2003-06-14 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "floatformat.h"
30 #include "frame.h"
31 #include "frame-base.h"
32 #include "frame-unwind.h"
33 #include "inferior.h"
34 #include "gdbcmd.h"
35 #include "gdbcore.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44
45 #include "gdb_assert.h"
46 #include "gdb_string.h"
47
48 #include "i386-tdep.h"
49 #include "i387-tdep.h"
50
51 /* Names of the registers. The first 10 registers match the register
52 numbering scheme used by GCC for stabs and DWARF. */
53
54 static char *i386_register_names[] =
55 {
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67 };
68
69 static const int i386_num_register_names =
70 (sizeof (i386_register_names) / sizeof (*i386_register_names));
71
72 /* MMX registers. */
73
74 static char *i386_mmx_names[] =
75 {
76 "mm0", "mm1", "mm2", "mm3",
77 "mm4", "mm5", "mm6", "mm7"
78 };
79
80 static const int i386_num_mmx_regs =
81 (sizeof (i386_mmx_names) / sizeof (i386_mmx_names[0]));
82
83 #define MM0_REGNUM NUM_REGS
84
85 static int
86 i386_mmx_regnum_p (int regnum)
87 {
88 return (regnum >= MM0_REGNUM
89 && regnum < MM0_REGNUM + i386_num_mmx_regs);
90 }
91
92 /* FP register? */
93
94 int
95 i386_fp_regnum_p (int regnum)
96 {
97 return (regnum < NUM_REGS
98 && (FP0_REGNUM && FP0_REGNUM <= regnum && regnum < FPC_REGNUM));
99 }
100
101 int
102 i386_fpc_regnum_p (int regnum)
103 {
104 return (regnum < NUM_REGS
105 && (FPC_REGNUM <= regnum && regnum < XMM0_REGNUM));
106 }
107
108 /* SSE register? */
109
110 int
111 i386_sse_regnum_p (int regnum)
112 {
113 return (regnum < NUM_REGS
114 && (XMM0_REGNUM <= regnum && regnum < MXCSR_REGNUM));
115 }
116
117 int
118 i386_mxcsr_regnum_p (int regnum)
119 {
120 return (regnum < NUM_REGS
121 && regnum == MXCSR_REGNUM);
122 }
123
124 /* Return the name of register REG. */
125
126 const char *
127 i386_register_name (int reg)
128 {
129 if (i386_mmx_regnum_p (reg))
130 return i386_mmx_names[reg - MM0_REGNUM];
131
132 if (reg >= 0 && reg < i386_num_register_names)
133 return i386_register_names[reg];
134
135 return NULL;
136 }
137
138 /* Convert stabs register number REG to the appropriate register
139 number used by GDB. */
140
141 static int
142 i386_stab_reg_to_regnum (int reg)
143 {
144 /* This implements what GCC calls the "default" register map. */
145 if (reg >= 0 && reg <= 7)
146 {
147 /* General-purpose registers. */
148 return reg;
149 }
150 else if (reg >= 12 && reg <= 19)
151 {
152 /* Floating-point registers. */
153 return reg - 12 + FP0_REGNUM;
154 }
155 else if (reg >= 21 && reg <= 28)
156 {
157 /* SSE registers. */
158 return reg - 21 + XMM0_REGNUM;
159 }
160 else if (reg >= 29 && reg <= 36)
161 {
162 /* MMX registers. */
163 return reg - 29 + MM0_REGNUM;
164 }
165
166 /* This will hopefully provoke a warning. */
167 return NUM_REGS + NUM_PSEUDO_REGS;
168 }
169
170 /* Convert DWARF register number REG to the appropriate register
171 number used by GDB. */
172
173 static int
174 i386_dwarf_reg_to_regnum (int reg)
175 {
176 /* The DWARF register numbering includes %eip and %eflags, and
177 numbers the floating point registers differently. */
178 if (reg >= 0 && reg <= 9)
179 {
180 /* General-purpose registers. */
181 return reg;
182 }
183 else if (reg >= 11 && reg <= 18)
184 {
185 /* Floating-point registers. */
186 return reg - 11 + FP0_REGNUM;
187 }
188 else if (reg >= 21)
189 {
190 /* The SSE and MMX registers have identical numbers as in stabs. */
191 return i386_stab_reg_to_regnum (reg);
192 }
193
194 /* This will hopefully provoke a warning. */
195 return NUM_REGS + NUM_PSEUDO_REGS;
196 }
197 \f
198
199 /* This is the variable that is set with "set disassembly-flavor", and
200 its legitimate values. */
201 static const char att_flavor[] = "att";
202 static const char intel_flavor[] = "intel";
203 static const char *valid_flavors[] =
204 {
205 att_flavor,
206 intel_flavor,
207 NULL
208 };
209 static const char *disassembly_flavor = att_flavor;
210 \f
211
212 /* Use the program counter to determine the contents and size of a
213 breakpoint instruction. Return a pointer to a string of bytes that
214 encode a breakpoint instruction, store the length of the string in
215 *LEN and optionally adjust *PC to point to the correct memory
216 location for inserting the breakpoint.
217
218 On the i386 we have a single breakpoint that fits in a single byte
219 and can be inserted anywhere.
220
221 This function is 64-bit safe. */
222
223 static const unsigned char *
224 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
225 {
226 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
227
228 *len = sizeof (break_insn);
229 return break_insn;
230 }
231 \f
232 #ifdef I386_REGNO_TO_SYMMETRY
233 #error "The Sequent Symmetry is no longer supported."
