* i386-tdep.c (i386_push_dummy_frame): Don't write back the
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "floatformat.h"
30 #include "symtab.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "arch-utils.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "i386-tdep.h"
38 #include "gdb_assert.h"
39
40 #undef XMALLOC
41 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
42
43 /* Names of the registers. The first 10 registers match the register
44 numbering scheme used by GCC for stabs and DWARF. */
45 static char *i386_register_names[] =
46 {
47 "eax", "ecx", "edx", "ebx",
48 "esp", "ebp", "esi", "edi",
49 "eip", "eflags", "cs", "ss",
50 "ds", "es", "fs", "gs",
51 "st0", "st1", "st2", "st3",
52 "st4", "st5", "st6", "st7",
53 "fctrl", "fstat", "ftag", "fiseg",
54 "fioff", "foseg", "fooff", "fop",
55 "xmm0", "xmm1", "xmm2", "xmm3",
56 "xmm4", "xmm5", "xmm6", "xmm7",
57 "mxcsr"
58 };
59
60 /* i386_register_offset[i] is the offset into the register file of the
61 start of register number i. We initialize this from
62 i386_register_size. */
63 static int i386_register_offset[MAX_NUM_REGS];
64
65 /* i386_register_size[i] is the number of bytes of storage in GDB's
66 register array occupied by register i. */
67 static int i386_register_size[MAX_NUM_REGS] = {
68 4, 4, 4, 4,
69 4, 4, 4, 4,
70 4, 4, 4, 4,
71 4, 4, 4, 4,
72 10, 10, 10, 10,
73 10, 10, 10, 10,
74 4, 4, 4, 4,
75 4, 4, 4, 4,
76 16, 16, 16, 16,
77 16, 16, 16, 16,
78 4
79 };
80
81 /* Return the name of register REG. */
82
83 char *
84 i386_register_name (int reg)
85 {
86 if (reg < 0)
87 return NULL;
88 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
89 return NULL;
90
91 return i386_register_names[reg];
92 }
93
94 /* Return the offset into the register array of the start of register
95 number REG. */
96 int
97 i386_register_byte (int reg)
98 {
99 return i386_register_offset[reg];
100 }
101
102 /* Return the number of bytes of storage in GDB's register array
103 occupied by register REG. */
104
105 int
106 i386_register_raw_size (int reg)
107 {
108 return i386_register_size[reg];
109 }
110
111 /* Return the size in bytes of the virtual type of register REG. */
112
113 int
114 i386_register_virtual_size (int reg)
115 {
116 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg));
117 }
118
119 /* Convert stabs register number REG to the appropriate register
120 number used by GDB. */
121
122 int
123 i386_stab_reg_to_regnum (int reg)
124 {
125 /* This implements what GCC calls the "default" register map. */
126 if (reg >= 0 && reg <= 7)
127 {
128 /* General registers. */
129 return reg;
130 }
131 else if (reg >= 12 && reg <= 19)
132 {
133 /* Floating-point registers. */
134 return reg - 12 + FP0_REGNUM;
135 }
136 else if (reg >= 21 && reg <= 28)
137 {
138 /* SSE registers. */
139 return reg - 21 + XMM0_REGNUM;
140 }
141 else if (reg >= 29 && reg <= 36)
142 {
143 /* MMX registers. */
144 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
145 as pseudo-registers? */
146 return reg - 29 + FP0_REGNUM;
147 }
148
149 /* This will hopefully provoke a warning. */
150 return NUM_REGS + NUM_PSEUDO_REGS;
151 }
152
153 /* Convert Dwarf register number REG to the appropriate register
154 number used by GDB. */
155
156 int
157 i386_dwarf_reg_to_regnum (int reg)
158 {
159 /* The DWARF register numbering includes %eip and %eflags, and
160 numbers the floating point registers differently. */
161 if (reg >= 0 && reg <= 9)
162 {
163 /* General registers. */
164 return reg;
165 }
166 else if (reg >= 11 && reg <= 18)
167 {
168 /* Floating-point registers. */
169 return reg - 11 + FP0_REGNUM;
170 }
171 else if (reg >= 21)
172 {
173 /* The SSE and MMX registers have identical numbers as in stabs. */
174 return i386_stab_reg_to_regnum (reg);
175 }
176
177 /* This will hopefully provoke a warning. */
178 return NUM_REGS + NUM_PSEUDO_REGS;
179 }
180 \f
181
182 /* This is the variable that is set with "set disassembly-flavor", and
183 its legitimate values. */
184 static const char att_flavor[] = "att";
185 static const char intel_flavor[] = "intel";
186 static const char *valid_flavors[] =
187 {
188 att_flavor,
189 intel_flavor,
190 NULL
191 };
192 static const char *disassembly_flavor = att_flavor;
193
194 /* Stdio style buffering was used to minimize calls to ptrace, but
195 this buffering did not take into account that the code section
196 being accessed may not be an even number of buffers long (even if
197 the buffer is only sizeof(int) long). In cases where the code
198 section size happened to be a non-integral number of buffers long,
199 attempting to read the last buffer would fail. Simply using
200 target_read_memory and ignoring errors, rather than read_memory, is
201 not the correct solution, since legitimate access errors would then
202 be totally ignored. To properly handle this situation and continue
203 to use buffering would require that this code be able to determine
204 the minimum code section size granularity (not the alignment of the
205 section itself, since the actual failing case that pointed out this
206 problem had a section alignment of 4 but was not a multiple of 4
207 bytes long), on a target by target basis, and then adjust it's
208 buffer size accordingly. This is messy, but potentially feasible.
