I387_ST0_REGNUM (tdep);
506 }
507 else if (reg >= 21 && reg <= 28)
508 {
509 /* SSE registers. */
510 int ymm0_regnum = tdep->ymm0_regnum;
511
512 if (ymm0_regnum >= 0
513 && i386_xmm_regnum_p (gdbarch, reg))
514 return reg - 21 + ymm0_regnum;
515 else
516 return reg - 21 + I387_XMM0_REGNUM (tdep);
517 }
518 else if (reg >= 29 && reg <= 36)
519 {
520 /* MMX registers. */
521 return reg - 29 + I387_MM0_REGNUM (tdep);
522 }
523
524 /* This will hopefully provoke a warning. */
525 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
526 }
527
528 /* Convert SVR4 DWARF register number REG to the appropriate register number
529 used by GDB. */
530
531 static int
532 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
533 {
534 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
535
536 /* This implements the GCC register map that tries to be compatible
537 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
538
539 /* The SVR4 register numbering includes %eip and %eflags, and
540 numbers the floating point registers differently. */
541 if (reg >= 0 && reg <= 9)
542 {
543 /* General-purpose registers. */
544 return reg;
545 }
546 else if (reg >= 11 && reg <= 18)
547 {
548 /* Floating-point registers. */
549 return reg - 11 + I387_ST0_REGNUM (tdep);
550 }
551 else if (reg >= 21 && reg <= 36)
552 {
553 /* The SSE and MMX registers have the same numbers as with dbx. */
554 return i386_dbx_reg_to_regnum (gdbarch, reg);
555 }
556
557 switch (reg)
558 {
559 case 37: return I387_FCTRL_REGNUM (tdep);
560 case 38: return I387_FSTAT_REGNUM (tdep);
561 case 39: return I387_MXCSR_REGNUM (tdep);
562 case 40: return I386_ES_REGNUM;
563 case 41: return I386_CS_REGNUM;
564 case 42: return I386_SS_REGNUM;
565 case 43: return I386_DS_REGNUM;
566 case 44: return I386_FS_REGNUM;
567 case 45: return I386_GS_REGNUM;
568 }
569
570 return -1;
571 }
572
573 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
574 num_regs + num_pseudo_regs for other debug formats. */
575
576 static int
577 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
578 {
579 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
580
581 if (regnum == -1)
582 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
583 return regnum;
584 }
585
586 \f
587
588 /* This is the variable that is set with "set disassembly-flavor", and
589 its legitimate values. */
590 static const char att_flavor[] = "att";
591 static const char intel_flavor[] = "intel";
592 static const char *const valid_flavors[] =
593 {
594 att_flavor,
595 intel_flavor,
596 NULL
597 };
598 static const char *disassembly_flavor = att_flavor;
599 \f
600
601 /* Use the program counter to determine the contents and size of a
602 breakpoint instruction. Return a pointer to a string of bytes that
603 encode a breakpoint instruction, store the length of the string in
604 *LEN and optionally adjust *PC to point to the correct memory
605 location for inserting the breakpoint.
606
607 On the i386 we have a single breakpoint that fits in a single byte
608 and can be inserted anywhere.
609
610 This function is 64-bit safe. */
611
612 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
613
614 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
615
616 \f
617 /* Displaced instruction handling. */
618
619 /* Skip the legacy instruction prefixes in INSN.
620 Not all prefixes are valid for any particular insn
621 but we needn't care, the insn will fault if it's invalid.
622 The result is a pointer to the first opcode byte,
623 or NULL if we run off the end of the buffer. */
624
625 static gdb_byte *
626 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
627 {
628 gdb_byte *end = insn + max_len;
629
630 while (insn < end)
631 {
632 switch (*insn)
633 {
634 case DATA_PREFIX_OPCODE:
635 case ADDR_PREFIX_OPCODE:
636 case CS_PREFIX_OPCODE:
637 case DS_PREFIX_OPCODE:
638 case ES_PREFIX_OPCODE:
639 case FS_PREFIX_OPCODE:
640 case GS_PREFIX_OPCODE:
641 case SS_PREFIX_OPCODE:
642 case LOCK_PREFIX_OPCODE:
643 case REPE_PREFIX_OPCODE:
644 case REPNE_PREFIX_OPCODE:
645 ++insn;
646 continue;
647 default:
648 return insn;
649 }
650 }
651
652 return NULL;
653 }
654
655 static int
656 i386_absolute_jmp_p (const gdb_byte *insn)
657 {
658 /* jmp far (absolute address in operand). */
659 if (insn[0] == 0xea)
660 return 1;
661
662 if (insn[0] == 0xff)
663 {
664 /* jump near, absolute indirect (/4). */
665 if ((insn[1] & 0x38) == 0x20)
666 return 1;
667
668 /* jump far, absolute indirect (/5). */
669 if ((insn[1] & 0x38) == 0x28)
670 return 1;
671 }
672
673 return 0;
674 }
675
676 /* Return non-zero if INSN is a jump, zero otherwise. */
677
678 static int
679 i386_jmp_p (const gdb_byte *insn)
680 {
681 /* jump short, relative. */
682 if (insn[0] == 0xeb)
683 return 1;
684
685 /* jump near, relative. */
686 if (insn[0] == 0xe9)
687 return 1;
688
689 return i386_absolute_jmp_p (insn);
690 }
691
692 static int
693 i386_absolute_call_p (const gdb_byte *insn)
694 {
695 /* call far, absolute. */
696 if (insn[0] == 0x9a)
697 return 1;
698
699 if (insn[0] == 0xff)
700 {
701 /* Call near, absolute indirect (/2). */
702 if ((insn[1] & 0x38) == 0x10)
703 return 1;
704
705 /* Call far, absolute indirect (/3). */
706 if ((insn[1] & 0x38) == 0x18)
707 return 1;
708 }
709
710 return 0;
711 }
712
713 static int
714 i386_ret_p (const gdb_byte *insn)
715 {
716 switch (insn[0])
717 {
718 case 0xc2: /* ret near, pop N bytes. */
719 case 0xc3: /* ret near */
720 case 0xca: /* ret far, pop N bytes. */
721 case 0xcb: /* ret far */
722 case 0xcf: /* iret */
723 return 1;
724
725 default:
726 return 0;
727 }
728 }
729
730 static int
731 i386_call_p (const gdb_byte *insn)
732 {
733 if (i386_absolute_call_p (insn))
734 return 1;
735
736 /* call near, relative. */
737 if (insn[0] == 0xe8)
738 return 1;
739
740 return 0;
741 }
742
743 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
744 length in bytes. Otherwise, return zero. */
745
746 static int
747 i386_syscall_p (const gdb_byte *insn, int *lengthp)
748 {
749 /* Is it 'int $0x80'? */
750 if ((insn[0] == 0xcd && insn[1] == 0x80)
751 /* Or is it 'sysenter'? */
752 || (insn[0] == 0x0f && insn[1] == 0x34)
753 /* Or is it 'syscall'? */
754 || (insn[0] == 0x0f && insn[1] == 0x05))
755 {
756 *lengthp = 2;
757 return 1;
758 }
759
760 return 0;
761 }
762
763 /* The gdbarch insn_is_call method. */
764
765 static int
766 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
767 {
768 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
769
770 read_code (addr, buf, I386_MAX_INSN_LEN);
771 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
772
773 return i386_call_p (insn);
774 }
775
776 /* The gdbarch insn_is_ret method. */
777
778 static int
779 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
780 {
781 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
782
783 read_code (addr, buf, I386_MAX_INSN_LEN);
784 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
785
786 return i386_ret_p (insn);
787 }
788
789 /* The gdbarch insn_is_jump method. */
790
791 static int
792 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
793 {
794 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
795
796 read_code (addr, buf, I386_MAX_INSN_LEN);
797 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
798
799 return i386_jmp_p (insn);
800 }
801
802 /* Some kernels may run one past a syscall insn, so we have to cope.
803 Otherwise this is just simple_displaced_step_copy_insn. */
804
805 struct displaced_step_closure *
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809 {
810 size_t len = gdbarch_max_insn_length (gdbarch);
811 gdb_byte *buf = (gdb_byte *) xmalloc (len);
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
829 if (debug_displaced)
830 {
831 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
832 paddress (gdbarch, from), paddress (gdbarch, to));
833 displaced_step_dump_bytes (gdb_stdlog, buf, len);
834 }
835
836 return (struct displaced_step_closure *) buf;
837 }
838
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
841
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_closure *closure,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 /* Since we use simple_displaced_step_copy_insn, our closure is a
857 copy of the instruction. */
858 gdb_byte *insn = (gdb_byte *) closure;
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
861
862 if (debug_displaced)
863 fprintf_unfiltered (gdb_stdlog,
864 "displaced: fixup (%s, %s), "
865 "insn = 0x%02x 0x%02x ...\n",
866 paddress (gdbarch, from), paddress (gdbarch, to),
867 insn[0], insn[1]);
868
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
872
873 /* Relocate the %eip, if necessary. */
874
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
877 {
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
880 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
883 if (opcode != NULL)
884 insn = opcode;
885 }
886
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn)
893 && ! i386_absolute_call_p (insn)
894 && ! i386_ret_p (insn))
895 {
896 ULONGEST orig_eip;
897 int insn_len;
898
899 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
900
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
905
906 But most system calls don't, and we do need to relocate %eip.
907
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
914 system calls. */
915 if (i386_syscall_p (insn, &insn_len)
916 && orig_eip != to + (insn - insn_start) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip != to + (insn - insn_start) + insn_len + 1)
922 {
923 if (debug_displaced)
924 fprintf_unfiltered (gdb_stdlog,
925 "displaced: syscall changed %%eip; "
926 "not relocating\n");
927 }
928 else
929 {
930 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
931
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
934 stepping. */
935
936 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: "
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch, orig_eip),
943 paddress (gdbarch, eip));
944 }
945 }
946
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
950 pushfl. */
951
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn))
956 {
957 ULONGEST esp;
958 ULONGEST retaddr;
959 const ULONGEST retaddr_len = 4;
960
961 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
962 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
963 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
964 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
965
966 if (debug_displaced)
967 fprintf_unfiltered (gdb_stdlog,
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch, esp),
970 paddress (gdbarch, retaddr));
971 }
972 }
973
974 static void
975 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
976 {
977 target_write_memory (*to, buf, len);
978 *to += len;
979 }
980
981 static void
982 i386_relocate_instruction (struct gdbarch *gdbarch,
983 CORE_ADDR *to, CORE_ADDR oldloc)
984 {
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 gdb_byte buf[I386_MAX_INSN_LEN];
987 int offset = 0, rel32, newrel;
988 int insn_length;
989 gdb_byte *insn = buf;
990
991 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
992
993 insn_length = gdb_buffered_insn_length (gdbarch, insn,
994 I386_MAX_INSN_LEN, oldloc);
995
996 /* Get past the prefixes. */
997 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
998
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn[0] == 0xe8)
1003 {
1004 gdb_byte push_buf[16];
1005 unsigned int ret_addr;
1006
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr = oldloc + insn_length;
1009 push_buf[0] = 0x68; /* pushq $... */
1010 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1011 /* Push the push. */
1012 append_insns (to, 5, push_buf);
1013
1014 /* Convert the relative call to a relative jump. */
1015 insn[0] = 0xe9;
1016
1017 /* Adjust the destination offset. */
1018 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
1020 store_signed_integer (insn + 1, 4, byte_order, newrel);
1021
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32), paddress (gdbarch, oldloc),
1027 hex_string (newrel), paddress (gdbarch, *to));
1028
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to, 5, insn);
1031 return;
1032 }
1033
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1035 handled above. */
1036 if (insn[0] == 0xe9)
1037 offset = 1;
1038 /* Adjust conditional jumps. */
1039 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 offset = 2;
1041
1042 if (offset)
1043 {
1044 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1045 newrel = (oldloc - *to) + rel32;
1046 store_signed_integer (insn + offset, 4, byte_order, newrel);
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
1051 hex_string (rel32), paddress (gdbarch, oldloc),
1052 hex_string (newrel), paddress (gdbarch, *to));
1053 }
1054
1055 /* Write the adjusted instructions into their displaced
1056 location. */
1057 append_insns (to, insn_length, buf);
1058 }
1059
1060 \f
1061 #ifdef I386_REGNO_TO_SYMMETRY
1062 #error "The Sequent Symmetry is no longer supported."
1063 #endif
1064
1065 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
1068
1069 /* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
1071 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1072
1073 struct i386_frame_cache
1074 {
1075 /* Base address. */
1076 CORE_ADDR base;
1077 int base_p;
1078 LONGEST sp_offset;
1079 CORE_ADDR pc;
1080
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1083 CORE_ADDR saved_sp;
1084 int saved_sp_reg;
1085 int pc_in_eax;
1086
1087 /* Stack space reserved for local variables. */
1088 long locals;
1089 };
1090
1091 /* Allocate and initialize a frame cache. */
1092
1093 static struct i386_frame_cache *
1094 i386_alloc_frame_cache (void)
1095 {
1096 struct i386_frame_cache *cache;
1097 int i;
1098
1099 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100
1101 /* Base address. */
1102 cache->base_p = 0;
1103 cache->base = 0;
1104 cache->sp_offset = -4;
1105 cache->pc = 0;
1106
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1110 cache->saved_regs[i] = -1;
1111 cache->saved_sp = 0;
1112 cache->saved_sp_reg = -1;
1113 cache->pc_in_eax = 0;
1114
1115 /* Frameless until proven otherwise. */
1116 cache->locals = -1;
1117
1118 return cache;
1119 }
1120
1121 /* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
1123
1124 static CORE_ADDR
1125 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1126 {
1127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1128 gdb_byte op;
1129 long delta = 0;
1130 int data16 = 0;
1131
1132 if (target_read_code (pc, &op, 1))
1133 return pc;
1134
1135 if (op == 0x66)
1136 {
1137 data16 = 1;
1138
1139 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1140 }
1141
1142 switch (op)
1143 {
1144 case 0xe9:
1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
1146 if (data16)
1147 {
1148 delta = read_memory_integer (pc + 2, 2, byte_order);
1149
1150 /* Include the size of the jmp instruction (including the
1151 0x66 prefix). */
1152 delta += 4;
1153 }
1154 else
1155 {
1156 delta = read_memory_integer (pc + 1, 4, byte_order);
1157
1158 /* Include the size of the jmp instruction. */
1159 delta += 5;
1160 }
1161 break;
1162 case 0xeb:
1163 /* Relative jump, disp8 (ignore data16). */
1164 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1165
1166 delta += data16 + 2;
1167 break;
1168 }
1169
1170 return pc + delta;
1171 }
1172
1173 /* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
1178
1179 static CORE_ADDR
1180 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1181 struct i386_frame_cache *cache)
1182 {
1183 /* Functions that return a structure or union start with:
1184
1185 popl %eax 0x58
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1188
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
1193 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1195 gdb_byte buf[4];
1196 gdb_byte op;
1197
1198 if (current_pc <= pc)
1199 return pc;
1200
1201 if (target_read_code (pc, &op, 1))
1202 return pc;
1203
1204 if (op != 0x58) /* popl %eax */
1205 return pc;
1206
1207 if (target_read_code (pc + 1, buf, 4))
1208 return pc;
1209
1210 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1211 return pc;
1212
1213 if (current_pc == pc)
1214 {
1215 cache->sp_offset += 4;
1216 return current_pc;
1217 }
1218
1219 if (current_pc == pc + 1)
1220 {
1221 cache->pc_in_eax = 1;
1222 return current_pc;
1223 }
1224
1225 if (buf[1] == proto1[1])
1226 return pc + 4;
1227 else
1228 return pc + 5;
1229 }
1230
1231 static CORE_ADDR
1232 i386_skip_probe (CORE_ADDR pc)
1233 {
1234 /* A function may start with
1235
1236 pushl constant
1237 call _probe
1238 addl $4, %esp
1239
1240 followed by
1241
1242 pushl %ebp
1243
1244 etc. */
1245 gdb_byte buf[8];
1246 gdb_byte op;
1247
1248 if (target_read_code (pc, &op, 1))
1249 return pc;
1250
1251 if (op == 0x68 || op == 0x6a)
1252 {
1253 int delta;
1254
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
1257 if (op == 0x68)
1258 delta = 5;
1259 else
1260 delta = 2;
1261
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc + delta, buf, sizeof (buf));
1265 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1266 pc += delta + sizeof (buf);
1267 }
1268
1269 return pc;
1270 }
1271
1272 /* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1277
1278 static CORE_ADDR
1279 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1280 struct i386_frame_cache *cache)
1281 {
1282 /* There are 2 code sequences to re-align stack before the frame
1283 gets set up:
1284
1285 1. Use a caller-saved saved register:
1286
1287 leal 4(%esp), %reg
1288 andl $-XXX, %esp
1289 pushl -4(%reg)
1290
1291 2. Use a callee-saved saved register:
1292
1293 pushl %reg
1294 leal 8(%esp), %reg
1295 andl $-XXX, %esp
1296 pushl -4(%reg)
1297
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1299
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 */
1303
1304 gdb_byte buf[14];
1305 int reg;
1306 int offset, offset_and;
1307 static int regnums[8] = {
1308 I386_EAX_REGNUM, /* %eax */
1309 I386_ECX_REGNUM, /* %ecx */
1310 I386_EDX_REGNUM, /* %edx */
1311 I386_EBX_REGNUM, /* %ebx */
1312 I386_ESP_REGNUM, /* %esp */
1313 I386_EBP_REGNUM, /* %ebp */
1314 I386_ESI_REGNUM, /* %esi */
1315 I386_EDI_REGNUM /* %edi */
1316 };
1317
1318 if (target_read_code (pc, buf, sizeof buf))
1319 return pc;
1320
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1324 {
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[1] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. */
1330 reg = (buf[1] >> 3) & 7;
1331 offset = 4;
1332 }
1333 else
1334 {
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf[0] & 0xf8) != 0x50)
1338 return pc;
1339
1340 /* Get register. */
1341 reg = buf[0] & 0x7;
1342
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1345 return pc;
1346
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf[2] & 0xc7) != 0x44)
1349 return pc;
1350
1351 /* REG has register number. Registers in pushl and leal have to
1352 be the same. */
1353 if (reg != ((buf[2] >> 3) & 7))
1354 return pc;
1355
1356 offset = 5;
1357 }
1358
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg == 4 || reg == 5)
1361 return pc;
1362
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf[offset + 1] != 0xe4
1365 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1366 return pc;
1367
1368 offset_and = offset;
1369 offset += buf[offset] == 0x81 ? 6 : 3;
1370
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf[offset] != 0xff
1374 || buf[offset + 2] != 0xfc
1375 || (buf[offset + 1] & 0xf8) != 0x70)
1376 return pc;
1377
1378 /* R/M has register. Registers in leal and pushl have to be the
1379 same. */
1380 if (reg != (buf[offset + 1] & 7))
1381 return pc;
1382
1383 if (current_pc > pc + offset_and)
1384 cache->saved_sp_reg = regnums[reg];
1385
1386 return std::min (pc + offset + 3, current_pc);
1387 }
1388
1389 /* Maximum instruction length we need to handle. */
1390 #define I386_MAX_MATCHED_INSN_LEN 6
1391
1392 /* Instruction description. */
1393 struct i386_insn
1394 {
1395 size_t len;
1396 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1397 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1398 };
1399
1400 /* Return whether instruction at PC matches PATTERN. */
1401
1402 static int
1403 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1404 {
1405 gdb_byte op;
1406
1407 if (target_read_code (pc, &op, 1))
1408 return 0;
1409
1410 if ((op & pattern.mask[0]) == pattern.insn[0])
1411 {
1412 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1413 int insn_matched = 1;
1414 size_t i;
1415
1416 gdb_assert (pattern.len > 1);
1417 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1418
1419 if (target_read_code (pc + 1, buf, pattern.len - 1))
1420 return 0;
1421
1422 for (i = 1; i < pattern.len; i++)
1423 {
1424 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1425 insn_matched = 0;
1426 }
1427 return insn_matched;
1428 }
1429 return 0;
1430 }
1431
1432 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1434 NULL. */
1435
1436 static struct i386_insn *
1437 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1438 {
1439 struct i386_insn *pattern;
1440
1441 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1442 {
1443 if (i386_match_pattern (pc, *pattern))
1444 return pattern;
1445 }
1446
1447 return NULL;
1448 }
1449
1450 /* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1452
1453 static int
1454 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1455 {
1456 CORE_ADDR current_pc;
1457 int ix, i;
1458 struct i386_insn *insn;
1459
1460 insn = i386_match_insn (pc, insn_patterns);
1461 if (insn == NULL)
1462 return 0;
1463
1464 current_pc = pc;
1465 ix = insn - insn_patterns;
1466 for (i = ix - 1; i >= 0; i--)
1467 {
1468 current_pc -= insn_patterns[i].len;
1469
1470 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1471 return 0;
1472 }
1473
1474 current_pc = pc + insn->len;
1475 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1476 {
1477 if (!i386_match_pattern (current_pc, *insn))
1478 return 0;
1479
1480 current_pc += insn->len;
1481 }
1482
1483 return 1;
1484 }
1485
1486 /* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1490 touched. */
1491
1492 struct i386_insn i386_frame_setup_skip_insns[] =
1493 {
1494 /* Check for `movb imm8, r' and `movl imm32, r'.
1495
1496 ??? Should we handle 16-bit operand-sizes here? */
1497
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1507
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1510
1511 ??? Should we handle SIB adressing here?
1512 ??? Should we handle 16-bit operand-sizes here? */
1513
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1520
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1525
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 { 0 }
1539 };
1540
1541
1542 /* Check whether PC points to a no-op instruction. */
1543 static CORE_ADDR
1544 i386_skip_noop (CORE_ADDR pc)
1545 {
1546 gdb_byte op;
1547 int check = 1;
1548
1549 if (target_read_code (pc, &op, 1))
1550 return pc;
1551
1552 while (check)
1553 {
1554 check = 0;
1555 /* Ignore `nop' instruction. */
1556 if (op == 0x90)
1557 {
1558 pc += 1;
1559 if (target_read_code (pc, &op, 1))
1560 return pc;
1561 check = 1;
1562 }
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1573
1574 else if (op == 0x8b)
1575 {
1576 if (target_read_code (pc + 1, &op, 1))
1577 return pc;
1578
1579 if (op == 0xff)
1580 {
1581 pc += 2;
1582 if (target_read_code (pc, &op, 1))
1583 return pc;
1584
1585 check = 1;
1586 }
1587 }
1588 }
1589 return pc;
1590 }
1591
1592 /* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
1596
1597 static CORE_ADDR
1598 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR limit,
1600 struct i386_frame_cache *cache)
1601 {
1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1603 struct i386_insn *insn;
1604 gdb_byte op;
1605 int skip = 0;
1606
1607 if (limit <= pc)
1608 return limit;
1609
1610 if (target_read_code (pc, &op, 1))
1611 return pc;
1612
1613 if (op == 0x55) /* pushl %ebp */
1614 {
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
1617 cache->saved_regs[I386_EBP_REGNUM] = 0;
1618 cache->sp_offset += 4;
1619 pc++;
1620
1621 /* If that's all, return now. */
1622 if (limit <= pc)
1623 return limit;
1624
1625 /* Check for some special instructions that might be migrated by
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
1628 %ecx and %edx, so while the number of posibilities is sheer,
1629 it is limited.
1630
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
1633 while (pc + skip < limit)
1634 {
1635 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1636 if (insn == NULL)
1637 break;
1638
1639 skip += insn->len;
1640 }
1641
1642 /* If that's all, return now. */
1643 if (limit <= pc + skip)
1644 return limit;
1645
1646 if (target_read_code (pc + skip, &op, 1))
1647 return pc + skip;
1648
1649 /* The i386 prologue looks like
1650
1651 push %ebp
1652 mov %esp,%ebp
1653 sub $0x10,%esp
1654
1655 and a different prologue can be generated for atom.