234 #endif
235
236 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
237 and %esp "belong" to the calling function. Therefore these
238 registers should be saved if they're going to be modified. */
239
240 /* The maximum number of saved registers. This should include all
241 registers mentioned above, and %eip. */
242 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
243
244 struct i386_frame_cache
245 {
246 /* Base address. */
247 CORE_ADDR base;
248 CORE_ADDR sp_offset;
249 CORE_ADDR pc;
250
251 /* Saved registers. */
252 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
253 CORE_ADDR saved_sp;
254 int pc_in_eax;
255
256 /* Stack space reserved for local variables. */
257 long locals;
258 };
259
260 /* Allocate and initialize a frame cache. */
261
262 static struct i386_frame_cache *
263 i386_alloc_frame_cache (void)
264 {
265 struct i386_frame_cache *cache;
266 int i;
267
268 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
269
270 /* Base address. */
271 cache->base = 0;
272 cache->sp_offset = -4;
273 cache->pc = 0;
274
275 /* Saved registers. We initialize these to -1 since zero is a valid
276 offset (that's where %ebp is supposed to be stored). */
277 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
278 cache->saved_regs[i] = -1;
279 cache->saved_sp = 0;
280 cache->pc_in_eax = 0;
281
282 /* Frameless until proven otherwise. */
283 cache->locals = -1;
284
285 return cache;
286 }
287
288 /* If the instruction at PC is a jump, return the address of its
289 target. Otherwise, return PC. */
290
291 static CORE_ADDR
292 i386_follow_jump (CORE_ADDR pc)
293 {
294 unsigned char op;
295 long delta = 0;
296 int data16 = 0;
297
298 op = read_memory_unsigned_integer (pc, 1);
299 if (op == 0x66)
300 {
301 data16 = 1;
302 op = read_memory_unsigned_integer (pc + 1, 1);
303 }
304
305 switch (op)
306 {
307 case 0xe9:
308 /* Relative jump: if data16 == 0, disp32, else disp16. */
309 if (data16)
310 {
311 delta = read_memory_integer (pc + 2, 2);
312
313 /* Include the size of the jmp instruction (including the
314 0x66 prefix). */
315 delta += 4;
316 }
317 else
318 {
319 delta = read_memory_integer (pc + 1, 4);
320
321 /* Include the size of the jmp instruction. */
322 delta += 5;
323 }
324 break;
325 case 0xeb:
326 /* Relative jump, disp8 (ignore data16). */
327 delta = read_memory_integer (pc + data16 + 1, 1);
328
329 delta += data16 + 2;
330 break;
331 }
332
333 return pc + delta;
334 }
335
336 /* Check whether PC points at a prologue for a function returning a
337 structure or union. If so, it updates CACHE and returns the
338 address of the first instruction after the code sequence that
339 removes the "hidden" argument from the stack or CURRENT_PC,
340 whichever is smaller. Otherwise, return PC. */
341
342 static CORE_ADDR
343 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
344 struct i386_frame_cache *cache)
345 {
346 /* Functions that return a structure or union start with:
347
348 popl %eax 0x58
349 xchgl %eax, (%esp) 0x87 0x04 0x24
350 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
351
352 (the System V compiler puts out the second `xchg' instruction,
353 and the assembler doesn't try to optimize it, so the 'sib' form
354 gets generated). This sequence is used to get the address of the
355 return buffer for a function that returns a structure. */
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358 unsigned char buf[4];
359 unsigned char op;
360
361 if (current_pc <= pc)
362 return pc;
363
364 op = read_memory_unsigned_integer (pc, 1);
365
366 if (op != 0x58) /* popl %eax */
367 return pc;
368
369 read_memory (pc + 1, buf, 4);
370 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
371 return pc;
372
373 if (current_pc == pc)
374 {
375 cache->sp_offset += 4;
376 return current_pc;
377 }
378
379 if (current_pc == pc + 1)
380 {
381 cache->pc_in_eax = 1;
382 return current_pc;
383 }
384
385 if (buf[1] == proto1[1])
386 return pc + 4;
387 else
388 return pc + 5;
389 }
390
391 static CORE_ADDR
392 i386_skip_probe (CORE_ADDR pc)
393 {
394 /* A function may start with
395
396 pushl constant
397 call _probe
398 addl $4, %esp
399
400 followed by
401
402 pushl %ebp
403
404 etc. */
405 unsigned char buf[8];
406 unsigned char op;
407
408 op = read_memory_unsigned_integer (pc, 1);
409
410 if (op == 0x68 || op == 0x6a)
411 {
412 int delta;
413
414 /* Skip past the `pushl' instruction; it has either a one-byte or a
415 four-byte operand, depending on the opcode. */
416 if (op == 0x68)
417 delta = 5;
418 else
419 delta = 2;
420
421 /* Read the following 8 bytes, which should be `call _probe' (6
422 bytes) followed by `addl $4,%esp' (2 bytes). */
423 read_memory (pc + delta, buf, sizeof (buf));
424 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
425 pc += delta + sizeof (buf);
426 }
427
428 return pc;
429 }
430
431 /* Check whether PC points at a code that sets up a new stack frame.
432 If so, it updates CACHE and returns the address of the first
433 instruction after the sequence that sets removes the "hidden"
434 argument from the stack or CURRENT_PC, whichever is smaller.
435 Otherwise, return PC. */
436
437 static CORE_ADDR
438 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
439 struct i386_frame_cache *cache)
440 {
441 unsigned char op;
442
443 if (current_pc <= pc)
444 return current_pc;
445
446 op = read_memory_unsigned_integer (pc, 1);
447
448 if (op == 0x55) /* pushl %ebp */
449 {
450 /* Take into account that we've executed the `pushl %ebp' that
451 starts this instruction sequence. */
452 cache->saved_regs[I386_EBP_REGNUM] = 0;
453 cache->sp_offset += 4;
454
455 /* If that's all, return now. */
456 if (current_pc <= pc + 1)
457 return current_pc;
458
459 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
460 op = read_memory_unsigned_integer (pc + 1, 1);
461 switch (op)
462 {
463 case 0x8b:
464 if (read_memory_unsigned_integer (pc + 2, 1) != 0xec)
465 return pc + 1;
466 break;
467 case 0x89:
468 if (read_memory_unsigned_integer (pc + 2, 1) != 0xe5)
469 return pc + 1;
470 break;
471 default:
472 return pc + 1;
473 }
474
475 /* OK, we actually have a frame. We just don't know how large it is
476 yet. Set its size to zero. We'll adjust it if necessary. */
477 cache->locals = 0;
478
479 /* If that's all, return now. */
480 if (current_pc <= pc + 3)
481 return current_pc;
482
483 /* Check for stack adjustment
484
485 subl $XXX, %esp
486
487 NOTE: You can't subtract a 16 bit immediate from a 32 bit
488 reg, so we don't have to worry about a data16 prefix. */
489 op = read_memory_unsigned_integer (pc + 3, 1);
490 if (op == 0x83)
491 {
492 /* `subl' with 8 bit immediate. */
493 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
494 /* Some instruction starting with 0x83 other than `subl'. */
495 return pc + 3;
496
497 /* `subl' with signed byte immediate (though it wouldn't make
498 sense to be negative). */
499 cache->locals = read_memory_integer (pc + 5, 1);
500 return pc + 6;
501 }
502 else if (op == 0x81)
503 {
504 /* Maybe it is `subl' with a 32 bit immedediate. */
505 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
506 /* Some instruction starting with 0x81 other than `subl'. */
507 return pc + 3;
508
509 /* It is `subl' with a 32 bit immediate. */
510 cache->locals = read_memory_integer (pc + 5, 4);
511 return pc + 9;
512 }
513 else
514 {
515 /* Some instruction other than `subl'. */
516 return pc + 3;
517 }
518 }
519 else if (op == 0xc8) /* enter $XXX */
520 {
521 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
522 return pc + 4;
523 }
524
525 return pc;
526 }
527
528 /* Check whether PC points at code that saves registers on the stack.