209 It probably needs the bfd library's help and support. For now, the
210 buffer size is set to 1. (FIXME -fnf) */
211
212 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
213 static CORE_ADDR codestream_next_addr;
214 static CORE_ADDR codestream_addr;
215 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
216 static int codestream_off;
217 static int codestream_cnt;
218
219 #define codestream_tell() (codestream_addr + codestream_off)
220 #define codestream_peek() \
221 (codestream_cnt == 0 ? \
222 codestream_fill(1) : codestream_buf[codestream_off])
223 #define codestream_get() \
224 (codestream_cnt-- == 0 ? \
225 codestream_fill(0) : codestream_buf[codestream_off++])
226
227 static unsigned char
228 codestream_fill (int peek_flag)
229 {
230 codestream_addr = codestream_next_addr;
231 codestream_next_addr += CODESTREAM_BUFSIZ;
232 codestream_off = 0;
233 codestream_cnt = CODESTREAM_BUFSIZ;
234 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
235
236 if (peek_flag)
237 return (codestream_peek ());
238 else
239 return (codestream_get ());
240 }
241
242 static void
243 codestream_seek (CORE_ADDR place)
244 {
245 codestream_next_addr = place / CODESTREAM_BUFSIZ;
246 codestream_next_addr *= CODESTREAM_BUFSIZ;
247 codestream_cnt = 0;
248 codestream_fill (1);
249 while (codestream_tell () != place)
250 codestream_get ();
251 }
252
253 static void
254 codestream_read (unsigned char *buf, int count)
255 {
256 unsigned char *p;
257 int i;
258 p = buf;
259 for (i = 0; i < count; i++)
260 *p++ = codestream_get ();
261 }
262 \f
263
264 /* If the next instruction is a jump, move to its target. */
265
266 static void
267 i386_follow_jump (void)
268 {
269 unsigned char buf[4];
270 long delta;
271
272 int data16;
273 CORE_ADDR pos;
274
275 pos = codestream_tell ();
276
277 data16 = 0;
278 if (codestream_peek () == 0x66)
279 {
280 codestream_get ();
281 data16 = 1;
282 }
283
284 switch (codestream_get ())
285 {
286 case 0xe9:
287 /* Relative jump: if data16 == 0, disp32, else disp16. */
288 if (data16)
289 {
290 codestream_read (buf, 2);
291 delta = extract_signed_integer (buf, 2);
292
293 /* Include the size of the jmp instruction (including the
294 0x66 prefix). */
295 pos += delta + 4;
296 }
297 else
298 {
299 codestream_read (buf, 4);
300 delta = extract_signed_integer (buf, 4);
301
302 pos += delta + 5;
303 }
304 break;
305 case 0xeb:
306 /* Relative jump, disp8 (ignore data16). */
307 codestream_read (buf, 1);
308 /* Sign-extend it. */
309 delta = extract_signed_integer (buf, 1);
310
311 pos += delta + 2;
312 break;
313 }
314 codestream_seek (pos);
315 }
316
317 /* Find & return the amount a local space allocated, and advance the
318 codestream to the first register push (if any).