1656
1657 push %ebp
1658 lea (%esp),%ebp
1659 lea -0x10(%esp),%esp
1660
1661 We handle both of them here. */
1662
1663 switch (op)
1664 {
1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1666 case 0x8b:
1667 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1668 != 0xec)
1669 return pc;
1670 pc += (skip + 2);
1671 break;
1672 case 0x89:
1673 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1674 != 0xe5)
1675 return pc;
1676 pc += (skip + 2);
1677 break;
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1679 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1680 != 0x242c)
1681 return pc;
1682 pc += (skip + 3);
1683 break;
1684 default:
1685 return pc;
1686 }
1687
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
1692 cache->locals = 0;
1693
1694 /* If that's all, return now. */
1695 if (limit <= pc)
1696 return limit;
1697
1698 /* Check for stack adjustment
1699
1700 subl $XXX, %esp
1701 or
1702 lea -XXX(%esp),%esp
1703
1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1705 reg, so we don't have to worry about a data16 prefix. */
1706 if (target_read_code (pc, &op, 1))
1707 return pc;
1708 if (op == 0x83)
1709 {
1710 /* `subl' with 8-bit immediate. */
1711 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1712 /* Some instruction starting with 0x83 other than `subl'. */
1713 return pc;
1714
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
1717 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1718 return pc + 3;
1719 }
1720 else if (op == 0x81)
1721 {
1722 /* Maybe it is `subl' with a 32-bit immediate. */
1723 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1724 /* Some instruction starting with 0x81 other than `subl'. */
1725 return pc;
1726
1727 /* It is `subl' with a 32-bit immediate. */
1728 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1729 return pc + 6;
1730 }
1731 else if (op == 0x8d)
1732 {
1733 /* The ModR/M byte is 0x64. */
1734 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1735 return pc;
1736 /* 'lea' with 8-bit displacement. */
1737 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1738 return pc + 4;
1739 }
1740 else
1741 {
1742 /* Some instruction other than `subl' nor 'lea'. */
1743 return pc;
1744 }
1745 }
1746 else if (op == 0xc8) /* enter */
1747 {
1748 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1749 return pc + 4;
1750 }
1751
1752 return pc;
1753 }
1754
1755 /* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
1759
1760 static CORE_ADDR
1761 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1762 struct i386_frame_cache *cache)
1763 {
1764 CORE_ADDR offset = 0;
1765 gdb_byte op;
1766 int i;
1767
1768 if (cache->locals > 0)
1769 offset -= cache->locals;
1770 for (i = 0; i < 8 && pc < current_pc; i++)
1771 {
1772 if (target_read_code (pc, &op, 1))
1773 return pc;
1774 if (op < 0x50 || op > 0x57)
1775 break;
1776
1777 offset -= 4;
1778 cache->saved_regs[op - 0x50] = offset;
1779 cache->sp_offset += 4;
1780 pc++;
1781 }
1782
1783 return pc;
1784 }
1785
1786 /* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
1789
1790 We handle these cases:
1791
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1794
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1798
1799 Local space is allocated just below the saved %ebp by either the
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
1803
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1809
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
1812
1813 static CORE_ADDR
1814 i386_analyze_prologue (struct gdbarch *gdbarch,
1815 CORE_ADDR pc, CORE_ADDR current_pc,
1816 struct i386_frame_cache *cache)
1817 {
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826
1827 /* Return PC of first real instruction. */
1828
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
1834 static gdb_byte pic_pat[6] =
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1838 };
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
1841 gdb_byte op;
1842 int i;
1843 CORE_ADDR func_addr;
1844
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850
1851 /* Clang always emits a line note before the prologue and another
1852 one after. We trust clang to emit usable line notes. */
1853 if (post_prologue_pc
1854 && (cust != NULL
1855 && COMPUNIT_PRODUCER (cust) != NULL
1856 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1857 return std::max (start_pc, post_prologue_pc);
1858 }
1859
1860 cache.locals = -1;
1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1862 if (cache.locals < 0)
1863 return start_pc;
1864
1865 /* Found valid frame setup. */
1866
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
1869 %ebx:
1870
1871 call 0x0
1872 popl %ebx
1873 movl %ebx,x(%ebp) (optional)
1874 addl y,%ebx
1875
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
1879
1880 for (i = 0; i < 6; i++)
1881 {
1882 if (target_read_code (pc + i, &op, 1))
1883 return pc;
1884
1885 if (pic_pat[i] != op)
1886 break;
1887 }
1888 if (i == 6)
1889 {
1890 int delta = 6;
1891
1892 if (target_read_code (pc + delta, &op, 1))
1893 return pc;
1894
1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
1896 {
1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1898
1899 if (op == 0x5d) /* One byte offset from %ebp. */
1900 delta += 3;
1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
1902 delta += 6;
1903 else /* Unexpected instruction. */
1904 delta = 0;
1905
1906 if (target_read_code (pc + delta, &op, 1))
1907 return pc;
1908 }
1909
1910 /* addl y,%ebx */
1911 if (delta > 0 && op == 0x81
1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1913 == 0xc3)
1914 {
1915 pc += delta + 6;
1916 }
1917 }
1918
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
1924
1925 return pc;
1926 }
1927
1928 /* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1930
1931 CORE_ADDR
1932 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1933 {
1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1935 gdb_byte op;
1936
1937 if (target_read_code (pc, &op, 1))
1938 return pc;
1939 if (op == 0xe8)
1940 {
1941 gdb_byte buf[4];
1942
1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1944 {
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
1947 struct bound_minimal_symbol s;
1948 CORE_ADDR call_dest;
1949
1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
1953 if (s.minsym != NULL
1954 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1955 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1956 pc += 5;
1957 }
1958 }
1959
1960 return pc;
1961 }
1962
1963 /* This function is 64-bit safe. */
1964
1965 static CORE_ADDR
1966 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1967 {
1968 gdb_byte buf[8];
1969
1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1972 }
1973 \f
1974
1975 /* Normal frames. */
1976
1977 static void
1978 i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
1980 {
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1983 gdb_byte buf[4];
1984 int i;
1985
1986 cache->pc = get_frame_func (this_frame);
1987
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1996
1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1999 if (cache->base == 0)
2000 {
2001 cache->base_p = 1;
2002 return;
2003 }
2004
2005 /* For normal frames, %eip is stored at 4(%ebp). */
2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
2007
2008 if (cache->pc != 0)
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2010 cache);
2011
2012 if (cache->locals < 0)
2013 {
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2021
2022 if (cache->saved_sp_reg != -1)
2023 {
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2027
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2031
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2034 }
2035 else if (cache->pc != 0
2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
2037 {
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2042 frame in %ebp. */
2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 + cache->sp_offset;
2046 }
2047 else
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2051 saved. */
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
2053 }
2054
2055 if (cache->saved_sp_reg != -1)
2056 {
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2063 }
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
2066 else if (cache->saved_sp == 0)
2067 cache->saved_sp = cache->base + 8;
2068
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
2074
2075 cache->base_p = 1;
2076 }
2077
2078 static struct i386_frame_cache *
2079 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2080 {
2081 struct i386_frame_cache *cache;
2082
2083 if (*this_cache)
2084 return (struct i386_frame_cache *) *this_cache;
2085
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2088
2089 TRY
2090 {
2091 i386_frame_cache_1 (this_frame, cache);
2092 }
2093 CATCH (ex, RETURN_MASK_ERROR)
2094 {
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw_exception (ex);
2097 }
2098 END_CATCH
2099
2100 return cache;
2101 }
2102
2103 static void
2104 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2105 struct frame_id *this_id)
2106 {
2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2108
2109 if (!cache->base_p)
2110 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2111 else if (cache->base == 0)
2112 {
2113 /* This marks the outermost frame. */
2114 }
2115 else
2116 {
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2119 }
2120 }
2121
2122 static enum unwind_stop_reason
2123 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2124 void **this_cache)
2125 {
2126 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2127
2128 if (!cache->base_p)
2129 return UNWIND_UNAVAILABLE;
2130
2131 /* This marks the outermost frame. */
2132 if (cache->base == 0)
2133 return UNWIND_OUTERMOST;
2134
2135 return UNWIND_NO_REASON;
2136 }
2137
2138 static struct value *
2139 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2140 int regnum)
2141 {
2142 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2143
2144 gdb_assert (regnum >= 0);
2145
2146 /* The System V ABI says that:
2147
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2153
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2156
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2160
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2164
2165 if (regnum == I386_EFLAGS_REGNUM)
2166 {
2167 ULONGEST val;
2168
2169 val = get_frame_register_unsigned (this_frame, regnum);
2170 val &= ~(1 << 10);
2171 return frame_unwind_got_constant (this_frame, regnum, val);
2172 }
2173
2174 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2175 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2176
2177 if (regnum == I386_ESP_REGNUM
2178 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2179 {
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
2183 if (cache->saved_sp == 0)
2184 return frame_unwind_got_register (this_frame, regnum,
2185 cache->saved_sp_reg);
2186 else
2187 return frame_unwind_got_constant (this_frame, regnum,
2188 cache->saved_sp);
2189 }
2190
2191 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2192 return frame_unwind_got_memory (this_frame, regnum,
2193 cache->saved_regs[regnum]);
2194
2195 return frame_unwind_got_register (this_frame, regnum, regnum);
2196 }
2197
2198 static const struct frame_unwind i386_frame_unwind =
2199 {
2200 NORMAL_FRAME,
2201 i386_frame_unwind_stop_reason,
2202 i386_frame_this_id,
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
2206 };
2207
2208 /* Normal frames, but in a function epilogue. */
2209
2210 /* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216 static int
2217 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2218 {
2219 gdb_byte insn;
2220 struct compunit_symtab *cust;
2221
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2224 return 0;
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233 }
2234
2235 static int
2236 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239 {
2240 if (frame_relative_level (this_frame) == 0)
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
2243 else
2244 return 0;
2245 }
2246
2247 static struct i386_frame_cache *
2248 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249 {
2250 struct i386_frame_cache *cache;
2251 CORE_ADDR sp;
2252
2253 if (*this_cache)
2254 return (struct i386_frame_cache *) *this_cache;
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
2259 TRY
2260 {
2261 cache->pc = get_frame_func (this_frame);
2262
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
2268 cache->saved_sp = cache->base + 8;
2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2270
2271 cache->base_p = 1;
2272 }
2273 CATCH (ex, RETURN_MASK_ERROR)
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw_exception (ex);
2277 }
2278 END_CATCH
2279
2280 return cache;
2281 }
2282
2283 static enum unwind_stop_reason
2284 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2285 void **this_cache)
2286 {
2287 struct i386_frame_cache *cache =
2288 i386_epilogue_frame_cache (this_frame, this_cache);
2289
2290 if (!cache->base_p)
2291 return UNWIND_UNAVAILABLE;
2292
2293 return UNWIND_NO_REASON;
2294 }
2295
2296 static void
2297 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2298 void **this_cache,
2299 struct frame_id *this_id)
2300 {
2301 struct i386_frame_cache *cache =
2302 i386_epilogue_frame_cache (this_frame, this_cache);
2303
2304 if (!cache->base_p)
2305 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2306 else
2307 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2308 }
2309
2310 static struct value *
2311 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2312 void **this_cache, int regnum)
2313 {
2314 /* Make sure we've initialized the cache. */
2315 i386_epilogue_frame_cache (this_frame, this_cache);
2316
2317 return i386_frame_prev_register (this_frame, this_cache, regnum);
2318 }
2319
2320 static const struct frame_unwind i386_epilogue_frame_unwind =
2321 {
2322 NORMAL_FRAME,
2323 i386_epilogue_frame_unwind_stop_reason,
2324 i386_epilogue_frame_this_id,
2325 i386_epilogue_frame_prev_register,
2326 NULL,
2327 i386_epilogue_frame_sniffer
2328 };
2329 \f
2330
2331 /* Stack-based trampolines. */
2332
2333 /* These trampolines are used on cross x86 targets, when taking the
2334 address of a nested function. When executing these trampolines,
2335 no stack frame is set up, so we are in a similar situation as in
2336 epilogues and i386_epilogue_frame_this_id can be re-used. */
2337
2338 /* Static chain passed in register. */
2339
2340 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2341 {
2342 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2343 { 5, { 0xb8 }, { 0xfe } },
2344
2345 /* `jmp imm32' */
2346 { 5, { 0xe9 }, { 0xff } },
2347
2348 {0}
2349 };
2350
2351 /* Static chain passed on stack (when regparm=3). */
2352
2353 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2354 {
2355 /* `push imm32' */
2356 { 5, { 0x68 }, { 0xff } },
2357
2358 /* `jmp imm32' */
2359 { 5, { 0xe9 }, { 0xff } },
2360
2361 {0}
2362 };
2363
2364 /* Return whether PC points inside a stack trampoline. */
2365
2366 static int
2367 i386_in_stack_tramp_p (CORE_ADDR pc)
2368 {
2369 gdb_byte insn;
2370 const char *name;
2371
2372 /* A stack trampoline is detected if no name is associated
2373 to the current pc and if it points inside a trampoline
2374 sequence. */
2375
2376 find_pc_partial_function (pc, &name, NULL, NULL);
2377 if (name)
2378 return 0;
2379
2380 if (target_read_memory (pc, &insn, 1))
2381 return 0;
2382
2383 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2384 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2385 return 0;
2386
2387 return 1;
2388 }
2389
2390 static int
2391 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2392 struct frame_info *this_frame,
2393 void **this_cache)
2394 {
2395 if (frame_relative_level (this_frame) == 0)
2396 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2397 else
2398 return 0;
2399 }
2400
2401 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2402 {
2403 NORMAL_FRAME,
2404 i386_epilogue_frame_unwind_stop_reason,
2405 i386_epilogue_frame_this_id,
2406 i386_epilogue_frame_prev_register,
2407 NULL,
2408 i386_stack_tramp_frame_sniffer
2409 };
2410 \f
2411 /* Generate a bytecode expression to get the value of the saved PC. */
2412
2413 static void
2414 i386_gen_return_address (struct gdbarch *gdbarch,
2415 struct agent_expr *ax, struct axs_value *value,
2416 CORE_ADDR scope)
2417 {
2418 /* The following sequence assumes the traditional use of the base
2419 register. */
2420 ax_reg (ax, I386_EBP_REGNUM);
2421 ax_const_l (ax, 4);
2422 ax_simple (ax, aop_add);
2423 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2424 value->kind = axs_lvalue_memory;
2425 }
2426 \f
2427
2428 /* Signal trampolines. */
2429
2430 static struct i386_frame_cache *
2431 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2432 {
2433 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2436 struct i386_frame_cache *cache;
2437 CORE_ADDR addr;
2438 gdb_byte buf[4];
2439
2440 if (*this_cache)
2441 return (struct i386_frame_cache *) *this_cache;
2442
2443 cache = i386_alloc_frame_cache ();
2444
2445 TRY
2446 {
2447 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2448 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2449
2450 addr = tdep->sigcontext_addr (this_frame);
2451 if (tdep->sc_reg_offset)
2452 {
2453 int i;
2454
2455 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2456
2457 for (i = 0; i < tdep->sc_num_regs; i++)
2458 if (tdep->sc_reg_offset[i] != -1)
2459 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2460 }
2461 else
2462 {
2463 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2464 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2465 }
2466
2467 cache->base_p = 1;
2468 }
2469 CATCH (ex, RETURN_MASK_ERROR)
2470 {
2471 if (ex.error != NOT_AVAILABLE_ERROR)
2472 throw_exception (ex);
2473 }
2474 END_CATCH
2475
2476 *this_cache = cache;
2477 return cache;
2478 }
2479
2480 static enum unwind_stop_reason
2481 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2482 void **this_cache)
2483 {
2484 struct i386_frame_cache *cache =
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2486
2487 if (!cache->base_p)
2488 return UNWIND_UNAVAILABLE;
2489
2490 return UNWIND_NO_REASON;
2491 }
2492
2493 static void
2494 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2495 struct frame_id *this_id)
2496 {
2497 struct i386_frame_cache *cache =
2498 i386_sigtramp_frame_cache (this_frame, this_cache);
2499
2500 if (!cache->base_p)
2501 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2502 else
2503 {
2504 /* See the end of i386_push_dummy_call. */
2505 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2506 }
2507 }
2508
2509 static struct value *
2510 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2511 void **this_cache, int regnum)
2512 {
2513 /* Make sure we've initialized the cache. */
2514 i386_sigtramp_frame_cache (this_frame, this_cache);
2515
2516 return i386_frame_prev_register (this_frame, this_cache, regnum);
2517 }
2518
2519 static int
2520 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2521 struct frame_info *this_frame,
2522 void **this_prologue_cache)
2523 {
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2525
2526 /* We shouldn't even bother if we don't have a sigcontext_addr
2527 handler. */
2528 if (tdep->sigcontext_addr == NULL)
2529 return 0;
2530
2531 if (tdep->sigtramp_p != NULL)
2532 {
2533 if (tdep->sigtramp_p (this_frame))
2534 return 1;
2535 }
2536
2537 if (tdep->sigtramp_start != 0)
2538 {
2539 CORE_ADDR pc = get_frame_pc (this_frame);
2540
2541 gdb_assert (tdep->sigtramp_end != 0);
2542 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2543 return 1;
2544 }
2545
2546 return 0;
2547 }
2548
2549 static const struct frame_unwind i386_sigtramp_frame_unwind =
2550 {
2551 SIGTRAMP_FRAME,
2552 i386_sigtramp_frame_unwind_stop_reason,
2553 i386_sigtramp_frame_this_id,
2554 i386_sigtramp_frame_prev_register,
2555 NULL,
2556 i386_sigtramp_frame_sniffer
2557 };
2558 \f
2559
2560 static CORE_ADDR
2561 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2562 {
2563 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2564
2565 return cache->base;
2566 }
2567
2568 static const struct frame_base i386_frame_base =
2569 {
2570 &i386_frame_unwind,
2571 i386_frame_base_address,
2572 i386_frame_base_address,
2573 i386_frame_base_address
2574 };
2575
2576 static struct frame_id
2577 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2578 {
2579 CORE_ADDR fp;
2580
2581 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2582
2583 /* See the end of i386_push_dummy_call. */
2584 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2585 }
2586
2587 /* _Decimal128 function return values need 16-byte alignment on the
2588 stack. */
2589
2590 static CORE_ADDR
2591 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2592 {
2593 return sp & -(CORE_ADDR)16;
2594 }
2595 \f
2596
2597 /* Figure out where the longjmp will land. Slurp the args out of the
2598 stack. We expect the first arg to be a pointer to the jmp_buf
2599 structure from which we extract the address that we will land at.
2600 This address is copied into PC. This routine returns non-zero on
2601 success. */
2602
2603 static int
2604 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2605 {
2606 gdb_byte buf[4];
2607 CORE_ADDR sp, jb_addr;
2608 struct gdbarch *gdbarch = get_frame_arch (frame);
2609 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2610 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2611
2612 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2613 longjmp will land. */
2614 if (jb_pc_offset == -1)
2615 return 0;
2616
2617 get_frame_register (frame, I386_ESP_REGNUM, buf);
2618 sp = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (sp + 4, buf, 4))
2620 return 0;
2621
2622 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2623 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2624 return 0;
2625
2626 *pc = extract_unsigned_integer (buf, 4, byte_order);
2627 return 1;
2628 }
2629 \f
2630
2631 /* Check whether TYPE must be 16-byte-aligned when passed as a
2632 function argument. 16-byte vectors, _Decimal128 and structures or
2633 unions containing such types must be 16-byte-aligned; other
2634 arguments are 4-byte-aligned. */
2635
2636 static int
2637 i386_16_byte_align_p (struct type *type)
2638 {
2639 type = check_typedef (type);
2640 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2641 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2642 && TYPE_LENGTH (type) == 16)
2643 return 1;
2644 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2645 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2647 || TYPE_CODE (type) == TYPE_CODE_UNION)
2648 {
2649 int i;
2650 for (i = 0; i < TYPE_NFIELDS (type); i++)
2651 {
2652 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2653 return 1;
2654 }
2655 }
2656 return 0;
2657 }
2658
2659 /* Implementation for set_gdbarch_push_dummy_code. */
2660
2661 static CORE_ADDR
2662 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2663 struct value **args, int nargs, struct type *value_type,
2664 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2665 struct regcache *regcache)
2666 {
2667 /* Use 0xcc breakpoint - 1 byte. */
2668 *bp_addr = sp - 1;
2669 *real_pc = funaddr;
2670
2671 /* Keep the stack aligned. */
2672 return sp - 16;
2673 }
2674
2675 static CORE_ADDR
2676 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2677 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2678 struct value **args, CORE_ADDR sp, int struct_return,
2679 CORE_ADDR struct_addr)
2680 {
2681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2682 gdb_byte buf[4];
2683 int i;
2684 int write_pass;
2685 int args_space = 0;
2686
2687 /* BND registers can be in arbitrary values at the moment of the
2688 inferior call. This can cause boundary violations that are not
2689 due to a real bug or even desired by the user. The best to be done
2690 is set the BND registers to allow access to the whole memory, INIT
2691 state, before pushing the inferior call. */
2692 i387_reset_bnd_regs (gdbarch, regcache);
2693
2694 /* Determine the total space required for arguments and struct
2695 return address in a first pass (allowing for 16-byte-aligned
2696 arguments), then push arguments in a second pass. */
2697
2698 for (write_pass = 0; write_pass < 2; write_pass++)
2699 {
2700 int args_space_used = 0;
2701
2702 if (struct_return)
2703 {
2704 if (write_pass)
2705 {
2706 /* Push value address. */
2707 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2708 write_memory (sp, buf, 4);
2709 args_space_used += 4;
2710 }
2711 else
2712 args_space += 4;
2713 }
2714
2715 for (i = 0; i < nargs; i++)
2716 {
2717 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2718
2719 if (write_pass)
2720 {
2721 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2722 args_space_used = align_up (args_space_used, 16);
2723
2724 write_memory (sp + args_space_used,
2725 value_contents_all (args[i]), len);
2726 /* The System V ABI says that:
2727
2728 "An argument's size is increased, if necessary, to make it a
2729 multiple of [32-bit] words. This may require tail padding,
2730 depending on the size of the argument."
2731
2732 This makes sure the stack stays word-aligned. */
2733 args_space_used += align_up (len, 4);
2734 }
2735 else
2736 {
2737 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2738 args_space = align_up (args_space, 16);
2739 args_space += align_up (len, 4);
2740 }
2741 }
2742
2743 if (!write_pass)
2744 {
2745 sp -= args_space;
2746
2747 /* The original System V ABI only requires word alignment,
2748 but modern incarnations need 16-byte alignment in order
2749 to support SSE. Since wasting a few bytes here isn't
2750 harmful we unconditionally enforce 16-byte alignment. */
2751 sp &= ~0xf;
2752 }
2753 }
2754
2755 /* Store return address. */
2756 sp -= 4;
2757 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2758 write_memory (sp, buf, 4);
2759
2760 /* Finally, update the stack pointer... */
2761 store_unsigned_integer (buf, 4, byte_order, sp);
2762 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2763
2764 /* ...and fake a frame pointer. */
2765 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2766
2767 /* MarkK wrote: This "+ 8" is all over the place:
2768 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2769 i386_dummy_id). It's there, since all frame unwinders for
2770 a given target have to agree (within a certain margin) on the
2771 definition of the stack address of a frame. Otherwise frame id
2772 comparison might not work correctly. Since DWARF2/GCC uses the
2773 stack address *before* the function call as a frame's CFA. On
2774 the i386, when %ebp is used as a frame pointer, the offset
2775 between the contents %ebp and the CFA as defined by GCC. */
2776 return sp + 8;
2777 }
2778
2779 /* These registers are used for returning integers (and on some
2780 targets also for returning `struct' and `union' values when their
2781 size and alignment match an integer type). */
2782 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2783 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2784
2785 /* Read, for architecture GDBARCH, a function return value of TYPE
2786 from REGCACHE, and copy that into VALBUF. */
2787
2788 static void
2789 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2790 struct regcache *regcache, gdb_byte *valbuf)
2791 {
2792 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2793 int len = TYPE_LENGTH (type);
2794 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2797 {
2798 if (tdep->st0_regnum < 0)
2799 {
2800 warning (_("Cannot find floating-point return value."));
2801 memset (valbuf, 0, len);
2802 return;
2803 }
2804
2805 /* Floating-point return values can be found in %st(0). Convert
2806 its contents to the desired type. This is probably not
2807 exactly how it would happen on the target itself, but it is
2808 the best we can do. */
2809 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2810 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2811 }
2812 else
2813 {
2814 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2815 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2816
2817 if (len <= low_size)
2818 {
2819 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2820 memcpy (valbuf, buf, len);
2821 }
2822 else if (len <= (low_size + high_size))
2823 {
2824 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2825 memcpy (valbuf, buf, low_size);
2826 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2827 memcpy (valbuf + low_size, buf, len - low_size);
2828 }
2829 else
2830 internal_error (__FILE__, __LINE__,
2831 _("Cannot extract return value of %d bytes long."),
2832 len);
2833 }
2834 }
2835
2836 /* Write, for architecture GDBARCH, a function return value of TYPE
2837 from VALBUF into REGCACHE. */
2838
2839 static void
2840 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2841 struct regcache *regcache, const gdb_byte *valbuf)
2842 {
2843 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2844 int len = TYPE_LENGTH (type);
2845
2846 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2847 {
2848 ULONGEST fstat;
2849 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2850
2851 if (tdep->st0_regnum < 0)
2852 {
2853 warning (_("Cannot set floating-point return value."));
2854 return;
2855 }
2856
2857 /* Returning floating-point values is a bit tricky. Apart from
2858 storing the return value in %st(0), we have to simulate the
2859 state of the FPU at function return point. */
2860
2861 /* Convert the value found in VALBUF to the extended
2862 floating-point format used by the FPU. This is probably
2863 not exactly how it would happen on the target itself, but
2864 it is the best we can do. */
2865 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2866 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2867
2868 /* Set the top of the floating-point register stack to 7. The
2869 actual value doesn't really matter, but 7 is what a normal
2870 function return would end up with if the program started out
2871 with a freshly initialized FPU. */
2872 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2873 fstat |= (7 << 11);
2874 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2875
2876 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2877 the floating-point register stack to 7, the appropriate value
2878 for the tag word is 0x3fff. */
2879 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2880 }
2881 else
2882 {
2883 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2884 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2885
2886 if (len <= low_size)
2887 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2888 else if (len <= (low_size + high_size))
2889 {
2890 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2891 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2892 len - low_size, valbuf + low_size);
2893 }
2894 else
2895 internal_error (__FILE__, __LINE__,
2896 _("Cannot store return value of %d bytes long."), len);
2897 }
2898 }
2899 \f
2900
2901 /* This is the variable that is set with "set struct-convention", and
2902 its legitimate values. */
2903 static const char default_struct_convention[] = "default";
2904 static const char pcc_struct_convention[] = "pcc";
2905 static const char reg_struct_convention[] = "reg";
2906 static const char *const valid_conventions[] =
2907 {
2908 default_struct_convention,
2909 pcc_struct_convention,
2910 reg_struct_convention,
2911 NULL
2912 };
2913 static const char *struct_convention = default_struct_convention;
2914
2915 /* Return non-zero if TYPE, which is assumed to be a structure,
2916 a union type, or an array type, should be returned in registers
2917 for architecture GDBARCH. */
2918
2919 static int
2920 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2921 {
2922 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2923 enum type_code code = TYPE_CODE (type);
2924 int len = TYPE_LENGTH (type);
2925
2926 gdb_assert (code == TYPE_CODE_STRUCT
2927 || code == TYPE_CODE_UNION
2928 || code == TYPE_CODE_ARRAY);
2929
2930 if (struct_convention == pcc_struct_convention
2931 || (struct_convention == default_struct_convention
2932 && tdep->struct_return == pcc_struct_return))
2933 return 0;
2934
2935 /* Structures consisting of a single `float', `double' or 'long
2936 double' member are returned in %st(0). */
2937 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2938 {
2939 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2940 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2941 return (len == 4 || len == 8 || len == 12);
2942 }
2943
2944 return (len == 1 || len == 2 || len == 4 || len == 8);
2945 }
2946
2947 /* Determine, for architecture GDBARCH, how a return value of TYPE
2948 should be returned. If it is supposed to be returned in registers,
2949 and READBUF is non-zero, read the appropriate value from REGCACHE,
2950 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2951 from WRITEBUF into REGCACHE. */
2952
2953 static enum return_value_convention
2954 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2955 struct type *type, struct regcache *regcache,
2956 gdb_byte *readbuf, const gdb_byte *writebuf)
2957 {
2958 enum type_code code = TYPE_CODE (type);
2959
2960 if (((code == TYPE_CODE_STRUCT
2961 || code == TYPE_CODE_UNION
2962 || code == TYPE_CODE_ARRAY)
2963 && !i386_reg_struct_return_p (gdbarch, type))
2964 /* Complex double and long double uses the struct return covention. */
2965 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2966 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2967 /* 128-bit decimal float uses the struct return convention. */
2968 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2969 {
2970 /* The System V ABI says that:
2971
2972 "A function that returns a structure or union also sets %eax
2973 to the value of the original address of the caller's area
2974 before it returns. Thus when the caller receives control
2975 again, the address of the returned object resides in register
2976 %eax and can be used to access the object."
2977
2978 So the ABI guarantees that we can always find the return
2979 value just after the function has returned. */
2980
2981 /* Note that the ABI doesn't mention functions returning arrays,
2982 which is something possible in certain languages such as Ada.