529 If so, it updates CACHE and returns the address of the first
530 instruction after the register saves or CURRENT_PC, whichever is
531 smaller. Otherwise, return PC. */
532
533 static CORE_ADDR
534 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
535 struct i386_frame_cache *cache)
536 {
537 if (cache->locals >= 0)
538 {
539 CORE_ADDR offset;
540 unsigned char op;
541 int i;
542
543 offset = - 4 - cache->locals;
544 for (i = 0; i < 8 && pc < current_pc; i++)
545 {
546 op = read_memory_unsigned_integer (pc, 1);
547 if (op < 0x50 || op > 0x57)
548 break;
549
550 cache->saved_regs[op - 0x50] = offset;
551 offset -= 4;
552 pc++;
553 }
554 }
555
556 return pc;
557 }
558
559 /* Do a full analysis of the prologue at PC and update CACHE
560 accordingly. Bail out early if CURRENT_PC is reached. Return the
561 address where the analysis stopped.
562
563 We handle these cases:
564
565 The startup sequence can be at the start of the function, or the
566 function can start with a branch to startup code at the end.
567
568 %ebp can be set up with either the 'enter' instruction, or "pushl
569 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
570 once used in the System V compiler).
571
572 Local space is allocated just below the saved %ebp by either the
573 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
574 bit unsigned argument for space to allocate, and the 'addl'
575 instruction could have either a signed byte, or 32 bit immediate.
576
577 Next, the registers used by this function are pushed. With the
578 System V compiler they will always be in the order: %edi, %esi,
579 %ebx (and sometimes a harmless bug causes it to also save but not
580 restore %eax); however, the code below is willing to see the pushes
581 in any order, and will handle up to 8 of them.
582
583 If the setup sequence is at the end of the function, then the next
584 instruction will be a branch back to the start. */
585
586 static CORE_ADDR
587 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
588 struct i386_frame_cache *cache)
589 {
590 pc = i386_follow_jump (pc);
591 pc = i386_analyze_struct_return (pc, current_pc, cache);
592 pc = i386_skip_probe (pc);
593 pc = i386_analyze_frame_setup (pc, current_pc, cache);
594 return i386_analyze_register_saves (pc, current_pc, cache);
595 }
596
597 /* Return PC of first real instruction. */
598
599 static CORE_ADDR
600 i386_skip_prologue (CORE_ADDR start_pc)
601 {
602 static unsigned char pic_pat[6] =
603 {
604 0xe8, 0, 0, 0, 0, /* call 0x0 */
605 0x5b, /* popl %ebx */
606 };
607 struct i386_frame_cache cache;
608 CORE_ADDR pc;
609 unsigned char op;
610 int i;
611
612 cache.locals = -1;
613 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
614 if (cache.locals < 0)
615 return start_pc;
616
617 /* Found valid frame setup. */
618
619 /* The native cc on SVR4 in -K PIC mode inserts the following code
620 to get the address of the global offset table (GOT) into register
621 %ebx:
622
623 call 0x0
624 popl %ebx
625 movl %ebx,x(%ebp) (optional)
626 addl y,%ebx
627
628 This code is with the rest of the prologue (at the end of the
629 function), so we have to skip it to get to the first real
630 instruction at the start of the function. */
631
632 for (i = 0; i < 6; i++)
633 {
634 op = read_memory_unsigned_integer (pc + i, 1);
635 if (pic_pat[i] != op)
636 break;
637 }
638 if (i == 6)
639 {
640 int delta = 6;
641
642 op = read_memory_unsigned_integer (pc + delta, 1);
643
644 if (op == 0x89) /* movl %ebx, x(%ebp) */
645 {
646 op = read_memory_unsigned_integer (pc + delta + 1, 1);
647
648 if (op == 0x5d) /* One byte offset from %ebp. */
649 delta += 3;
650 else if (op == 0x9d) /* Four byte offset from %ebp. */
651 delta += 6;
652 else /* Unexpected instruction. */
653 delta = 0;
654
655 op = read_memory_unsigned_integer (pc + delta, 1);
656 }
657
658 /* addl y,%ebx */
659 if (delta > 0 && op == 0x81
660 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
661 {
662 pc += delta + 6;
663 }
664 }
665
666 return i386_follow_jump (pc);
667 }
668
669 /* This function is 64-bit safe. */
670
671 static CORE_ADDR
672 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
673 {
674 char buf[8];
675
676 frame_unwind_register (next_frame, PC_REGNUM, buf);
677 return extract_typed_address (buf, builtin_type_void_func_ptr);
678 }
679 \f
680
681 /* Normal frames. */
682
683 static struct i386_frame_cache *
684 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
685 {
686 struct i386_frame_cache *cache;
687 char buf[4];
688 int i;
689
690 if (*this_cache)
691 return *this_cache;
692
693 cache = i386_alloc_frame_cache ();
694 *this_cache = cache;
695
696 /* In principle, for normal frames, %ebp holds the frame pointer,
697 which holds the base address for the current stack frame.
698 However, for functions that don't need it, the frame pointer is
699 optional. For these "frameless" functions the frame pointer is
700 actually the frame pointer of the calling frame. Signal
701 trampolines are just a special case of a "frameless" function.
702 They (usually) share their frame pointer with the frame that was
703 in progress when the signal occurred. */
704
705 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
706 cache->base = extract_unsigned_integer (buf, 4);
707 if (cache->base == 0)
708 return cache;
709
710 /* For normal frames, %eip is stored at 4(%ebp). */
711 cache->saved_regs[I386_EIP_REGNUM] = 4;
712
713 cache->pc = frame_func_unwind (next_frame);
714 if (cache->pc != 0)
715 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
716
717 if (cache->locals < 0)
718 {
719 /* We didn't find a valid frame, which means that CACHE->base
720 currently holds the frame pointer for our calling frame. If
721 we're at the start of a function, or somewhere half-way its
722 prologue, the function's frame probably hasn't been fully
723 setup yet. Try to reconstruct the base address for the stack
724 frame by looking at the stack pointer. For truly "frameless"
725 functions this might work too. */
726
727 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
728 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
729 }
730
731 /* Now that we have the base address for the stack frame we can
732 calculate the value of %esp in the calling frame. */
733 cache->saved_sp = cache->base + 8;
734
735 /* Adjust all the saved registers such that they contain addresses
736 instead of offsets. */
737 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
738 if (cache->saved_regs[i] != -1)
739 cache->saved_regs[i] += cache->base;
740
741 return cache;
742 }
743
744 static void
745 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
746 struct frame_id *this_id)
747 {
748 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
749
750 /* This marks the outermost frame. */
751 if (cache->base == 0)
752 return;
753
754 /* See the end of i386_push_dummy_call. */
755 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
756 }
757
758 static void
759 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
760 int regnum, int *optimizedp,
761 enum lval_type *lvalp, CORE_ADDR *addrp,
762 int *realnump, void *valuep)
763 {
764 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
765
766 gdb_assert (regnum >= 0);
767
768 /* The System V ABI says that:
769
770 "The flags register contains the system flags, such as the
771 direction flag and the carry flag. The direction flag must be
772 set to the forward (that is, zero) direction before entry and
773 upon exit from a function. Other user flags have no specified
774 role in the standard calling sequence and are not preserved."