319
320 If the entry sequence doesn't make sense, return -1, and leave
321 codestream pointer at a random spot. */
322
323 static long
324 i386_get_frame_setup (CORE_ADDR pc)
325 {
326 unsigned char op;
327
328 codestream_seek (pc);
329
330 i386_follow_jump ();
331
332 op = codestream_get ();
333
334 if (op == 0x58) /* popl %eax */
335 {
336 /* This function must start with
337
338 popl %eax 0x58
339 xchgl %eax, (%esp) 0x87 0x04 0x24
340 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
341
342 (the System V compiler puts out the second `xchg'
343 instruction, and the assembler doesn't try to optimize it, so
344 the 'sib' form gets generated). This sequence is used to get
345 the address of the return buffer for a function that returns
346 a structure. */
347 int pos;
348 unsigned char buf[4];
349 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
350 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
351
352 pos = codestream_tell ();
353 codestream_read (buf, 4);
354 if (memcmp (buf, proto1, 3) == 0)
355 pos += 3;
356 else if (memcmp (buf, proto2, 4) == 0)
357 pos += 4;
358
359 codestream_seek (pos);
360 op = codestream_get (); /* Update next opcode. */
361 }
362
363 if (op == 0x68 || op == 0x6a)
364 {
365 /* This function may start with
366
367 pushl constant
368 call _probe
369 addl $4, %esp
370
371 followed by
372
373 pushl %ebp
374
375 etc. */
376 int pos;
377 unsigned char buf[8];
378
379 /* Skip past the `pushl' instruction; it has either a one-byte
380 or a four-byte operand, depending on the opcode. */
381 pos = codestream_tell ();
382 if (op == 0x68)
383 pos += 4;
384 else
385 pos += 1;
386 codestream_seek (pos);
387
388 /* Read the following 8 bytes, which should be "call _probe" (6
389 bytes) followed by "addl $4,%esp" (2 bytes). */
390 codestream_read (buf, sizeof (buf));
391 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
392 pos += sizeof (buf);
393 codestream_seek (pos);
394 op = codestream_get (); /* Update next opcode. */
395 }
396
397 if (op == 0x55) /* pushl %ebp */
398 {
399 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
400 switch (codestream_get ())
401 {
402 case 0x8b:
403 if (codestream_get () != 0xec)
404 return -1;
405 break;
406 case 0x89:
407 if (codestream_get () != 0xe5)
408 return -1;
409 break;
410 default:
411 return -1;
412 }
413 /* Check for stack adjustment
414
415 subl $XXX, %esp
416
417 NOTE: You can't subtract a 16 bit immediate from a 32 bit
418 reg, so we don't have to worry about a data16 prefix. */
419 op = codestream_peek ();
420 if (op == 0x83)
421 {
422 /* `subl' with 8 bit immediate. */
423 codestream_get ();
424 if (codestream_get () != 0xec)
425 /* Some instruction starting with 0x83 other than `subl'. */
426 {
427 codestream_seek (codestream_tell () - 2);
428 return 0;
429 }
430 /* `subl' with signed byte immediate (though it wouldn't
431 make sense to be negative). */
432 return (codestream_get ());
433 }
434 else if (op == 0x81)
435 {
436 char buf[4];
437 /* Maybe it is `subl' with a 32 bit immedediate. */
438 codestream_get ();
439 if (codestream_get () != 0xec)
440 /* Some instruction starting with 0x81 other than `subl'. */
441 {
442 codestream_seek (codestream_tell () - 2);
443 return 0;
444 }
445 /* It is `subl' with a 32 bit immediate. */
446 codestream_read ((unsigned char *) buf, 4);
447 return extract_signed_integer (buf, 4);
448 }
449 else
450 {
451 return 0;
452 }
453 }
454 else if (op == 0xc8)
455 {
456 char buf[2];
457 /* `enter' with 16 bit unsigned immediate. */
458 codestream_read ((unsigned char *) buf, 2);
459 codestream_get (); /* Flush final byte of enter instruction. */
460 return extract_unsigned_integer (buf, 2);
461 }
462 return (-1);
463 }
464
465 /* Return the chain-pointer for FRAME. In the case of the i386, the
466 frame's nominal address is the address of a 4-byte word containing
467 the calling frame's address. */
468
469 CORE_ADDR
470 i386_frame_chain (struct frame_info *frame)
471 {
472 if (frame->signal_handler_caller)
473 return frame->frame;
474
475 if (! inside_entry_file (frame->pc))
476 return read_memory_unsigned_integer (frame->frame, 4);
477
478 return 0;
479 }
480
481 /* Determine whether the function invocation represented by FRAME does
482 not have a from on the stack associated with it. If it does not,
483 return non-zero, otherwise return zero. */
484
485 int
486 i386_frameless_function_invocation (struct frame_info *frame)
487 {
488 if (frame->signal_handler_caller)
489 return 0;
490
491 return frameless_look_for_prologue (frame);
492 }
493
494 /* Return the saved program counter for FRAME. */
495
496 CORE_ADDR
497 i386_frame_saved_pc (struct frame_info *frame)
498 {
499 /* FIXME: kettenis/2001-05-09: Conditionalizing the next bit of code
500 on SIGCONTEXT_PC_OFFSET and I386V4_SIGTRAMP_SAVED_PC should be
501 considered a temporary hack. I plan to come up with something
502 better when we go multi-arch. */
503 #if defined (SIGCONTEXT_PC_OFFSET) || defined (I386V4_SIGTRAMP_SAVED_PC)
504 if (frame->signal_handler_caller)
505 return sigtramp_saved_pc (frame);
506 #endif
507
508 return read_memory_unsigned_integer (frame->frame + 4, 4);
509 }
510
511 CORE_ADDR
512 i386go32_frame_saved_pc (struct frame_info *frame)
513 {
514 return read_memory_integer (frame->frame + 4, 4);
515 }
516
517 /* Immediately after a function call, return the saved pc. */
518
519 CORE_ADDR
520 i386_saved_pc_after_call (struct frame_info *frame)
521 {
522 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
523 }
524
525 /* Return number of args passed to a frame.