2983 In this case, the value is returned as if it was wrapped in
2984 a record, so the convention applied to records also applies
2985 to arrays. */
2986
2987 if (readbuf)
2988 {
2989 ULONGEST addr;
2990
2991 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2992 read_memory (addr, readbuf, TYPE_LENGTH (type));
2993 }
2994
2995 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2996 }
2997
2998 /* This special case is for structures consisting of a single
2999 `float', `double' or 'long double' member. These structures are
3000 returned in %st(0). For these structures, we call ourselves
3001 recursively, changing TYPE into the type of the first member of
3002 the structure. Since that should work for all structures that
3003 have only one member, we don't bother to check the member's type
3004 here. */
3005 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3006 {
3007 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3008 return i386_return_value (gdbarch, function, type, regcache,
3009 readbuf, writebuf);
3010 }
3011
3012 if (readbuf)
3013 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3014 if (writebuf)
3015 i386_store_return_value (gdbarch, type, regcache, writebuf);
3016
3017 return RETURN_VALUE_REGISTER_CONVENTION;
3018 }
3019 \f
3020
3021 struct type *
3022 i387_ext_type (struct gdbarch *gdbarch)
3023 {
3024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3025
3026 if (!tdep->i387_ext_type)
3027 {
3028 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3029 gdb_assert (tdep->i387_ext_type != NULL);
3030 }
3031
3032 return tdep->i387_ext_type;
3033 }
3034
3035 /* Construct type for pseudo BND registers. We can't use
3036 tdesc_find_type since a complement of one value has to be used
3037 to describe the upper bound. */
3038
3039 static struct type *
3040 i386_bnd_type (struct gdbarch *gdbarch)
3041 {
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3043
3044
3045 if (!tdep->i386_bnd_type)
3046 {
3047 struct type *t;
3048 const struct builtin_type *bt = builtin_type (gdbarch);
3049
3050 /* The type we're building is described bellow: */
3051 #if 0
3052 struct __bound128
3053 {
3054 void *lbound;
3055 void *ubound; /* One complement of raw ubound field. */
3056 };
3057 #endif
3058
3059 t = arch_composite_type (gdbarch,
3060 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3061
3062 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3063 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3064
3065 TYPE_NAME (t) = "builtin_type_bound128";
3066 tdep->i386_bnd_type = t;
3067 }
3068
3069 return tdep->i386_bnd_type;
3070 }
3071
3072 /* Construct vector type for pseudo ZMM registers. We can't use
3073 tdesc_find_type since ZMM isn't described in target description. */
3074
3075 static struct type *
3076 i386_zmm_type (struct gdbarch *gdbarch)
3077 {
3078 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3079
3080 if (!tdep->i386_zmm_type)
3081 {
3082 const struct builtin_type *bt = builtin_type (gdbarch);
3083
3084 /* The type we're building is this: */
3085 #if 0
3086 union __gdb_builtin_type_vec512i
3087 {
3088 int128_t uint128[4];
3089 int64_t v4_int64[8];
3090 int32_t v8_int32[16];
3091 int16_t v16_int16[32];
3092 int8_t v32_int8[64];
3093 double v4_double[8];
3094 float v8_float[16];
3095 };
3096 #endif
3097
3098 struct type *t;
3099
3100 t = arch_composite_type (gdbarch,
3101 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3102 append_composite_type_field (t, "v16_float",
3103 init_vector_type (bt->builtin_float, 16));
3104 append_composite_type_field (t, "v8_double",
3105 init_vector_type (bt->builtin_double, 8));
3106 append_composite_type_field (t, "v64_int8",
3107 init_vector_type (bt->builtin_int8, 64));
3108 append_composite_type_field (t, "v32_int16",
3109 init_vector_type (bt->builtin_int16, 32));
3110 append_composite_type_field (t, "v16_int32",
3111 init_vector_type (bt->builtin_int32, 16));
3112 append_composite_type_field (t, "v8_int64",
3113 init_vector_type (bt->builtin_int64, 8));
3114 append_composite_type_field (t, "v4_int128",
3115 init_vector_type (bt->builtin_int128, 4));
3116
3117 TYPE_VECTOR (t) = 1;
3118 TYPE_NAME (t) = "builtin_type_vec512i";
3119 tdep->i386_zmm_type = t;
3120 }
3121
3122 return tdep->i386_zmm_type;
3123 }
3124
3125 /* Construct vector type for pseudo YMM registers. We can't use
3126 tdesc_find_type since YMM isn't described in target description. */
3127
3128 static struct type *
3129 i386_ymm_type (struct gdbarch *gdbarch)
3130 {
3131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3132
3133 if (!tdep->i386_ymm_type)
3134 {
3135 const struct builtin_type *bt = builtin_type (gdbarch);
3136
3137 /* The type we're building is this: */
3138 #if 0
3139 union __gdb_builtin_type_vec256i
3140 {
3141 int128_t uint128[2];
3142 int64_t v2_int64[4];
3143 int32_t v4_int32[8];
3144 int16_t v8_int16[16];
3145 int8_t v16_int8[32];
3146 double v2_double[4];
3147 float v4_float[8];
3148 };
3149 #endif
3150
3151 struct type *t;
3152
3153 t = arch_composite_type (gdbarch,
3154 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3155 append_composite_type_field (t, "v8_float",
3156 init_vector_type (bt->builtin_float, 8));
3157 append_composite_type_field (t, "v4_double",
3158 init_vector_type (bt->builtin_double, 4));
3159 append_composite_type_field (t, "v32_int8",
3160 init_vector_type (bt->builtin_int8, 32));
3161 append_composite_type_field (t, "v16_int16",
3162 init_vector_type (bt->builtin_int16, 16));
3163 append_composite_type_field (t, "v8_int32",
3164 init_vector_type (bt->builtin_int32, 8));
3165 append_composite_type_field (t, "v4_int64",
3166 init_vector_type (bt->builtin_int64, 4));
3167 append_composite_type_field (t, "v2_int128",
3168 init_vector_type (bt->builtin_int128, 2));
3169
3170 TYPE_VECTOR (t) = 1;
3171 TYPE_NAME (t) = "builtin_type_vec256i";
3172 tdep->i386_ymm_type = t;
3173 }
3174
3175 return tdep->i386_ymm_type;
3176 }
3177
3178 /* Construct vector type for MMX registers. */
3179 static struct type *
3180 i386_mmx_type (struct gdbarch *gdbarch)
3181 {
3182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3183
3184 if (!tdep->i386_mmx_type)
3185 {
3186 const struct builtin_type *bt = builtin_type (gdbarch);
3187
3188 /* The type we're building is this: */
3189 #if 0
3190 union __gdb_builtin_type_vec64i
3191 {
3192 int64_t uint64;
3193 int32_t v2_int32[2];
3194 int16_t v4_int16[4];
3195 int8_t v8_int8[8];
3196 };
3197 #endif
3198
3199 struct type *t;
3200
3201 t = arch_composite_type (gdbarch,
3202 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3203
3204 append_composite_type_field (t, "uint64", bt->builtin_int64);
3205 append_composite_type_field (t, "v2_int32",
3206 init_vector_type (bt->builtin_int32, 2));
3207 append_composite_type_field (t, "v4_int16",
3208 init_vector_type (bt->builtin_int16, 4));
3209 append_composite_type_field (t, "v8_int8",
3210 init_vector_type (bt->builtin_int8, 8));
3211
3212 TYPE_VECTOR (t) = 1;
3213 TYPE_NAME (t) = "builtin_type_vec64i";
3214 tdep->i386_mmx_type = t;
3215 }
3216
3217 return tdep->i386_mmx_type;
3218 }
3219
3220 /* Return the GDB type object for the "standard" data type of data in
3221 register REGNUM. */
3222
3223 struct type *
3224 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3225 {
3226 if (i386_bnd_regnum_p (gdbarch, regnum))
3227 return i386_bnd_type (gdbarch);
3228 if (i386_mmx_regnum_p (gdbarch, regnum))
3229 return i386_mmx_type (gdbarch);
3230 else if (i386_ymm_regnum_p (gdbarch, regnum))
3231 return i386_ymm_type (gdbarch);
3232 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3233 return i386_ymm_type (gdbarch);
3234 else if (i386_zmm_regnum_p (gdbarch, regnum))
3235 return i386_zmm_type (gdbarch);
3236 else
3237 {
3238 const struct builtin_type *bt = builtin_type (gdbarch);
3239 if (i386_byte_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int8;
3241 else if (i386_word_regnum_p (gdbarch, regnum))
3242 return bt->builtin_int16;
3243 else if (i386_dword_regnum_p (gdbarch, regnum))
3244 return bt->builtin_int32;
3245 else if (i386_k_regnum_p (gdbarch, regnum))
3246 return bt->builtin_int64;
3247 }
3248
3249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3250 }
3251
3252 /* Map a cooked register onto a raw register or memory. For the i386,
3253 the MMX registers need to be mapped onto floating point registers. */
3254
3255 static int
3256 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3257 {
3258 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3259 int mmxreg, fpreg;
3260 ULONGEST fstat;
3261 int tos;
3262
3263 mmxreg = regnum - tdep->mm0_regnum;
3264 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3265 tos = (fstat >> 11) & 0x7;
3266 fpreg = (mmxreg + tos) % 8;
3267
3268 return (I387_ST0_REGNUM (tdep) + fpreg);
3269 }
3270
3271 /* A helper function for us by i386_pseudo_register_read_value and
3272 amd64_pseudo_register_read_value. It does all the work but reads
3273 the data into an already-allocated value. */
3274
3275 void
3276 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3277 struct regcache *regcache,
3278 int regnum,
3279 struct value *result_value)
3280 {
3281 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3282 enum register_status status;
3283 gdb_byte *buf = value_contents_raw (result_value);
3284
3285 if (i386_mmx_regnum_p (gdbarch, regnum))
3286 {
3287 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3288
3289 /* Extract (always little endian). */
3290 status = regcache_raw_read (regcache, fpnum, raw_buf);
3291 if (status != REG_VALID)
3292 mark_value_bytes_unavailable (result_value, 0,
3293 TYPE_LENGTH (value_type (result_value)));
3294 else
3295 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3296 }
3297 else
3298 {
3299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3300 if (i386_bnd_regnum_p (gdbarch, regnum))
3301 {
3302 regnum -= tdep->bnd0_regnum;
3303
3304 /* Extract (always little endian). Read lower 128bits. */
3305 status = regcache_raw_read (regcache,
3306 I387_BND0R_REGNUM (tdep) + regnum,
3307 raw_buf);
3308 if (status != REG_VALID)
3309 mark_value_bytes_unavailable (result_value, 0, 16);
3310 else
3311 {
3312 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3313 LONGEST upper, lower;
3314 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3315
3316 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3317 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3318 upper = ~upper;
3319
3320 memcpy (buf, &lower, size);
3321 memcpy (buf + size, &upper, size);
3322 }
3323 }
3324 else if (i386_k_regnum_p (gdbarch, regnum))
3325 {
3326 regnum -= tdep->k0_regnum;
3327
3328 /* Extract (always little endian). */
3329 status = regcache_raw_read (regcache,
3330 tdep->k0_regnum + regnum,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 0, 8);
3334 else
3335 memcpy (buf, raw_buf, 8);
3336 }
3337 else if (i386_zmm_regnum_p (gdbarch, regnum))
3338 {
3339 regnum -= tdep->zmm0_regnum;
3340
3341 if (regnum < num_lower_zmm_regs)
3342 {
3343 /* Extract (always little endian). Read lower 128bits. */
3344 status = regcache_raw_read (regcache,
3345 I387_XMM0_REGNUM (tdep) + regnum,
3346 raw_buf);
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 0, 16);
3349 else
3350 memcpy (buf, raw_buf, 16);
3351
3352 /* Extract (always little endian). Read upper 128bits. */
3353 status = regcache_raw_read (regcache,
3354 tdep->ymm0h_regnum + regnum,
3355 raw_buf);
3356 if (status != REG_VALID)
3357 mark_value_bytes_unavailable (result_value, 16, 16);
3358 else
3359 memcpy (buf + 16, raw_buf, 16);
3360 }
3361 else
3362 {
3363 /* Extract (always little endian). Read lower 128bits. */
3364 status = regcache_raw_read (regcache,
3365 I387_XMM16_REGNUM (tdep) + regnum
3366 - num_lower_zmm_regs,
3367 raw_buf);
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 0, 16);
3370 else
3371 memcpy (buf, raw_buf, 16);
3372
3373 /* Extract (always little endian). Read upper 128bits. */
3374 status = regcache_raw_read (regcache,
3375 I387_YMM16H_REGNUM (tdep) + regnum
3376 - num_lower_zmm_regs,
3377 raw_buf);
3378 if (status != REG_VALID)
3379 mark_value_bytes_unavailable (result_value, 16, 16);
3380 else
3381 memcpy (buf + 16, raw_buf, 16);
3382 }
3383
3384 /* Read upper 256bits. */
3385 status = regcache_raw_read (regcache,
3386 tdep->zmm0h_regnum + regnum,
3387 raw_buf);
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 32, 32);
3390 else
3391 memcpy (buf + 32, raw_buf, 32);
3392 }
3393 else if (i386_ymm_regnum_p (gdbarch, regnum))
3394 {
3395 regnum -= tdep->ymm0_regnum;
3396
3397 /* Extract (always little endian). Read lower 128bits. */
3398 status = regcache_raw_read (regcache,
3399 I387_XMM0_REGNUM (tdep) + regnum,
3400 raw_buf);
3401 if (status != REG_VALID)
3402 mark_value_bytes_unavailable (result_value, 0, 16);
3403 else
3404 memcpy (buf, raw_buf, 16);
3405 /* Read upper 128bits. */
3406 status = regcache_raw_read (regcache,
3407 tdep->ymm0h_regnum + regnum,
3408 raw_buf);
3409 if (status != REG_VALID)
3410 mark_value_bytes_unavailable (result_value, 16, 32);
3411 else
3412 memcpy (buf + 16, raw_buf, 16);
3413 }
3414 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3415 {
3416 regnum -= tdep->ymm16_regnum;
3417 /* Extract (always little endian). Read lower 128bits. */
3418 status = regcache_raw_read (regcache,
3419 I387_XMM16_REGNUM (tdep) + regnum,
3420 raw_buf);
3421 if (status != REG_VALID)
3422 mark_value_bytes_unavailable (result_value, 0, 16);
3423 else
3424 memcpy (buf, raw_buf, 16);
3425 /* Read upper 128bits. */
3426 status = regcache_raw_read (regcache,
3427 tdep->ymm16h_regnum + regnum,
3428 raw_buf);
3429 if (status != REG_VALID)
3430 mark_value_bytes_unavailable (result_value, 16, 16);
3431 else
3432 memcpy (buf + 16, raw_buf, 16);
3433 }
3434 else if (i386_word_regnum_p (gdbarch, regnum))
3435 {
3436 int gpnum = regnum - tdep->ax_regnum;
3437
3438 /* Extract (always little endian). */
3439 status = regcache_raw_read (regcache, gpnum, raw_buf);
3440 if (status != REG_VALID)
3441 mark_value_bytes_unavailable (result_value, 0,
3442 TYPE_LENGTH (value_type (result_value)));
3443 else
3444 memcpy (buf, raw_buf, 2);
3445 }
3446 else if (i386_byte_regnum_p (gdbarch, regnum))
3447 {
3448 int gpnum = regnum - tdep->al_regnum;
3449
3450 /* Extract (always little endian). We read both lower and
3451 upper registers. */
3452 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3453 if (status != REG_VALID)
3454 mark_value_bytes_unavailable (result_value, 0,
3455 TYPE_LENGTH (value_type (result_value)));
3456 else if (gpnum >= 4)
3457 memcpy (buf, raw_buf + 1, 1);
3458 else
3459 memcpy (buf, raw_buf, 1);
3460 }
3461 else
3462 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3463 }
3464 }
3465
3466 static struct value *
3467 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3468 struct regcache *regcache,
3469 int regnum)
3470 {
3471 struct value *result;
3472
3473 result = allocate_value (register_type (gdbarch, regnum));
3474 VALUE_LVAL (result) = lval_register;
3475 VALUE_REGNUM (result) = regnum;
3476
3477 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3478
3479 return result;
3480 }
3481
3482 void
3483 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3484 int regnum, const gdb_byte *buf)
3485 {
3486 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3487
3488 if (i386_mmx_regnum_p (gdbarch, regnum))
3489 {
3490 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3491
3492 /* Read ... */
3493 regcache_raw_read (regcache, fpnum, raw_buf);
3494 /* ... Modify ... (always little endian). */
3495 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3496 /* ... Write. */
3497 regcache_raw_write (regcache, fpnum, raw_buf);
3498 }
3499 else
3500 {
3501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3502
3503 if (i386_bnd_regnum_p (gdbarch, regnum))
3504 {
3505 ULONGEST upper, lower;
3506 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3507 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3508
3509 /* New values from input value. */
3510 regnum -= tdep->bnd0_regnum;
3511 lower = extract_unsigned_integer (buf, size, byte_order);
3512 upper = extract_unsigned_integer (buf + size, size, byte_order);
3513
3514 /* Fetching register buffer. */
3515 regcache_raw_read (regcache,
3516 I387_BND0R_REGNUM (tdep) + regnum,
3517 raw_buf);
3518
3519 upper = ~upper;
3520
3521 /* Set register bits. */
3522 memcpy (raw_buf, &lower, 8);
3523 memcpy (raw_buf + 8, &upper, 8);
3524
3525
3526 regcache_raw_write (regcache,
3527 I387_BND0R_REGNUM (tdep) + regnum,
3528 raw_buf);
3529 }
3530 else if (i386_k_regnum_p (gdbarch, regnum))
3531 {
3532 regnum -= tdep->k0_regnum;
3533
3534 regcache_raw_write (regcache,
3535 tdep->k0_regnum + regnum,
3536 buf);
3537 }
3538 else if (i386_zmm_regnum_p (gdbarch, regnum))
3539 {
3540 regnum -= tdep->zmm0_regnum;
3541
3542 if (regnum < num_lower_zmm_regs)
3543 {
3544 /* Write lower 128bits. */
3545 regcache_raw_write (regcache,
3546 I387_XMM0_REGNUM (tdep) + regnum,
3547 buf);
3548 /* Write upper 128bits. */
3549 regcache_raw_write (regcache,
3550 I387_YMM0_REGNUM (tdep) + regnum,
3551 buf + 16);
3552 }
3553 else
3554 {
3555 /* Write lower 128bits. */
3556 regcache_raw_write (regcache,
3557 I387_XMM16_REGNUM (tdep) + regnum
3558 - num_lower_zmm_regs,
3559 buf);
3560 /* Write upper 128bits. */
3561 regcache_raw_write (regcache,
3562 I387_YMM16H_REGNUM (tdep) + regnum
3563 - num_lower_zmm_regs,
3564 buf + 16);
3565 }
3566 /* Write upper 256bits. */
3567 regcache_raw_write (regcache,
3568 tdep->zmm0h_regnum + regnum,
3569 buf + 32);
3570 }
3571 else if (i386_ymm_regnum_p (gdbarch, regnum))
3572 {
3573 regnum -= tdep->ymm0_regnum;
3574
3575 /* ... Write lower 128bits. */
3576 regcache_raw_write (regcache,
3577 I387_XMM0_REGNUM (tdep) + regnum,
3578 buf);
3579 /* ... Write upper 128bits. */
3580 regcache_raw_write (regcache,
3581 tdep->ymm0h_regnum + regnum,
3582 buf + 16);
3583 }
3584 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3585 {
3586 regnum -= tdep->ymm16_regnum;
3587
3588 /* ... Write lower 128bits. */
3589 regcache_raw_write (regcache,
3590 I387_XMM16_REGNUM (tdep) + regnum,
3591 buf);
3592 /* ... Write upper 128bits. */
3593 regcache_raw_write (regcache,
3594 tdep->ymm16h_regnum + regnum,
3595 buf + 16);
3596 }
3597 else if (i386_word_regnum_p (gdbarch, regnum))
3598 {
3599 int gpnum = regnum - tdep->ax_regnum;
3600
3601 /* Read ... */
3602 regcache_raw_read (regcache, gpnum, raw_buf);
3603 /* ... Modify ... (always little endian). */
3604 memcpy (raw_buf, buf, 2);
3605 /* ... Write. */
3606 regcache_raw_write (regcache, gpnum, raw_buf);
3607 }
3608 else if (i386_byte_regnum_p (gdbarch, regnum))
3609 {
3610 int gpnum = regnum - tdep->al_regnum;
3611
3612 /* Read ... We read both lower and upper registers. */
3613 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3614 /* ... Modify ... (always little endian). */
3615 if (gpnum >= 4)
3616 memcpy (raw_buf + 1, buf, 1);
3617 else
3618 memcpy (raw_buf, buf, 1);
3619 /* ... Write. */
3620 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3621 }
3622 else
3623 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3624 }
3625 }
3626
3627 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3628
3629 int
3630 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3631 struct agent_expr *ax, int regnum)
3632 {
3633 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3634
3635 if (i386_mmx_regnum_p (gdbarch, regnum))
3636 {
3637 /* MMX to FPU register mapping depends on current TOS. Let's just
3638 not care and collect everything... */
3639 int i;
3640
3641 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3642 for (i = 0; i < 8; i++)
3643 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3644 return 0;
3645 }
3646 else if (i386_bnd_regnum_p (gdbarch, regnum))
3647 {
3648 regnum -= tdep->bnd0_regnum;
3649 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3650 return 0;
3651 }
3652 else if (i386_k_regnum_p (gdbarch, regnum))
3653 {
3654 regnum -= tdep->k0_regnum;
3655 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3656 return 0;
3657 }
3658 else if (i386_zmm_regnum_p (gdbarch, regnum))
3659 {
3660 regnum -= tdep->zmm0_regnum;
3661 if (regnum < num_lower_zmm_regs)
3662 {
3663 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3664 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3665 }
3666 else
3667 {
3668 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3669 - num_lower_zmm_regs);
3670 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3671 - num_lower_zmm_regs);
3672 }
3673 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3674 return 0;
3675 }
3676 else if (i386_ymm_regnum_p (gdbarch, regnum))
3677 {
3678 regnum -= tdep->ymm0_regnum;
3679 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3680 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3681 return 0;
3682 }
3683 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3684 {
3685 regnum -= tdep->ymm16_regnum;
3686 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3687 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3688 return 0;
3689 }
3690 else if (i386_word_regnum_p (gdbarch, regnum))
3691 {
3692 int gpnum = regnum - tdep->ax_regnum;
3693
3694 ax_reg_mask (ax, gpnum);
3695 return 0;
3696 }
3697 else if (i386_byte_regnum_p (gdbarch, regnum))
3698 {
3699 int gpnum = regnum - tdep->al_regnum;
3700
3701 ax_reg_mask (ax, gpnum % 4);
3702 return 0;
3703 }
3704 else
3705 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3706 return 1;
3707 }
3708 \f
3709
3710 /* Return the register number of the register allocated by GCC after
3711 REGNUM, or -1 if there is no such register. */
3712
3713 static int
3714 i386_next_regnum (int regnum)
3715 {
3716 /* GCC allocates the registers in the order:
3717
3718 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3719
3720 Since storing a variable in %esp doesn't make any sense we return
3721 -1 for %ebp and for %esp itself. */
3722 static int next_regnum[] =
3723 {
3724 I386_EDX_REGNUM, /* Slot for %eax. */
3725 I386_EBX_REGNUM, /* Slot for %ecx. */
3726 I386_ECX_REGNUM, /* Slot for %edx. */
3727 I386_ESI_REGNUM, /* Slot for %ebx. */
3728 -1, -1, /* Slots for %esp and %ebp. */
3729 I386_EDI_REGNUM, /* Slot for %esi. */
3730 I386_EBP_REGNUM /* Slot for %edi. */
3731 };
3732
3733 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3734 return next_regnum[regnum];
3735
3736 return -1;
3737 }
3738
3739 /* Return nonzero if a value of type TYPE stored in register REGNUM
3740 needs any special handling. */
3741
3742 static int
3743 i386_convert_register_p (struct gdbarch *gdbarch,
3744 int regnum, struct type *type)
3745 {
3746 int len = TYPE_LENGTH (type);
3747
3748 /* Values may be spread across multiple registers. Most debugging
3749 formats aren't expressive enough to specify the locations, so
3750 some heuristics is involved. Right now we only handle types that
3751 have a length that is a multiple of the word size, since GCC
3752 doesn't seem to put any other types into registers. */
3753 if (len > 4 && len % 4 == 0)
3754 {
3755 int last_regnum = regnum;
3756
3757 while (len > 4)
3758 {
3759 last_regnum = i386_next_regnum (last_regnum);
3760 len -= 4;
3761 }
3762
3763 if (last_regnum != -1)
3764 return 1;
3765 }
3766
3767 return i387_convert_register_p (gdbarch, regnum, type);
3768 }
3769
3770 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3771 return its contents in TO. */
3772
3773 static int
3774 i386_register_to_value (struct frame_info *frame, int regnum,
3775 struct type *type, gdb_byte *to,
3776 int *optimizedp, int *unavailablep)
3777 {
3778 struct gdbarch *gdbarch = get_frame_arch (frame);
3779 int len = TYPE_LENGTH (type);
3780
3781 if (i386_fp_regnum_p (gdbarch, regnum))
3782 return i387_register_to_value (frame, regnum, type, to,
3783 optimizedp, unavailablep);
3784
3785 /* Read a value spread across multiple registers. */
3786
3787 gdb_assert (len > 4 && len % 4 == 0);
3788
3789 while (len > 0)
3790 {
3791 gdb_assert (regnum != -1);
3792 gdb_assert (register_size (gdbarch, regnum) == 4);
3793
3794 if (!get_frame_register_bytes (frame, regnum, 0,
3795 register_size (gdbarch, regnum),
3796 to, optimizedp, unavailablep))
3797 return 0;
3798
3799 regnum = i386_next_regnum (regnum);
3800 len -= 4;
3801 to += 4;
3802 }
3803
3804 *optimizedp = *unavailablep = 0;
3805 return 1;
3806 }
3807
3808 /* Write the contents FROM of a value of type TYPE into register
3809 REGNUM in frame FRAME. */
3810
3811 static void
3812 i386_value_to_register (struct frame_info *frame, int regnum,
3813 struct type *type, const gdb_byte *from)
3814 {
3815 int len = TYPE_LENGTH (type);
3816
3817 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3818 {
3819 i387_value_to_register (frame, regnum, type, from);
3820 return;
3821 }
3822
3823 /* Write a value spread across multiple registers. */
3824
3825 gdb_assert (len > 4 && len % 4 == 0);
3826
3827 while (len > 0)
3828 {
3829 gdb_assert (regnum != -1);
3830 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3831
3832 put_frame_register (frame, regnum, from);
3833 regnum = i386_next_regnum (regnum);
3834 len -= 4;
3835 from += 4;
3836 }
3837 }
3838 \f
3839 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3840 in the general-purpose register set REGSET to register cache
3841 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3842
3843 void
3844 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3845 int regnum, const void *gregs, size_t len)
3846 {
3847 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3848 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3849 const gdb_byte *regs = (const gdb_byte *) gregs;
3850 int i;
3851
3852 gdb_assert (len >= tdep->sizeof_gregset);
3853
3854 for (i = 0; i < tdep->gregset_num_regs; i++)
3855 {
3856 if ((regnum == i || regnum == -1)
3857 && tdep->gregset_reg_offset[i] != -1)
3858 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3859 }
3860 }
3861
3862 /* Collect register REGNUM from the register cache REGCACHE and store
3863 it in the buffer specified by GREGS and LEN as described by the
3864 general-purpose register set REGSET. If REGNUM is -1, do this for
3865 all registers in REGSET. */
3866
3867 static void
3868 i386_collect_gregset (const struct regset *regset,
3869 const struct regcache *regcache,
3870 int regnum, void *gregs, size_t len)
3871 {
3872 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3873 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3874 gdb_byte *regs = (gdb_byte *) gregs;
3875 int i;
3876
3877 gdb_assert (len >= tdep->sizeof_gregset);
3878
3879 for (i = 0; i < tdep->gregset_num_regs; i++)
3880 {
3881 if ((regnum == i || regnum == -1)
3882 && tdep->gregset_reg_offset[i] != -1)
3883 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3884 }
3885 }
3886
3887 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3888 in the floating-point register set REGSET to register cache
3889 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3890
3891 static void
3892 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3893 int regnum, const void *fpregs, size_t len)
3894 {
3895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3896 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3897
3898 if (len == I387_SIZEOF_FXSAVE)
3899 {
3900 i387_supply_fxsave (regcache, regnum, fpregs);
3901 return;
3902 }
3903
3904 gdb_assert (len >= tdep->sizeof_fpregset);
3905 i387_supply_fsave (regcache, regnum, fpregs);
3906 }
3907
3908 /* Collect register REGNUM from the register cache REGCACHE and store
3909 it in the buffer specified by FPREGS and LEN as described by the
3910 floating-point register set REGSET. If REGNUM is -1, do this for
3911 all registers in REGSET. */
3912
3913 static void
3914 i386_collect_fpregset (const struct regset *regset,
3915 const struct regcache *regcache,
3916 int regnum, void *fpregs, size_t len)
3917 {
3918 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3919 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3920
3921 if (len == I387_SIZEOF_FXSAVE)
3922 {
3923 i387_collect_fxsave (regcache, regnum, fpregs);
3924 return;
3925 }
3926
3927 gdb_assert (len >= tdep->sizeof_fpregset);
3928 i387_collect_fsave (regcache, regnum, fpregs);
3929 }
3930
3931 /* Register set definitions. */
3932
3933 const struct regset i386_gregset =
3934 {
3935 NULL, i386_supply_gregset, i386_collect_gregset
3936 };
3937
3938 const struct regset i386_fpregset =
3939 {
3940 NULL, i386_supply_fpregset, i386_collect_fpregset
3941 };
3942
3943 /* Default iterator over core file register note sections. */
3944
3945 void
3946 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3947 iterate_over_regset_sections_cb *cb,
3948 void *cb_data,
3949 const struct regcache *regcache)
3950 {
3951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3952
3953 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3954 if (tdep->sizeof_fpregset)
3955 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3956 }
3957 \f
3958
3959 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3960
3961 CORE_ADDR
3962 i386_pe_skip_trampoline_code (struct frame_info *frame,
3963 CORE_ADDR pc, char *name)
3964 {
3965 struct gdbarch *gdbarch = get_frame_arch (frame);
3966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3967
3968 /* jmp *(dest) */
3969 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3970 {
3971 unsigned long indirect =
3972 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3973 struct minimal_symbol *indsym =
3974 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3975 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3976
3977 if (symname)
3978 {
3979 if (startswith (symname, "__imp_")
3980 || startswith (symname, "_imp_"))
3981 return name ? 1 :
3982 read_memory_unsigned_integer (indirect, 4, byte_order);
3983 }
3984 }
3985 return 0; /* Not a trampoline. */
3986 }
3987 \f
3988
3989 /* Return whether the THIS_FRAME corresponds to a sigtramp
3990 routine. */
3991
3992 int
3993 i386_sigtramp_p (struct frame_info *this_frame)
3994 {
3995 CORE_ADDR pc = get_frame_pc (this_frame);
3996 const char *name;
3997
3998 find_pc_partial_function (pc, &name, NULL, NULL);
3999 return (name && strcmp ("_sigtramp", name) == 0);
4000 }
4001 \f
4002
4003 /* We have two flavours of disassembly. The machinery on this page
4004 deals with switching between those. */
4005
4006 static int
4007 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4008 {
4009 gdb_assert (disassembly_flavor == att_flavor
4010 || disassembly_flavor == intel_flavor);
4011
4012 info->disassembler_options = disassembly_flavor;
4013
4014 return print_insn_i386 (pc, info);
4015 }
4016 \f
4017
4018 /* There are a few i386 architecture variants that differ only
4019 slightly from the generic i386 target. For now, we don't give them
4020 their own source file, but include them here. As a consequence,
4021 they'll always be included. */
4022
4023 /* System V Release 4 (SVR4). */
4024
4025 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4026 routine. */
4027
4028 static int
4029 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4030 {
4031 CORE_ADDR pc = get_frame_pc (this_frame);
4032 const char *name;
4033
4034 /* The origin of these symbols is currently unknown. */
4035 find_pc_partial_function (pc, &name, NULL, NULL);
4036 return (name && (strcmp ("_sigreturn", name) == 0
4037 || strcmp ("sigvechandler", name) == 0));
4038 }
4039
4040 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4041 address of the associated sigcontext (ucontext) structure. */
4042
4043 static CORE_ADDR
4044 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4045 {
4046 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4048 gdb_byte buf[4];
4049 CORE_ADDR sp;
4050
4051 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4052 sp = extract_unsigned_integer (buf, 4, byte_order);
4053
4054 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4055 }
4056
4057 \f
4058
4059 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4060 gdbarch.h. */
4061
4062 int
4063 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4064 {
4065 return (*s == '$' /* Literal number. */
4066 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4067 || (*s == '(' && s[1] == '%') /* Register indirection. */
4068 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4069 }
4070
4071 /* Helper function for i386_stap_parse_special_token.