775
776 To guarantee the "upon exit" part of that statement we fake a
777 saved flags register that has its direction flag cleared.
778
779 Note that GCC doesn't seem to rely on the fact that the direction
780 flag is cleared after a function return; it always explicitly
781 clears the flag before operations where it matters.
782
783 FIXME: kettenis/20030316: I'm not quite sure whether this is the
784 right thing to do. The way we fake the flags register here makes
785 it impossible to change it. */
786
787 if (regnum == I386_EFLAGS_REGNUM)
788 {
789 *optimizedp = 0;
790 *lvalp = not_lval;
791 *addrp = 0;
792 *realnump = -1;
793 if (valuep)
794 {
795 ULONGEST val;
796
797 /* Clear the direction flag. */
798 frame_unwind_unsigned_register (next_frame, PS_REGNUM, &val);
799 val &= ~(1 << 10);
800 store_unsigned_integer (valuep, 4, val);
801 }
802
803 return;
804 }
805
806 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
807 {
808 frame_register_unwind (next_frame, I386_EAX_REGNUM,
809 optimizedp, lvalp, addrp, realnump, valuep);
810 return;
811 }
812
813 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
814 {
815 *optimizedp = 0;
816 *lvalp = not_lval;
817 *addrp = 0;
818 *realnump = -1;
819 if (valuep)
820 {
821 /* Store the value. */
822 store_unsigned_integer (valuep, 4, cache->saved_sp);
823 }
824 return;
825 }
826
827 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
828 {
829 *optimizedp = 0;
830 *lvalp = lval_memory;
831 *addrp = cache->saved_regs[regnum];
832 *realnump = -1;
833 if (valuep)
834 {
835 /* Read the value in from memory. */
836 read_memory (*addrp, valuep,
837 register_size (current_gdbarch, regnum));
838 }
839 return;
840 }
841
842 frame_register_unwind (next_frame, regnum,
843 optimizedp, lvalp, addrp, realnump, valuep);
844 }
845
846 static const struct frame_unwind i386_frame_unwind =
847 {
848 NORMAL_FRAME,
849 i386_frame_this_id,
850 i386_frame_prev_register
851 };
852
853 static const struct frame_unwind *
854 i386_frame_p (CORE_ADDR pc)
855 {
856 return &i386_frame_unwind;
857 }
858 \f
859
860 /* Signal trampolines. */
861
862 static struct i386_frame_cache *
863 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
864 {
865 struct i386_frame_cache *cache;
866 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
867 CORE_ADDR addr;
868 char buf[4];
869
870 if (*this_cache)
871 return *this_cache;
872
873 cache = i386_alloc_frame_cache ();
874
875 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
876 cache->base = extract_unsigned_integer (buf, 4) - 4;
877
878 addr = tdep->sigcontext_addr (next_frame);
879 if (tdep->sc_reg_offset)
880 {
881 int i;
882
883 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
884
885 for (i = 0; i < tdep->sc_num_regs; i++)
886 if (tdep->sc_reg_offset[i] != -1)
887 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
888 }
889 else
890 {
891 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
892 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
893 }
894
895 *this_cache = cache;
896 return cache;
897 }
898
899 static void
900 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
901 struct frame_id *this_id)
902 {
903 struct i386_frame_cache *cache =
904 i386_sigtramp_frame_cache (next_frame, this_cache);
905
906 /* See the end of i386_push_dummy_call. */
907 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
908 }
909
910 static void
911 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
912 void **this_cache,
913 int regnum, int *optimizedp,
914 enum lval_type *lvalp, CORE_ADDR *addrp,
915 int *realnump, void *valuep)
916 {
917 /* Make sure we've initialized the cache. */
918 i386_sigtramp_frame_cache (next_frame, this_cache);
919
920 i386_frame_prev_register (next_frame, this_cache, regnum,
921 optimizedp, lvalp, addrp, realnump, valuep);
922 }
923
924 static const struct frame_unwind i386_sigtramp_frame_unwind =
925 {
926 SIGTRAMP_FRAME,
927 i386_sigtramp_frame_this_id,
928 i386_sigtramp_frame_prev_register
929 };
930
931 static const struct frame_unwind *
932 i386_sigtramp_frame_p (CORE_ADDR pc)
933 {
934 char *name;
935
936 /* We shouldn't even bother to try if the OSABI didn't register
937 a sigcontext_addr handler. */
938 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
939 return NULL;
940
941 find_pc_partial_function (pc, &name, NULL, NULL);
942 if (PC_IN_SIGTRAMP (pc, name))
943 return &i386_sigtramp_frame_unwind;
944
945 return NULL;
946 }
947 \f
948
949 static CORE_ADDR
950 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
951 {
952 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
953
954 return cache->base;
955 }
956
957 static const struct frame_base i386_frame_base =
958 {
959 &i386_frame_unwind,
960 i386_frame_base_address,
961 i386_frame_base_address,
962 i386_frame_base_address
963 };
964
965 static struct frame_id
966 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
967 {
968 char buf[4];
969 CORE_ADDR fp;
970
971 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
972 fp = extract_unsigned_integer (buf, 4);
973
974 /* See the end of i386_push_dummy_call. */
975 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
976 }
977 \f
978
979 /* Figure out where the longjmp will land. Slurp the args out of the
980 stack. We expect the first arg to be a pointer to the jmp_buf
981 structure from which we extract the address that we will land at.
982 This address is copied into PC. This routine returns non-zero on
983 success.