526 Can return -1, meaning no way to tell. */
527
528 int
529 i386_frame_num_args (struct frame_info *fi)
530 {
531 #if 1
532 return -1;
533 #else
534 /* This loses because not only might the compiler not be popping the
535 args right after the function call, it might be popping args from
536 both this call and a previous one, and we would say there are
537 more args than there really are. */
538
539 int retpc;
540 unsigned char op;
541 struct frame_info *pfi;
542
543 /* On the i386, the instruction following the call could be:
544 popl %ecx - one arg
545 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
546 anything else - zero args. */
547
548 int frameless;
549
550 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
551 if (frameless)
552 /* In the absence of a frame pointer, GDB doesn't get correct
553 values for nameless arguments. Return -1, so it doesn't print
554 any nameless arguments. */
555 return -1;
556
557 pfi = get_prev_frame (fi);
558 if (pfi == 0)
559 {
560 /* NOTE: This can happen if we are looking at the frame for
561 main, because FRAME_CHAIN_VALID won't let us go into start.
562 If we have debugging symbols, that's not really a big deal;
563 it just means it will only show as many arguments to main as
564 are declared. */
565 return -1;
566 }
567 else
568 {
569 retpc = pfi->pc;
570 op = read_memory_integer (retpc, 1);
571 if (op == 0x59) /* pop %ecx */
572 return 1;
573 else if (op == 0x83)
574 {
575 op = read_memory_integer (retpc + 1, 1);
576 if (op == 0xc4)
577 /* addl $<signed imm 8 bits>, %esp */
578 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
579 else
580 return 0;
581 }
582 else if (op == 0x81) /* `add' with 32 bit immediate. */
583 {
584 op = read_memory_integer (retpc + 1, 1);
585 if (op == 0xc4)
586 /* addl $<imm 32>, %esp */
587 return read_memory_integer (retpc + 2, 4) / 4;
588 else
589 return 0;
590 }
591 else
592 {
593 return 0;
594 }
595 }
596 #endif
597 }
598
599 /* Parse the first few instructions the function to see what registers
600 were stored.
601
602 We handle these cases:
603
604 The startup sequence can be at the start of the function, or the
605 function can start with a branch to startup code at the end.
606
607 %ebp can be set up with either the 'enter' instruction, or "pushl
608 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
609 once used in the System V compiler).
610
611 Local space is allocated just below the saved %ebp by either the
612 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
613 bit unsigned argument for space to allocate, and the 'addl'
614 instruction could have either a signed byte, or 32 bit immediate.
615
616 Next, the registers used by this function are pushed. With the
617 System V compiler they will always be in the order: %edi, %esi,
618 %ebx (and sometimes a harmless bug causes it to also save but not
619 restore %eax); however, the code below is willing to see the pushes
620 in any order, and will handle up to 8 of them.