4072
4073 This function parses operands of the form `-8+3+1(%rbp)', which
4074 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4075
4076 Return 1 if the operand was parsed successfully, zero
4077 otherwise. */
4078
4079 static int
4080 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4081 struct stap_parse_info *p)
4082 {
4083 const char *s = p->arg;
4084
4085 if (isdigit (*s) || *s == '-' || *s == '+')
4086 {
4087 int got_minus[3];
4088 int i;
4089 long displacements[3];
4090 const char *start;
4091 char *regname;
4092 int len;
4093 struct stoken str;
4094 char *endp;
4095
4096 got_minus[0] = 0;
4097 if (*s == '+')
4098 ++s;
4099 else if (*s == '-')
4100 {
4101 ++s;
4102 got_minus[0] = 1;
4103 }
4104
4105 if (!isdigit ((unsigned char) *s))
4106 return 0;
4107
4108 displacements[0] = strtol (s, &endp, 10);
4109 s = endp;
4110
4111 if (*s != '+' && *s != '-')
4112 {
4113 /* We are not dealing with a triplet. */
4114 return 0;
4115 }
4116
4117 got_minus[1] = 0;
4118 if (*s == '+')
4119 ++s;
4120 else
4121 {
4122 ++s;
4123 got_minus[1] = 1;
4124 }
4125
4126 if (!isdigit ((unsigned char) *s))
4127 return 0;
4128
4129 displacements[1] = strtol (s, &endp, 10);
4130 s = endp;
4131
4132 if (*s != '+' && *s != '-')
4133 {
4134 /* We are not dealing with a triplet. */
4135 return 0;
4136 }
4137
4138 got_minus[2] = 0;
4139 if (*s == '+')
4140 ++s;
4141 else
4142 {
4143 ++s;
4144 got_minus[2] = 1;
4145 }
4146
4147 if (!isdigit ((unsigned char) *s))
4148 return 0;
4149
4150 displacements[2] = strtol (s, &endp, 10);
4151 s = endp;
4152
4153 if (*s != '(' || s[1] != '%')
4154 return 0;
4155
4156 s += 2;
4157 start = s;
4158
4159 while (isalnum (*s))
4160 ++s;
4161
4162 if (*s++ != ')')
4163 return 0;
4164
4165 len = s - start - 1;
4166 regname = (char *) alloca (len + 1);
4167
4168 strncpy (regname, start, len);
4169 regname[len] = '\0';
4170
4171 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4172 error (_("Invalid register name `%s' on expression `%s'."),
4173 regname, p->saved_arg);
4174
4175 for (i = 0; i < 3; i++)
4176 {
4177 write_exp_elt_opcode (&p->pstate, OP_LONG);
4178 write_exp_elt_type
4179 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4180 write_exp_elt_longcst (&p->pstate, displacements[i]);
4181 write_exp_elt_opcode (&p->pstate, OP_LONG);
4182 if (got_minus[i])
4183 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4184 }
4185
4186 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4187 str.ptr = regname;
4188 str.length = len;
4189 write_exp_string (&p->pstate, str);
4190 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4191
4192 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4193 write_exp_elt_type (&p->pstate,
4194 builtin_type (gdbarch)->builtin_data_ptr);
4195 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4196
4197 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4198 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4199 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4200
4201 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4202 write_exp_elt_type (&p->pstate,
4203 lookup_pointer_type (p->arg_type));
4204 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4205
4206 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4207
4208 p->arg = s;
4209
4210 return 1;
4211 }
4212
4213 return 0;
4214 }
4215
4216 /* Helper function for i386_stap_parse_special_token.
4217
4218 This function parses operands of the form `register base +
4219 (register index * size) + offset', as represented in
4220 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4221
4222 Return 1 if the operand was parsed successfully, zero
4223 otherwise. */
4224
4225 static int
4226 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4227 struct stap_parse_info *p)
4228 {
4229 const char *s = p->arg;
4230
4231 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4232 {
4233 int offset_minus = 0;
4234 long offset = 0;
4235 int size_minus = 0;
4236 long size = 0;
4237 const char *start;
4238 char *base;
4239 int len_base;
4240 char *index;
4241 int len_index;
4242 struct stoken base_token, index_token;
4243
4244 if (*s == '+')
4245 ++s;
4246 else if (*s == '-')
4247 {
4248 ++s;
4249 offset_minus = 1;
4250 }
4251
4252 if (offset_minus && !isdigit (*s))
4253 return 0;
4254
4255 if (isdigit (*s))
4256 {
4257 char *endp;
4258
4259 offset = strtol (s, &endp, 10);
4260 s = endp;
4261 }
4262
4263 if (*s != '(' || s[1] != '%')
4264 return 0;
4265
4266 s += 2;
4267 start = s;
4268
4269 while (isalnum (*s))
4270 ++s;
4271
4272 if (*s != ',' || s[1] != '%')
4273 return 0;
4274
4275 len_base = s - start;
4276 base = (char *) alloca (len_base + 1);
4277 strncpy (base, start, len_base);
4278 base[len_base] = '\0';
4279
4280 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4281 error (_("Invalid register name `%s' on expression `%s'."),
4282 base, p->saved_arg);
4283
4284 s += 2;
4285 start = s;
4286
4287 while (isalnum (*s))
4288 ++s;
4289
4290 len_index = s - start;
4291 index = (char *) alloca (len_index + 1);
4292 strncpy (index, start, len_index);
4293 index[len_index] = '\0';
4294
4295 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4296 error (_("Invalid register name `%s' on expression `%s'."),
4297 index, p->saved_arg);
4298
4299 if (*s != ',' && *s != ')')
4300 return 0;
4301
4302 if (*s == ',')
4303 {
4304 char *endp;
4305
4306 ++s;
4307 if (*s == '+')
4308 ++s;
4309 else if (*s == '-')
4310 {
4311 ++s;
4312 size_minus = 1;
4313 }
4314
4315 size = strtol (s, &endp, 10);
4316 s = endp;
4317
4318 if (*s != ')')
4319 return 0;
4320 }
4321
4322 ++s;
4323
4324 if (offset)
4325 {
4326 write_exp_elt_opcode (&p->pstate, OP_LONG);
4327 write_exp_elt_type (&p->pstate,
4328 builtin_type (gdbarch)->builtin_long);
4329 write_exp_elt_longcst (&p->pstate, offset);
4330 write_exp_elt_opcode (&p->pstate, OP_LONG);
4331 if (offset_minus)
4332 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4333 }
4334
4335 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4336 base_token.ptr = base;
4337 base_token.length = len_base;
4338 write_exp_string (&p->pstate, base_token);
4339 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4340
4341 if (offset)
4342 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4343
4344 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4345 index_token.ptr = index;
4346 index_token.length = len_index;
4347 write_exp_string (&p->pstate, index_token);
4348 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4349
4350 if (size)
4351 {
4352 write_exp_elt_opcode (&p->pstate, OP_LONG);
4353 write_exp_elt_type (&p->pstate,
4354 builtin_type (gdbarch)->builtin_long);
4355 write_exp_elt_longcst (&p->pstate, size);
4356 write_exp_elt_opcode (&p->pstate, OP_LONG);
4357 if (size_minus)
4358 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4359 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4360 }
4361
4362 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4363
4364 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4365 write_exp_elt_type (&p->pstate,
4366 lookup_pointer_type (p->arg_type));
4367 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4368
4369 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4370
4371 p->arg = s;
4372
4373 return 1;
4374 }
4375
4376 return 0;
4377 }
4378
4379 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4380 gdbarch.h. */
4381
4382 int
4383 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4384 struct stap_parse_info *p)
4385 {
4386 /* In order to parse special tokens, we use a state-machine that go
4387 through every known token and try to get a match. */
4388 enum
4389 {
4390 TRIPLET,
4391 THREE_ARG_DISPLACEMENT,
4392 DONE
4393 };
4394 int current_state;
4395
4396 current_state = TRIPLET;
4397
4398 /* The special tokens to be parsed here are:
4399
4400 - `register base + (register index * size) + offset', as represented
4401 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4402
4403 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4404 `*(-8 + 3 - 1 + (void *) $eax)'. */
4405
4406 while (current_state != DONE)
4407 {
4408 switch (current_state)
4409 {
4410 case TRIPLET:
4411 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4412 return 1;
4413 break;
4414
4415 case THREE_ARG_DISPLACEMENT:
4416 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4417 return 1;
4418 break;
4419 }
4420
4421 /* Advancing to the next state. */
4422 ++current_state;
4423 }
4424
4425 return 0;
4426 }
4427
4428 \f
4429
4430 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4431 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4432
4433 static const char *
4434 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4435 {
4436 return "(x86_64|i.86)";
4437 }
4438
4439 \f
4440
4441 /* Generic ELF. */
4442
4443 void
4444 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4445 {
4446 static const char *const stap_integer_prefixes[] = { "$", NULL };
4447 static const char *const stap_register_prefixes[] = { "%", NULL };
4448 static const char *const stap_register_indirection_prefixes[] = { "(",
4449 NULL };
4450 static const char *const stap_register_indirection_suffixes[] = { ")",
4451 NULL };
4452
4453 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4454 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4455
4456 /* Registering SystemTap handlers. */
4457 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4458 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4459 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4460 stap_register_indirection_prefixes);
4461 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4462 stap_register_indirection_suffixes);
4463 set_gdbarch_stap_is_single_operand (gdbarch,
4464 i386_stap_is_single_operand);
4465 set_gdbarch_stap_parse_special_token (gdbarch,
4466 i386_stap_parse_special_token);
4467
4468 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4469 }
4470
4471 /* System V Release 4 (SVR4). */
4472
4473 void
4474 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4475 {
4476 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4477
4478 /* System V Release 4 uses ELF. */
4479 i386_elf_init_abi (info, gdbarch);
4480
4481 /* System V Release 4 has shared libraries. */
4482 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4483
4484 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4485 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4486 tdep->sc_pc_offset = 36 + 14 * 4;
4487 tdep->sc_sp_offset = 36 + 17 * 4;
4488
4489 tdep->jb_pc_offset = 20;
4490 }
4491
4492 /* DJGPP. */
4493
4494 static void
4495 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4496 {
4497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4498
4499 /* DJGPP doesn't have any special frames for signal handlers. */
4500 tdep->sigtramp_p = NULL;
4501
4502 tdep->jb_pc_offset = 36;
4503
4504 /* DJGPP does not support the SSE registers. */
4505 if (! tdesc_has_registers (info.target_desc))
4506 tdep->tdesc = tdesc_i386_mmx;
4507
4508 /* Native compiler is GCC, which uses the SVR4 register numbering
4509 even in COFF and STABS. See the comment in i386_gdbarch_init,
4510 before the calls to set_gdbarch_stab_reg_to_regnum and
4511 set_gdbarch_sdb_reg_to_regnum. */
4512 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4513 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4514
4515 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4516
4517 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4518
4519 set_gdbarch_wchar_bit (gdbarch, 16);
4520 set_gdbarch_wchar_signed (gdbarch, 0);
4521 }
4522 \f
4523
4524 /* i386 register groups. In addition to the normal groups, add "mmx"
4525 and "sse". */
4526
4527 static struct reggroup *i386_sse_reggroup;
4528 static struct reggroup *i386_mmx_reggroup;
4529
4530 static void
4531 i386_init_reggroups (void)
4532 {
4533 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4534 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4535 }
4536
4537 static void
4538 i386_add_reggroups (struct gdbarch *gdbarch)
4539 {
4540 reggroup_add (gdbarch, i386_sse_reggroup);
4541 reggroup_add (gdbarch, i386_mmx_reggroup);
4542 reggroup_add (gdbarch, general_reggroup);
4543 reggroup_add (gdbarch, float_reggroup);
4544 reggroup_add (gdbarch, all_reggroup);
4545 reggroup_add (gdbarch, save_reggroup);
4546 reggroup_add (gdbarch, restore_reggroup);
4547 reggroup_add (gdbarch, vector_reggroup);
4548 reggroup_add (gdbarch, system_reggroup);
4549 }
4550
4551 int
4552 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4553 struct reggroup *group)
4554 {
4555 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4556 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4557 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4558 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4559 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4560 avx512_p, avx_p, sse_p, pkru_regnum_p;
4561
4562 /* Don't include pseudo registers, except for MMX, in any register
4563 groups. */
4564 if (i386_byte_regnum_p (gdbarch, regnum))
4565 return 0;
4566
4567 if (i386_word_regnum_p (gdbarch, regnum))
4568 return 0;
4569
4570 if (i386_dword_regnum_p (gdbarch, regnum))
4571 return 0;
4572
4573 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4574 if (group == i386_mmx_reggroup)
4575 return mmx_regnum_p;
4576
4577 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4578 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4579 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4580 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4581 if (group == i386_sse_reggroup)
4582 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4583
4584 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4585 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4586 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4587
4588 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4589 == X86_XSTATE_AVX_AVX512_MASK);
4590 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4591 == X86_XSTATE_AVX_MASK) && !avx512_p;
4592 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4593 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4594
4595 if (group == vector_reggroup)
4596 return (mmx_regnum_p
4597 || (zmm_regnum_p && avx512_p)
4598 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4599 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4600 || mxcsr_regnum_p);
4601
4602 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4603 || i386_fpc_regnum_p (gdbarch, regnum));
4604 if (group == float_reggroup)
4605 return fp_regnum_p;
4606
4607 /* For "info reg all", don't include upper YMM registers nor XMM
4608 registers when AVX is supported. */
4609 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4610 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4611 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4612 if (group == all_reggroup
4613 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4614 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4615 || ymmh_regnum_p
4616 || ymmh_avx512_regnum_p
4617 || zmmh_regnum_p))
4618 return 0;
4619
4620 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4621 if (group == all_reggroup
4622 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4623 return bnd_regnum_p;
4624
4625 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4626 if (group == all_reggroup
4627 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4628 return 0;
4629
4630 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4631 if (group == all_reggroup
4632 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4633 return mpx_ctrl_regnum_p;
4634
4635 if (group == general_reggroup)
4636 return (!fp_regnum_p
4637 && !mmx_regnum_p
4638 && !mxcsr_regnum_p
4639 && !xmm_regnum_p
4640 && !xmm_avx512_regnum_p
4641 && !ymm_regnum_p
4642 && !ymmh_regnum_p
4643 && !ymm_avx512_regnum_p
4644 && !ymmh_avx512_regnum_p
4645 && !bndr_regnum_p
4646 && !bnd_regnum_p
4647 && !mpx_ctrl_regnum_p
4648 && !zmm_regnum_p
4649 && !zmmh_regnum_p
4650 && !pkru_regnum_p);
4651
4652 return default_register_reggroup_p (gdbarch, regnum, group);
4653 }
4654 \f
4655
4656 /* Get the ARGIth function argument for the current function. */
4657
4658 static CORE_ADDR
4659 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4660 struct type *type)
4661 {
4662 struct gdbarch *gdbarch = get_frame_arch (frame);
4663 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4664 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4665 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4666 }
4667
4668 #define PREFIX_REPZ 0x01
4669 #define PREFIX_REPNZ 0x02
4670 #define PREFIX_LOCK 0x04
4671 #define PREFIX_DATA 0x08
4672 #define PREFIX_ADDR 0x10
4673
4674 /* operand size */
4675 enum
4676 {
4677 OT_BYTE = 0,
4678 OT_WORD,
4679 OT_LONG,
4680 OT_QUAD,
4681 OT_DQUAD,
4682 };
4683
4684 /* i386 arith/logic operations */
4685 enum
4686 {
4687 OP_ADDL,
4688 OP_ORL,
4689 OP_ADCL,
4690 OP_SBBL,
4691 OP_ANDL,
4692 OP_SUBL,
4693 OP_XORL,
4694 OP_CMPL,
4695 };
4696
4697 struct i386_record_s
4698 {
4699 struct gdbarch *gdbarch;
4700 struct regcache *regcache;
4701 CORE_ADDR orig_addr;
4702 CORE_ADDR addr;
4703 int aflag;
4704 int dflag;
4705 int override;
4706 uint8_t modrm;
4707 uint8_t mod, reg, rm;
4708 int ot;
4709 uint8_t rex_x;
4710 uint8_t rex_b;
4711 int rip_offset;
4712 int popl_esp_hack;
4713 const int *regmap;
4714 };
4715
4716 /* Parse the "modrm" part of the memory address irp->addr points at.
4717 Returns -1 if something goes wrong, 0 otherwise. */
4718
4719 static int
4720 i386_record_modrm (struct i386_record_s *irp)
4721 {
4722 struct gdbarch *gdbarch = irp->gdbarch;
4723
4724 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4725 return -1;
4726
4727 irp->addr++;
4728 irp->mod = (irp->modrm >> 6) & 3;
4729 irp->reg = (irp->modrm >> 3) & 7;
4730 irp->rm = irp->modrm & 7;
4731
4732 return 0;
4733 }
4734
4735 /* Extract the memory address that the current instruction writes to,
4736 and return it in *ADDR. Return -1 if something goes wrong. */
4737
4738 static int
4739 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4740 {
4741 struct gdbarch *gdbarch = irp->gdbarch;
4742 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4743 gdb_byte buf[4];
4744 ULONGEST offset64;
4745
4746 *addr = 0;
4747 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4748 {
4749 /* 32/64 bits */
4750 int havesib = 0;
4751 uint8_t scale = 0;
4752 uint8_t byte;
4753 uint8_t index = 0;
4754 uint8_t base = irp->rm;
4755
4756 if (base == 4)
4757 {
4758 havesib = 1;
4759 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4760 return -1;
4761 irp->addr++;
4762 scale = (byte >> 6) & 3;
4763 index = ((byte >> 3) & 7) | irp->rex_x;
4764 base = (byte & 7);
4765 }
4766 base |= irp->rex_b;
4767
4768 switch (irp->mod)
4769 {
4770 case 0:
4771 if ((base & 7) == 5)
4772 {
4773 base = 0xff;
4774 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4775 return -1;
4776 irp->addr += 4;
4777 *addr = extract_signed_integer (buf, 4, byte_order);
4778 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4779 *addr += irp->addr + irp->rip_offset;
4780 }
4781 break;
4782 case 1:
4783 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4784 return -1;
4785 irp->addr++;
4786 *addr = (int8_t) buf[0];
4787 break;
4788 case 2:
4789 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4790 return -1;
4791 *addr = extract_signed_integer (buf, 4, byte_order);
4792 irp->addr += 4;
4793 break;
4794 }
4795
4796 offset64 = 0;
4797 if (base != 0xff)
4798 {
4799 if (base == 4 && irp->popl_esp_hack)
4800 *addr += irp->popl_esp_hack;
4801 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4802 &offset64);
4803 }
4804 if (irp->aflag == 2)
4805 {
4806 *addr += offset64;
4807 }
4808 else
4809 *addr = (uint32_t) (offset64 + *addr);
4810
4811 if (havesib && (index != 4 || scale != 0))
4812 {
4813 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4814 &offset64);
4815 if (irp->aflag == 2)
4816 *addr += offset64 << scale;
4817 else
4818 *addr = (uint32_t) (*addr + (offset64 << scale));
4819 }
4820
4821 if (!irp->aflag)
4822 {
4823 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4824 address from 32-bit to 64-bit. */
4825 *addr = (uint32_t) *addr;
4826 }
4827 }
4828 else
4829 {
4830 /* 16 bits */
4831 switch (irp->mod)
4832 {
4833 case 0:
4834 if (irp->rm == 6)
4835 {
4836 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4837 return -1;
4838 irp->addr += 2;
4839 *addr = extract_signed_integer (buf, 2, byte_order);
4840 irp->rm = 0;
4841 goto no_rm;
4842 }
4843 break;
4844 case 1:
4845 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4846 return -1;
4847 irp->addr++;
4848 *addr = (int8_t) buf[0];
4849 break;
4850 case 2:
4851 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4852 return -1;
4853 irp->addr += 2;
4854 *addr = extract_signed_integer (buf, 2, byte_order);
4855 break;
4856 }
4857
4858 switch (irp->rm)
4859 {
4860 case 0:
4861 regcache_raw_read_unsigned (irp->regcache,
4862 irp->regmap[X86_RECORD_REBX_REGNUM],
4863 &offset64);
4864 *addr = (uint32_t) (*addr + offset64);
4865 regcache_raw_read_unsigned (irp->regcache,
4866 irp->regmap[X86_RECORD_RESI_REGNUM],
4867 &offset64);
4868 *addr = (uint32_t) (*addr + offset64);
4869 break;
4870 case 1:
4871 regcache_raw_read_unsigned (irp->regcache,
4872 irp->regmap[X86_RECORD_REBX_REGNUM],
4873 &offset64);
4874 *addr = (uint32_t) (*addr + offset64);
4875 regcache_raw_read_unsigned (irp->regcache,
4876 irp->regmap[X86_RECORD_REDI_REGNUM],
4877 &offset64);
4878 *addr = (uint32_t) (*addr + offset64);
4879 break;
4880 case 2:
4881 regcache_raw_read_unsigned (irp->regcache,
4882 irp->regmap[X86_RECORD_REBP_REGNUM],
4883 &offset64);
4884 *addr = (uint32_t) (*addr + offset64);
4885 regcache_raw_read_unsigned (irp->regcache,
4886 irp->regmap[X86_RECORD_RESI_REGNUM],
4887 &offset64);
4888 *addr = (uint32_t) (*addr + offset64);
4889 break;
4890 case 3:
4891 regcache_raw_read_unsigned (irp->regcache,
4892 irp->regmap[X86_RECORD_REBP_REGNUM],
4893 &offset64);
4894 *addr = (uint32_t) (*addr + offset64);
4895 regcache_raw_read_unsigned (irp->regcache,
4896 irp->regmap[X86_RECORD_REDI_REGNUM],
4897 &offset64);
4898 *addr = (uint32_t) (*addr + offset64);
4899 break;
4900 case 4:
4901 regcache_raw_read_unsigned (irp->regcache,
4902 irp->regmap[X86_RECORD_RESI_REGNUM],
4903 &offset64);
4904 *addr = (uint32_t) (*addr + offset64);
4905 break;
4906 case 5:
4907 regcache_raw_read_unsigned (irp->regcache,
4908 irp->regmap[X86_RECORD_REDI_REGNUM],
4909 &offset64);
4910 *addr = (uint32_t) (*addr + offset64);
4911 break;
4912 case 6:
4913 regcache_raw_read_unsigned (irp->regcache,
4914 irp->regmap[X86_RECORD_REBP_REGNUM],
4915 &offset64);
4916 *addr = (uint32_t) (*addr + offset64);
4917 break;
4918 case 7:
4919 regcache_raw_read_unsigned (irp->regcache,
4920 irp->regmap[X86_RECORD_REBX_REGNUM],
4921 &offset64);
4922 *addr = (uint32_t) (*addr + offset64);
4923 break;
4924 }
4925 *addr &= 0xffff;
4926 }
4927
4928 no_rm:
4929 return 0;
4930 }
4931
4932 /* Record the address and contents of the memory that will be changed
4933 by the current instruction. Return -1 if something goes wrong, 0
4934 otherwise. */
4935
4936 static int
4937 i386_record_lea_modrm (struct i386_record_s *irp)
4938 {
4939 struct gdbarch *gdbarch = irp->gdbarch;
4940 uint64_t addr;
4941
4942 if (irp->override >= 0)
4943 {
4944 if (record_full_memory_query)
4945 {
4946 if (yquery (_("\
4947 Process record ignores the memory change of instruction at address %s\n\
4948 because it can't get the value of the segment register.\n\
4949 Do you want to stop the program?"),
4950 paddress (gdbarch, irp->orig_addr)))
4951 return -1;
4952 }
4953
4954 return 0;
4955 }
4956
4957 if (i386_record_lea_modrm_addr (irp, &addr))
4958 return -1;
4959
4960 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4961 return -1;
4962
4963 return 0;
4964 }
4965
4966 /* Record the effects of a push operation. Return -1 if something
4967 goes wrong, 0 otherwise. */
4968
4969 static int
4970 i386_record_push (struct i386_record_s *irp, int size)
4971 {
4972 ULONGEST addr;
4973
4974 if (record_full_arch_list_add_reg (irp->regcache,
4975 irp->regmap[X86_RECORD_RESP_REGNUM]))
4976 return -1;
4977 regcache_raw_read_unsigned (irp->regcache,
4978 irp->regmap[X86_RECORD_RESP_REGNUM],
4979 &addr);
4980 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4981 return -1;
4982
4983 return 0;
4984 }
4985
4986
4987 /* Defines contents to record. */
4988 #define I386_SAVE_FPU_REGS 0xfffd
4989 #define I386_SAVE_FPU_ENV 0xfffe
4990 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4991
4992 /* Record the values of the floating point registers which will be
4993 changed by the current instruction. Returns -1 if something is
4994 wrong, 0 otherwise. */
4995
4996 static int i386_record_floats (struct gdbarch *gdbarch,
4997 struct i386_record_s *ir,
4998 uint32_t iregnum)
4999 {
5000 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5001 int i;
5002
5003 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5004 happen. Currently we store st0-st7 registers, but we need not store all
5005 registers all the time, in future we use ftag register and record only
5006 those who are not marked as an empty. */
5007
5008 if (I386_SAVE_FPU_REGS == iregnum)
5009 {
5010 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5011 {
5012 if (record_full_arch_list_add_reg (ir->regcache, i))
5013 return -1;
5014 }
5015 }
5016 else if (I386_SAVE_FPU_ENV == iregnum)
5017 {
5018 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5019 {
5020 if (record_full_arch_list_add_reg (ir->regcache, i))
5021 return -1;
5022 }
5023 }
5024 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5025 {
5026 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5027 {
5028 if (record_full_arch_list_add_reg (ir->regcache, i))