984
985 This function is 64-bit safe. */
986
987 static int
988 i386_get_longjmp_target (CORE_ADDR *pc)
989 {
990 char buf[8];
991 CORE_ADDR sp, jb_addr;
992 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
993 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
994
995 /* If JB_PC_OFFSET is -1, we have no way to find out where the
996 longjmp will land. */
997 if (jb_pc_offset == -1)
998 return 0;
999
1000 sp = read_register (SP_REGNUM);
1001 if (target_read_memory (sp + len, buf, len))
1002 return 0;
1003
1004 jb_addr = extract_typed_address (buf, builtin_type_void_func_ptr);
1005 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1006 return 0;
1007
1008 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1009 return 1;
1010 }
1011 \f
1012
1013 static CORE_ADDR
1014 i386_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1015 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1016 struct value **args, CORE_ADDR sp, int struct_return,
1017 CORE_ADDR struct_addr)
1018 {
1019 char buf[4];
1020 int i;
1021
1022 /* Push arguments in reverse order. */
1023 for (i = nargs - 1; i >= 0; i--)
1024 {
1025 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1026
1027 /* The System V ABI says that:
1028
1029 "An argument's size is increased, if necessary, to make it a
1030 multiple of [32-bit] words. This may require tail padding,
1031 depending on the size of the argument."
1032
1033 This makes sure the stack says word-aligned. */
1034 sp -= (len + 3) & ~3;
1035 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1036 }
1037
1038 /* Push value address. */
1039 if (struct_return)
1040 {
1041 sp -= 4;
1042 store_unsigned_integer (buf, 4, struct_addr);
1043 write_memory (sp, buf, 4);
1044 }
1045
1046 /* Store return address. */
1047 sp -= 4;
1048 store_unsigned_integer (buf, 4, bp_addr);
1049 write_memory (sp, buf, 4);
1050
1051 /* Finally, update the stack pointer... */
1052 store_unsigned_integer (buf, 4, sp);
1053 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1054
1055 /* ...and fake a frame pointer. */
1056 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1057
1058 /* MarkK wrote: This "+ 8" is all over the place:
1059 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1060 i386_unwind_dummy_id). It's there, since all frame unwinders for
1061 a given target have to agree (within a certain margin) on the
1062 defenition of the stack address of a frame. Otherwise
1063 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1064 stack address *before* the function call as a frame's CFA. On
1065 the i386, when %ebp is used as a frame pointer, the offset
1066 between the contents %ebp and the CFA as defined by GCC. */
1067 return sp + 8;
1068 }
1069
1070 /* These registers are used for returning integers (and on some
1071 targets also for returning `struct' and `union' values when their
1072 size and alignment match an integer type). */
1073 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1074 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1075
1076 /* Extract from an array REGBUF containing the (raw) register state, a
1077 function return value of TYPE, and copy that, in virtual format,
1078 into VALBUF. */
1079
1080 static void
1081 i386_extract_return_value (struct type *type, struct regcache *regcache,
1082 void *dst)
1083 {
1084 bfd_byte *valbuf = dst;
1085 int len = TYPE_LENGTH (type);
1086 char buf[I386_MAX_REGISTER_SIZE];
1087
1088 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1089 && TYPE_NFIELDS (type) == 1)
1090 {
1091 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1092 return;
1093 }
1094
1095 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1096 {
1097 if (FP0_REGNUM < 0)
1098 {
1099 warning ("Cannot find floating-point return value.");
1100 memset (valbuf, 0, len);
1101 return;
1102 }
1103
1104 /* Floating-point return values can be found in %st(0). Convert
1105 its contents to the desired type. This is probably not
1106 exactly how it would happen on the target itself, but it is
1107 the best we can do. */
1108 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1109 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1110 }
1111 else
1112 {
1113 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1114 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1115
1116 if (len <= low_size)
1117 {
1118 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1119 memcpy (valbuf, buf, len);
1120 }
1121 else if (len <= (low_size + high_size))
1122 {
1123 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1124 memcpy (valbuf, buf, low_size);
1125 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1126 memcpy (valbuf + low_size, buf, len - low_size);
1127 }
1128 else
1129 internal_error (__FILE__, __LINE__,
1130 "Cannot extract return value of %d bytes long.", len);
1131 }
1132 }
1133
1134 /* Write into the appropriate registers a function return value stored
1135 in VALBUF of type TYPE, given in virtual format. */
1136
1137 static void
1138 i386_store_return_value (struct type *type, struct regcache *regcache,
1139 const void *valbuf)
1140 {
1141 int len = TYPE_LENGTH (type);
1142
1143 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1144 && TYPE_NFIELDS (type) == 1)
1145 {
1146 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1147 return;
1148 }
1149
1150 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1151 {
1152 ULONGEST fstat;
1153 char buf[FPU_REG_RAW_SIZE];
1154
1155 if (FP0_REGNUM < 0)
1156 {
1157 warning ("Cannot set floating-point return value.");
1158 return;
1159 }
1160
1161 /* Returning floating-point values is a bit tricky. Apart from
1162 storing the return value in %st(0), we have to simulate the
1163 state of the FPU at function return point. */
1164
1165 /* Convert the value found in VALBUF to the extended
1166 floating-point format used by the FPU. This is probably
1167 not exactly how it would happen on the target itself, but
1168 it is the best we can do. */
1169 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1170 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1171
1172 /* Set the top of the floating-point register stack to 7. The
1173 actual value doesn't really matter, but 7 is what a normal
1174 function return would end up with if the program started out
1175 with a freshly initialized FPU. */
1176 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1177 fstat |= (7 << 11);
1178 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
1179
1180 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1181 the floating-point register stack to 7, the appropriate value
1182 for the tag word is 0x3fff. */
1183 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
1184 }
1185 else
1186 {
1187 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1188 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1189
1190 if (len <= low_size)
1191 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1192 else if (len <= (low_size + high_size))
1193 {
1194 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1195 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1196 len - low_size, (char *) valbuf + low_size);
1197 }
1198 else
1199 internal_error (__FILE__, __LINE__,
1200 "Cannot store return value of %d bytes long.", len);
1201 }
1202 }
1203
1204 /* Extract from REGCACHE, which contains the (raw) register state, the
1205 address in which a function should return its structure value, as a
1206 CORE_ADDR. */
1207
1208 static CORE_ADDR
1209 i386_extract_struct_value_address (struct regcache *regcache)
1210 {
1211 char buf[4];
1212
1213 regcache_cooked_read (regcache, I386_EAX_REGNUM, buf);
1214 return extract_unsigned_integer (buf, 4);
1215 }
1216 \f
1217
1218 /* This is the variable that is set with "set struct-convention", and