621
622 If the setup sequence is at the end of the function, then the next
623 instruction will be a branch back to the start. */
624
625 void
626 i386_frame_init_saved_regs (struct frame_info *fip)
627 {
628 long locals = -1;
629 unsigned char op;
630 CORE_ADDR dummy_bottom;
631 CORE_ADDR addr;
632 CORE_ADDR pc;
633 int i;
634
635 if (fip->saved_regs)
636 return;
637
638 frame_saved_regs_zalloc (fip);
639
640 /* If the frame is the end of a dummy, compute where the beginning
641 would be. */
642 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
643
644 /* Check if the PC points in the stack, in a dummy frame. */
645 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
646 {
647 /* All registers were saved by push_call_dummy. */
648 addr = fip->frame;
649 for (i = 0; i < NUM_REGS; i++)
650 {
651 addr -= REGISTER_RAW_SIZE (i);
652 fip->saved_regs[i] = addr;
653 }
654 return;
655 }
656
657 pc = get_pc_function_start (fip->pc);
658 if (pc != 0)
659 locals = i386_get_frame_setup (pc);
660
661 if (locals >= 0)
662 {
663 addr = fip->frame - 4 - locals;
664 for (i = 0; i < 8; i++)
665 {
666 op = codestream_get ();
667 if (op < 0x50 || op > 0x57)
668 break;
669 #ifdef I386_REGNO_TO_SYMMETRY
670 /* Dynix uses different internal numbering. Ick. */
671 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
672 #else
673 fip->saved_regs[op - 0x50] = addr;
674 #endif
675 addr -= 4;
676 }
677 }
678
679 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
680 fip->saved_regs[FP_REGNUM] = fip->frame;
681 }
682
683 /* Return PC of first real instruction. */
684
685 int
686 i386_skip_prologue (int pc)
687 {
688 unsigned char op;
689 int i;
690 static unsigned char pic_pat[6] =
691 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
692 0x5b, /* popl %ebx */
693 };
694 CORE_ADDR pos;
695
696 if (i386_get_frame_setup (pc) < 0)
697 return (pc);
698
699 /* Found valid frame setup -- codestream now points to start of push
700 instructions for saving registers. */
701
702 /* Skip over register saves. */
703 for (i = 0; i < 8; i++)
704 {
705 op = codestream_peek ();
706 /* Break if not `pushl' instrunction. */
707 if (op < 0x50 || op > 0x57)
708 break;
709 codestream_get ();
710 }
711
712 /* The native cc on SVR4 in -K PIC mode inserts the following code
713 to get the address of the global offset table (GOT) into register
714 %ebx
715
716 call 0x0
717 popl %ebx
718 movl %ebx,x(%ebp) (optional)
719 addl y,%ebx
720
721 This code is with the rest of the prologue (at the end of the
722 function), so we have to skip it to get to the first real
723 instruction at the start of the function. */
724
725 pos = codestream_tell ();
726 for (i = 0; i < 6; i++)
727 {
728 op = codestream_get ();
729 if (pic_pat[i] != op)
730 break;
731 }
732 if (i == 6)
733 {
734 unsigned char buf[4];
735 long delta = 6;
736
737 op = codestream_get ();
738 if (op == 0x89) /* movl %ebx, x(%ebp) */
739 {
740 op = codestream_get ();
741 if (op == 0x5d) /* One byte offset from %ebp. */
742 {
743 delta += 3;
744 codestream_read (buf, 1);
745 }
746 else if (op == 0x9d) /* Four byte offset from %ebp. */
747 {
748 delta += 6;
749 codestream_read (buf, 4);
750 }
751 else /* Unexpected instruction. */
752 delta = -1;
753 op = codestream_get ();
754 }
755 /* addl y,%ebx */
756 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
757 {
758 pos += delta + 6;
759 }
760 }
761 codestream_seek (pos);
762
763 i386_follow_jump ();
764
765 return (codestream_tell ());
766 }
767
768 void
769 i386_push_dummy_frame (void)
770 {
771 CORE_ADDR sp = read_register (SP_REGNUM);
772 CORE_ADDR fp;
773 int regnum;
774 char regbuf[MAX_REGISTER_RAW_SIZE];
775
776 sp = push_word (sp, read_register (PC_REGNUM));
777 sp = push_word (sp, read_register (FP_REGNUM));
778 fp = sp;
779 for (regnum = 0; regnum < NUM_REGS; regnum++)
780 {
781 read_register_gen (regnum, regbuf);
782 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
783 }
784 write_register (SP_REGNUM, sp);
785 write_register (FP_REGNUM, fp);
786 }
787
788 /* Insert the (relative) function address into the call sequence
789 stored at DYMMY. */
790
791 void
792 i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
793 struct value **args, struct type *type, int gcc_p)
794 {
795 int from, to, delta, loc;
796
797 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
798 from = loc + 5;
799 to = (int)(fun);
800 delta = to - from;
801
802 *((char *)(dummy) + 1) = (delta & 0xff);
803 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
804 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
805 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
806 }
807
808 void
809 i386_pop_frame (void)
810 {
811 struct frame_info *frame = get_current_frame ();
812 CORE_ADDR fp;
813 int regnum;
814 char regbuf[MAX_REGISTER_RAW_SIZE];
815
816 fp = FRAME_FP (frame);
817 i386_frame_init_saved_regs (frame);