5029 return -1;
5030 }
5031 }
5032 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5033 (iregnum <= I387_FOP_REGNUM (tdep)))
5034 {
5035 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5036 return -1;
5037 }
5038 else
5039 {
5040 /* Parameter error. */
5041 return -1;
5042 }
5043 if(I386_SAVE_FPU_ENV != iregnum)
5044 {
5045 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5046 {
5047 if (record_full_arch_list_add_reg (ir->regcache, i))
5048 return -1;
5049 }
5050 }
5051 return 0;
5052 }
5053
5054 /* Parse the current instruction, and record the values of the
5055 registers and memory that will be changed by the current
5056 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5057
5058 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5059 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5060
5061 int
5062 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5063 CORE_ADDR input_addr)
5064 {
5065 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5066 int prefixes = 0;
5067 int regnum = 0;
5068 uint32_t opcode;
5069 uint8_t opcode8;
5070 ULONGEST addr;
5071 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5072 struct i386_record_s ir;
5073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5074 uint8_t rex_w = -1;
5075 uint8_t rex_r = 0;
5076
5077 memset (&ir, 0, sizeof (struct i386_record_s));
5078 ir.regcache = regcache;
5079 ir.addr = input_addr;
5080 ir.orig_addr = input_addr;
5081 ir.aflag = 1;
5082 ir.dflag = 1;
5083 ir.override = -1;
5084 ir.popl_esp_hack = 0;
5085 ir.regmap = tdep->record_regmap;
5086 ir.gdbarch = gdbarch;
5087
5088 if (record_debug > 1)
5089 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5090 "addr = %s\n",
5091 paddress (gdbarch, ir.addr));
5092
5093 /* prefixes */
5094 while (1)
5095 {
5096 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5097 return -1;
5098 ir.addr++;
5099 switch (opcode8) /* Instruction prefixes */
5100 {
5101 case REPE_PREFIX_OPCODE:
5102 prefixes |= PREFIX_REPZ;
5103 break;
5104 case REPNE_PREFIX_OPCODE:
5105 prefixes |= PREFIX_REPNZ;
5106 break;
5107 case LOCK_PREFIX_OPCODE:
5108 prefixes |= PREFIX_LOCK;
5109 break;
5110 case CS_PREFIX_OPCODE:
5111 ir.override = X86_RECORD_CS_REGNUM;
5112 break;
5113 case SS_PREFIX_OPCODE:
5114 ir.override = X86_RECORD_SS_REGNUM;
5115 break;
5116 case DS_PREFIX_OPCODE:
5117 ir.override = X86_RECORD_DS_REGNUM;
5118 break;
5119 case ES_PREFIX_OPCODE:
5120 ir.override = X86_RECORD_ES_REGNUM;
5121 break;
5122 case FS_PREFIX_OPCODE:
5123 ir.override = X86_RECORD_FS_REGNUM;
5124 break;
5125 case GS_PREFIX_OPCODE:
5126 ir.override = X86_RECORD_GS_REGNUM;
5127 break;
5128 case DATA_PREFIX_OPCODE:
5129 prefixes |= PREFIX_DATA;
5130 break;
5131 case ADDR_PREFIX_OPCODE:
5132 prefixes |= PREFIX_ADDR;
5133 break;
5134 case 0x40: /* i386 inc %eax */
5135 case 0x41: /* i386 inc %ecx */
5136 case 0x42: /* i386 inc %edx */
5137 case 0x43: /* i386 inc %ebx */
5138 case 0x44: /* i386 inc %esp */
5139 case 0x45: /* i386 inc %ebp */
5140 case 0x46: /* i386 inc %esi */
5141 case 0x47: /* i386 inc %edi */
5142 case 0x48: /* i386 dec %eax */
5143 case 0x49: /* i386 dec %ecx */
5144 case 0x4a: /* i386 dec %edx */
5145 case 0x4b: /* i386 dec %ebx */
5146 case 0x4c: /* i386 dec %esp */
5147 case 0x4d: /* i386 dec %ebp */
5148 case 0x4e: /* i386 dec %esi */
5149 case 0x4f: /* i386 dec %edi */
5150 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5151 {
5152 /* REX */
5153 rex_w = (opcode8 >> 3) & 1;
5154 rex_r = (opcode8 & 0x4) << 1;
5155 ir.rex_x = (opcode8 & 0x2) << 2;
5156 ir.rex_b = (opcode8 & 0x1) << 3;
5157 }
5158 else /* 32 bit target */
5159 goto out_prefixes;
5160 break;
5161 default:
5162 goto out_prefixes;
5163 break;
5164 }
5165 }
5166 out_prefixes:
5167 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5168 {
5169 ir.dflag = 2;
5170 }
5171 else
5172 {
5173 if (prefixes & PREFIX_DATA)
5174 ir.dflag ^= 1;
5175 }
5176 if (prefixes & PREFIX_ADDR)
5177 ir.aflag ^= 1;
5178 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5179 ir.aflag = 2;
5180
5181 /* Now check op code. */
5182 opcode = (uint32_t) opcode8;
5183 reswitch:
5184 switch (opcode)
5185 {
5186 case 0x0f:
5187 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5188 return -1;
5189 ir.addr++;
5190 opcode = (uint32_t) opcode8 | 0x0f00;
5191 goto reswitch;
5192 break;
5193
5194 case 0x00: /* arith & logic */
5195 case 0x01:
5196 case 0x02:
5197 case 0x03:
5198 case 0x04:
5199 case 0x05:
5200 case 0x08:
5201 case 0x09:
5202 case 0x0a:
5203 case 0x0b:
5204 case 0x0c:
5205 case 0x0d:
5206 case 0x10:
5207 case 0x11:
5208 case 0x12:
5209 case 0x13:
5210 case 0x14:
5211 case 0x15:
5212 case 0x18:
5213 case 0x19:
5214 case 0x1a:
5215 case 0x1b:
5216 case 0x1c:
5217 case 0x1d:
5218 case 0x20:
5219 case 0x21:
5220 case 0x22:
5221 case 0x23:
5222 case 0x24:
5223 case 0x25:
5224 case 0x28:
5225 case 0x29:
5226 case 0x2a:
5227 case 0x2b:
5228 case 0x2c:
5229 case 0x2d:
5230 case 0x30:
5231 case 0x31:
5232 case 0x32:
5233 case 0x33:
5234 case 0x34:
5235 case 0x35:
5236 case 0x38:
5237 case 0x39:
5238 case 0x3a:
5239 case 0x3b:
5240 case 0x3c:
5241 case 0x3d:
5242 if (((opcode >> 3) & 7) != OP_CMPL)
5243 {
5244 if ((opcode & 1) == 0)
5245 ir.ot = OT_BYTE;
5246 else
5247 ir.ot = ir.dflag + OT_WORD;
5248
5249 switch ((opcode >> 1) & 3)
5250 {
5251 case 0: /* OP Ev, Gv */
5252 if (i386_record_modrm (&ir))
5253 return -1;
5254 if (ir.mod != 3)
5255 {
5256 if (i386_record_lea_modrm (&ir))
5257 return -1;
5258 }
5259 else
5260 {
5261 ir.rm |= ir.rex_b;
5262 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5263 ir.rm &= 0x3;
5264 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5265 }
5266 break;
5267 case 1: /* OP Gv, Ev */
5268 if (i386_record_modrm (&ir))
5269 return -1;
5270 ir.reg |= rex_r;
5271 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5272 ir.reg &= 0x3;
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5274 break;
5275 case 2: /* OP A, Iv */
5276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5277 break;
5278 }
5279 }
5280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5281 break;
5282
5283 case 0x80: /* GRP1 */
5284 case 0x81:
5285 case 0x82:
5286 case 0x83:
5287 if (i386_record_modrm (&ir))
5288 return -1;
5289
5290 if (ir.reg != OP_CMPL)
5291 {
5292 if ((opcode & 1) == 0)
5293 ir.ot = OT_BYTE;
5294 else
5295 ir.ot = ir.dflag + OT_WORD;
5296
5297 if (ir.mod != 3)
5298 {
5299 if (opcode == 0x83)
5300 ir.rip_offset = 1;
5301 else
5302 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5303 if (i386_record_lea_modrm (&ir))
5304 return -1;
5305 }
5306 else
5307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5308 }
5309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5310 break;
5311
5312 case 0x40: /* inc */
5313 case 0x41:
5314 case 0x42:
5315 case 0x43:
5316 case 0x44:
5317 case 0x45:
5318 case 0x46:
5319 case 0x47:
5320
5321 case 0x48: /* dec */
5322 case 0x49:
5323 case 0x4a:
5324 case 0x4b:
5325 case 0x4c:
5326 case 0x4d:
5327 case 0x4e:
5328 case 0x4f:
5329
5330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5332 break;
5333
5334 case 0xf6: /* GRP3 */
5335 case 0xf7:
5336 if ((opcode & 1) == 0)
5337 ir.ot = OT_BYTE;
5338 else
5339 ir.ot = ir.dflag + OT_WORD;
5340 if (i386_record_modrm (&ir))
5341 return -1;
5342
5343 if (ir.mod != 3 && ir.reg == 0)
5344 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5345
5346 switch (ir.reg)
5347 {
5348 case 0: /* test */
5349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5350 break;
5351 case 2: /* not */
5352 case 3: /* neg */
5353 if (ir.mod != 3)
5354 {
5355 if (i386_record_lea_modrm (&ir))
5356 return -1;
5357 }
5358 else
5359 {
5360 ir.rm |= ir.rex_b;
5361 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5362 ir.rm &= 0x3;
5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5364 }
5365 if (ir.reg == 3) /* neg */
5366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5367 break;
5368 case 4: /* mul */
5369 case 5: /* imul */
5370 case 6: /* div */
5371 case 7: /* idiv */
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5373 if (ir.ot != OT_BYTE)
5374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5376 break;
5377 default:
5378 ir.addr -= 2;
5379 opcode = opcode << 8 | ir.modrm;
5380 goto no_support;
5381 break;
5382 }
5383 break;
5384
5385 case 0xfe: /* GRP4 */
5386 case 0xff: /* GRP5 */
5387 if (i386_record_modrm (&ir))
5388 return -1;
5389 if (ir.reg >= 2 && opcode == 0xfe)
5390 {
5391 ir.addr -= 2;
5392 opcode = opcode << 8 | ir.modrm;
5393 goto no_support;
5394 }
5395 switch (ir.reg)
5396 {
5397 case 0: /* inc */
5398 case 1: /* dec */
5399 if ((opcode & 1) == 0)
5400 ir.ot = OT_BYTE;
5401 else
5402 ir.ot = ir.dflag + OT_WORD;
5403 if (ir.mod != 3)
5404 {
5405 if (i386_record_lea_modrm (&ir))
5406 return -1;
5407 }
5408 else
5409 {
5410 ir.rm |= ir.rex_b;
5411 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5412 ir.rm &= 0x3;
5413 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5414 }
5415 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5416 break;
5417 case 2: /* call */
5418 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5419 ir.dflag = 2;
5420 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5421 return -1;
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5423 break;
5424 case 3: /* lcall */
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5426 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5427 return -1;
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5429 break;
5430 case 4: /* jmp */
5431 case 5: /* ljmp */
5432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5433 break;
5434 case 6: /* push */
5435 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5436 ir.dflag = 2;
5437 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5438 return -1;
5439 break;
5440 default:
5441 ir.addr -= 2;
5442 opcode = opcode << 8 | ir.modrm;
5443 goto no_support;
5444 break;
5445 }
5446 break;
5447
5448 case 0x84: /* test */
5449 case 0x85:
5450 case 0xa8:
5451 case 0xa9:
5452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5453 break;
5454
5455 case 0x98: /* CWDE/CBW */
5456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5457 break;
5458
5459 case 0x99: /* CDQ/CWD */
5460 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5462 break;
5463
5464 case 0x0faf: /* imul */
5465 case 0x69:
5466 case 0x6b:
5467 ir.ot = ir.dflag + OT_WORD;
5468 if (i386_record_modrm (&ir))
5469 return -1;
5470 if (opcode == 0x69)
5471 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5472 else if (opcode == 0x6b)
5473 ir.rip_offset = 1;
5474 ir.reg |= rex_r;
5475 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5476 ir.reg &= 0x3;
5477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5478 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5479 break;
5480
5481 case 0x0fc0: /* xadd */
5482 case 0x0fc1:
5483 if ((opcode & 1) == 0)
5484 ir.ot = OT_BYTE;
5485 else
5486 ir.ot = ir.dflag + OT_WORD;
5487 if (i386_record_modrm (&ir))
5488 return -1;
5489 ir.reg |= rex_r;
5490 if (ir.mod == 3)
5491 {
5492 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5493 ir.reg &= 0x3;
5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5495 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5496 ir.rm &= 0x3;
5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5498 }
5499 else
5500 {
5501 if (i386_record_lea_modrm (&ir))
5502 return -1;
5503 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5504 ir.reg &= 0x3;
5505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5506 }
5507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5508 break;
5509
5510 case 0x0fb0: /* cmpxchg */
5511 case 0x0fb1:
5512 if ((opcode & 1) == 0)
5513 ir.ot = OT_BYTE;
5514 else
5515 ir.ot = ir.dflag + OT_WORD;
5516 if (i386_record_modrm (&ir))
5517 return -1;
5518 if (ir.mod == 3)
5519 {
5520 ir.reg |= rex_r;
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5522 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5523 ir.reg &= 0x3;
5524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5525 }
5526 else
5527 {
5528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5529 if (i386_record_lea_modrm (&ir))
5530 return -1;
5531 }
5532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5533 break;
5534
5535 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5536 if (i386_record_modrm (&ir))
5537 return -1;
5538 if (ir.mod == 3)
5539 {
5540 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5541 an extended opcode. rdrand has bits 110 (/6) and rdseed
5542 has bits 111 (/7). */
5543 if (ir.reg == 6 || ir.reg == 7)
5544 {
5545 /* The storage register is described by the 3 R/M bits, but the
5546 REX.B prefix may be used to give access to registers
5547 R8~R15. In this case ir.rex_b + R/M will give us the register
5548 in the range R8~R15.
5549
5550 REX.W may also be used to access 64-bit registers, but we
5551 already record entire registers and not just partial bits
5552 of them. */
5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5554 /* These instructions also set conditional bits. */
5555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5556 break;
5557 }
5558 else
5559 {
5560 /* We don't handle this particular instruction yet. */
5561 ir.addr -= 2;
5562 opcode = opcode << 8 | ir.modrm;
5563 goto no_support;
5564 }
5565 }
5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5568 if (i386_record_lea_modrm (&ir))
5569 return -1;
5570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5571 break;
5572
5573 case 0x50: /* push */
5574 case 0x51:
5575 case 0x52:
5576 case 0x53:
5577 case 0x54:
5578 case 0x55:
5579 case 0x56:
5580 case 0x57:
5581 case 0x68:
5582 case 0x6a:
5583 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5584 ir.dflag = 2;
5585 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5586 return -1;
5587 break;
5588
5589 case 0x06: /* push es */
5590 case 0x0e: /* push cs */
5591 case 0x16: /* push ss */
5592 case 0x1e: /* push ds */
5593 if (ir.regmap[X86_RECORD_R8_REGNUM])
5594 {
5595 ir.addr -= 1;
5596 goto no_support;
5597 }
5598 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5599 return -1;
5600 break;
5601
5602 case 0x0fa0: /* push fs */
5603 case 0x0fa8: /* push gs */
5604 if (ir.regmap[X86_RECORD_R8_REGNUM])
5605 {
5606 ir.addr -= 2;
5607 goto no_support;
5608 }
5609 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5610 return -1;
5611 break;
5612
5613 case 0x60: /* pusha */
5614 if (ir.regmap[X86_RECORD_R8_REGNUM])
5615 {
5616 ir.addr -= 1;
5617 goto no_support;
5618 }
5619 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5620 return -1;
5621 break;
5622
5623 case 0x58: /* pop */
5624 case 0x59:
5625 case 0x5a:
5626 case 0x5b:
5627 case 0x5c:
5628 case 0x5d:
5629 case 0x5e:
5630 case 0x5f:
5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5632 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5633 break;
5634
5635 case 0x61: /* popa */
5636 if (ir.regmap[X86_RECORD_R8_REGNUM])
5637 {
5638 ir.addr -= 1;
5639 goto no_support;
5640 }
5641 for (regnum = X86_RECORD_REAX_REGNUM;
5642 regnum <= X86_RECORD_REDI_REGNUM;
5643 regnum++)
5644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5645 break;
5646
5647 case 0x8f: /* pop */
5648 if (ir.regmap[X86_RECORD_R8_REGNUM])
5649 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5650 else
5651 ir.ot = ir.dflag + OT_WORD;
5652 if (i386_record_modrm (&ir))
5653 return -1;
5654 if (ir.mod == 3)
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5656 else
5657 {
5658 ir.popl_esp_hack = 1 << ir.ot;
5659 if (i386_record_lea_modrm (&ir))
5660 return -1;
5661 }
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5663 break;
5664
5665 case 0xc8: /* enter */
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5667 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5668 ir.dflag = 2;
5669 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5670 return -1;
5671 break;
5672
5673 case 0xc9: /* leave */
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5676 break;
5677
5678 case 0x07: /* pop es */
5679 if (ir.regmap[X86_RECORD_R8_REGNUM])
5680 {
5681 ir.addr -= 1;
5682 goto no_support;
5683 }
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5687 break;
5688
5689 case 0x17: /* pop ss */
5690 if (ir.regmap[X86_RECORD_R8_REGNUM])
5691 {
5692 ir.addr -= 1;
5693 goto no_support;
5694 }
5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5698 break;
5699
5700 case 0x1f: /* pop ds */
5701 if (ir.regmap[X86_RECORD_R8_REGNUM])
5702 {
5703 ir.addr -= 1;
5704 goto no_support;
5705 }
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5709 break;
5710
5711 case 0x0fa1: /* pop fs */
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5715 break;
5716
5717 case 0x0fa9: /* pop gs */
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5721 break;
5722
5723 case 0x88: /* mov */
5724 case 0x89:
5725 case 0xc6:
5726 case 0xc7:
5727 if ((opcode & 1) == 0)
5728 ir.ot = OT_BYTE;
5729 else
5730 ir.ot = ir.dflag + OT_WORD;
5731
5732 if (i386_record_modrm (&ir))
5733 return -1;
5734
5735 if (ir.mod != 3)
5736 {
5737 if (opcode == 0xc6 || opcode == 0xc7)
5738 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5739 if (i386_record_lea_modrm (&ir))
5740 return -1;
5741 }
5742 else
5743 {
5744 if (opcode == 0xc6 || opcode == 0xc7)
5745 ir.rm |= ir.rex_b;
5746 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5747 ir.rm &= 0x3;
5748 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5749 }
5750 break;
5751
5752 case 0x8a: /* mov */
5753 case 0x8b:
5754 if ((opcode & 1) == 0)
5755 ir.ot = OT_BYTE;
5756 else
5757 ir.ot = ir.dflag + OT_WORD;
5758 if (i386_record_modrm (&ir))
5759 return -1;
5760 ir.reg |= rex_r;
5761 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5762 ir.reg &= 0x3;
5763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5764 break;
5765
5766 case 0x8c: /* mov seg */
5767 if (i386_record_modrm (&ir))
5768 return -1;
5769 if (ir.reg > 5)
5770 {
5771 ir.addr -= 2;
5772 opcode = opcode << 8 | ir.modrm;
5773 goto no_support;
5774 }
5775
5776 if (ir.mod == 3)
5777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5778 else
5779 {
5780 ir.ot = OT_WORD;
5781 if (i386_record_lea_modrm (&ir))
5782 return -1;
5783 }
5784 break;
5785
5786 case 0x8e: /* mov seg */
5787 if (i386_record_modrm (&ir))
5788 return -1;
5789 switch (ir.reg)
5790 {
5791 case 0:
5792 regnum = X86_RECORD_ES_REGNUM;
5793 break;
5794 case 2:
5795 regnum = X86_RECORD_SS_REGNUM;
5796 break;
5797 case 3:
5798 regnum = X86_RECORD_DS_REGNUM;
5799 break;
5800 case 4:
5801 regnum = X86_RECORD_FS_REGNUM;
5802 break;
5803 case 5:
5804 regnum = X86_RECORD_GS_REGNUM;
5805 break;
5806 default:
5807 ir.addr -= 2;
5808 opcode = opcode << 8 | ir.modrm;
5809 goto no_support;
5810 break;
5811 }
5812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5814 break;
5815
5816 case 0x0fb6: /* movzbS */
5817 case 0x0fb7: /* movzwS */
5818 case 0x0fbe: /* movsbS */
5819 case 0x0fbf: /* movswS */
5820 if (i386_record_modrm (&ir))
5821 return -1;
5822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5823 break;
5824
5825 case 0x8d: /* lea */
5826 if (i386_record_modrm (&ir))
5827 return -1;
5828 if (ir.mod == 3)
5829 {
5830 ir.addr -= 2;
5831 opcode = opcode << 8 | ir.modrm;
5832 goto no_support;
5833 }
5834 ir.ot = ir.dflag;
5835 ir.reg |= rex_r;
5836 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5837 ir.reg &= 0x3;
5838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5839 break;
5840
5841 case 0xa0: /* mov EAX */
5842 case 0xa1:
5843
5844 case 0xd7: /* xlat */
5845 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5846 break;
5847
5848 case 0xa2: /* mov EAX */
5849 case 0xa3:
5850 if (ir.override >= 0)
5851 {
5852 if (record_full_memory_query)
5853 {
5854 if (yquery (_("\
5855 Process record ignores the memory change of instruction at address %s\n\
5856 because it can't get the value of the segment register.\n\
5857 Do you want to stop the program?"),
5858 paddress (gdbarch, ir.orig_addr)))
5859 return -1;
5860 }
5861 }
5862 else
5863 {
5864 if ((opcode & 1) == 0)
5865 ir.ot = OT_BYTE;
5866 else
5867 ir.ot = ir.dflag + OT_WORD;
5868 if (ir.aflag == 2)
5869 {
5870 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5871 return -1;
5872 ir.addr += 8;
5873 addr = extract_unsigned_integer (buf, 8, byte_order);
5874 }
5875 else if (ir.aflag)
5876 {
5877 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5878 return -1;
5879 ir.addr += 4;
5880 addr = extract_unsigned_integer (buf, 4, byte_order);
5881 }
5882 else
5883 {
5884 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5885 return -1;
5886 ir.addr += 2;
5887 addr = extract_unsigned_integer (buf, 2, byte_order);
5888 }
5889 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5890 return -1;
5891 }
5892 break;
5893
5894 case 0xb0: /* mov R, Ib */
5895 case 0xb1:
5896 case 0xb2:
5897 case 0xb3:
5898 case 0xb4:
5899 case 0xb5:
5900 case 0xb6:
5901 case 0xb7:
5902 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5903 ? ((opcode & 0x7) | ir.rex_b)
5904 : ((opcode & 0x7) & 0x3));
5905 break;
5906
5907 case 0xb8: /* mov R, Iv */
5908 case 0xb9:
5909 case 0xba:
5910 case 0xbb:
5911 case 0xbc:
5912 case 0xbd:
5913 case 0xbe:
5914 case 0xbf:
5915 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5916 break;
5917
5918 case 0x91: /* xchg R, EAX */
5919 case 0x92:
5920 case 0x93:
5921 case 0x94:
5922 case 0x95:
5923 case 0x96:
5924 case 0x97:
5925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5926 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5927 break;
5928
5929 case 0x86: /* xchg Ev, Gv */
5930 case 0x87:
5931 if ((opcode & 1) == 0)
5932 ir.ot = OT_BYTE;
5933 else
5934 ir.ot = ir.dflag + OT_WORD;
5935 if (i386_record_modrm (&ir))
5936 return -1;
5937 if (ir.mod == 3)
5938 {
5939 ir.rm |= ir.rex_b;
5940 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5941 ir.rm &= 0x3;
5942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5943 }
5944 else
5945 {
5946 if (i386_record_lea_modrm (&ir))
5947 return -1;
5948 }
5949 ir.reg |= rex_r;
5950 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5951 ir.reg &= 0x3;
5952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5953 break;
5954
5955 case 0xc4: /* les Gv */
5956 case 0xc5: /* lds Gv */
5957 if (ir.regmap[X86_RECORD_R8_REGNUM])
5958 {
5959 ir.addr -= 1;
5960 goto no_support;
5961 }
5962 /* FALLTHROUGH */
5963 case 0x0fb2: /* lss Gv */
5964 case 0x0fb4: /* lfs Gv */
5965 case 0x0fb5: /* lgs Gv */
5966 if (i386_record_modrm (&ir))
5967 return -1;
5968 if (ir.mod == 3)
5969 {
5970 if (opcode > 0xff)
5971 ir.addr -= 3;
5972 else
5973 ir.addr -= 2;
5974 opcode = opcode << 8 | ir.modrm;
5975 goto no_support;
5976 }
5977 switch (opcode)
5978 {
5979 case 0xc4: /* les Gv */
5980 regnum = X86_RECORD_ES_REGNUM;
5981 break;
5982 case 0xc5: /* lds Gv */
5983 regnum = X86_RECORD_DS_REGNUM;
5984 break;
5985 case 0x0fb2: /* lss Gv */
5986 regnum = X86_RECORD_SS_REGNUM;
5987 break;
5988 case 0x0fb4: /* lfs Gv */
5989 regnum = X86_RECORD_FS_REGNUM;
5990 break;
5991 case 0x0fb5: /* lgs Gv */
5992 regnum = X86_RECORD_GS_REGNUM;
5993 break;
5994 }
5995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5996 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5997 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5998 break;
5999
6000 case 0xc0: /* shifts */
6001 case 0xc1:
6002 case 0xd0:
6003 case 0xd1:
6004 case 0xd2:
6005 case 0xd3:
6006 if ((opcode & 1) == 0)
6007 ir.ot = OT_BYTE;
6008 else
6009 ir.ot = ir.dflag + OT_WORD;
6010 if (i386_record_modrm (&ir))
6011 return -1;
6012 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6013 {
6014 if (i386_record_lea_modrm (&ir))
6015 return -1;
6016 }
6017 else
6018 {
6019 ir.rm |= ir.rex_b;
6020 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6021 ir.rm &= 0x3;
6022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6023 }
6024 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6025 break;
6026
6027 case 0x0fa4:
6028 case 0x0fa5:
6029 case 0x0fac:
6030 case 0x0fad:
6031 if (i386_record_modrm (&ir))
6032 return -1;
6033 if (ir.mod == 3)
6034 {
6035 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6036 return -1;
6037 }
6038 else
6039 {
6040 if (i386_record_lea_modrm (&ir))
6041 return -1;
6042 }
6043 break;
6044
6045 case 0xd8: /* Floats. */
6046 case 0xd9:
6047 case 0xda:
6048 case 0xdb:
6049 case 0xdc:
6050 case 0xdd:
6051 case 0xde:
6052 case 0xdf:
6053 if (i386_record_modrm (&ir))
6054 return -1;
6055 ir.reg |= ((opcode & 7) << 3);
6056 if (ir.mod != 3)
6057 {
6058 /* Memory. */
6059 uint64_t addr64;
6060
6061 if (i386_record_lea_modrm_addr (&ir, &addr64))
6062 return -1;
6063 switch (ir.reg)
6064 {
6065 case 0x02:
6066 case 0x12:
6067 case 0x22:
6068 case 0x32:
6069 /* For fcom, ficom nothing to do. */
6070 break;
6071 case 0x03:
6072 case 0x13:
6073 case 0x23:
6074 case 0x33:
6075 /* For fcomp, ficomp pop FPU stack, store all. */
6076 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6077 return -1;
6078 break;
6079 case 0x00:
6080 case 0x01:
6081 case 0x04:
6082 case 0x05:
6083 case 0x06:
6084 case 0x07:
6085 case 0x10:
6086 case 0x11:
6087 case 0x14:
6088 case 0x15:
6089 case 0x16:
6090 case 0x17:
6091 case 0x20:
6092 case 0x21:
6093 case 0x24:
6094 case 0x25:
6095 case 0x26:
6096 case 0x27:
6097 case 0x30:
6098 case 0x31:
6099 case 0x34:
6100 case 0x35:
6101 case 0x36:
6102 case 0x37:
6103 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6104 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6105 of code, always affects st(0) register. */
6106 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6107 return -1;
6108 break;
6109 case 0x08:
6110 case 0x0a:
6111 case 0x0b:
6112 case 0x18:
6113 case 0x19:
6114 case 0x1a:
6115 case 0x1b:
6116 case 0x1d:
6117 case 0x28:
6118 case 0x29:
6119 case 0x2a:
6120 case 0x2b:
6121 case 0x38:
6122 case 0x39:
6123 case 0x3a:
6124 case 0x3b:
6125 case 0x3c:
6126 case 0x3d:
6127 switch (ir.reg & 7)
6128 {
6129 case 0:
6130 /* Handling fld, fild. */
6131 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6132 return -1;
6133 break;
6134 case 1:
6135 switch (ir.reg >> 4)
6136 {
6137 case 0:
6138 if (record_full_arch_list_add_mem (addr64, 4))
6139 return -1;
6140 break;
6141 case 2:
6142 if (record_full_arch_list_add_mem (addr64, 8))
6143 return -1;
6144 break;
6145 case 3:
6146 break;
6147 default:
6148 if (record_full_arch_list_add_mem (addr64, 2))
6149 return -1;
6150 break;
6151 }
6152 break;
6153 default:
6154 switch (ir.reg >> 4)
6155 {
6156 case 0:
6157 if (record_full_arch_list_add_mem (addr64, 4))
6158 return -1;
6159 if (3 == (ir.reg & 7))
6160 {
6161 /* For fstp m32fp. */
6162 if (i386_record_floats (gdbarch, &ir,
6163 I386_SAVE_FPU_REGS))
6164 return -1;
6165 }
6166 break;
6167 case 1:
6168 if (record_full_arch_list_add_mem (addr64, 4))
6169 return -1;
6170 if ((3 == (ir.reg & 7))
6171 || (5 == (ir.reg & 7))
6172 || (7 == (ir.reg & 7)))
6173 {
6174 /* For fstp insn. */
6175 if (i386_record_floats (gdbarch, &ir,
6176 I386_SAVE_FPU_REGS))
6177 return -1;
6178 }
6179 break;
6180 case 2:
6181 if (record_full_arch_list_add_mem (addr64, 8))
6182 return -1;
6183 if (3 == (ir.reg & 7))
6184 {
6185 /* For fstp m64fp. */
6186 if (i386_record_floats (gdbarch, &ir,
6187 I386_SAVE_FPU_REGS))
6188 return -1;
6189 }
6190 break;
6191 case 3:
6192 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6193 {
6194 /* For fistp, fbld, fild, fbstp. */
6195 if (i386_record_floats (gdbarch, &ir,
6196 I386_SAVE_FPU_REGS))
6197 return -1;
6198 }
6199 /* Fall through */
6200 default:
6201 if (record_full_arch_list_add_mem (addr64, 2))
6202 return -1;
6203 break;
6204 }
6205 break;
6206 }
6207 break;
6208 case 0x0c:
6209 /* Insn fldenv. */
6210 if (i386_record_floats (gdbarch, &ir,
6211 I386_SAVE_FPU_ENV_REG_STACK))
6212 return -1;
6213 break;
6214 case 0x0d:
6215 /* Insn fldcw. */
6216 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6217 return -1;
6218 break;
6219 case 0x2c:
6220 /* Insn frstor. */
6221 if (i386_record_floats (gdbarch, &ir,
6222 I386_SAVE_FPU_ENV_REG_STACK))
6223 return -1;
6224 break;
6225 case 0x0e:
6226 if (ir.dflag)
6227 {
6228 if (record_full_arch_list_add_mem (addr64, 28))
6229 return -1;
6230 }
6231 else
6232 {
6233 if (record_full_arch_list_add_mem (addr64, 14))
6234 return -1;
6235 }
6236 break;
6237 case 0x0f:
6238 case 0x2f:
6239 if (record_full_arch_list_add_mem (addr64, 2))
6240 return -1;
6241 /* Insn fstp, fbstp. */
6242 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6243 return -1;
6244 break;
6245 case 0x1f:
6246 case 0x3e:
6247 if (record_full_arch_list_add_mem (addr64, 10))
6248 return -1;
6249 break;
6250 case 0x2e:
6251 if (ir.dflag)
6252 {
6253 if (record_full_arch_list_add_mem (addr64, 28))
6254 return -1;
6255 addr64 += 28;
6256 }
6257 else
6258 {
6259 if (record_full_arch_list_add_mem (addr64, 14))
6260 return -1;
6261 addr64 += 14;
6262 }
6263 if (record_full_arch_list_add_mem (addr64, 80))
6264 return -1;
6265 /* Insn fsave. */
6266 if (i386_record_floats (gdbarch, &ir,
6267 I386_SAVE_FPU_ENV_REG_STACK))
6268 return -1;
6269 break;
6270 case 0x3f:
6271 if (record_full_arch_list_add_mem (addr64, 8))
6272 return -1;
6273 /* Insn fistp. */
6274 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6275 return -1;
6276 break;
6277 default:
6278 ir.addr -= 2;
6279 opcode = opcode << 8 | ir.modrm;
6280 goto no_support;
6281 break;
6282 }
6283 }
6284 /* Opcode is an extension of modR/M byte. */
6285 else
6286 {
6287 switch (opcode)
6288 {
6289 case 0xd8:
6290 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6291 return -1;
6292 break;
6293 case 0xd9:
6294 if (0x0c == (ir.modrm >> 4))
6295 {
6296 if ((ir.modrm & 0x0f) <= 7)
6297 {
6298 if (i386_record_floats (gdbarch, &ir,
6299 I386_SAVE_FPU_REGS))
6300 return -1;
6301 }
6302 else
6303 {
6304 if (i386_record_floats (gdbarch, &ir,
6305 I387_ST0_REGNUM (tdep)))
6306 return -1;
6307 /* If only st(0) is changing, then we have already
6308 recorded. */
6309 if ((ir.modrm & 0x0f) - 0x08)
6310 {
6311 if (i386_record_floats (gdbarch, &ir,
6312 I387_ST0_REGNUM (tdep) +
6313 ((ir.modrm & 0x0f) - 0x08)))
6314 return -1;
6315 }
6316 }
6317 }
6318 else
6319 {
6320 switch (ir.modrm)
6321 {
6322 case 0xe0:
6323 case 0xe1:
6324 case 0xf0:
6325 case 0xf5:
6326 case 0xf8:
6327 case 0xfa:
6328 case 0xfc:
6329 case 0xfe:
6330 case 0xff:
6331 if (i386_record_floats (gdbarch, &ir,
6332 I387_ST0_REGNUM (tdep)))
6333 return -1;
6334 break;
6335 case 0xf1:
6336 case 0xf2:
6337 case 0xf3:
6338 case 0xf4:
6339 case 0xf6:
6340 case 0xf7:
6341 case 0xe8:
6342 case 0xe9:
6343 case 0xea:
6344 case 0xeb:
6345 case 0xec:
6346 case 0xed:
6347 case 0xee:
6348 case 0xf9:
6349 case 0xfb:
6350 if (i386_record_floats (gdbarch, &ir,
6351 I386_SAVE_FPU_REGS))
6352 return -1;
6353 break;
6354 case 0xfd:
6355 if (i386_record_floats (gdbarch, &ir,
6356 I387_ST0_REGNUM (tdep)))
6357 return -1;
6358 if (i386_record_floats (gdbarch, &ir,
6359 I387_ST0_REGNUM (tdep) + 1))
6360 return -1;
6361 break;
6362 }
6363 }
6364 break;
6365 case 0xda:
6366 if (0xe9 == ir.modrm)
6367 {
6368 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6369 return -1;
6370 }
6371 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6372 {
6373 if (i386_record_floats (gdbarch, &ir,
6374 I387_ST0_REGNUM (tdep)))
6375 return -1;
6376 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6377 {
6378 if (i386_record_floats (gdbarch, &ir,
6379 I387_ST0_REGNUM (tdep) +
6380 (ir.modrm & 0x0f)))
6381 return -1;
6382 }
6383 else if ((ir.modrm & 0x0f) - 0x08)
6384 {
6385 if (i386_record_floats (gdbarch, &ir,
6386 I387_ST0_REGNUM (tdep) +
6387 ((ir.modrm & 0x0f) - 0x08)))
6388 return -1;
6389 }
6390 }
6391 break;
6392 case 0xdb:
6393 if (0xe3 == ir.modrm)
6394 {
6395 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6396 return -1;
6397 }
6398 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6399 {
6400 if (i386_record_floats (gdbarch, &ir,
6401 I387_ST0_REGNUM (tdep)))
6402 return -1;
6403 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6404 {
6405 if (i386_record_floats (gdbarch, &ir,
6406 I387_ST0_REGNUM (tdep) +
6407 (ir.modrm & 0x0f)))
6408 return -1;
6409 }
6410 else if ((ir.modrm & 0x0f) - 0x08)
6411 {
6412 if (i386_record_floats (gdbarch, &ir,
6413 I387_ST0_REGNUM (tdep) +
6414 ((ir.modrm & 0x0f) - 0x08)))
6415 return -1;
6416 }
6417 }
6418 break;
6419 case 0xdc:
6420 if ((0x0c == ir.modrm >> 4)
6421 || (0x0d == ir.modrm >> 4)
6422 || (0x0f == ir.modrm >> 4))
6423 {
6424 if ((ir.modrm & 0x0f) <= 7)
6425 {
6426 if (i386_record_floats (gdbarch, &ir,
6427 I387_ST0_REGNUM (tdep) +
6428 (ir.modrm & 0x0f)))
6429 return -1;
6430 }
6431 else
6432 {
6433 if (i386_record_floats (gdbarch, &ir,
6434 I387_ST0_REGNUM (tdep) +
6435 ((ir.modrm & 0x0f) - 0x08)))
6436 return -1;
6437 }
6438 }
6439 break;
6440 case 0xdd:
6441 if (0x0c == ir.modrm >> 4)
6442 {
6443 if (i386_record_floats (gdbarch, &ir,
6444 I387_FTAG_REGNUM (tdep)))
6445 return -1;
6446 }
6447 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6448 {
6449 if ((ir.modrm & 0x0f) <= 7)
6450 {
6451 if (i386_record_floats (gdbarch, &ir,
6452 I387_ST0_REGNUM (tdep) +
6453 (ir.modrm & 0x0f)))
6454 return -1;
6455 }
6456 else
6457 {
6458 if (i386_record_floats (gdbarch, &ir,
6459 I386_SAVE_FPU_REGS))
6460 return -1;
6461 }
6462 }
6463 break;
6464 case 0xde:
6465 if ((0x0c == ir.modrm >> 4)
6466 || (0x0e == ir.modrm >> 4)
6467 || (0x0f == ir.modrm >> 4)
6468 || (0xd9 == ir.modrm))
6469 {
6470 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6471 return -1;
6472 }
6473 break;
6474 case 0xdf:
6475 if (0xe0 == ir.modrm)
6476 {
6477 if (record_full_arch_list_add_reg (ir.regcache,
6478 I386_EAX_REGNUM))
6479 return -1;
6480 }
6481 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6482 {
6483 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6484 return -1;
6485 }
6486 break;
6487 }
6488 }
6489 break;
6490 /* string ops */
6491 case 0xa4: /* movsS */
6492 case 0xa5:
6493 case 0xaa: /* stosS */
6494 case 0xab:
6495 case 0x6c: /* insS */
6496 case 0x6d:
6497 regcache_raw_read_unsigned (ir.regcache,
6498 ir.regmap[X86_RECORD_RECX_REGNUM],
6499 &addr);
6500 if (addr)
6501 {
6502 ULONGEST es, ds;
6503
6504 if ((opcode & 1) == 0)
6505 ir.ot = OT_BYTE;
6506 else
6507 ir.ot = ir.dflag + OT_WORD;
6508 regcache_raw_read_unsigned (ir.regcache,
6509 ir.regmap[X86_RECORD_REDI_REGNUM],
6510 &addr);
6511
6512 regcache_raw_read_unsigned (ir.regcache,
6513 ir.regmap[X86_RECORD_ES_REGNUM],
6514 &es);
6515 regcache_raw_read_unsigned (ir.regcache,
6516 ir.regmap[X86_RECORD_DS_REGNUM],
6517 &ds);
6518 if (ir.aflag && (es != ds))
6519 {
6520 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6521 if (record_full_memory_query)
6522 {
6523 if (yquery (_("\
6524 Process record ignores the memory change of instruction at address %s\n\
6525 because it can't get the value of the segment register.\n\
6526 Do you want to stop the program?"),
6527 paddress (gdbarch, ir.orig_addr)))
6528 return -1;
6529 }
6530 }
6531 else
6532 {
6533 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6534 return -1;
6535 }
6536
6537 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6539 if (opcode == 0xa4 || opcode == 0xa5)
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6543 }
6544 break;
6545
6546 case 0xa6: /* cmpsS */
6547 case 0xa7:
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6550 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6553 break;
6554
6555 case 0xac: /* lodsS */
6556 case 0xad:
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6559 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6562 break;
6563
6564 case 0xae: /* scasS */
6565 case 0xaf:
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6567 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6570 break;
6571
6572 case 0x6e: /* outsS */
6573 case 0x6f:
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6575 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6577 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6578 break;
6579
6580 case 0xe4: /* port I/O */
6581 case 0xe5:
6582 case 0xec:
6583 case 0xed:
6584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6585 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6586 break;
6587
6588 case 0xe6:
6589 case 0xe7:
6590 case 0xee:
6591 case 0xef:
6592 break;
6593
6594 /* control */
6595 case 0xc2: /* ret im */
6596 case 0xc3: /* ret */
6597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6599 break;
6600
6601 case 0xca: /* lret im */
6602 case 0xcb: /* lret */
6603 case 0xcf: /* iret */
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6607 break;
6608
6609 case 0xe8: /* call im */
6610 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6611 ir.dflag = 2;
6612 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6613 return -1;
6614 break;
6615
6616 case 0x9a: /* lcall im */
6617 if (ir.regmap[X86_RECORD_R8_REGNUM])
6618 {
6619 ir.addr -= 1;
6620 goto no_support;
6621 }
6622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6623 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6624 return -1;
6625 break;
6626
6627 case 0xe9: /* jmp im */
6628 case 0xea: /* ljmp im */
6629 case 0xeb: /* jmp Jb */
6630 case 0x70: /* jcc Jb */
6631 case 0x71:
6632 case 0x72:
6633 case 0x73:
6634 case 0x74:
6635 case 0x75:
6636 case 0x76:
6637 case 0x77:
6638 case 0x78:
6639 case 0x79:
6640 case 0x7a:
6641 case 0x7b:
6642 case 0x7c:
6643 case 0x7d:
6644 case 0x7e:
6645 case 0x7f:
6646 case 0x0f80: /* jcc Jv */
6647 case 0x0f81:
6648 case 0x0f82:
6649 case 0x0f83:
6650 case 0x0f84:
6651 case 0x0f85:
6652 case 0x0f86:
6653 case 0x0f87:
6654 case 0x0f88:
6655 case 0x0f89:
6656 case 0x0f8a:
6657 case 0x0f8b:
6658 case 0x0f8c:
6659 case 0x0f8d:
6660 case 0x0f8e:
6661 case 0x0f8f:
6662 break;
6663
6664 case 0x0f90: /* setcc Gv */
6665 case 0x0f91:
6666 case 0x0f92:
6667 case 0x0f93:
6668 case 0x0f94:
6669 case 0x0f95:
6670 case 0x0f96:
6671 case 0x0f97:
6672 case 0x0f98:
6673 case 0x0f99:
6674 case 0x0f9a:
6675 case 0x0f9b:
6676 case 0x0f9c:
6677 case 0x0f9d:
6678 case 0x0f9e:
6679 case 0x0f9f:
6680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6681 ir.ot = OT_BYTE;
6682 if (i386_record_modrm (&ir))
6683 return -1;
6684 if (ir.mod == 3)
6685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6686 : (ir.rm & 0x3));
6687 else
6688 {
6689 if (i386_record_lea_modrm (&ir))
6690 return -1;
6691 }
6692 break;
6693
6694 case 0x0f40: /* cmov Gv, Ev */
6695 case 0x0f41:
6696 case 0x0f42:
6697 case 0x0f43:
6698 case 0x0f44:
6699 case 0x0f45:
6700 case 0x0f46:
6701 case 0x0f47:
6702 case 0x0f48:
6703 case 0x0f49:
6704 case 0x0f4a:
6705 case 0x0f4b:
6706 case 0x0f4c:
6707 case 0x0f4d:
6708 case 0x0f4e:
6709 case 0x0f4f:
6710 if (i386_record_modrm (&ir))
6711 return -1;
6712 ir.reg |= rex_r;
6713 if (ir.dflag == OT_BYTE)
6714 ir.reg &= 0x3;
6715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6716 break;
6717
6718 /* flags */
6719 case 0x9c: /* pushf */
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6721 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6722 ir.dflag = 2;
6723 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6724 return -1;
6725 break;
6726
6727 case 0x9d: /* popf */
6728 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6729 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6730 break;
6731
6732 case 0x9e: /* sahf */
6733 if (ir.regmap[X86_RECORD_R8_REGNUM])
6734 {
6735 ir.addr -= 1;
6736 goto no_support;
6737 }
6738 /* FALLTHROUGH */
6739 case 0xf5: /* cmc */
6740 case 0xf8: /* clc */
6741 case 0xf9: /* stc */
6742 case 0xfc: /* cld */
6743 case 0xfd: /* std */
6744 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6745 break;
6746
6747 case 0x9f: /* lahf */
6748 if (ir.regmap[X86_RECORD_R8_REGNUM])
6749 {
6750 ir.addr -= 1;
6751 goto no_support;
6752 }
6753 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6754 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6755 break;
6756
6757 /* bit operations */
6758 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6759 ir.ot = ir.dflag + OT_WORD;
6760 if (i386_record_modrm (&ir))
6761 return -1;
6762 if (ir.reg < 4)
6763 {
6764 ir.addr -= 2;
6765 opcode = opcode << 8 | ir.modrm;
6766 goto no_support;
6767 }
6768 if (ir.reg != 4)
6769 {
6770 if (ir.mod == 3)
6771 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6772 else
6773 {
6774 if (i386_record_lea_modrm (&ir))
6775 return -1;
6776 }
6777 }
6778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6779 break;
6780
6781 case 0x0fa3: /* bt Gv, Ev */
6782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6783 break;
6784
6785 case 0x0fab: /* bts */
6786 case 0x0fb3: /* btr */
6787 case 0x0fbb: /* btc */
6788 ir.ot = ir.dflag + OT_WORD;
6789 if (i386_record_modrm (&ir))
6790 return -1;
6791 if (ir.mod == 3)
6792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6793 else
6794 {
6795 uint64_t addr64;
6796 if (i386_record_lea_modrm_addr (&ir, &addr64))
6797 return -1;
6798 regcache_raw_read_unsigned (ir.regcache,
6799 ir.regmap[ir.reg | rex_r],
6800 &addr);
6801 switch (ir.dflag)
6802 {
6803 case 0:
6804 addr64 += ((int16_t) addr >> 4) << 4;
6805 break;
6806 case 1:
6807 addr64 += ((int32_t) addr >> 5) << 5;
6808 break;
6809 case 2:
6810 addr64 += ((int64_t) addr >> 6) << 6;
6811 break;
6812 }
6813 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6814 return -1;
6815 if (i386_record_lea_modrm (&ir))
6816 return -1;
6817 }
6818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6819 break;
6820
6821 case 0x0fbc: /* bsf */
6822 case 0x0fbd: /* bsr */
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6824 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6825 break;
6826
6827 /* bcd */
6828 case 0x27: /* daa */
6829 case 0x2f: /* das */
6830 case 0x37: /* aaa */
6831 case 0x3f: /* aas */
6832 case 0xd4: /* aam */
6833 case 0xd5: /* aad */
6834 if (ir.regmap[X86_RECORD_R8_REGNUM])
6835 {
6836 ir.addr -= 1;
6837 goto no_support;
6838 }
6839 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6840 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6841 break;
6842
6843 /* misc */
6844 case 0x90: /* nop */
6845 if (prefixes & PREFIX_LOCK)
6846 {
6847 ir.addr -= 1;
6848 goto no_support;
6849 }
6850 break;
6851
6852 case 0x9b: /* fwait */
6853 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6854 return -1;
6855 opcode = (uint32_t) opcode8;
6856 ir.addr++;
6857 goto reswitch;
6858 break;
6859
6860 /* XXX */
6861 case 0xcc: /* int3 */
6862 printf_unfiltered (_("Process record does not support instruction "
6863 "int3.\n"));
6864 ir.addr -= 1;
6865 goto no_support;
6866 break;
6867
6868 /* XXX */
6869 case 0xcd: /* int */
6870 {
6871 int ret;
6872 uint8_t interrupt;
6873 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6874 return -1;
6875 ir.addr++;
6876 if (interrupt != 0x80
6877 || tdep->i386_intx80_record == NULL)
6878 {
6879 printf_unfiltered (_("Process record does not support "
6880 "instruction int 0x%02x.\n"),
6881 interrupt);
6882 ir.addr -= 2;
6883 goto no_support;
6884 }
6885 ret = tdep->i386_intx80_record (ir.regcache);
6886 if (ret)
6887 return ret;
6888 }
6889 break;
6890
6891 /* XXX */
6892 case 0xce: /* into */
6893 printf_unfiltered (_("Process record does not support "
6894 "instruction into.\n"));
6895 ir.addr -= 1;
6896 goto no_support;
6897 break;
6898
6899 case 0xfa: /* cli */
6900 case 0xfb: /* sti */
6901 break;
6902
6903 case 0x62: /* bound */
6904 printf_unfiltered (_("Process record does not support "
6905 "instruction bound.\n"));
6906 ir.addr -= 1;
6907 goto no_support;
6908 break;
6909
6910 case 0x0fc8: /* bswap reg */
6911 case 0x0fc9:
6912 case 0x0fca:
6913 case 0x0fcb:
6914 case 0x0fcc:
6915 case 0x0fcd:
6916 case 0x0fce:
6917 case 0x0fcf:
6918 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6919 break;
6920
6921 case 0xd6: /* salc */
6922 if (ir.regmap[X86_RECORD_R8_REGNUM])
6923 {
6924 ir.addr -= 1;
6925 goto no_support;
6926 }
6927 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6928 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6929 break;
6930
6931 case 0xe0: /* loopnz */
6932 case 0xe1: /* loopz */
6933 case 0xe2: /* loop */
6934 case 0xe3: /* jecxz */
6935 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6936 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6937 break;
6938
6939 case 0x0f30: /* wrmsr */
6940 printf_unfiltered (_("Process record does not support "
6941 "instruction wrmsr.\n"));
6942 ir.addr -= 2;
6943 goto no_support;
6944 break;
6945
6946 case 0x0f32: /* rdmsr */
6947 printf_unfiltered (_("Process record does not support "
6948 "instruction rdmsr.\n"));
6949 ir.addr -= 2;
6950 goto no_support;
6951 break;
6952
6953 case 0x0f31: /* rdtsc */
6954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6956 break;
6957
6958 case 0x0f34: /* sysenter */
6959 {
6960 int ret;
6961 if (ir.regmap[X86_RECORD_R8_REGNUM])
6962 {
6963 ir.addr -= 2;
6964 goto no_support;
6965 }
6966 if (tdep->i386_sysenter_record == NULL)
6967 {
6968 printf_unfiltered (_("Process record does not support "
6969 "instruction sysenter.\n"));
6970 ir.addr -= 2;
6971 goto no_support;
6972 }
6973 ret = tdep->i386_sysenter_record (ir.regcache);
6974 if (ret)
6975 return ret;
6976 }
6977 break;
6978
6979 case 0x0f35: /* sysexit */
6980 printf_unfiltered (_("Process record does not support "
6981 "instruction sysexit.\n"));
6982 ir.addr -= 2;
6983 goto no_support;
6984 break;
6985
6986 case 0x0f05: /* syscall */
6987 {
6988 int ret;
6989 if (tdep->i386_syscall_record == NULL)
6990 {
6991 printf_unfiltered (_("Process record does not support "
6992 "instruction syscall.\n"));
6993 ir.addr -= 2;
6994 goto no_support;
6995 }
6996 ret = tdep->i386_syscall_record (ir.regcache);
6997 if (ret)
6998 return ret;
6999 }
7000 break;
7001
7002 case 0x0f07: /* sysret */
7003 printf_unfiltered (_("Process record does not support "
7004 "instruction sysret.\n"));
7005 ir.addr -= 2;
7006 goto no_support;
7007 break;
7008
7009 case 0x0fa2: /* cpuid */
7010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7014 break;
7015
7016 case 0xf4: /* hlt */
7017 printf_unfiltered (_("Process record does not support "
7018 "instruction hlt.\n"));
7019 ir.addr -= 1;
7020 goto no_support;
7021 break;
7022
7023 case 0x0f00:
7024 if (i386_record_modrm (&ir))
7025 return -1;
7026 switch (ir.reg)
7027 {
7028 case 0: /* sldt */
7029 case 1: /* str */
7030 if (ir.mod == 3)
7031 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7032 else
7033 {
7034 ir.ot = OT_WORD;
7035 if (i386_record_lea_modrm (&ir))
7036 return -1;
7037 }
7038 break;
7039 case 2: /* lldt */
7040 case 3: /* ltr */
7041 break;
7042 case 4: /* verr */
7043 case 5: /* verw */
7044 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7045 break;
7046 default:
7047 ir.addr -= 3;
7048 opcode = opcode << 8 | ir.modrm;
7049 goto no_support;
7050 break;
7051 }
7052 break;
7053
7054 case 0x0f01:
7055 if (i386_record_modrm (&ir))
7056 return -1;
7057 switch (ir.reg)
7058 {
7059 case 0: /* sgdt */
7060 {
7061 uint64_t addr64;
7062
7063 if (ir.mod == 3)
7064 {
7065 ir.addr -= 3;
7066 opcode = opcode << 8 | ir.modrm;
7067 goto no_support;
7068 }
7069 if (ir.override >= 0)
7070 {
7071 if (record_full_memory_query)
7072 {
7073 if (yquery (_("\
7074 Process record ignores the memory change of instruction at address %s\n\
7075 because it can't get the value of the segment register.\n\
7076 Do you want to stop the program?"),
7077 paddress (gdbarch, ir.orig_addr)))
7078 return -1;
7079 }
7080 }
7081 else
7082 {
7083 if (i386_record_lea_modrm_addr (&ir, &addr64))
7084 return -1;
7085 if (record_full_arch_list_add_mem (addr64, 2))
7086 return -1;
7087 addr64 += 2;
7088 if (ir.regmap[X86_RECORD_R8_REGNUM])
7089 {
7090 if (record_full_arch_list_add_mem (addr64, 8))
7091 return -1;
7092 }
7093 else
7094 {
7095 if (record_full_arch_list_add_mem (addr64, 4))
7096 return -1;
7097 }
7098 }
7099 }
7100 break;
7101 case 1:
7102 if (ir.mod == 3)
7103 {
7104 switch (ir.rm)
7105 {
7106 case 0: /* monitor */
7107 break;
7108 case 1: /* mwait */
7109 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7110 break;
7111 default:
7112 ir.addr -= 3;
7113 opcode = opcode << 8 | ir.modrm;
7114 goto no_support;
7115 break;
7116 }
7117 }
7118 else
7119 {
7120 /* sidt */
7121 if (ir.override >= 0)
7122 {
7123 if (record_full_memory_query)
7124 {
7125 if (yquery (_("\
7126 Process record ignores the memory change of instruction at address %s\n\
7127 because it can't get the value of the segment register.\n\
7128 Do you want to stop the program?"),
7129 paddress (gdbarch, ir.orig_addr)))
7130 return -1;
7131 }
7132 }
7133 else
7134 {
7135 uint64_t addr64;
7136
7137 if (i386_record_lea_modrm_addr (&ir, &addr64))
7138 return -1;
7139 if (record_full_arch_list_add_mem (addr64, 2))
7140 return -1;
7141 addr64 += 2;
7142 if (ir.regmap[X86_RECORD_R8_REGNUM])
7143 {
7144 if (record_full_arch_list_add_mem (addr64, 8))
7145 return -1;
7146 }
7147 else
7148 {
7149 if (record_full_arch_list_add_mem (addr64, 4))
7150 return -1;
7151 }
7152 }
7153 }
7154 break;
7155 case 2: /* lgdt */
7156 if (ir.mod == 3)
7157 {
7158 /* xgetbv */
7159 if (ir.rm == 0)
7160 {
7161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7162 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7163 break;
7164 }
7165 /* xsetbv */
7166 else if (ir.rm == 1)
7167 break;
7168 }
7169 case 3: /* lidt */
7170 if (ir.mod == 3)
7171 {
7172 ir.addr -= 3;
7173 opcode = opcode << 8 | ir.modrm;
7174 goto no_support;
7175 }
7176 break;
7177 case 4: /* smsw */
7178 if (ir.mod == 3)
7179 {
7180 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7181 return -1;
7182 }
7183 else
7184 {
7185 ir.ot = OT_WORD;
7186 if (i386_record_lea_modrm (&ir))
7187 return -1;
7188 }
7189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7190 break;
7191 case 6: /* lmsw */
7192 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7193 break;
7194 case 7: /* invlpg */
7195 if (ir.mod == 3)
7196 {
7197 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7198 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7199 else
7200 {
7201 ir.addr -= 3;
7202 opcode = opcode << 8 | ir.modrm;
7203 goto no_support;
7204 }
7205 }
7206 else
7207 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7208 break;
7209 default:
7210 ir.addr -= 3;
7211 opcode = opcode << 8 | ir.modrm;
7212 goto no_support;
7213 break;
7214 }
7215 break;
7216
7217 case 0x0f08: /* invd */
7218 case 0x0f09: /* wbinvd */
7219 break;
7220
7221 case 0x63: /* arpl */
7222 if (i386_record_modrm (&ir))
7223 return -1;
7224 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7225 {
7226 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7227 ? (ir.reg | rex_r) : ir.rm);
7228 }
7229 else
7230 {
7231 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7232 if (i386_record_lea_modrm (&ir))
7233 return -1;
7234 }
7235 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7236 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7237 break;
7238
7239 case 0x0f02: /* lar */
7240 case 0x0f03: /* lsl */
7241 if (i386_record_modrm (&ir))
7242 return -1;
7243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7245 break;
7246
7247 case 0x0f18:
7248 if (i386_record_modrm (&ir))
7249 return -1;
7250 if (ir.mod == 3 && ir.reg == 3)
7251 {
7252 ir.addr -= 3;
7253 opcode = opcode << 8 | ir.modrm;
7254 goto no_support;
7255 }
7256 break;
7257
7258 case 0x0f19:
7259 case 0x0f1a:
7260 case 0x0f1b:
7261 case 0x0f1c:
7262 case 0x0f1d:
7263 case 0x0f1e:
7264 case 0x0f1f:
7265 /* nop (multi byte) */
7266 break;
7267
7268 case 0x0f20: /* mov reg, crN */
7269 case 0x0f22: /* mov crN, reg */
7270 if (i386_record_modrm (&ir))
7271 return -1;
7272 if ((ir.modrm & 0xc0) != 0xc0)
7273 {
7274 ir.addr -= 3;
7275 opcode = opcode << 8 | ir.modrm;