1219 its legitimate values. */
1220 static const char default_struct_convention[] = "default";
1221 static const char pcc_struct_convention[] = "pcc";
1222 static const char reg_struct_convention[] = "reg";
1223 static const char *valid_conventions[] =
1224 {
1225 default_struct_convention,
1226 pcc_struct_convention,
1227 reg_struct_convention,
1228 NULL
1229 };
1230 static const char *struct_convention = default_struct_convention;
1231
1232 static int
1233 i386_use_struct_convention (int gcc_p, struct type *type)
1234 {
1235 enum struct_return struct_return;
1236
1237 if (struct_convention == default_struct_convention)
1238 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1239 else if (struct_convention == pcc_struct_convention)
1240 struct_return = pcc_struct_return;
1241 else
1242 struct_return = reg_struct_return;
1243
1244 return generic_use_struct_convention (struct_return == reg_struct_return,
1245 type);
1246 }
1247 \f
1248
1249 /* Return the GDB type object for the "standard" data type of data in
1250 register REGNUM. Perhaps %esi and %edi should go here, but
1251 potentially they could be used for things other than address. */
1252
1253 static struct type *
1254 i386_register_type (struct gdbarch *gdbarch, int regnum)
1255 {
1256 if (regnum == I386_EIP_REGNUM
1257 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1258 return lookup_pointer_type (builtin_type_void);
1259
1260 if (i386_fp_regnum_p (regnum))
1261 return builtin_type_i387_ext;
1262
1263 if (i386_sse_regnum_p (regnum))
1264 return builtin_type_vec128i;
1265
1266 if (i386_mmx_regnum_p (regnum))
1267 return builtin_type_vec64i;
1268
1269 return builtin_type_int;
1270 }
1271
1272 /* Map a cooked register onto a raw register or memory. For the i386,
1273 the MMX registers need to be mapped onto floating point registers. */
1274
1275 static int
1276 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1277 {
1278 int mmxi;
1279 ULONGEST fstat;
1280 int tos;
1281 int fpi;
1282
1283 mmxi = regnum - MM0_REGNUM;
1284 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1285 tos = (fstat >> 11) & 0x7;
1286 fpi = (mmxi + tos) % 8;
1287
1288 return (FP0_REGNUM + fpi);
1289 }
1290
1291 static void
1292 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1293 int regnum, void *buf)
1294 {
1295 if (i386_mmx_regnum_p (regnum))
1296 {
1297 char mmx_buf[MAX_REGISTER_SIZE];
1298 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1299
1300 /* Extract (always little endian). */
1301 regcache_raw_read (regcache, fpnum, mmx_buf);
1302 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1303 }
1304 else
1305 regcache_raw_read (regcache, regnum, buf);
1306 }
1307
1308 static void
1309 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1310 int regnum, const void *buf)
1311 {
1312 if (i386_mmx_regnum_p (regnum))
1313 {
1314 char mmx_buf[MAX_REGISTER_SIZE];
1315 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1316
1317 /* Read ... */
1318 regcache_raw_read (regcache, fpnum, mmx_buf);
1319 /* ... Modify ... (always little endian). */
1320 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1321 /* ... Write. */
1322 regcache_raw_write (regcache, fpnum, mmx_buf);
1323 }
1324 else
1325 regcache_raw_write (regcache, regnum, buf);
1326 }
1327 \f
1328
1329 /* These registers don't have pervasive standard uses. Move them to
1330 i386-tdep.h if necessary. */
1331
1332 #define I386_EBX_REGNUM 3 /* %ebx */
1333 #define I386_ECX_REGNUM 1 /* %ecx */
1334 #define I386_ESI_REGNUM 6 /* %esi */
1335 #define I386_EDI_REGNUM 7 /* %edi */
1336
1337 /* Return the register number of the register allocated by GCC after
1338 REGNUM, or -1 if there is no such register. */
1339
1340 static int
1341 i386_next_regnum (int regnum)
1342 {
1343 /* GCC allocates the registers in the order:
1344
1345 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1346
1347 Since storing a variable in %esp doesn't make any sense we return
1348 -1 for %ebp and for %esp itself. */
1349 static int next_regnum[] =
1350 {
1351 I386_EDX_REGNUM, /* Slot for %eax. */
1352 I386_EBX_REGNUM, /* Slot for %ecx. */
1353 I386_ECX_REGNUM, /* Slot for %edx. */
1354 I386_ESI_REGNUM, /* Slot for %ebx. */
1355 -1, -1, /* Slots for %esp and %ebp. */
1356 I386_EDI_REGNUM, /* Slot for %esi. */
1357 I386_EBP_REGNUM /* Slot for %edi. */
1358 };
1359
1360 if (regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1361 return next_regnum[regnum];
1362
1363 return -1;
1364 }
1365
1366 /* Return nonzero if a value of type TYPE stored in register REGNUM
1367 needs any special handling. */
1368
1369 static int
1370 i386_convert_register_p (int regnum, struct type *type)
1371 {
1372 /* Values may be spread across multiple registers. Most debugging
1373 formats aren't expressive enough to specify the locations, so
1374 some heuristics is involved. Right now we only handle types that
1375 are exactly 8 bytes long as GCC doesn't seem to put any other
1376 types into registers. */
1377 if (TYPE_LENGTH (type) == 8 && i386_next_regnum (regnum) != -1)
1378 return 1;
1379
1380 return i386_fp_regnum_p (regnum);
1381 }
1382
1383 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1384 return its contents in TO. */
1385
1386 static void
1387 i386_register_to_value (struct frame_info *frame, int regnum,
1388 struct type *type, void *to)
1389 {
1390 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1391 available in FRAME (i.e. if it wasn't saved)? */
1392
1393 if (i386_fp_regnum_p (regnum))
1394 {
1395 char from[I386_MAX_REGISTER_SIZE];
1396
1397 /* We only support floating-point values. */
1398 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1399 {
1400 warning ("Cannot convert floating-point register value "
1401 "to non-floating-point type.");
1402 return;
1403 }
1404
1405 /* Convert to TYPE. This should be a no-op if TYPE is
1406 equivalent to the extended floating-point format used by the
1407 FPU. */
1408 frame_read_register (frame, regnum, from);
1409 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1410 }
1411 else
1412 {
1413 gdb_assert (TYPE_LENGTH (type) == 8);
1414
1415 /* Read the first part. */
1416 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1417 frame_read_register (frame, regnum, (char *) to + 0);
1418
1419 /* Read the second part. */
1420 regnum = i386_next_regnum (regnum);
1421 gdb_assert (regnum != -1);
1422 gdb_assert (register_size (current_gdbarch, regnum));
1423 frame_read_register (frame, regnum, (char *) to + 4);
1424 }
1425 }
1426
1427 /* Write the contents FROM of a value of type TYPE into register
1428 REGNUM in frame FRAME. */
1429
1430 static void
1431 i386_value_to_register (struct frame_info *frame, int regnum,
1432 struct type *type, const void *from)
1433 {
1434 if (i386_fp_regnum_p (regnum))
1435 {
1436 char to[I386_MAX_REGISTER_SIZE];
1437
1438 /* We only support floating-point values. */
1439 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1440 {
1441 warning ("Cannot convert non-floating-point type "
1442 "to floating-point register value.");
1443 return;
1444 }
1445
1446 /* Convert from TYPE. This should be a no-op if TYPE is
1447 equivalent to the extended floating-point format used by the
1448 FPU. */
1449 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1450 put_frame_register (frame, regnum, to);
1451 }
1452 else
1453 {
1454 gdb_assert (TYPE_LENGTH (type) == 8);
1455
1456 /* Write the first part. */
1457 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1458 put_frame_register (frame, regnum, (const char *) from + 0);
1459
1460 /* Write the second part. */
1461 regnum = i386_next_regnum (regnum);
1462 gdb_assert (regnum != -1);
1463 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1464 put_frame_register (frame, regnum, (const char *) from + 4);