818
819 for (regnum = 0; regnum < NUM_REGS; regnum++)
820 {
821 CORE_ADDR addr;
822 addr = frame->saved_regs[regnum];
823 if (addr)
824 {
825 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
826 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
827 REGISTER_RAW_SIZE (regnum));
828 }
829 }
830 write_register (FP_REGNUM, read_memory_integer (fp, 4));
831 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
832 write_register (SP_REGNUM, fp + 8);
833 flush_cached_frames ();
834 }
835 \f
836
837 #ifdef GET_LONGJMP_TARGET
838
839 /* Figure out where the longjmp will land. Slurp the args out of the
840 stack. We expect the first arg to be a pointer to the jmp_buf
841 structure from which we extract the pc (JB_PC) that we will land
842 at. The pc is copied into PC. This routine returns true on
843 success. */
844
845 int
846 get_longjmp_target (CORE_ADDR *pc)
847 {
848 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
849 CORE_ADDR sp, jb_addr;
850
851 sp = read_register (SP_REGNUM);
852
853 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
854 buf,
855 TARGET_PTR_BIT / TARGET_CHAR_BIT))
856 return 0;
857
858 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
859
860 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
861 TARGET_PTR_BIT / TARGET_CHAR_BIT))
862 return 0;
863
864 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
865
866 return 1;
867 }
868
869 #endif /* GET_LONGJMP_TARGET */
870 \f
871
872 CORE_ADDR
873 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
874 int struct_return, CORE_ADDR struct_addr)
875 {
876 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
877
878 if (struct_return)
879 {
880 char buf[4];
881
882 sp -= 4;
883 store_address (buf, 4, struct_addr);
884 write_memory (sp, buf, 4);
885 }
886
887 return sp;
888 }
889
890 void
891 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
892 {
893 /* Do nothing. Everything was already done by i386_push_arguments. */
894 }
895
896 /* These registers are used for returning integers (and on some
897 targets also for returning `struct' and `union' values when their
898 size and alignment match an integer type). */
899 #define LOW_RETURN_REGNUM 0 /* %eax */
900 #define HIGH_RETURN_REGNUM 2 /* %edx */
901
902 /* Extract from an array REGBUF containing the (raw) register state, a
903 function return value of TYPE, and copy that, in virtual format,
904 into VALBUF. */
905
906 void
907 i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
908 {
909 int len = TYPE_LENGTH (type);
910
911 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
912 && TYPE_NFIELDS (type) == 1)
913 {
914 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
915 return;
916 }
917
918 if (TYPE_CODE (type) == TYPE_CODE_FLT)
919 {
920 if (NUM_FREGS == 0)
921 {
922 warning ("Cannot find floating-point return value.");
923 memset (valbuf, 0, len);
924 return;
925 }
926
927 /* Floating-point return values can be found in %st(0). Convert
928 its contents to the desired type. This is probably not
929 exactly how it would happen on the target itself, but it is
930 the best we can do. */
931 convert_typed_floating (&regbuf[REGISTER_BYTE (FP0_REGNUM)],
932 builtin_type_i387_ext, valbuf, type);
933 }
934 else
935 {
936 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
937 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
938
939 if (len <= low_size)
940 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
941 else if (len <= (low_size + high_size))
942 {
943 memcpy (valbuf,
944 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
945 memcpy (valbuf + low_size,
946 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
947 }
948 else
949 internal_error (__FILE__, __LINE__,
950 "Cannot extract return value of %d bytes long.", len);
951 }
952 }
953
954 /* Write into the appropriate registers a function return value stored
955 in VALBUF of type TYPE, given in virtual format. */
956
957 void
958 i386_store_return_value (struct type *type, char *valbuf)
959 {
960 int len = TYPE_LENGTH (type);
961
962 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
963 && TYPE_NFIELDS (type) == 1)
964 {
965 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
966 return;
967 }
968
969 if (TYPE_CODE (type) == TYPE_CODE_FLT)
970 {
971 unsigned int fstat;
972 char buf[FPU_REG_RAW_SIZE];
973
974 if (NUM_FREGS == 0)
975 {
976 warning ("Cannot set floating-point return value.");
977 return;
978 }
979
980 /* Returning floating-point values is a bit tricky. Apart from
981 storing the return value in %st(0), we have to simulate the
982 state of the FPU at function return point. */
983
984 /* Convert the value found in VALBUF to the extended
985 floating-point format used by the FPU. This is probably
986 not exactly how it would happen on the target itself, but
987 it is the best we can do. */