7276 goto no_support;
7277 }
7278 switch (ir.reg)
7279 {
7280 case 0:
7281 case 2:
7282 case 3:
7283 case 4:
7284 case 8:
7285 if (opcode & 2)
7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7287 else
7288 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7289 break;
7290 default:
7291 ir.addr -= 3;
7292 opcode = opcode << 8 | ir.modrm;
7293 goto no_support;
7294 break;
7295 }
7296 break;
7297
7298 case 0x0f21: /* mov reg, drN */
7299 case 0x0f23: /* mov drN, reg */
7300 if (i386_record_modrm (&ir))
7301 return -1;
7302 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7303 || ir.reg == 5 || ir.reg >= 8)
7304 {
7305 ir.addr -= 3;
7306 opcode = opcode << 8 | ir.modrm;
7307 goto no_support;
7308 }
7309 if (opcode & 2)
7310 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7311 else
7312 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7313 break;
7314
7315 case 0x0f06: /* clts */
7316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7317 break;
7318
7319 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7320
7321 case 0x0f0d: /* 3DNow! prefetch */
7322 break;
7323
7324 case 0x0f0e: /* 3DNow! femms */
7325 case 0x0f77: /* emms */
7326 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7327 goto no_support;
7328 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7329 break;
7330
7331 case 0x0f0f: /* 3DNow! data */
7332 if (i386_record_modrm (&ir))
7333 return -1;
7334 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7335 return -1;
7336 ir.addr++;
7337 switch (opcode8)
7338 {
7339 case 0x0c: /* 3DNow! pi2fw */
7340 case 0x0d: /* 3DNow! pi2fd */
7341 case 0x1c: /* 3DNow! pf2iw */
7342 case 0x1d: /* 3DNow! pf2id */
7343 case 0x8a: /* 3DNow! pfnacc */
7344 case 0x8e: /* 3DNow! pfpnacc */
7345 case 0x90: /* 3DNow! pfcmpge */
7346 case 0x94: /* 3DNow! pfmin */
7347 case 0x96: /* 3DNow! pfrcp */
7348 case 0x97: /* 3DNow! pfrsqrt */
7349 case 0x9a: /* 3DNow! pfsub */
7350 case 0x9e: /* 3DNow! pfadd */
7351 case 0xa0: /* 3DNow! pfcmpgt */
7352 case 0xa4: /* 3DNow! pfmax */
7353 case 0xa6: /* 3DNow! pfrcpit1 */
7354 case 0xa7: /* 3DNow! pfrsqit1 */
7355 case 0xaa: /* 3DNow! pfsubr */
7356 case 0xae: /* 3DNow! pfacc */
7357 case 0xb0: /* 3DNow! pfcmpeq */
7358 case 0xb4: /* 3DNow! pfmul */
7359 case 0xb6: /* 3DNow! pfrcpit2 */
7360 case 0xb7: /* 3DNow! pmulhrw */
7361 case 0xbb: /* 3DNow! pswapd */
7362 case 0xbf: /* 3DNow! pavgusb */
7363 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7364 goto no_support_3dnow_data;
7365 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7366 break;
7367
7368 default:
7369 no_support_3dnow_data:
7370 opcode = (opcode << 8) | opcode8;
7371 goto no_support;
7372 break;
7373 }
7374 break;
7375
7376 case 0x0faa: /* rsm */
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7385 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7386 break;
7387
7388 case 0x0fae:
7389 if (i386_record_modrm (&ir))
7390 return -1;
7391 switch(ir.reg)
7392 {
7393 case 0: /* fxsave */
7394 {
7395 uint64_t tmpu64;
7396
7397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7398 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7399 return -1;
7400 if (record_full_arch_list_add_mem (tmpu64, 512))
7401 return -1;
7402 }
7403 break;
7404
7405 case 1: /* fxrstor */
7406 {
7407 int i;
7408
7409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7410
7411 for (i = I387_MM0_REGNUM (tdep);
7412 i386_mmx_regnum_p (gdbarch, i); i++)
7413 record_full_arch_list_add_reg (ir.regcache, i);
7414
7415 for (i = I387_XMM0_REGNUM (tdep);
7416 i386_xmm_regnum_p (gdbarch, i); i++)
7417 record_full_arch_list_add_reg (ir.regcache, i);
7418
7419 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7420 record_full_arch_list_add_reg (ir.regcache,
7421 I387_MXCSR_REGNUM(tdep));
7422
7423 for (i = I387_ST0_REGNUM (tdep);
7424 i386_fp_regnum_p (gdbarch, i); i++)
7425 record_full_arch_list_add_reg (ir.regcache, i);
7426
7427 for (i = I387_FCTRL_REGNUM (tdep);
7428 i386_fpc_regnum_p (gdbarch, i); i++)
7429 record_full_arch_list_add_reg (ir.regcache, i);
7430 }
7431 break;
7432
7433 case 2: /* ldmxcsr */
7434 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7435 goto no_support;
7436 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7437 break;
7438
7439 case 3: /* stmxcsr */
7440 ir.ot = OT_LONG;
7441 if (i386_record_lea_modrm (&ir))
7442 return -1;
7443 break;
7444
7445 case 5: /* lfence */
7446 case 6: /* mfence */
7447 case 7: /* sfence clflush */
7448 break;
7449
7450 default:
7451 opcode = (opcode << 8) | ir.modrm;
7452 goto no_support;
7453 break;
7454 }
7455 break;
7456
7457 case 0x0fc3: /* movnti */
7458 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7459 if (i386_record_modrm (&ir))
7460 return -1;
7461 if (ir.mod == 3)
7462 goto no_support;
7463 ir.reg |= rex_r;
7464 if (i386_record_lea_modrm (&ir))
7465 return -1;
7466 break;
7467
7468 /* Add prefix to opcode. */
7469 case 0x0f10:
7470 case 0x0f11:
7471 case 0x0f12:
7472 case 0x0f13:
7473 case 0x0f14:
7474 case 0x0f15:
7475 case 0x0f16:
7476 case 0x0f17:
7477 case 0x0f28:
7478 case 0x0f29:
7479 case 0x0f2a:
7480 case 0x0f2b:
7481 case 0x0f2c:
7482 case 0x0f2d:
7483 case 0x0f2e:
7484 case 0x0f2f:
7485 case 0x0f38:
7486 case 0x0f39:
7487 case 0x0f3a:
7488 case 0x0f50:
7489 case 0x0f51:
7490 case 0x0f52:
7491 case 0x0f53:
7492 case 0x0f54:
7493 case 0x0f55:
7494 case 0x0f56:
7495 case 0x0f57:
7496 case 0x0f58:
7497 case 0x0f59:
7498 case 0x0f5a:
7499 case 0x0f5b:
7500 case 0x0f5c:
7501 case 0x0f5d:
7502 case 0x0f5e:
7503 case 0x0f5f:
7504 case 0x0f60:
7505 case 0x0f61:
7506 case 0x0f62:
7507 case 0x0f63:
7508 case 0x0f64:
7509 case 0x0f65:
7510 case 0x0f66:
7511 case 0x0f67:
7512 case 0x0f68:
7513 case 0x0f69:
7514 case 0x0f6a:
7515 case 0x0f6b:
7516 case 0x0f6c:
7517 case 0x0f6d:
7518 case 0x0f6e:
7519 case 0x0f6f:
7520 case 0x0f70:
7521 case 0x0f71:
7522 case 0x0f72:
7523 case 0x0f73:
7524 case 0x0f74:
7525 case 0x0f75:
7526 case 0x0f76:
7527 case 0x0f7c:
7528 case 0x0f7d:
7529 case 0x0f7e:
7530 case 0x0f7f:
7531 case 0x0fb8:
7532 case 0x0fc2:
7533 case 0x0fc4:
7534 case 0x0fc5:
7535 case 0x0fc6:
7536 case 0x0fd0:
7537 case 0x0fd1:
7538 case 0x0fd2:
7539 case 0x0fd3:
7540 case 0x0fd4:
7541 case 0x0fd5:
7542 case 0x0fd6:
7543 case 0x0fd7:
7544 case 0x0fd8:
7545 case 0x0fd9:
7546 case 0x0fda:
7547 case 0x0fdb:
7548 case 0x0fdc:
7549 case 0x0fdd:
7550 case 0x0fde:
7551 case 0x0fdf:
7552 case 0x0fe0:
7553 case 0x0fe1:
7554 case 0x0fe2:
7555 case 0x0fe3:
7556 case 0x0fe4:
7557 case 0x0fe5:
7558 case 0x0fe6:
7559 case 0x0fe7:
7560 case 0x0fe8:
7561 case 0x0fe9:
7562 case 0x0fea:
7563 case 0x0feb:
7564 case 0x0fec:
7565 case 0x0fed:
7566 case 0x0fee:
7567 case 0x0fef:
7568 case 0x0ff0:
7569 case 0x0ff1:
7570 case 0x0ff2:
7571 case 0x0ff3:
7572 case 0x0ff4:
7573 case 0x0ff5:
7574 case 0x0ff6:
7575 case 0x0ff7:
7576 case 0x0ff8:
7577 case 0x0ff9:
7578 case 0x0ffa:
7579 case 0x0ffb:
7580 case 0x0ffc:
7581 case 0x0ffd:
7582 case 0x0ffe:
7583 /* Mask out PREFIX_ADDR. */
7584 switch ((prefixes & ~PREFIX_ADDR))
7585 {
7586 case PREFIX_REPNZ:
7587 opcode |= 0xf20000;
7588 break;
7589 case PREFIX_DATA:
7590 opcode |= 0x660000;
7591 break;
7592 case PREFIX_REPZ:
7593 opcode |= 0xf30000;
7594 break;
7595 }
7596 reswitch_prefix_add:
7597 switch (opcode)
7598 {
7599 case 0x0f38:
7600 case 0x660f38:
7601 case 0xf20f38:
7602 case 0x0f3a:
7603 case 0x660f3a:
7604 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7605 return -1;
7606 ir.addr++;
7607 opcode = (uint32_t) opcode8 | opcode << 8;
7608 goto reswitch_prefix_add;
7609 break;
7610
7611 case 0x0f10: /* movups */
7612 case 0x660f10: /* movupd */
7613 case 0xf30f10: /* movss */
7614 case 0xf20f10: /* movsd */
7615 case 0x0f12: /* movlps */
7616 case 0x660f12: /* movlpd */
7617 case 0xf30f12: /* movsldup */
7618 case 0xf20f12: /* movddup */
7619 case 0x0f14: /* unpcklps */
7620 case 0x660f14: /* unpcklpd */
7621 case 0x0f15: /* unpckhps */
7622 case 0x660f15: /* unpckhpd */
7623 case 0x0f16: /* movhps */
7624 case 0x660f16: /* movhpd */
7625 case 0xf30f16: /* movshdup */
7626 case 0x0f28: /* movaps */
7627 case 0x660f28: /* movapd */
7628 case 0x0f2a: /* cvtpi2ps */
7629 case 0x660f2a: /* cvtpi2pd */
7630 case 0xf30f2a: /* cvtsi2ss */
7631 case 0xf20f2a: /* cvtsi2sd */
7632 case 0x0f2c: /* cvttps2pi */
7633 case 0x660f2c: /* cvttpd2pi */
7634 case 0x0f2d: /* cvtps2pi */
7635 case 0x660f2d: /* cvtpd2pi */
7636 case 0x660f3800: /* pshufb */
7637 case 0x660f3801: /* phaddw */
7638 case 0x660f3802: /* phaddd */
7639 case 0x660f3803: /* phaddsw */
7640 case 0x660f3804: /* pmaddubsw */
7641 case 0x660f3805: /* phsubw */
7642 case 0x660f3806: /* phsubd */
7643 case 0x660f3807: /* phsubsw */
7644 case 0x660f3808: /* psignb */
7645 case 0x660f3809: /* psignw */
7646 case 0x660f380a: /* psignd */
7647 case 0x660f380b: /* pmulhrsw */
7648 case 0x660f3810: /* pblendvb */
7649 case 0x660f3814: /* blendvps */
7650 case 0x660f3815: /* blendvpd */
7651 case 0x660f381c: /* pabsb */
7652 case 0x660f381d: /* pabsw */
7653 case 0x660f381e: /* pabsd */
7654 case 0x660f3820: /* pmovsxbw */
7655 case 0x660f3821: /* pmovsxbd */
7656 case 0x660f3822: /* pmovsxbq */
7657 case 0x660f3823: /* pmovsxwd */
7658 case 0x660f3824: /* pmovsxwq */
7659 case 0x660f3825: /* pmovsxdq */
7660 case 0x660f3828: /* pmuldq */
7661 case 0x660f3829: /* pcmpeqq */
7662 case 0x660f382a: /* movntdqa */
7663 case 0x660f3a08: /* roundps */
7664 case 0x660f3a09: /* roundpd */
7665 case 0x660f3a0a: /* roundss */
7666 case 0x660f3a0b: /* roundsd */
7667 case 0x660f3a0c: /* blendps */
7668 case 0x660f3a0d: /* blendpd */
7669 case 0x660f3a0e: /* pblendw */
7670 case 0x660f3a0f: /* palignr */
7671 case 0x660f3a20: /* pinsrb */
7672 case 0x660f3a21: /* insertps */
7673 case 0x660f3a22: /* pinsrd pinsrq */
7674 case 0x660f3a40: /* dpps */
7675 case 0x660f3a41: /* dppd */
7676 case 0x660f3a42: /* mpsadbw */
7677 case 0x660f3a60: /* pcmpestrm */
7678 case 0x660f3a61: /* pcmpestri */
7679 case 0x660f3a62: /* pcmpistrm */
7680 case 0x660f3a63: /* pcmpistri */
7681 case 0x0f51: /* sqrtps */
7682 case 0x660f51: /* sqrtpd */
7683 case 0xf20f51: /* sqrtsd */
7684 case 0xf30f51: /* sqrtss */
7685 case 0x0f52: /* rsqrtps */
7686 case 0xf30f52: /* rsqrtss */
7687 case 0x0f53: /* rcpps */
7688 case 0xf30f53: /* rcpss */
7689 case 0x0f54: /* andps */
7690 case 0x660f54: /* andpd */
7691 case 0x0f55: /* andnps */
7692 case 0x660f55: /* andnpd */
7693 case 0x0f56: /* orps */
7694 case 0x660f56: /* orpd */
7695 case 0x0f57: /* xorps */
7696 case 0x660f57: /* xorpd */
7697 case 0x0f58: /* addps */
7698 case 0x660f58: /* addpd */
7699 case 0xf20f58: /* addsd */
7700 case 0xf30f58: /* addss */
7701 case 0x0f59: /* mulps */
7702 case 0x660f59: /* mulpd */
7703 case 0xf20f59: /* mulsd */
7704 case 0xf30f59: /* mulss */
7705 case 0x0f5a: /* cvtps2pd */
7706 case 0x660f5a: /* cvtpd2ps */
7707 case 0xf20f5a: /* cvtsd2ss */
7708 case 0xf30f5a: /* cvtss2sd */
7709 case 0x0f5b: /* cvtdq2ps */
7710 case 0x660f5b: /* cvtps2dq */
7711 case 0xf30f5b: /* cvttps2dq */
7712 case 0x0f5c: /* subps */
7713 case 0x660f5c: /* subpd */
7714 case 0xf20f5c: /* subsd */
7715 case 0xf30f5c: /* subss */
7716 case 0x0f5d: /* minps */
7717 case 0x660f5d: /* minpd */
7718 case 0xf20f5d: /* minsd */
7719 case 0xf30f5d: /* minss */
7720 case 0x0f5e: /* divps */
7721 case 0x660f5e: /* divpd */
7722 case 0xf20f5e: /* divsd */
7723 case 0xf30f5e: /* divss */
7724 case 0x0f5f: /* maxps */
7725 case 0x660f5f: /* maxpd */
7726 case 0xf20f5f: /* maxsd */
7727 case 0xf30f5f: /* maxss */
7728 case 0x660f60: /* punpcklbw */
7729 case 0x660f61: /* punpcklwd */
7730 case 0x660f62: /* punpckldq */
7731 case 0x660f63: /* packsswb */
7732 case 0x660f64: /* pcmpgtb */
7733 case 0x660f65: /* pcmpgtw */
7734 case 0x660f66: /* pcmpgtd */
7735 case 0x660f67: /* packuswb */
7736 case 0x660f68: /* punpckhbw */
7737 case 0x660f69: /* punpckhwd */
7738 case 0x660f6a: /* punpckhdq */
7739 case 0x660f6b: /* packssdw */
7740 case 0x660f6c: /* punpcklqdq */
7741 case 0x660f6d: /* punpckhqdq */
7742 case 0x660f6e: /* movd */
7743 case 0x660f6f: /* movdqa */
7744 case 0xf30f6f: /* movdqu */
7745 case 0x660f70: /* pshufd */
7746 case 0xf20f70: /* pshuflw */
7747 case 0xf30f70: /* pshufhw */
7748 case 0x660f74: /* pcmpeqb */
7749 case 0x660f75: /* pcmpeqw */
7750 case 0x660f76: /* pcmpeqd */
7751 case 0x660f7c: /* haddpd */
7752 case 0xf20f7c: /* haddps */
7753 case 0x660f7d: /* hsubpd */
7754 case 0xf20f7d: /* hsubps */
7755 case 0xf30f7e: /* movq */
7756 case 0x0fc2: /* cmpps */
7757 case 0x660fc2: /* cmppd */
7758 case 0xf20fc2: /* cmpsd */
7759 case 0xf30fc2: /* cmpss */
7760 case 0x660fc4: /* pinsrw */
7761 case 0x0fc6: /* shufps */
7762 case 0x660fc6: /* shufpd */
7763 case 0x660fd0: /* addsubpd */
7764 case 0xf20fd0: /* addsubps */
7765 case 0x660fd1: /* psrlw */
7766 case 0x660fd2: /* psrld */
7767 case 0x660fd3: /* psrlq */
7768 case 0x660fd4: /* paddq */
7769 case 0x660fd5: /* pmullw */
7770 case 0xf30fd6: /* movq2dq */
7771 case 0x660fd8: /* psubusb */
7772 case 0x660fd9: /* psubusw */
7773 case 0x660fda: /* pminub */
7774 case 0x660fdb: /* pand */
7775 case 0x660fdc: /* paddusb */
7776 case 0x660fdd: /* paddusw */
7777 case 0x660fde: /* pmaxub */
7778 case 0x660fdf: /* pandn */
7779 case 0x660fe0: /* pavgb */
7780 case 0x660fe1: /* psraw */
7781 case 0x660fe2: /* psrad */
7782 case 0x660fe3: /* pavgw */
7783 case 0x660fe4: /* pmulhuw */
7784 case 0x660fe5: /* pmulhw */
7785 case 0x660fe6: /* cvttpd2dq */
7786 case 0xf20fe6: /* cvtpd2dq */
7787 case 0xf30fe6: /* cvtdq2pd */
7788 case 0x660fe8: /* psubsb */
7789 case 0x660fe9: /* psubsw */
7790 case 0x660fea: /* pminsw */
7791 case 0x660feb: /* por */
7792 case 0x660fec: /* paddsb */
7793 case 0x660fed: /* paddsw */
7794 case 0x660fee: /* pmaxsw */
7795 case 0x660fef: /* pxor */
7796 case 0xf20ff0: /* lddqu */
7797 case 0x660ff1: /* psllw */
7798 case 0x660ff2: /* pslld */
7799 case 0x660ff3: /* psllq */
7800 case 0x660ff4: /* pmuludq */
7801 case 0x660ff5: /* pmaddwd */
7802 case 0x660ff6: /* psadbw */
7803 case 0x660ff8: /* psubb */
7804 case 0x660ff9: /* psubw */
7805 case 0x660ffa: /* psubd */
7806 case 0x660ffb: /* psubq */
7807 case 0x660ffc: /* paddb */
7808 case 0x660ffd: /* paddw */
7809 case 0x660ffe: /* paddd */
7810 if (i386_record_modrm (&ir))
7811 return -1;
7812 ir.reg |= rex_r;
7813 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7814 goto no_support;
7815 record_full_arch_list_add_reg (ir.regcache,
7816 I387_XMM0_REGNUM (tdep) + ir.reg);
7817 if ((opcode & 0xfffffffc) == 0x660f3a60)
7818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7819 break;
7820
7821 case 0x0f11: /* movups */
7822 case 0x660f11: /* movupd */
7823 case 0xf30f11: /* movss */
7824 case 0xf20f11: /* movsd */
7825 case 0x0f13: /* movlps */
7826 case 0x660f13: /* movlpd */
7827 case 0x0f17: /* movhps */
7828 case 0x660f17: /* movhpd */
7829 case 0x0f29: /* movaps */
7830 case 0x660f29: /* movapd */
7831 case 0x660f3a14: /* pextrb */
7832 case 0x660f3a15: /* pextrw */
7833 case 0x660f3a16: /* pextrd pextrq */
7834 case 0x660f3a17: /* extractps */
7835 case 0x660f7f: /* movdqa */
7836 case 0xf30f7f: /* movdqu */
7837 if (i386_record_modrm (&ir))
7838 return -1;
7839 if (ir.mod == 3)
7840 {
7841 if (opcode == 0x0f13 || opcode == 0x660f13
7842 || opcode == 0x0f17 || opcode == 0x660f17)
7843 goto no_support;
7844 ir.rm |= ir.rex_b;
7845 if (!i386_xmm_regnum_p (gdbarch,
7846 I387_XMM0_REGNUM (tdep) + ir.rm))
7847 goto no_support;
7848 record_full_arch_list_add_reg (ir.regcache,
7849 I387_XMM0_REGNUM (tdep) + ir.rm);
7850 }
7851 else
7852 {
7853 switch (opcode)
7854 {
7855 case 0x660f3a14:
7856 ir.ot = OT_BYTE;
7857 break;
7858 case 0x660f3a15:
7859 ir.ot = OT_WORD;
7860 break;
7861 case 0x660f3a16:
7862 ir.ot = OT_LONG;
7863 break;
7864 case 0x660f3a17:
7865 ir.ot = OT_QUAD;
7866 break;
7867 default:
7868 ir.ot = OT_DQUAD;
7869 break;
7870 }
7871 if (i386_record_lea_modrm (&ir))
7872 return -1;
7873 }
7874 break;
7875
7876 case 0x0f2b: /* movntps */
7877 case 0x660f2b: /* movntpd */
7878 case 0x0fe7: /* movntq */
7879 case 0x660fe7: /* movntdq */
7880 if (ir.mod == 3)
7881 goto no_support;
7882 if (opcode == 0x0fe7)
7883 ir.ot = OT_QUAD;
7884 else
7885 ir.ot = OT_DQUAD;
7886 if (i386_record_lea_modrm (&ir))
7887 return -1;
7888 break;
7889
7890 case 0xf30f2c: /* cvttss2si */
7891 case 0xf20f2c: /* cvttsd2si */
7892 case 0xf30f2d: /* cvtss2si */
7893 case 0xf20f2d: /* cvtsd2si */
7894 case 0xf20f38f0: /* crc32 */
7895 case 0xf20f38f1: /* crc32 */
7896 case 0x0f50: /* movmskps */
7897 case 0x660f50: /* movmskpd */
7898 case 0x0fc5: /* pextrw */
7899 case 0x660fc5: /* pextrw */
7900 case 0x0fd7: /* pmovmskb */
7901 case 0x660fd7: /* pmovmskb */
7902 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7903 break;
7904
7905 case 0x0f3800: /* pshufb */
7906 case 0x0f3801: /* phaddw */
7907 case 0x0f3802: /* phaddd */
7908 case 0x0f3803: /* phaddsw */
7909 case 0x0f3804: /* pmaddubsw */
7910 case 0x0f3805: /* phsubw */
7911 case 0x0f3806: /* phsubd */
7912 case 0x0f3807: /* phsubsw */
7913 case 0x0f3808: /* psignb */
7914 case 0x0f3809: /* psignw */
7915 case 0x0f380a: /* psignd */
7916 case 0x0f380b: /* pmulhrsw */
7917 case 0x0f381c: /* pabsb */
7918 case 0x0f381d: /* pabsw */
7919 case 0x0f381e: /* pabsd */
7920 case 0x0f382b: /* packusdw */
7921 case 0x0f3830: /* pmovzxbw */
7922 case 0x0f3831: /* pmovzxbd */
7923 case 0x0f3832: /* pmovzxbq */
7924 case 0x0f3833: /* pmovzxwd */
7925 case 0x0f3834: /* pmovzxwq */
7926 case 0x0f3835: /* pmovzxdq */
7927 case 0x0f3837: /* pcmpgtq */
7928 case 0x0f3838: /* pminsb */
7929 case 0x0f3839: /* pminsd */
7930 case 0x0f383a: /* pminuw */
7931 case 0x0f383b: /* pminud */
7932 case 0x0f383c: /* pmaxsb */
7933 case 0x0f383d: /* pmaxsd */
7934 case 0x0f383e: /* pmaxuw */
7935 case 0x0f383f: /* pmaxud */
7936 case 0x0f3840: /* pmulld */
7937 case 0x0f3841: /* phminposuw */
7938 case 0x0f3a0f: /* palignr */
7939 case 0x0f60: /* punpcklbw */
7940 case 0x0f61: /* punpcklwd */
7941 case 0x0f62: /* punpckldq */
7942 case 0x0f63: /* packsswb */
7943 case 0x0f64: /* pcmpgtb */
7944 case 0x0f65: /* pcmpgtw */
7945 case 0x0f66: /* pcmpgtd */
7946 case 0x0f67: /* packuswb */
7947 case 0x0f68: /* punpckhbw */
7948 case 0x0f69: /* punpckhwd */
7949 case 0x0f6a: /* punpckhdq */
7950 case 0x0f6b: /* packssdw */
7951 case 0x0f6e: /* movd */
7952 case 0x0f6f: /* movq */
7953 case 0x0f70: /* pshufw */
7954 case 0x0f74: /* pcmpeqb */
7955 case 0x0f75: /* pcmpeqw */
7956 case 0x0f76: /* pcmpeqd */
7957 case 0x0fc4: /* pinsrw */
7958 case 0x0fd1: /* psrlw */
7959 case 0x0fd2: /* psrld */
7960 case 0x0fd3: /* psrlq */
7961 case 0x0fd4: /* paddq */
7962 case 0x0fd5: /* pmullw */
7963 case 0xf20fd6: /* movdq2q */
7964 case 0x0fd8: /* psubusb */
7965 case 0x0fd9: /* psubusw */
7966 case 0x0fda: /* pminub */
7967 case 0x0fdb: /* pand */
7968 case 0x0fdc: /* paddusb */
7969 case 0x0fdd: /* paddusw */
7970 case 0x0fde: /* pmaxub */
7971 case 0x0fdf: /* pandn */
7972 case 0x0fe0: /* pavgb */
7973 case 0x0fe1: /* psraw */
7974 case 0x0fe2: /* psrad */
7975 case 0x0fe3: /* pavgw */
7976 case 0x0fe4: /* pmulhuw */
7977 case 0x0fe5: /* pmulhw */
7978 case 0x0fe8: /* psubsb */
7979 case 0x0fe9: /* psubsw */
7980 case 0x0fea: /* pminsw */
7981 case 0x0feb: /* por */
7982 case 0x0fec: /* paddsb */
7983 case 0x0fed: /* paddsw */
7984 case 0x0fee: /* pmaxsw */
7985 case 0x0fef: /* pxor */
7986 case 0x0ff1: /* psllw */
7987 case 0x0ff2: /* pslld */
7988 case 0x0ff3: /* psllq */
7989 case 0x0ff4: /* pmuludq */
7990 case 0x0ff5: /* pmaddwd */
7991 case 0x0ff6: /* psadbw */
7992 case 0x0ff8: /* psubb */
7993 case 0x0ff9: /* psubw */
7994 case 0x0ffa: /* psubd */
7995 case 0x0ffb: /* psubq */
7996 case 0x0ffc: /* paddb */
7997 case 0x0ffd: /* paddw */
7998 case 0x0ffe: /* paddd */
7999 if (i386_record_modrm (&ir))
8000 return -1;
8001 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8002 goto no_support;
8003 record_full_arch_list_add_reg (ir.regcache,
8004 I387_MM0_REGNUM (tdep) + ir.reg);
8005 break;
8006
8007 case 0x0f71: /* psllw */
8008 case 0x0f72: /* pslld */
8009 case 0x0f73: /* psllq */
8010 if (i386_record_modrm (&ir))
8011 return -1;
8012 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8013 goto no_support;
8014 record_full_arch_list_add_reg (ir.regcache,
8015 I387_MM0_REGNUM (tdep) + ir.rm);
8016 break;
8017
8018 case 0x660f71: /* psllw */
8019 case 0x660f72: /* pslld */
8020 case 0x660f73: /* psllq */
8021 if (i386_record_modrm (&ir))
8022 return -1;
8023 ir.rm |= ir.rex_b;
8024 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8025 goto no_support;
8026 record_full_arch_list_add_reg (ir.regcache,
8027 I387_XMM0_REGNUM (tdep) + ir.rm);
8028 break;
8029
8030 case 0x0f7e: /* movd */
8031 case 0x660f7e: /* movd */
8032 if (i386_record_modrm (&ir))
8033 return -1;
8034 if (ir.mod == 3)
8035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8036 else
8037 {
8038 if (ir.dflag == 2)
8039 ir.ot = OT_QUAD;
8040 else
8041 ir.ot = OT_LONG;
8042 if (i386_record_lea_modrm (&ir))
8043 return -1;
8044 }
8045 break;
8046
8047 case 0x0f7f: /* movq */
8048 if (i386_record_modrm (&ir))
8049 return -1;
8050 if (ir.mod == 3)
8051 {
8052 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8053 goto no_support;
8054 record_full_arch_list_add_reg (ir.regcache,
8055 I387_MM0_REGNUM (tdep) + ir.rm);
8056 }
8057 else
8058 {
8059 ir.ot = OT_QUAD;
8060 if (i386_record_lea_modrm (&ir))
8061 return -1;
8062 }
8063 break;
8064
8065 case 0xf30fb8: /* popcnt */
8066 if (i386_record_modrm (&ir))
8067 return -1;
8068 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8069 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8070 break;
8071
8072 case 0x660fd6: /* movq */
8073 if (i386_record_modrm (&ir))
8074 return -1;
8075 if (ir.mod == 3)
8076 {
8077 ir.rm |= ir.rex_b;
8078 if (!i386_xmm_regnum_p (gdbarch,
8079 I387_XMM0_REGNUM (tdep) + ir.rm))
8080 goto no_support;
8081 record_full_arch_list_add_reg (ir.regcache,
8082 I387_XMM0_REGNUM (tdep) + ir.rm);
8083 }
8084 else
8085 {
8086 ir.ot = OT_QUAD;
8087 if (i386_record_lea_modrm (&ir))
8088 return -1;
8089 }
8090 break;
8091
8092 case 0x660f3817: /* ptest */
8093 case 0x0f2e: /* ucomiss */
8094 case 0x660f2e: /* ucomisd */
8095 case 0x0f2f: /* comiss */
8096 case 0x660f2f: /* comisd */
8097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8098 break;
8099
8100 case 0x0ff7: /* maskmovq */
8101 regcache_raw_read_unsigned (ir.regcache,
8102 ir.regmap[X86_RECORD_REDI_REGNUM],
8103 &addr);
8104 if (record_full_arch_list_add_mem (addr, 64))
8105 return -1;
8106 break;
8107
8108 case 0x660ff7: /* maskmovdqu */
8109 regcache_raw_read_unsigned (ir.regcache,
8110 ir.regmap[X86_RECORD_REDI_REGNUM],
8111 &addr);
8112 if (record_full_arch_list_add_mem (addr, 128))
8113 return -1;
8114 break;
8115
8116 default:
8117 goto no_support;
8118 break;
8119 }
8120 break;
8121
8122 default:
8123 goto no_support;
8124 break;
8125 }
8126
8127 /* In the future, maybe still need to deal with need_dasm. */
8128 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8129 if (record_full_arch_list_add_end ())
8130 return -1;
8131
8132 return 0;
8133
8134 no_support:
8135 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8136 "at address %s.\n"),
8137 (unsigned int) (opcode),
8138 paddress (gdbarch, ir.orig_addr));
8139 return -1;
8140 }
8141
8142 static const int i386_record_regmap[] =
8143 {
8144 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8145 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8146 0, 0, 0, 0, 0, 0, 0, 0,
8147 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8148 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8149 };
8150
8151 /* Check that the given address appears suitable for a fast
8152 tracepoint, which on x86-64 means that we need an instruction of at
8153 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8154 jump and not have to worry about program jumps to an address in the
8155 middle of the tracepoint jump. On x86, it may be possible to use
8156 4-byte jumps with a 2-byte offset to a trampoline located in the
8157 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8158 of instruction to replace, and 0 if not, plus an explanatory
8159 string. */
8160
8161 static int
8162 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8163 char **msg)
8164 {
8165 int len, jumplen;
8166
8167 /* Ask the target for the minimum instruction length supported. */
8168 jumplen = target_get_min_fast_tracepoint_insn_len ();
8169
8170 if (jumplen < 0)
8171 {
8172 /* If the target does not support the get_min_fast_tracepoint_insn_len
8173 operation, assume that fast tracepoints will always be implemented
8174 using 4-byte relative jumps on both x86 and x86-64. */
8175 jumplen = 5;
8176 }
8177 else if (jumplen == 0)
8178 {
8179 /* If the target does support get_min_fast_tracepoint_insn_len but
8180 returns zero, then the IPA has not loaded yet. In this case,
8181 we optimistically assume that truncated 2-byte relative jumps
8182 will be available on x86, and compensate later if this assumption
8183 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8184 jumps will always be used. */
8185 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8186 }
8187
8188 /* Check for fit. */
8189 len = gdb_insn_length (gdbarch, addr);
8190
8191 if (len < jumplen)
8192 {
8193 /* Return a bit of target-specific detail to add to the caller's
8194 generic failure message. */
8195 if (msg)
8196 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8197 "need at least %d bytes for the jump"),
8198 len, jumplen);
8199 return 0;
8200 }
8201 else
8202 {
8203 if (msg)
8204 *msg = NULL;
8205 return 1;
8206 }
8207 }
8208
8209 /* Return a floating-point format for a floating-point variable of
8210 length LEN in bits. If non-NULL, NAME is the name of its type.