1465 }
1466 }
1467 \f
1468
1469
1470 #ifdef STATIC_TRANSFORM_NAME
1471 /* SunPRO encodes the static variables. This is not related to C++
1472 mangling, it is done for C too. */
1473
1474 char *
1475 sunpro_static_transform_name (char *name)
1476 {
1477 char *p;
1478 if (IS_STATIC_TRANSFORM_NAME (name))
1479 {
1480 /* For file-local statics there will be a period, a bunch of
1481 junk (the contents of which match a string given in the
1482 N_OPT), a period and the name. For function-local statics
1483 there will be a bunch of junk (which seems to change the
1484 second character from 'A' to 'B'), a period, the name of the
1485 function, and the name. So just skip everything before the
1486 last period. */
1487 p = strrchr (name, '.');
1488 if (p != NULL)
1489 name = p + 1;
1490 }
1491 return name;
1492 }
1493 #endif /* STATIC_TRANSFORM_NAME */
1494 \f
1495
1496 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1497
1498 CORE_ADDR
1499 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1500 {
1501 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1502 {
1503 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1504 struct minimal_symbol *indsym =
1505 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1506 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1507
1508 if (symname)
1509 {
1510 if (strncmp (symname, "__imp_", 6) == 0
1511 || strncmp (symname, "_imp_", 5) == 0)
1512 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1513 }
1514 }
1515 return 0; /* Not a trampoline. */
1516 }
1517 \f
1518
1519 /* Return non-zero if PC and NAME show that we are in a signal
1520 trampoline. */
1521
1522 static int
1523 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1524 {
1525 return (name && strcmp ("_sigtramp", name) == 0);
1526 }
1527 \f
1528
1529 /* We have two flavours of disassembly. The machinery on this page
1530 deals with switching between those. */
1531
1532 static int
1533 i386_print_insn (bfd_vma pc, disassemble_info *info)
1534 {
1535 gdb_assert (disassembly_flavor == att_flavor
1536 || disassembly_flavor == intel_flavor);
1537
1538 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1539 constified, cast to prevent a compiler warning. */
1540 info->disassembler_options = (char *) disassembly_flavor;
1541 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1542
1543 return print_insn_i386 (pc, info);
1544 }
1545 \f
1546
1547 /* There are a few i386 architecture variants that differ only
1548 slightly from the generic i386 target. For now, we don't give them
1549 their own source file, but include them here. As a consequence,
1550 they'll always be included. */
1551
1552 /* System V Release 4 (SVR4). */
1553
1554 static int
1555 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1556 {
1557 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1558 currently unknown. */
1559 return (name && (strcmp ("_sigreturn", name) == 0
1560 || strcmp ("_sigacthandler", name) == 0
1561 || strcmp ("sigvechandler", name) == 0));
1562 }
1563
1564 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1565 routine, return the address of the associated sigcontext (ucontext)
1566 structure. */
1567
1568 static CORE_ADDR
1569 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
1570 {
1571 char buf[4];
1572 CORE_ADDR sp;
1573
1574 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1575 sp = extract_unsigned_integer (buf, 4);
1576
1577 return read_memory_unsigned_integer (sp + 8, 4);
1578 }
1579 \f
1580
1581 /* DJGPP. */
1582
1583 static int
1584 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1585 {
1586 /* DJGPP doesn't have any special frames for signal handlers. */
1587 return 0;
1588 }
1589 \f
1590
1591 /* Generic ELF. */
1592
1593 void
1594 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1595 {
1596 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1597 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1598 }
1599
1600 /* System V Release 4 (SVR4). */
1601
1602 void
1603 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1604 {
1605 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1606
1607 /* System V Release 4 uses ELF. */
1608 i386_elf_init_abi (info, gdbarch);
1609
1610 /* System V Release 4 has shared libraries. */
1611 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1612 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1613
1614 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1615 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1616 tdep->sc_pc_offset = 36 + 14 * 4;
1617 tdep->sc_sp_offset = 36 + 17 * 4;
1618
1619 tdep->jb_pc_offset = 20;
1620 }
1621
1622 /* DJGPP. */
1623
1624 static void
1625 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1626 {
1627 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1628
1629 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1630
1631 tdep->jb_pc_offset = 36;
1632 }
1633
1634 /* NetWare. */
1635
1636 static void
1637 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1638 {
1639 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1640
1641 tdep->jb_pc_offset = 24;
1642 }
1643 \f
1644
1645 /* i386 register groups. In addition to the normal groups, add "mmx"
1646 and "sse". */
1647
1648 static struct reggroup *i386_sse_reggroup;
1649 static struct reggroup *i386_mmx_reggroup;
1650
1651 static void
1652 i386_init_reggroups (void)
1653 {
1654 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1655 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1656 }
1657
1658 static void
1659 i386_add_reggroups (struct gdbarch *gdbarch)
1660 {
1661 reggroup_add (gdbarch, i386_sse_reggroup);
1662 reggroup_add (gdbarch, i386_mmx_reggroup);
1663 reggroup_add (gdbarch, general_reggroup);
1664 reggroup_add (gdbarch, float_reggroup);
1665 reggroup_add (gdbarch, all_reggroup);
1666 reggroup_add (gdbarch, save_reggroup);
1667 reggroup_add (gdbarch, restore_reggroup);
1668 reggroup_add (gdbarch, vector_reggroup);
1669 reggroup_add (gdbarch, system_reggroup);
1670 }
1671
1672 int
1673 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1674 struct reggroup *group)
1675 {
1676 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1677 || i386_mxcsr_regnum_p (regnum));
1678 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1679 || i386_fpc_regnum_p (regnum));
1680 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
1681
1682 if (group == i386_mmx_reggroup)
1683 return mmx_regnum_p;
1684 if (group == i386_sse_reggroup)
1685 return sse_regnum_p;
1686 if (group == vector_reggroup)
1687 return (mmx_regnum_p || sse_regnum_p);
1688 if (group == float_reggroup)
1689 return fp_regnum_p;
1690 if (group == general_reggroup)
1691 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1692
1693 return default_register_reggroup_p (gdbarch, regnum, group);
1694 }
1695 \f
1696
1697 /* Get the ith function argument for the current function. */
1698 static CORE_ADDR
1699 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1700 struct type *type)
1701 {
1702 CORE_ADDR stack;
1703 frame_read_register (frame, SP_REGNUM, &stack);
1704 return read_memory_unsigned_integer (stack + (4 * (argi + 1)), 4);
1705 }
1706
1707 \f
1708 static struct gdbarch *
1709 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1710 {
1711 struct gdbarch_tdep *tdep;
1712 struct gdbarch *gdbarch;
1713
1714 /* If there is already a candidate, use it. */
1715 arches = gdbarch_list_lookup_by_info (arches, &info);
1716 if (arches != NULL)
1717 return arches->gdbarch;
1718
1719 /* Allocate space for the new architecture. */
1720 tdep = XMALLOC (struct gdbarch_tdep);
1721 gdbarch = gdbarch_alloc (&info, tdep);
1722
1723 /* The i386 default settings don't include the SSE registers.