988 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
989 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
990 FPU_REG_RAW_SIZE);
991
992 /* Set the top of the floating-point register stack to 7. The
993 actual value doesn't really matter, but 7 is what a normal
994 function return would end up with if the program started out
995 with a freshly initialized FPU. */
996 fstat = read_register (FSTAT_REGNUM);
997 fstat |= (7 << 11);
998 write_register (FSTAT_REGNUM, fstat);
999
1000 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1001 the floating-point register stack to 7, the appropriate value
1002 for the tag word is 0x3fff. */
1003 write_register (FTAG_REGNUM, 0x3fff);
1004 }
1005 else
1006 {
1007 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1008 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1009
1010 if (len <= low_size)
1011 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1012 else if (len <= (low_size + high_size))
1013 {
1014 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1015 valbuf, low_size);
1016 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1017 valbuf + low_size, len - low_size);
1018 }
1019 else
1020 internal_error (__FILE__, __LINE__,
1021 "Cannot store return value of %d bytes long.", len);
1022 }
1023 }
1024
1025 /* Extract from an array REGBUF containing the (raw) register state
1026 the address in which a function should return its structure value,
1027 as a CORE_ADDR. */
1028
1029 CORE_ADDR
1030 i386_extract_struct_value_address (char *regbuf)
1031 {
1032 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
1033 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
1034 }
1035 \f
1036
1037 /* Return the GDB type object for the "standard" data type of data in
1038 register REGNUM. Perhaps %esi and %edi should go here, but
1039 potentially they could be used for things other than address. */
1040
1041 struct type *
1042 i386_register_virtual_type (int regnum)
1043 {
1044 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1045 return lookup_pointer_type (builtin_type_void);
1046
1047 if (IS_FP_REGNUM (regnum))
1048 return builtin_type_i387_ext;
1049
1050 if (IS_SSE_REGNUM (regnum))
1051 return builtin_type_v4sf;
1052
1053 return builtin_type_int;
1054 }
1055
1056 /* Return true iff register REGNUM's virtual format is different from
1057 its raw format. Note that this definition assumes that the host
1058 supports IEEE 32-bit floats, since it doesn't say that SSE
1059 registers need conversion. Even if we can't find a counterexample,
1060 this is still sloppy. */
1061
1062 int
1063 i386_register_convertible (int regnum)
1064 {
1065 return IS_FP_REGNUM (regnum);
1066 }
1067
1068 /* Convert data from raw format for register REGNUM in buffer FROM to
1069 virtual format with type TYPE in buffer TO. */
1070
1071 void
1072 i386_register_convert_to_virtual (int regnum, struct type *type,
1073 char *from, char *to)
1074 {
1075 gdb_assert (IS_FP_REGNUM (regnum));
1076
1077 /* We only support floating-point values. */
1078 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1079 {
1080 warning ("Cannot convert floating-point register value "
1081 "to non-floating-point type.");
1082 memset (to, 0, TYPE_LENGTH (type));
1083 return;
1084 }
1085
1086 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1087 the extended floating-point format used by the FPU. */
1088 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1089 }
1090
1091 /* Convert data from virtual format with type TYPE in buffer FROM to
1092 raw format for register REGNUM in buffer TO. */
1093
1094 void
1095 i386_register_convert_to_raw (struct type *type, int regnum,
1096 char *from, char *to)
1097 {
1098 gdb_assert (IS_FP_REGNUM (regnum));
1099
1100 /* We only support floating-point values. */
1101 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1102 {
1103 warning ("Cannot convert non-floating-point type "
1104 "to floating-point register value.");
1105 memset (to, 0, TYPE_LENGTH (type));
1106 return;
1107 }
1108
1109 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1110 to the extended floating-point format used by the FPU. */
1111 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1112 }
1113 \f
1114
1115 #ifdef I386V4_SIGTRAMP_SAVED_PC
1116 /* Get saved user PC for sigtramp from the pushed ucontext on the
1117 stack for all three variants of SVR4 sigtramps. */
1118
1119 CORE_ADDR
1120 i386v4_sigtramp_saved_pc (struct frame_info *frame)
1121 {
1122 CORE_ADDR saved_pc_offset = 4;
1123 char *name = NULL;
1124
1125 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1126 if (name)
1127 {
1128 if (STREQ (name, "_sigreturn"))
1129 saved_pc_offset = 132 + 14 * 4;
1130 else if (STREQ (name, "_sigacthandler"))
1131 saved_pc_offset = 80 + 14 * 4;
1132 else if (STREQ (name, "sigvechandler"))
1133 saved_pc_offset = 120 + 14 * 4;
1134 }
1135
1136 if (frame->next)