8211 If no suitable type is found, return NULL. */
8212
8213 const struct floatformat **
8214 i386_floatformat_for_type (struct gdbarch *gdbarch,
8215 const char *name, int len)
8216 {
8217 if (len == 128 && name)
8218 if (strcmp (name, "__float128") == 0
8219 || strcmp (name, "_Float128") == 0
8220 || strcmp (name, "complex _Float128") == 0)
8221 return floatformats_ia64_quad;
8222
8223 return default_floatformat_for_type (gdbarch, name, len);
8224 }
8225
8226 static int
8227 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8228 struct tdesc_arch_data *tdesc_data)
8229 {
8230 const struct target_desc *tdesc = tdep->tdesc;
8231 const struct tdesc_feature *feature_core;
8232
8233 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8234 *feature_avx512, *feature_pkeys;
8235 int i, num_regs, valid_p;
8236
8237 if (! tdesc_has_registers (tdesc))
8238 return 0;
8239
8240 /* Get core registers. */
8241 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8242 if (feature_core == NULL)
8243 return 0;
8244
8245 /* Get SSE registers. */
8246 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8247
8248 /* Try AVX registers. */
8249 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8250
8251 /* Try MPX registers. */
8252 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8253
8254 /* Try AVX512 registers. */
8255 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8256
8257 /* Try PKEYS */
8258 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8259
8260 valid_p = 1;
8261
8262 /* The XCR0 bits. */
8263 if (feature_avx512)
8264 {
8265 /* AVX512 register description requires AVX register description. */
8266 if (!feature_avx)
8267 return 0;
8268
8269 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8270
8271 /* It may have been set by OSABI initialization function. */
8272 if (tdep->k0_regnum < 0)
8273 {
8274 tdep->k_register_names = i386_k_names;
8275 tdep->k0_regnum = I386_K0_REGNUM;
8276 }
8277
8278 for (i = 0; i < I387_NUM_K_REGS; i++)
8279 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8280 tdep->k0_regnum + i,
8281 i386_k_names[i]);
8282
8283 if (tdep->num_zmm_regs == 0)
8284 {
8285 tdep->zmmh_register_names = i386_zmmh_names;
8286 tdep->num_zmm_regs = 8;
8287 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8288 }
8289
8290 for (i = 0; i < tdep->num_zmm_regs; i++)
8291 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8292 tdep->zmm0h_regnum + i,
8293 tdep->zmmh_register_names[i]);
8294
8295 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8296 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8297 tdep->xmm16_regnum + i,
8298 tdep->xmm_avx512_register_names[i]);
8299
8300 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8301 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8302 tdep->ymm16h_regnum + i,
8303 tdep->ymm16h_register_names[i]);
8304 }
8305 if (feature_avx)
8306 {
8307 /* AVX register description requires SSE register description. */
8308 if (!feature_sse)
8309 return 0;
8310
8311 if (!feature_avx512)
8312 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8313
8314 /* It may have been set by OSABI initialization function. */
8315 if (tdep->num_ymm_regs == 0)
8316 {
8317 tdep->ymmh_register_names = i386_ymmh_names;
8318 tdep->num_ymm_regs = 8;
8319 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8320 }
8321
8322 for (i = 0; i < tdep->num_ymm_regs; i++)
8323 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8324 tdep->ymm0h_regnum + i,
8325 tdep->ymmh_register_names[i]);
8326 }
8327 else if (feature_sse)
8328 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8329 else
8330 {
8331 tdep->xcr0 = X86_XSTATE_X87_MASK;
8332 tdep->num_xmm_regs = 0;
8333 }
8334
8335 num_regs = tdep->num_core_regs;
8336 for (i = 0; i < num_regs; i++)
8337 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8338 tdep->register_names[i]);
8339
8340 if (feature_sse)
8341 {
8342 /* Need to include %mxcsr, so add one. */
8343 num_regs += tdep->num_xmm_regs + 1;
8344 for (; i < num_regs; i++)
8345 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8346 tdep->register_names[i]);
8347 }
8348
8349 if (feature_mpx)
8350 {
8351 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8352
8353 if (tdep->bnd0r_regnum < 0)
8354 {
8355 tdep->mpx_register_names = i386_mpx_names;
8356 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8357 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8358 }
8359
8360 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8361 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8362 I387_BND0R_REGNUM (tdep) + i,
8363 tdep->mpx_register_names[i]);
8364 }
8365
8366 if (feature_pkeys)
8367 {
8368 tdep->xcr0 |= X86_XSTATE_PKRU;
8369 if (tdep->pkru_regnum < 0)
8370 {
8371 tdep->pkeys_register_names = i386_pkeys_names;
8372 tdep->pkru_regnum = I386_PKRU_REGNUM;
8373 tdep->num_pkeys_regs = 1;
8374 }
8375
8376 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8377 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8378 I387_PKRU_REGNUM (tdep) + i,
8379 tdep->pkeys_register_names[i]);
8380 }
8381
8382 return valid_p;
8383 }
8384
8385 \f
8386 /* Note: This is called for both i386 and amd64. */
8387
8388 static struct gdbarch *
8389 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8390 {
8391 struct gdbarch_tdep *tdep;
8392 struct gdbarch *gdbarch;
8393 struct tdesc_arch_data *tdesc_data;
8394 const struct target_desc *tdesc;
8395 int mm0_regnum;
8396 int ymm0_regnum;
8397 int bnd0_regnum;
8398 int num_bnd_cooked;
8399
8400 /* If there is already a candidate, use it. */
8401 arches = gdbarch_list_lookup_by_info (arches, &info);
8402 if (arches != NULL)
8403 return arches->gdbarch;
8404
8405 /* Allocate space for the new architecture. Assume i386 for now. */
8406 tdep = XCNEW (struct gdbarch_tdep);
8407 gdbarch = gdbarch_alloc (&info, tdep);
8408
8409 /* General-purpose registers. */
8410 tdep->gregset_reg_offset = NULL;
8411 tdep->gregset_num_regs = I386_NUM_GREGS;
8412 tdep->sizeof_gregset = 0;
8413
8414 /* Floating-point registers. */
8415 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8416 tdep->fpregset = &i386_fpregset;
8417
8418 /* The default settings include the FPU registers, the MMX registers
8419 and the SSE registers. This can be overridden for a specific ABI
8420 by adjusting the members `st0_regnum', `mm0_regnum' and
8421 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8422 will show up in the output of "info all-registers". */
8423
8424 tdep->st0_regnum = I386_ST0_REGNUM;
8425
8426 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8427 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8428
8429 tdep->jb_pc_offset = -1;
8430 tdep->struct_return = pcc_struct_return;
8431 tdep->sigtramp_start = 0;
8432 tdep->sigtramp_end = 0;
8433 tdep->sigtramp_p = i386_sigtramp_p;
8434 tdep->sigcontext_addr = NULL;
8435 tdep->sc_reg_offset = NULL;
8436 tdep->sc_pc_offset = -1;
8437 tdep->sc_sp_offset = -1;
8438
8439 tdep->xsave_xcr0_offset = -1;
8440
8441 tdep->record_regmap = i386_record_regmap;
8442
8443 set_gdbarch_long_long_align_bit (gdbarch, 32);
8444
8445 /* The format used for `long double' on almost all i386 targets is
8446 the i387 extended floating-point format. In fact, of all targets
8447 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8448 on having a `long double' that's not `long' at all. */
8449 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8450
8451 /* Although the i387 extended floating-point has only 80 significant
8452 bits, a `long double' actually takes up 96, probably to enforce
8453 alignment. */
8454 set_gdbarch_long_double_bit (gdbarch, 96);
8455
8456 /* Support for floating-point data type variants. */
8457 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8458
8459 /* Register numbers of various important registers. */
8460 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8461 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8462 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8463 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8464
8465 /* NOTE: kettenis/20040418: GCC does have two possible register
8466 numbering schemes on the i386: dbx and SVR4. These schemes
8467 differ in how they number %ebp, %esp, %eflags, and the
8468 floating-point registers, and are implemented by the arrays
8469 dbx_register_map[] and svr4_dbx_register_map in
8470 gcc/config/i386.c. GCC also defines a third numbering scheme in
8471 gcc/config/i386.c, which it designates as the "default" register
8472 map used in 64bit mode. This last register numbering scheme is
8473 implemented in dbx64_register_map, and is used for AMD64; see
8474 amd64-tdep.c.
8475
8476 Currently, each GCC i386 target always uses the same register
8477 numbering scheme across all its supported debugging formats
8478 i.e. SDB (COFF), stabs and DWARF 2. This is because
8479 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8480 DBX_REGISTER_NUMBER macro which is defined by each target's
8481 respective config header in a manner independent of the requested
8482 output debugging format.
8483
8484 This does not match the arrangement below, which presumes that
8485 the SDB and stabs numbering schemes differ from the DWARF and
8486 DWARF 2 ones. The reason for this arrangement is that it is
8487 likely to get the numbering scheme for the target's
8488 default/native debug format right. For targets where GCC is the
8489 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8490 targets where the native toolchain uses a different numbering
8491 scheme for a particular debug format (stabs-in-ELF on Solaris)
8492 the defaults below will have to be overridden, like
8493 i386_elf_init_abi() does. */
8494
8495 /* Use the dbx register numbering scheme for stabs and COFF. */
8496 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8497 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8498
8499 /* Use the SVR4 register numbering scheme for DWARF 2. */
8500 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8501
8502 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8503 be in use on any of the supported i386 targets. */
8504
8505 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8506
8507 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8508
8509 /* Call dummy code. */
8510 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8511 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8512 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8513 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8514
8515 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8516 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8517 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8518
8519 set_gdbarch_return_value (gdbarch, i386_return_value);
8520
8521 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8522
8523 /* Stack grows downward. */
8524 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8525
8526 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8527 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8528
8529 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8530 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8531
8532 set_gdbarch_frame_args_skip (gdbarch, 8);
8533
8534 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8535
8536 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8537
8538 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8539
8540 /* Add the i386 register groups. */
8541 i386_add_reggroups (gdbarch);
8542 tdep->register_reggroup_p = i386_register_reggroup_p;
8543
8544 /* Helper for function argument information. */
8545 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8546
8547 /* Hook the function epilogue frame unwinder. This unwinder is
8548 appended to the list first, so that it supercedes the DWARF
8549 unwinder in function epilogues (where the DWARF unwinder
8550 currently fails). */
8551 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8552
8553 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8554 to the list before the prologue-based unwinders, so that DWARF
8555 CFI info will be used if it is available. */
8556 dwarf2_append_unwinders (gdbarch);
8557
8558 frame_base_set_default (gdbarch, &i386_frame_base);
8559
8560 /* Pseudo registers may be changed by amd64_init_abi. */
8561 set_gdbarch_pseudo_register_read_value (gdbarch,
8562 i386_pseudo_register_read_value);
8563 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8564 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8565 i386_ax_pseudo_register_collect);
8566
8567 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8568 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8569
8570 /* Override the normal target description method to make the AVX
8571 upper halves anonymous. */
8572 set_gdbarch_register_name (gdbarch, i386_register_name);
8573
8574 /* Even though the default ABI only includes general-purpose registers,
8575 floating-point registers and the SSE registers, we have to leave a
8576 gap for the upper AVX, MPX and AVX512 registers. */
8577 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8578
8579 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8580
8581 /* Get the x86 target description from INFO. */
8582 tdesc = info.target_desc;
8583 if (! tdesc_has_registers (tdesc))
8584 tdesc = tdesc_i386;
8585 tdep->tdesc = tdesc;
8586
8587 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8588 tdep->register_names = i386_register_names;
8589
8590 /* No upper YMM registers. */
8591 tdep->ymmh_register_names = NULL;
8592 tdep->ymm0h_regnum = -1;
8593
8594 /* No upper ZMM registers. */
8595 tdep->zmmh_register_names = NULL;
8596 tdep->zmm0h_regnum = -1;
8597
8598 /* No high XMM registers. */
8599 tdep->xmm_avx512_register_names = NULL;
8600 tdep->xmm16_regnum = -1;
8601
8602 /* No upper YMM16-31 registers. */
8603 tdep->ymm16h_register_names = NULL;
8604 tdep->ymm16h_regnum = -1;
8605
8606 tdep->num_byte_regs = 8;
8607 tdep->num_word_regs = 8;
8608 tdep->num_dword_regs = 0;
8609 tdep->num_mmx_regs = 8;
8610 tdep->num_ymm_regs = 0;
8611
8612 /* No MPX registers. */
8613 tdep->bnd0r_regnum = -1;
8614 tdep->bndcfgu_regnum = -1;
8615
8616 /* No AVX512 registers. */
8617 tdep->k0_regnum = -1;
8618 tdep->num_zmm_regs = 0;
8619 tdep->num_ymm_avx512_regs = 0;
8620 tdep->num_xmm_avx512_regs = 0;
8621
8622 /* No PKEYS registers */
8623 tdep->pkru_regnum = -1;
8624 tdep->num_pkeys_regs = 0;
8625
8626 tdesc_data = tdesc_data_alloc ();
8627
8628 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8629
8630 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8631
8632 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8633 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8634 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8635
8636 /* Hook in ABI-specific overrides, if they have been registered.
8637 Note: If INFO specifies a 64 bit arch, this is where we turn
8638 a 32-bit i386 into a 64-bit amd64. */
8639 info.tdep_info = tdesc_data;
8640 gdbarch_init_osabi (info, gdbarch);
8641
8642 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8643 {
8644 tdesc_data_cleanup (tdesc_data);
8645 xfree (tdep);
8646 gdbarch_free (gdbarch);
8647 return NULL;
8648 }
8649
8650 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8651
8652 /* Wire in pseudo registers. Number of pseudo registers may be
8653 changed. */
8654 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8655 + tdep->num_word_regs
8656 + tdep->num_dword_regs
8657 + tdep->num_mmx_regs
8658 + tdep->num_ymm_regs
8659 + num_bnd_cooked
8660 + tdep->num_ymm_avx512_regs
8661 + tdep->num_zmm_regs));
8662
8663 /* Target description may be changed. */
8664 tdesc = tdep->tdesc;
8665
8666 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8667
8668 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8669 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8670
8671 /* Make %al the first pseudo-register. */
8672 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8673 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8674
8675 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8676 if (tdep->num_dword_regs)
8677 {
8678 /* Support dword pseudo-register if it hasn't been disabled. */
8679 tdep->eax_regnum = ymm0_regnum;
8680 ymm0_regnum += tdep->num_dword_regs;
8681 }
8682 else
8683 tdep->eax_regnum = -1;
8684
8685 mm0_regnum = ymm0_regnum;
8686 if (tdep->num_ymm_regs)
8687 {
8688 /* Support YMM pseudo-register if it is available. */
8689 tdep->ymm0_regnum = ymm0_regnum;
8690 mm0_regnum += tdep->num_ymm_regs;
8691 }
8692 else
8693 tdep->ymm0_regnum = -1;
8694
8695 if (tdep->num_ymm_avx512_regs)
8696 {
8697 /* Support YMM16-31 pseudo registers if available. */
8698 tdep->ymm16_regnum = mm0_regnum;
8699 mm0_regnum += tdep->num_ymm_avx512_regs;
8700 }
8701 else
8702 tdep->ymm16_regnum = -1;
8703
8704 if (tdep->num_zmm_regs)
8705 {
8706 /* Support ZMM pseudo-register if it is available. */
8707 tdep->zmm0_regnum = mm0_regnum;
8708 mm0_regnum += tdep->num_zmm_regs;
8709 }
8710 else
8711 tdep->zmm0_regnum = -1;
8712
8713 bnd0_regnum = mm0_regnum;
8714 if (tdep->num_mmx_regs != 0)
8715 {
8716 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8717 tdep->mm0_regnum = mm0_regnum;
8718 bnd0_regnum += tdep->num_mmx_regs;
8719 }
8720 else
8721 tdep->mm0_regnum = -1;
8722
8723 if (tdep->bnd0r_regnum > 0)
8724 tdep->bnd0_regnum = bnd0_regnum;
8725 else
8726 tdep-> bnd0_regnum = -1;
8727
8728 /* Hook in the legacy prologue-based unwinders last (fallback). */
8729 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8730 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8731 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8732
8733 /* If we have a register mapping, enable the generic core file
8734 support, unless it has already been enabled. */
8735 if (tdep->gregset_reg_offset
8736 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8737 set_gdbarch_iterate_over_regset_sections
8738 (gdbarch, i386_iterate_over_regset_sections);
8739
8740 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8741 i386_fast_tracepoint_valid_at);
8742
8743 return gdbarch;
8744 }
8745
8746 static enum gdb_osabi
8747 i386_coff_osabi_sniffer (bfd *abfd)
8748 {
8749 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8750 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8751 return GDB_OSABI_GO32;
8752
8753 return GDB_OSABI_UNKNOWN;
8754 }
8755 \f
8756
8757 /* Return the target description for a specified XSAVE feature mask. */
8758
8759 const struct target_desc *
8760 i386_target_description (uint64_t xcr0)
8761 {
8762 switch (xcr0 & X86_XSTATE_ALL_MASK)
8763 {
8764 case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
8765 return tdesc_i386_avx_mpx_avx512_pku;
8766 case X86_XSTATE_AVX_AVX512_MASK:
8767 return tdesc_i386_avx_avx512;
8768 case X86_XSTATE_AVX_MPX_MASK:
8769 return tdesc_i386_avx_mpx;
8770 case X86_XSTATE_MPX_MASK:
8771 return tdesc_i386_mpx;
8772 case X86_XSTATE_AVX_MASK:
8773 return tdesc_i386_avx;
8774 default:
8775 return tdesc_i386;
8776 }
8777 }
8778
8779 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8780
8781 /* Find the bound directory base address. */
8782
8783 static unsigned long
8784 i386_mpx_bd_base (void)
8785 {
8786 struct regcache *rcache;
8787 struct gdbarch_tdep *tdep;
8788 ULONGEST ret;
8789 enum register_status regstatus;
8790
8791 rcache = get_current_regcache ();
8792 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8793
8794 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8795
8796 if (regstatus != REG_VALID)
8797 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8798
8799 return ret & MPX_BASE_MASK;
8800 }
8801
8802 int
8803 i386_mpx_enabled (void)
8804 {
8805 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8806 const struct target_desc *tdesc = tdep->tdesc;
8807
8808 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8809 }
8810
8811 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8812 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8813 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8814 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8815
8816 /* Find the bound table entry given the pointer location and the base
8817 address of the table. */
8818
8819 static CORE_ADDR
8820 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8821 {
8822 CORE_ADDR offset1;
8823 CORE_ADDR offset2;
8824 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8825 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8826 CORE_ADDR bd_entry_addr;
8827 CORE_ADDR bt_addr;
8828 CORE_ADDR bd_entry;
8829 struct gdbarch *gdbarch = get_current_arch ();
8830 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8831
8832
8833 if (gdbarch_ptr_bit (gdbarch) == 64)
8834 {
8835 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8836 bd_ptr_r_shift = 20;
8837 bd_ptr_l_shift = 3;
8838 bt_select_r_shift = 3;
8839 bt_select_l_shift = 5;
8840 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8841
8842 if ( sizeof (CORE_ADDR) == 4)
8843 error (_("bound table examination not supported\
8844 for 64-bit process with 32-bit GDB"));
8845 }
8846 else
8847 {
8848 mpx_bd_mask = MPX_BD_MASK_32;
8849 bd_ptr_r_shift = 12;
8850 bd_ptr_l_shift = 2;
8851 bt_select_r_shift = 2;
8852 bt_select_l_shift = 4;
8853 bt_mask = MPX_BT_MASK_32;
8854 }
8855
8856 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8857 bd_entry_addr = bd_base + offset1;
8858 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8859
8860 if ((bd_entry & 0x1) == 0)
8861 error (_("Invalid bounds directory entry at %s."),
8862 paddress (get_current_arch (), bd_entry_addr));
8863
8864 /* Clearing status bit. */
8865 bd_entry--;
8866 bt_addr = bd_entry & ~bt_select_r_shift;
8867 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8868
8869 return bt_addr + offset2;
8870 }
8871
8872 /* Print routine for the mpx bounds. */
8873
8874 static void
8875 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8876 {
8877 struct ui_out *uiout = current_uiout;
8878 LONGEST size;
8879 struct gdbarch *gdbarch = get_current_arch ();
8880 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8881 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8882
8883 if (bounds_in_map == 1)
8884 {
8885 uiout->text ("Null bounds on map:");
8886 uiout->text (" pointer value = ");
8887 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8888 uiout->text (".");
8889 uiout->text ("\n");
8890 }
8891 else
8892 {
8893 uiout->text ("{lbound = ");
8894 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8895 uiout->text (", ubound = ");
8896
8897 /* The upper bound is stored in 1's complement. */
8898 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8899 uiout->text ("}: pointer value = ");
8900 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8901
8902 if (gdbarch_ptr_bit (gdbarch) == 64)
8903 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8904 else
8905 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8906
8907 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8908 -1 represents in this sense full memory access, and there is no need
8909 one to the size. */
8910
8911 size = (size > -1 ? size + 1 : size);
8912 uiout->text (", size = ");
8913 uiout->field_fmt ("size", "%s", plongest (size));
8914
8915 uiout->text (", metadata = ");
8916 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8917 uiout->text ("\n");
8918 }
8919 }
8920
8921 /* Implement the command "show mpx bound". */
8922
8923 static void
8924 i386_mpx_info_bounds (char *args, int from_tty)
8925 {
8926 CORE_ADDR bd_base = 0;
8927 CORE_ADDR addr;
8928 CORE_ADDR bt_entry_addr = 0;
8929 CORE_ADDR bt_entry[4];
8930 int i;
8931 struct gdbarch *gdbarch = get_current_arch ();
8932 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8933
8934 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8935 || !i386_mpx_enabled ())
8936 {
8937 printf_unfiltered (_("Intel Memory Protection Extensions not "
8938 "supported on this target.\n"));
8939 return;
8940 }
8941
8942 if (args == NULL)
8943 {
8944 printf_unfiltered (_("Address of pointer variable expected.\n"));
8945 return;
8946 }
8947
8948 addr = parse_and_eval_address (args);
8949
8950 bd_base = i386_mpx_bd_base ();
8951 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8952
8953 memset (bt_entry, 0, sizeof (bt_entry));
8954
8955 for (i = 0; i < 4; i++)
8956 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8957 + i * TYPE_LENGTH (data_ptr_type),
8958 data_ptr_type);
8959
8960 i386_mpx_print_bounds (bt_entry);
8961 }
8962
8963 /* Implement the command "set mpx bound". */
8964
8965 static void
8966 i386_mpx_set_bounds (char *args, int from_tty)
8967 {
8968 CORE_ADDR bd_base = 0;
8969 CORE_ADDR addr, lower, upper;
8970 CORE_ADDR bt_entry_addr = 0;
8971 CORE_ADDR bt_entry[2];
8972 const char *input = args;
8973 int i;
8974 struct gdbarch *gdbarch = get_current_arch ();
8975 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8976 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8977
8978 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8979 || !i386_mpx_enabled ())
8980 error (_("Intel Memory Protection Extensions not supported\
8981 on this target."));
8982
8983 if (args == NULL)
8984 error (_("Pointer value expected."));
8985
8986 addr = value_as_address (parse_to_comma_and_eval (&input));
8987
8988 if (input[0] == ',')
8989 ++input;
8990 if (input[0] == '\0')
8991 error (_("wrong number of arguments: missing lower and upper bound."));
8992 lower = value_as_address (parse_to_comma_and_eval (&input));
8993
8994 if (input[0] == ',')
8995 ++input;
8996 if (input[0] == '\0')
8997 error (_("Wrong number of arguments; Missing upper bound."));
8998 upper = value_as_address (parse_to_comma_and_eval (&input));
8999
9000 bd_base = i386_mpx_bd_base ();
9001 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9002 for (i = 0; i < 2; i++)
9003 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9004 + i * TYPE_LENGTH (data_ptr_type),
9005 data_ptr_type);
9006 bt_entry[0] = (uint64_t) lower;
9007 bt_entry[1] = ~(uint64_t) upper;
9008
9009 for (i = 0; i < 2; i++)
9010 write_memory_unsigned_integer (bt_entry_addr
9011 + i * TYPE_LENGTH (data_ptr_type),
9012 TYPE_LENGTH (data_ptr_type), byte_order,
9013 bt_entry[i]);
9014 }
9015
9016 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9017
9018 /* Helper function for the CLI commands. */
9019
9020 static void
9021 set_mpx_cmd (char *args, int from_tty)
9022 {
9023 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
9024 }
9025
9026 /* Helper function for the CLI commands. */
9027
9028 static void
9029 show_mpx_cmd (char *args, int from_tty)
9030 {
9031 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9032 }
9033
9034 /* Provide a prototype to silence -Wmissing-prototypes. */
9035 void _initialize_i386_tdep (void);
9036
9037 void
9038 _initialize_i386_tdep (void)
9039 {
9040 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9041
9042 /* Add the variable that controls the disassembly flavor. */
9043 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9044 &disassembly_flavor, _("\
9045 Set the disassembly flavor."), _("\
9046 Show the disassembly flavor."), _("\
9047 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9048 NULL,
9049 NULL, /* FIXME: i18n: */
9050 &setlist, &showlist);
9051
9052 /* Add the variable that controls the convention for returning
9053 structs. */
9054 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9055 &struct_convention, _("\
9056 Set the convention for returning small structs."), _("\
9057 Show the convention for returning small structs."), _("\
9058 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9059 is \"default\"."),
9060 NULL,
9061 NULL, /* FIXME: i18n: */
9062 &setlist, &showlist);
9063
9064 /* Add "mpx" prefix for the set commands. */
9065
9066 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9067 Set Intel Memory Protection Extensions specific variables."),
9068 &mpx_set_cmdlist, "set mpx ",
9069 0 /* allow-unknown */, &setlist);
9070
9071 /* Add "mpx" prefix for the show commands. */
9072
9073 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9074 Show Intel Memory Protection Extensions specific variables."),
9075 &mpx_show_cmdlist, "show mpx ",
9076 0 /* allow-unknown */, &showlist);
9077
9078 /* Add "bound" command for the show mpx commands list. */
9079
9080 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9081 "Show the memory bounds for a given array/pointer storage\
9082 in the bound table.",
9083 &mpx_show_cmdlist);
9084
9085 /* Add "bound" command for the set mpx commands list. */
9086
9087 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9088 "Set the memory bounds for a given array/pointer storage\
9089 in the bound table.",
9090 &mpx_set_cmdlist);
9091
9092 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
9093 i386_coff_osabi_sniffer);
9094
9095 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9096 i386_svr4_init_abi);
9097 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
9098 i386_go32_init_abi);
9099
9100 /* Initialize the i386-specific register groups. */
9101 i386_init_reggroups ();
9102
9103 /* Initialize the standard target descriptions. */
9104 initialize_tdesc_i386 ();
9105 initialize_tdesc_i386_mmx ();
9106 initialize_tdesc_i386_avx ();
9107 initialize_tdesc_i386_mpx ();
9108 initialize_tdesc_i386_avx_mpx ();
9109 initialize_tdesc_i386_avx_avx512 ();
9110 initialize_tdesc_i386_avx_mpx_avx512_pku ();
9111
9112 /* Tell remote stub that we support XML target description. */
9113 register_remote_support_xml ("i386");
9114 }
This page took 0.22552 seconds and 4 git commands to generate.