1724 FIXME: kettenis/20020614: They do include the FPU registers for
1725 now, which probably is not quite right. */
1726 tdep->num_xmm_regs = 0;
1727
1728 tdep->jb_pc_offset = -1;
1729 tdep->struct_return = pcc_struct_return;
1730 tdep->sigtramp_start = 0;
1731 tdep->sigtramp_end = 0;
1732 tdep->sigcontext_addr = NULL;
1733 tdep->sc_reg_offset = NULL;
1734 tdep->sc_pc_offset = -1;
1735 tdep->sc_sp_offset = -1;
1736
1737 /* The format used for `long double' on almost all i386 targets is
1738 the i387 extended floating-point format. In fact, of all targets
1739 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1740 on having a `long double' that's not `long' at all. */
1741 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1742
1743 /* Although the i387 extended floating-point has only 80 significant
1744 bits, a `long double' actually takes up 96, probably to enforce
1745 alignment. */
1746 set_gdbarch_long_double_bit (gdbarch, 96);
1747
1748 /* The default ABI includes general-purpose registers and
1749 floating-point registers. */
1750 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1751 set_gdbarch_register_name (gdbarch, i386_register_name);
1752 set_gdbarch_register_type (gdbarch, i386_register_type);
1753
1754 /* Register numbers of various important registers. */
1755 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
1756 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
1757 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
1758 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
1759
1760 /* Use the "default" register numbering scheme for stabs and COFF. */
1761 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1762 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1763
1764 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1765 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1766 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1767
1768 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1769 be in use on any of the supported i386 targets. */
1770
1771 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1772
1773 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1774
1775 /* Call dummy code. */
1776 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
1777
1778 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
1779 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
1780 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
1781
1782 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1783 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1784 set_gdbarch_extract_struct_value_address (gdbarch,
1785 i386_extract_struct_value_address);
1786 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1787
1788 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1789
1790 /* Stack grows downward. */
1791 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1792
1793 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1794 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1795 set_gdbarch_function_start_offset (gdbarch, 0);
1796
1797 set_gdbarch_frame_args_skip (gdbarch, 8);
1798 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1799
1800 /* Wire in the MMX registers. */
1801 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
1802 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1803 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1804
1805 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1806
1807 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
1808
1809 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
1810
1811 /* Add the i386 register groups. */
1812 i386_add_reggroups (gdbarch);
1813 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1814
1815 /* Helper for function argument information. */
1816 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
1817
1818 /* Hook in the DWARF CFI frame unwinder. */
1819 frame_unwind_append_predicate (gdbarch, dwarf2_frame_p);
1820 set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);
1821
1822 frame_base_set_default (gdbarch, &i386_frame_base);
1823
1824 /* Hook in ABI-specific overrides, if they have been registered. */
1825 gdbarch_init_osabi (info, gdbarch);
1826
1827 frame_unwind_append_predicate (gdbarch, i386_sigtramp_frame_p);
1828 frame_unwind_append_predicate (gdbarch, i386_frame_p);
1829
1830 return gdbarch;
1831 }
1832
1833 static enum gdb_osabi
1834 i386_coff_osabi_sniffer (bfd *abfd)
1835 {
1836 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1837 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1838 return GDB_OSABI_GO32;
1839
1840 return GDB_OSABI_UNKNOWN;
1841 }
1842
1843 static enum gdb_osabi
1844 i386_nlm_osabi_sniffer (bfd *abfd)
1845 {
1846 return GDB_OSABI_NETWARE;
1847 }
1848 \f
1849
1850 /* Provide a prototype to silence -Wmissing-prototypes. */
1851 void _initialize_i386_tdep (void);
1852
1853 void
1854 _initialize_i386_tdep (void)
1855 {
1856 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1857
1858 /* Add the variable that controls the disassembly flavor. */
1859 {
1860 struct cmd_list_element *new_cmd;
1861
1862 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1863 valid_flavors,
1864 &disassembly_flavor,
1865 "\
1866 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1867 and the default value is \"att\".",
1868 &setlist);
1869 add_show_from_set (new_cmd, &showlist);
1870 }
1871
1872 /* Add the variable that controls the convention for returning
1873 structs. */
1874 {
1875 struct cmd_list_element *new_cmd;
1876
1877 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1878 valid_conventions,
1879 &struct_convention, "\
1880 Set the convention for returning small structs, valid values \
1881 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1882 &setlist);
1883 add_show_from_set (new_cmd, &showlist);
1884 }
1885
1886 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1887 i386_coff_osabi_sniffer);
1888 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1889 i386_nlm_osabi_sniffer);
1890
1891 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
1892 i386_svr4_init_abi);
1893 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
1894 i386_go32_init_abi);
1895 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
1896 i386_nw_init_abi);
1897
1898 /* Initialize the i386 specific register groups. */
1899 i386_init_reggroups ();
1900 }
This page took 0.101986 seconds and 4 git commands to generate.