1137 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
1138 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
1139 }
1140 #endif /* I386V4_SIGTRAMP_SAVED_PC */
1141 \f
1142
1143 #ifdef STATIC_TRANSFORM_NAME
1144 /* SunPRO encodes the static variables. This is not related to C++
1145 mangling, it is done for C too. */
1146
1147 char *
1148 sunpro_static_transform_name (char *name)
1149 {
1150 char *p;
1151 if (IS_STATIC_TRANSFORM_NAME (name))
1152 {
1153 /* For file-local statics there will be a period, a bunch of
1154 junk (the contents of which match a string given in the
1155 N_OPT), a period and the name. For function-local statics
1156 there will be a bunch of junk (which seems to change the
1157 second character from 'A' to 'B'), a period, the name of the
1158 function, and the name. So just skip everything before the
1159 last period. */
1160 p = strrchr (name, '.');
1161 if (p != NULL)
1162 name = p + 1;
1163 }
1164 return name;
1165 }
1166 #endif /* STATIC_TRANSFORM_NAME */
1167 \f
1168
1169 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1170
1171 CORE_ADDR
1172 skip_trampoline_code (CORE_ADDR pc, char *name)
1173 {
1174 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1175 {
1176 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1177 struct minimal_symbol *indsym =
1178 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1179 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1180
1181 if (symname)
1182 {
1183 if (strncmp (symname, "__imp_", 6) == 0
1184 || strncmp (symname, "_imp_", 5) == 0)
1185 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1186 }
1187 }
1188 return 0; /* Not a trampoline. */
1189 }
1190 \f
1191
1192 /* We have two flavours of disassembly. The machinery on this page
1193 deals with switching between those. */
1194
1195 static int
1196 gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
1197 {
1198 if (disassembly_flavor == att_flavor)
1199 return print_insn_i386_att (memaddr, info);
1200 else if (disassembly_flavor == intel_flavor)
1201 return print_insn_i386_intel (memaddr, info);
1202 /* Never reached -- disassembly_flavour is always either att_flavor
1203 or intel_flavor. */
1204 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1205 }
1206
1207 \f
1208
1209 struct gdbarch *
1210 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1211 {
1212 struct gdbarch_tdep *tdep;
1213 struct gdbarch *gdbarch;
1214
1215 /* For the moment there is only one i386 architecture. */
1216 if (arches != NULL)
1217 return arches->gdbarch;
1218
1219 /* Allocate space for the new architecture. */
1220 tdep = XMALLOC (struct gdbarch_tdep);
1221 gdbarch = gdbarch_alloc (&info, tdep);
1222
1223 /* FIXME: kettenis/2001-11-24: Although not all IA-32 processors
1224 have the SSE registers, it's easier to set the default to 8. */
1225 tdep->num_xmm_regs = 8;
1226
1227 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
1228
1229 /* Call dummy code. */
1230 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1231 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 5);
1232 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1233 set_gdbarch_call_dummy_p (gdbarch, 1);
1234 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1235
1236 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1237 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1238
1239 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
1240
1241 /* NOTE: tm-i386nw.h and tm-i386v4.h override this. */
1242 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
1243
1244 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-linux.h,
1245 tm-ptx.h, tm-symmetry.h currently override this. Sigh. */
1246 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SSE_REGS);
1247
1248 return gdbarch;
1249 }
1250
1251 /* Provide a prototype to silence -Wmissing-prototypes. */
1252 void _initialize_i386_tdep (void);
1253
1254 void
1255 _initialize_i386_tdep (void)
1256 {
1257 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1258
1259 /* Initialize the table saying where each register starts in the
1260 register file. */
1261 {
1262 int i, offset;
1263
1264 offset = 0;
1265 for (i = 0; i < MAX_NUM_REGS; i++)
1266 {
1267 i386_register_offset[i] = offset;
1268 offset += i386_register_size[i];
1269 }
1270 }
1271
1272 tm_print_insn = gdb_print_insn_i386;
1273 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1274
1275 /* Add the variable that controls the disassembly flavor. */
1276 {
1277 struct cmd_list_element *new_cmd;
1278
1279 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1280 valid_flavors,
1281 &disassembly_flavor,
1282 "\
1283 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1284 and the default value is \"att\".",
1285 &setlist);
1286 add_show_from_set (new_cmd, &showlist);
1287 }
1288 }
This page took 0.069963 seconds and 4 git commands to generate.